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Majorana differential shot noise and its universal thermoelectric crossover
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Nonequilibrium states driven by both electric bias voltages V and temperature differences �T (or thermal
voltages eVT ≡ kB�T ) are unique probes of various systems. Whereas average currents I (V,VT ) are tradition-
ally measured in majority of experiments, an essential part of nonequilibrium dynamics, stored particularly
in fluctuations, remains largely unexplored. Here we focus on Majorana quantum dot devices, specifically
on their differential shot noise ∂S>(V,VT )/∂V , and demonstrate that in contrast to the differential electric or
thermoelectric conductance, ∂I (V,VT )/∂V or ∂I (V,VT )/∂VT , it reveals a crossover from thermoelectric to pure
thermal nonequilibrium behavior. It is shown that this Majorana crossover in ∂S>(V,VT )/∂V is induced by an
interplay of the electric and thermal driving, occurs at an energy scale determined by the Majorana tunneling
amplitude, and exhibits a number of universal characteristics which may be accessed in solely noise experiments
or in combination with measurements of average currents.
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I. INTRODUCTION

Topological superconductors interacting with nanoscopic
setups provide a feasible technological platform to entangle a
specific quantum core of these setups with non-Abelian Majo-
rana bound states (MBSs) [1–7] imitating particle-antiparticle
paradigm of the Abelian Majorana fermions [8] known in
the particle physics. Such Majorana entangled setups are un-
derstood (without a strict relation to the specific meaning
of “entanglement” in quantum information) as those where
Majorana and non-Majorana degrees of freedom are coupled
via a certain quantum mechanical mechanism. They represent
a special class of condensed matter systems which are very
attractive both from theoretical and experimental perspectives.
On one side, they admit an observation of diverse physi-
cal phenomena governed essentially by Majorana entangled
states and, on the other side, they may function as elementary
blocks integrated in various fault tolerant topological quan-
tum computing [9] schemes designed to process the quantum
nonlocality supported by MBSs.

Nanoscopic setups where MBSs are entangled with the
quantum degrees of freedom involved in experimental mea-
surements reveal various remarkable characteristics many of
which may be accessed in quantum transport experiments.
Such experiments deal with nonequilibrium states which may
be generated by bias voltages V or temperature differences
�T , expressed equivalently through the corresponding ther-
mal voltages VT , defined as eVT ≡ kB�T . Here Majorana
features are predicted within the framework of mean currents
I (V ) induced by mostly bias voltages [10–36] or, to a lesser
extent, mean currents I (V,VT ) induced by also temperature
differences [37–47]. Experimental efforts on mean currents
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I (V ) induced by bias voltages [48–50] are aimed to measure
the differential conductance ∂I (V )/∂V . Of particular interest
here is the zero bias limit of the differential conductance
(linear conductance) which should attain a certain universal
value predicted theoretically for a specific Majorana entan-
gled setup. Although such mean current experiments are well
developed and should be performed in the first place, un-
fortunately, they may be controversial [51,52] in detecting
MBSs and, as a consequence, other types of quantum trans-
port measurements, or perhaps sequences of measurements
[53], are currently in demand. Particularly, one is interested in
those physical observables which demonstrate in a given setup
a Majorana driven behavior which is qualitatively different
from the behavior of the mean currents measured in the same
Majorana entangled setup.

An attractive quantum transport alternative to the mean
value of a current flowing through a nanoscopic setup is to
study the random deviations of this current from its mean
value, that is the current fluctuations, characterized, for ex-
ample, by the shot noise S>. Here the majority of Majorana
shot noise proposals assume nonequilibrium states originating
from bias voltages [54–64] and explore the behavior of S>(V )
at small and large V . As in mean current experiments, where
the differential conductance ∂I (V )/∂V provides an access to
an averaged Majorana universality, the differential shot noise
∂S>(V )/∂V allows one to reveal a universal fluctuation be-
havior governed by Majorana entangled states.

One may also avoid resorting to nonequilibrium behav-
ior and address Majorana entangled states in corresponding
equilibrium nanoscopic setups by means of quantum thermo-
dynamic tools such as the entropy of these setups [65–69].
Recent experimental and theoretical activities [70–76] on the
entropy of nanoscale and mesoscale systems demonstrate that
this engrossing approach may become a powerful and univo-
cal technique which will not be subject to further controversy
similar to the one about the Majorana differential conduc-
tance.
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Nevertheless, presently quantum transport is a more ap-
pealing framework within which experimentalists have at
their disposal well established technologies verified in diverse
nanoscopic setups for a long period of time. Moreover, quan-
tum transport techniques have a wider space of control due to
numerous additional parameters utilized to maintain various
kinds of nonequilibrium states in which a broad spectrum
of physical observables is available for performing experi-
ments. Thus applying the quantum transport framework to
Majorana entangled nanoscopic setups provides vast freedom
in exploring Majorana phenomena in nonequilibrium. In par-
ticular, among measurements of other physical observables,
shot noise experiments in various nonequilibrium states are
expected to qualitatively enrich the existing results on mean
currents in Majorana entangled nanoscopic setups.

Here we focus on the shot noise in nonequilibrium states
produced by bias voltages V and thermal voltages VT in a
quantum dot (QD) whose degrees of freedom are entangled
with MBSs of a topological superconductor. Specifically, we
explore the differential shot noise ∂S>(V,VT )/∂V which, as
has been discussed above, inspects universal Majorana fluctu-
ation behavior. So far, not much is known about this physical
observable when both V and VT excite competing current
flows in a Majorana setup. Indeed, whereas the differen-
tial thermoelectric shot and quantum noise, ∂S>(V,VT )/∂VT ,
have been addressed [77,78] in the presence of both bias
voltages and temperature differences, the differential shot
noise ∂S>(V,VT )/∂V remains to a large extent unexplored
for Majorana entangled setups in nonequilibrium states driven
by both V and VT . It should be noted that in nonequilibrium
states induced only by bias voltages V the differential shot
noise has been studied in combination with the differential
conductance. In particular, in Ref. [79] it is demonstrated
that in the presence of MBSs a dip of the differential shot
noise is always accompanied by a peak of the differential
conductance. This behavior has also been observed earlier
in Ref. [64] (see its Fig. 4, namely, the insets of the up-
per panel). As mentioned above, it is important to find
for a given Majorana entangled setup physical observables
whose behavior has a character qualitatively different from
the one of the mean current or its derivative physical quan-
tities such as the differential conductance ∂I (V,VT )/∂V or
differential thermoelectric conductance ∂I (V,VT )/∂VT whose
behavior may be obtained in the same setup. We demon-
strate that the differential shot noise is one of such physical
observables which is distinguished by the presence of a
crossover from a thermoelectric to pure thermal nonequi-
librium behavior. It is shown that whereas the differential
shot noise passes through its crossover, the differential con-
ductance and differential thermoelectric conductance do not
exhibit any crossover or any other peculiarity. Thus, in con-
trast to ∂I (V,VT )/∂V and ∂I (V,VT )/∂VT , the differential
shot noise ∂S>(V,VT )/∂V brings a nonequilibrium energy
scale having a pure fluctuation nature meaning that it can-
not be revealed within measurements limited only by the
mean current. Besides being of fundamental interest, the
energy scale associated with the nonequilibrium crossover
in ∂S>(V,VT )/∂V is shown to be of practical importance
in expressing quantitatively the fluctuation universality of
Majorana entangled states via a number of measurable

universal ratios which would be of interest for future exper-
iments.

The paper is organized as follows. In Sec. II we dis-
cuss a theoretical model of an experimentally feasible
nanoscopic setup where MBSs are entangled with a QD
whose nonequilibrium states are generated by both a bias
voltage and thermal voltage. Results of numerical analysis
performed with high accuracy for the differential shot noise
∂S>(V,VT )/∂V , differential conductance ∂I (V,VT )/∂V , and
differential thermoelectric conductance ∂I (V,VT )/∂VT are
presented in Sec. III where it is demonstrated that, in con-
trast to ∂I (V,VT )/∂V and ∂I (V,VT )/∂VT , one observes in
∂S>(V,VT )/∂V a crossover from a thermoelectric to pure
thermal nonequilibrium behavior. The energy scale where this
crossover takes place and a number of universal Majorana
ratios involving this energy scale are also shown in this sec-
tion. Finally, with Sec. IV we make conclusions and discuss
possible outlooks.

II. THEORETICAL MODEL OF A MAJORANA
ENTANGLED QUANTUM DOT AND THE DIFFERENTIAL
SHOT NOISE IN THERMOELECTRIC NONEQUILIBRIUM

We start with a description of a setup which, on one side,
is technologically feasible [80,81] and, on the other side, in-
volves a basic mechanism of a Majorana entanglement which
is sufficient to demonstrate a remarkable nonequilibrium be-
havior of the differential shot noise in presence of both bias
voltages and temperature differences. To this end, let us con-
sider a noninteracting QD,

ĤQD = εd d†d. (1)

The QD is nondegenerate and its energy level εd is tun-
able by a proper gate voltage. The choice of a setup with a
noninteracting QD is quite a realistic assumption to explore
universal Majorana phenomena at low energies. Indeed, the
spin degeneracy is assumed to be removed by an external
magnetic field which excludes a possible interfering of an
interaction induced Kondo universal behavior, well-known
in experiment and theory of spin-degenerate QDs [82–88],
with the low-energy Majorana universal effects, which are
of interest in this work. Numerical renormalization group
calculations [89] have demonstrated that interacting spin-
degenerate QDs in external magnetic fields behave similar
to noninteracting nondegenerate QDs exhibiting, for example,
the linear conductance e2/2h which results entirely from the
Majorana entangled states. Thus Eq. (1) is a proper model to
explore low-energy Majorana quantum transport, in particu-
lar, in nonequilibrium states resulting from bias voltages and
temperature differences [38].

Two normal noninteracting metallic contacts, denoted be-
low as left (L) and right (R),

ĤC =
∑

l={L,R}

∑
k

εkc†
lkclk, (2)

are connected to the QD via tunneling processes,

ĤQD−C =
∑

l={L,R}
Tl

∑
k

c†
lkd + H.c. (3)
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In Eq. (2) the continuous energy spectrum εk gives rise to
a density of states of the contacts νC (ε) which is in general
energy dependent. However, around the Fermi energy one
(usually with a good accuracy) assumes that its energy de-
pendence plays no essential role for quantum transport and
thus νC (ε) ≈ ν0/2. In Eq. (3) one additionally assumes that
the tunneling matrix elements do not depend on the set k of the
quantum numbers used to describe the states in the contacts,
Tkl ≈ Tl . The relevant energy scales brought about by the
tunneling between the QD and contacts are �l = πν0|Tl |2. By
proper gate voltages one may achieve the symmetric coupling
�L = �R = �/2 which will be assumed below.

Each contact is assumed to be in its own equilibrium state
with the corresponding Fermi-Dirac distribution,

fl (ε) = 1

exp
(

ε−μl

kBTl

) + 1
. (4)

Here the chemical potentials,

μL,R = μ0 ± eV/2, (5)

are specified by the bias voltage V such that eV < 0 and the
temperature of the left contact is higher than the temperature
of the right contact, that is

TL = T + �T (hot contact),

TR = T (cold contact), (6)

assuming T,�T � 0. The QD is out of equilibrium when
either V �= 0 or �T �= 0.

A topological superconductor hosting two MBSs γ1,2 at its
ends,

ĤT S = 1
2 iξγ2γ1, γ

†
1,2 = γ1,2, {γi, γ j} = 2δi j, (7)

interacts with the QD,

ĤQD−T S = η∗d†γ1 + H.c., (8)

implementing a direct entanglement of the QD’s degrees of
freedom with the Majorana mode γ1 of the topological super-
conductor. In Eq. (7) the parameter ξ is an energetic measure
of how strong the two Majorana modes overlap with each
other. When ξ is small the MBSs are well separated whereas
large values of ξ model a situation where the two MBSs
merge into a single Dirac fermion. In Eq. (8) the Majorana
tunneling amplitude |η| specifies the strength of the Majorana
entanglement.

A schematic summary of the above theoretical formulation
of the setup, based on Eqs. (1)–(8), is illustrated in the inset of
Fig. 1.

The Hamiltonian of the setup, Ĥ = ĤQD + ĤC + ĤQD−C +
ĤT S + ĤQD−T S , allows us to formulate the problem in terms
of the Keldysh field integral [90], a convenient tool to calcu-
late various correlation functions. Other technical tools based,
e.g., on quantum master equations [91] may also be con-
sidered as alternative approaches to the problem. Within the
Keldysh field integral formalism one may straightforwardly
derive the shot noise from the Keldysh generating functional,

Z[Jlq(t )] =
∫

D[ψ̄, ψ ; φ̄, φ; ζ̄ , ζ ]e
i
h̄ SK [Jlq (t )], (9)

FIG. 1. Differential shot noise ∂S>/∂V as a function of the
thermal voltage VT for three different values of the bias volt-
age: |eV |/� = 10−12 (black), |eV |/� = 10−11 (red), |eV |/� = 10−10

(blue). The other parameters have the following values: εd/� =
10−1, kBT/� = 10−12, |η|/� = 1, ξ/� = 10−14. The Majorana de-
vice presented above the curves illustrates schematically the physical
setup, described in the main text, Eqs. (1)–(8), assuming eV < 0 and
�T > 0.

which is a field integral over the Grassmann fields of the
QD (ψ̄q(t ), ψq(t )), contacts (φ̄lkq(t ), φlkq(t )) and topological
superconductor (ζ̄q(t ), ζq(t )) whose temporal arguments are
on the real axis and q = ± specifies, respectively, the forward
or backward branch of the Keldysh contour. At zero source
fields the Keldysh generating functional is determined by the
Keldysh action S(0)

K ≡ SK [Jlq(t ) = 0] and is equal to unity,
Z[Jlq(t ) = 0] = 1. The Keldysh action SK [Jlq(t )],

SK [Jlq(t )] = SQD[ψ̄, ψ] + SC[φ̄, φ] + ST S[ζ̄ , ζ ]

+ SQD−C[ψ̄, ψ ; φ̄, φ] + SQD−T S[ψ̄, ψ ; ζ̄ , ζ ]

+ SO[ψ̄, ψ ; φ̄, φ; Jlq(t )], (10)

is the sum of, respectively, the actions describing the QD,
contacts, topological superconductor, tunneling between the
QD and contacts, tunneling between the QD and topological
superconductor and the source action added to generate an
observable of interest, in particular, the mean current and shot
noise. The actions SQD, SC , and ST S are of the standard matrix
form [90] in the retarded-advanced space. The actions SQD−C ,
SQD−T S , and SO have the following form:

SQD−C = −
∫ ∞

−∞
dt

∑
l={L,R}

∑
k,q

[Tl qφ̄lkq(t )ψq(t ) + G.c.], (11)

SQD−T S = −
∫ ∞

−∞
dt

{
η∗ ∑

q

q[ψ̄q(t )ζq(t )

+ ψ̄q(t )ζ̄q(t )] + G.c.

}
, (12)

SO = −
∫ ∞

−∞
dt

∑
l={L,R}

∑
q

Jlq(t )Ilq(t ), (13)
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where G.c. denotes the Grassmann conjugated terms and Ilq(t )
is the current operator in the Grassmann representation,

Ilq(t ) = ie

h̄

∑
k

(Tl φ̄lkq(t )ψq(t ) − G.c.). (14)

The form of the source action in Eq. (13) implies that one
derives the mean current and current-current correlations via
proper differentiations,

〈Ilq(t )〉0 = ih̄
δZ[Jlq(t )]

δJlq(t )

∣∣∣∣
Jlq (t )=0

, (15)

〈Ilq(t )Il ′q′ (t ′)〉0 = (ih̄)2 δ2Z[Jlq(t )]

δJlq(t )δJl ′q′ (t ′)

∣∣∣∣
Jlq (t )=0

, (16)

where〈∏
i

Iliqi (ti )

〉
0

≡
∫

D[ψ̄, ψ ; φ̄, φ; ζ̄ , ζ ]e
i
h̄ S(0)

K

∏
i

Iliqi (ti).

(17)

Choosing the left contact as the one where measurements
of the mean current

I (V,VT ) = 〈ILq(t )〉0, (18)

and correlations

S>(t, t ′;V,VT ) = 〈δIL−(t )δIL+(t ′)〉0 (19)

of the current fluctuations

δILq(t ) = ILq(t ) − I (V,VT ) (20)

are performed, one obtains the shot noise S>(V,VT ) in
the left contact as the zero frequency Fourier transform of
S>(t, t ′;V,VT ) = S>(t − t ′;V,VT ),

S>(ω;V,VT ) =
∫ ∞

−∞
dt eiωt S>(t ;V,VT ),

S>(V,VT ) = S>(ω = 0;V,VT ). (21)

As it has already been mentioned in Sec. I, the majority
of quantum transport experiments deal with mean currents,
Eq. (18), specifically, with their differential characteristics
such as the differential conductance or, less often, differential
thermoelectric conductance, ∂I (V,VT )/∂V or ∂I (V,VT )/∂VT ,
respectively. These quantities have universal units of e2/h and
thus provide direct access to universal properties of MBSs.
Likewise, experiments dealing with shot noises, Eq. (21), and
their derivatives, may access universal fluctuation behavior of
Majorana entangled states via, for example, the differential
shot noise, ∂S>(V,VT )/∂V , having universal units of e3/h.
Whereas the Majorana universality of ∂S>/∂V is still an
experimental challenge for Majorana entangled setups, the
differential shot noise has already been successfully measured
to probe other types of fluctuation universality, for example
the universality of the Kondo noise in quantum dots [92].
Although experiments on current fluctuations are more com-
plicated than those measuring mean currents, the results of
such noise measurements provide a much more detailed mi-
croscopic structure of various nanoscopic setups.

Below we obtain the differential conductance
∂I (V,VT )/∂V , differential thermoelectric conductance
∂I (V,VT )/∂VT , and differential shot noise ∂S>(V,VT )/∂V by

means of numerical calculations based on finite differences
used to approximate the corresponding derivatives. Here we
would like to emphasize that although the above theoretical
model is noninteracting, numerical calculations of S>(V,VT )
and I (V,VT ) are nevertheless necessary. The point is that
after obtaining closed analytic expressions for S>(V,VT )
and I (V,VT ), which is possible because the Keldysh field
integral is quadratic in the fermionic fields, it still remains to
perform integrals in the energy domain (see the Appendix in
Ref. [77]) in these analytic expressions. These integrals are
hard to calculate analytically, especially, at finite temperature
differences (characterized by finite thermal voltages VT ), that
is when the Fermi-Dirac distributions in Eq. (4) cannot be
approximated by steplike functions. In general, calculations
of the differential shot noise are more time consuming than
those which would be necessary to get just the shot noise.
Whereas a certain numerical accuracy may be sufficient to get
curves looking smooth enough for S>(V,VT ), using the same
numerical data to calculate ∂S>(V,VT )/∂V may result in
numerical errors leading to a chaotic data set. Thus to obtain
∂S>(V,VT )/∂V with an accuracy that allows one to identify
dependence on various parameters as well as corresponding
coefficients, the calculation of S>(V,VT ) should be done with
a proper precision. Clearly, a higher degree of numerical
accuracy leads to a notable increase of the computational time
but still makes it possible to perform for the setup described
in this section a detailed analysis of ∂S>(V,VT )/∂V , in
particular, its universal Majorana thermoelectric crossover
discussed thoroughly in the next section.

III. NUMERICAL ANALYSIS OF THE DIFFERENTIAL
SHOT NOISE AND ITS THERMOELECTRIC CROSSOVER

In this section we present numerical results for the dif-
ferential shot noise ∂S>(V,VT )/∂V and demonstrate that, in
contrast to the differential conductance ∂I (V,VT )/∂V and
differential thermoelectric conductance ∂I (V,VT )/∂VT , it ex-
hibits a crossover from one type of nonequilibrium behavior
to a qualitatively different one. This crossover occurs in the
regime

� 
 eVT 
 |eV | 
 ξ, (22)

and in the most part of this section we focus on quantum
transport in this regime except for the last part where we show
that the crossover disappears for large values of the Majorana
overlap energy ξ .

In Fig. 1 we show numerical results obtained for the differ-
ential shot noise ∂S>(V,VT )/∂V as a function of the thermal
voltage VT for different values of the bias voltage V . As can
be seen, at a certain value of the thermal voltage VT = VT,min

each of the three curves has a characteristic minimum (shown
by the corresponding circle), which represents a crossover
from a thermoelectric to pure thermal nonequilibrium behav-
ior. Indeed, the decreasing, or thermoelectric, branch depends
on both the electric driving V and thermal driving VT with
the asymptotic behavior shown by the inclined dashed line
whereas the increasing, or pure thermal, branch depends only
on the thermal driving VT and does not depend on the electric
driving V . Our numerical analysis shows that the asymp-
totics of the thermoelectric and pure thermal nonequilibrium
branches are, respectively, given by the following analytic
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expressions:

∂S>(V,VT )

∂V
= e3

h

1

8

|eV |
eVT

,

for VT : |eV | � eVT � eVT,min, (23)

and

∂S>(V,VT )

∂V
= e3

h

1 − ln(2)

4

εd (eVT )

η2
,

for VT : eVT,min � eVT � �, (24)

both of which we are able to reproduce with any desired nu-
merical accuracy. Similarly, in the whole range of the thermal
voltage VT , restricted by the regime specified in Eq. (22), our
numerical calculations show that the analytic expression for
the differential shot noise is given by the sum of Eqs. (23) and
(24),

∂S>(V,VT )

∂V
= e3

h

[
1

8

|eV |
eVT

+ 1 − ln(2)

4

εd (eVT )

|η|2
]
,

for VT : |eV | � eVT � �. (25)

An analytic derivation of Eq. (25) is a complicated task which
we would like to address in a separate paper. We note that a
proper analytic analysis may provide corrections to Eq. (25)
and show under which conditions these corrections start to
play an essential role. Also using the Sommerfeld expansion
[93], one may analytically derive the differential shot noise
in the complementary regime where eVT � |eV |. However,
within the specified regime, Eq. (22), the analytic expression
in Eq. (25) has been confirmed with any desired numerical
precision. This means that the stronger the inequalities in
Eq. (22) are fulfilled, the more digits after the decimal point
are reproduced numerically for any given value obtained ana-
lytically from Eq. (25).

From Eq. (25) we find that eVT,min depends on the bias
voltage V , gate voltage εd and Majorana tunneling amplitude
|η|,

eVT,min =
{

1

2[1 − ln(2)]

|eV ||η|2
εd

} 1
2

. (26)

The differential shot noise at VT = VT,min is obtained from
Eqs. (25) and (26) which lead to the following result:

∂S>(V,VT )

∂V

∣∣∣∣
VT =VT,min

= e3

h

[
1 − ln(2)

8

εd |eV |
|η|2

] 1
2

. (27)

Note, that the thermoelectric branch, Eq. (23), is universal
because it does not depend on the gate voltage εd and depends
only on the ratio between the electric and thermal driving, V
and VT , respectively.

According to Eqs. (26) and (27) both the location of
the crossover, VT,min, and the value of ∂S>(V,VT )/∂V at
VT = VT,min depend on V . This suggests that the crossover
results from an interplay between the electric and thermal
driving. Moreover, the dependence of the crossover on εd in
Eqs. (26) and (27) (see also Fig. 2) is another indication that
the crossover emerges from a competition of the two flows
excited, respectively, by the electric and thermal driving. Ob-
viously, due to the particle-hole symmetry, the current cannot

FIG. 2. Differential shot noise ∂S>/∂V as a function of the ther-
mal voltage VT for three different values of the gate voltage: εd/� =
10−2 (black), εd/� = 10−1 (red), εd/� = 1 (blue). The other param-
eters have the following values: |eV |/� = 10−10, kBT/� = 10−12,
|η|/� = 1, ξ/� = 10−14.

be excited exclusively by the thermal driving VT when εd = 0.
The pure thermal driving VT induces a finite current only when
εd �= 0.

The straight solid line in Fig. 1 shows both the locations
VT,min of the crossovers and the values of ∂S>(V,VT )/∂V
at VT = VT,min parameterized by the bias voltage V accord-
ing to Eqs. (26) and (27). The figure clearly shows that the
crossovers (highlighted by the circles), obtained from the nu-
merical calculations, reside perfectly on the analytic straight
solid line. As expected, at low energies, eVT � |eV | [that is
outside the regime in Eq. (22)], the differential shot noise
reaches its universal asymptotic unitary value e3/4h shown
by the horizontal dashed line (see also Refs. [54,59]).

The numerical results presented in Fig. 2 show the differ-
ential shot noise ∂S>(V,VT )/∂V as a function of the thermal
voltage VT for different values of the gate voltage εd . As in
Fig. 1, each of the three curves possesses a crossover (shown
by the corresponding circle) from a thermoelectric to pure
thermal nonequilibrium behavior. As mentioned above, on the
left side of the crossover the decreasing, or thermoelectric,
branch is universal: it depends on both the electric driving V
and thermal driving VT via their ratio and Fig. 2 explicitly
demonstrates that it does not depend on the gate voltage εd .
On the right side of the crossover the increasing, or pure
thermal, branch, which is driven only by the thermal voltage
VT , is obviously not universal. Indeed, the figure clearly shows
that this branch depends on the gate voltage εd . The inclined
dashed line shows the asymptotic behavior of the pure thermal
nonequilibrium branch, in particular, its dependence on the
gate voltage εd . Note, that in fact this pure thermal nonequilib-
rium branch is not universal because of two reasons. The first
reason, the dependence on εd , was already mentioned above.
The second reason is that this branch additionally depends on
the Majorana tunneling amplitude |η| as it is also shown in its
asymptotic behavior.

155416-5



SERGEY SMIRNOV PHYSICAL REVIEW B 107, 155416 (2023)

In addition to the dependence on V , both the location
of the crossover, VT,min, and the value of ∂S>(V,VT )/∂V
at VT = VT,min depend on εd . The straight solid line shows
both the locations VT,min of the crossovers and the values
of ∂S>(V,VT )/∂V at VT = VT,min parameterized by the gate
voltage εd according to Eqs. (26) and (27). As in the case
of the parametric dependence on V , one clearly sees that the
numerically obtained crossovers, marked by the circles, also
reside perfectly on the analytic straight line resulting from
the parametric dependence on εd . Here the universality of the
differential shot noise at low energies, eVT � |eV |, is explic-
itly visible: the asymptotic low-energy behavior is obviously
independent of εd and is characterized by the unitary value
e3/4h shown by the horizontal dashed line.

The nonequilibrium Majorana crossover in the differential
shot noise has a number of universal properties which may
quantitatively be expressed via a number of ratios taking uni-
versal values. For example, according to Eqs. (26) and (27)
the ratio

R1 ≡ eVT,min

|eV |
∂S>(V,VT )

∂V

∣∣∣∣
VT =VT,min

(28)

is independent of V and takes the universal value

R(M )
1 = e3

4h
(29)

for bias voltages satisfying Eq. (22).
For the mean current at low bias voltages in Ref. [41] it has

been found that

∂I (V,VT )

∂VT
= e2

h

π2

12

εd (eVT )

|η|2 . (30)

Using Eqs. (26), (27), and (30) one finds that the dimension-
less ratio

R2 ≡
∂S>(V,VT )

∂V

∣∣
VT =VT,min

eVT,min
∂2I (V,VT )

∂V 2
T

(31)

becomes universal,

R(M )
2 = [1 − ln(2)]

6

π2
(32)

under the conditions in Eq. (22).
If one takes two values of the thermal voltage, VT1 and VT2 ,

such that VT1 belongs to the thermoelectric branch and VT2

belongs to the pure thermal branch, then from Eqs. (23), (24),
and (27) it follows that the dimensionless ratio

R3 ≡ VT1

VT2

∂S>(V,VT )
∂V

∣∣
VT =VT1

∂S>(V,VT )
∂V

∣∣
VT =VT2(

∂S>(V,VT )
∂V

∣∣
VT =VT,min

)2 (33)

is universal,

R(M )
3 = 1

4 , (34)

that is independent of VT1 (VT2 ) at fixed VT2 (VT1 ). This is
demonstrated in Fig. 3 where the fixed values of VT1 (lower
panel) and VT2 (upper panel) are, respectively, chosen such that
|eV | � eVT1 � eVT,min and eVT,min � eVT2 � �. As one can
see in the upper panel of Fig. 3, on the left (thermoelectric)

FIG. 3. Dimensionless ratio R3, defined in Eq. (33), which relates
the thermoelectric (VT1 is on the left side of the crossover) and
pure thermal (VT2 is on the right side of the crossover) branches
of the differential shot noise ∂S>/∂V via its value at the crossover
VT = VT,min. Upper (Lower) panel: R3 as a function of VT1 (VT2 ) at
a fixed value of VT2 (VT1 ). Here the values of the parameters are as
follows: εd/� = 10−1, |eV |/� = 10−10, kBT/� = 10−12, |η|/� = 1,
ξ/� = 10−14, and eVT1/� = 10−7 (lower panel), eVT2/� = 10−3 (up-
per panel). For the above values of the parameters one gets from
Eq. (26) that eVT,min/� ≈ 4 × 10−5 (see the vertical dashed line).

side of the crossover the numerically obtained dimension-
less ratio R3 has a perfect plateau with R3 = 1/4 (shown by
the horizontal dashed line) as expected in the range |eV | �
eVT1 � eVT,min for any fixed value of VT2 taken from the range
eVT,min � eVT2 � �. As demonstrated in the lower panel of
Fig. 3, also on the right (pure thermal) side of the crossover the
numerical curve develops a clear plateau on which R3 = 1/4
(horizontal dashed line) in the range eVT,min � eVT2 � � for
any fixed value of VT1 taken from the range |eV | � eVT1 �
eVT,min. In contrast, when VT1 moves away from the ther-
moelectric branch (left side of the crossover), that is when
eVT1 � |eV | or VT1 � VT,min, the ratio R3 must deviate from
the value 1/4. The numerical results (solid curve) in the upper
panel show that indeed deviations from the plateau R3 = 1/4
occur when eVT1 � |eV | or VT1 � VT,min. Similarly, when VT2

is not located on the pure thermal branch (right side of the
crossover), that is when VT2 � VT,min or eVT2 � �, the ratio R3

must also shift away from the plateau on which it reaches the
value 1/4. As anticipated, the solid curve resulting from nu-
merical calculations demonstrates that its plateaulike behavior
in the lower panel breaks in the domains where VT2 � VT,min

or eVT2 � �.
Now let us consider only the pure thermal nonequilibrium

branch of the differential shot noise. From Eqs. (24) and (30)
one finds that the ratio

R4 ≡
∂S>(V,VT )

∂V
∂I (V,VT )

∂VT

(35)

becomes universal,

R(M )
4 = e

3[1 − ln(2)]

π2
, (36)
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FIG. 4. Differential shot noise ∂S>/∂V (upper panel), differen-
tial thermoelectric conductance ∂I/∂VT (middle panel) and their ratio
R4 (lower panel) as functions of the thermal voltage VT . Here the
results have been obtained for the following values of the parameters:
εd/� = 10−1, |eV |/� = 10−12, kBT/� = 10−12, |η|/� = 1, ξ/� =
10−14. According to Eq. (26), these values of the parameters give
eVT,min/� ≈ 4 × 10−6.

in the range of the pure thermal nonequilibrium branch. In
Fig. 4 we present numerical results for the ratio R4. From the
upper and middle panels one immediately sees the qualitative
difference between the behavior of, respectively, the differen-
tial shot noise ∂S>(V,VT )/∂V and differential thermoelectric
conductance ∂I (V,VT )/∂VT . Indeed, whereas the differential
shot noise ∂S>(V,VT )/∂V exhibits in its minimum a crossover
separating a thermoelectric branch (left side of the crossover)
from a pure thermal branch (right side of the crossover), the
differential thermoelectric conductance ∂I (V,VT )/∂VT does
not demonstrate any crossover and has only one, pure thermal,
nonequilibrium branch. As has been discussed above, in con-
trast to the universal thermoelectric branch of ∂S>(V,VT )/∂V ,
its pure thermal branch is not universal because of its de-
pendence on the gate voltage εd and the Majorana tunneling
amplitude |η| as can be seen in Eq. (24). Comparing the two
nonuniversal pure thermal branches of the differential shot
noise and differential thermoelectric conductance, Eqs. (24)
and (30), respectively, one sees that both of them depend lin-
early on the thermal voltage VT and have identical parametric
dependence on the gate voltage εd and Majorana tunneling
amplitude |η|. Thus, although the pure thermal branches of the
differential shot noise and differential thermoelectric conduc-
tance are not universal when considered separately from each
other, their ratio R4 in Eq. (35), must be universal, that is it
must be independent of the thermal voltage VT , gate voltage εd

and Majorana tunneling amplitude |η|. Moreover, according to
Eq. (36), one expects that in the range of VT corresponding to
the pure thermal branch of ∂S>(V,VT )/∂V the ratio R4 must
be equal to 3[1 − ln(2)]/π2 in the universal units of the ele-
mentary charge e. The numerical results presented in the lower
panel confirm this expectation: on the right (pure thermal)
side of the crossover of ∂S>(V,VT )/∂V the ratio R4 exhibits
a plateaulike behavior in the range eVT,min � eVT � � with
R4 = 3e[1 − ln(2)]/π2 on the plateau. At this point we would
also like to note that, similarly to the differential thermoelec-

FIG. 5. Ratio R4 defined in Eq. (35) (duplicated also below the
solid curve in the figure) as a function of the Majorana overlap en-
ergy ξ . Here we put εd/� = 10−1, |eV |/� = 10−12, eVT /� = 10−3,
kBT/� = 10−12, |η|/� = 1.

tric conductance ∂I (V,VT )/∂VT , the differential conductance
∂I (V,VT )/∂V does not exhibit any crossover. Our numeri-
cal calculations show that it remains almost independent of
VT and retains its Majorana fractional value ∂I (V,VT )/∂V =
e2/2h up to eVT ∼ � where it starts to decrease and be-
comes strongly suppressed, i.e., ∂I (V,VT )/∂V � e2/2h, for
eVT � �.

To see what happens when the two MBSs are not well sep-
arated, we have performed numerical calculations for larger
values of the Majorana overlap energy ξ . Our results show
that the above discussed crossover and universal values of
the ratios R1,2,3,4 disappear. For example, Fig. 5 shows the
ratio R4 as a function of ξ . For well separated MBSs the
values of the parameters are chosen to drive the system into
the regime where it stays within the plateau shown in the
lower panel of Fig. 4, that is when the ratio between the pure
thermal branch of the differential shot noise ∂S>(V,VT )/∂V
and differential thermoelectric conductance ∂I (V,VT )/∂VT

takes its universal value, R(M )
4 = 3e[1 − ln(2)]/π2. As Fig. 5

clearly demonstrates, for small values of the Majorana overlap
energy ξ the ratio between the pure thermal nonequilibrium
branches of ∂S>(V,VT )/∂V and ∂I (V,VT )/∂VT is equal to
its universal Majorana value R(M )

4 . However, when ξ grows,
the two MBSs significantly merge into a single Dirac fermion
and cannot be probed separately anymore. In this situation
the universal nonequilibrium Majorana behavior breaks. As
a consequence, the ratio R4 significantly deviates from its
universal Majorana plateau R(M )

4 . Moreover, for large values
of the Majorana overlap energy ξ both the thermoelectric
and pure thermal nonequilibrium branches of the differential
shot noise ∂S>(V,VT )/∂V are destroyed and the notion of the
crossover discussed above loses its sense as one would expect
for a phenomenon having a Majorana nature.

Finally, to demonstrate that the universal Majorana ther-
moelectric crossover in the differential shot noise represents
a specific behavior strikingly distinct from what is observed
in conventional systems without coupling to MBSs, we have
computed ∂S>(V,VT )/∂V in the absence of the topological
superconductor. The Hamiltonian of the setup without the
topological superconductor is obtained from our Hamiltonian
if one sets |η| = ξ = 0. The results obtained for this setup are
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FIG. 6. Differential shot noise ∂S>/∂V in the absence of MBSs
is shown as a function of the thermal voltage VT for three different
values of the gate voltage: εd/� = 10−1 (black), εd/� = 0.74 ×
10−1 (red), εd/� = 1.18 × 10−1 (blue). The other parameters have
the following values: |eV |/� = 10−10, kBT/� = 10−12, |η| = ξ = 0.

shown in Fig. 6. As can be seen, in the absence of MBSs the
dependence of the differential shot noise on VT is qualitatively
different from the Majorana induced behavior in two respects.

First, as Fig. 6 shows, the differential shot noise be-
comes a monotonic function of VT for |eV | � eVT � �. Its
monotonically decreasing character makes ∂S>(V,VT )/∂V
negative at some point (that is why we avoid using the log-
arithmic scale for the y axis). In this sense the differential shot
noise is not qualitatively singled out because the differential
electric and thermoelectric conductances are also monoton-
ically decreasing functions of VT for |eV | � eVT � � in
the absence of MBSs. Specifically, for |eV | � eVT � � the
differential electric conductance is almost independent of VT

(and is equal to a value which depends on the gate voltage
εd ) up to eVT ∼ � where it starts to quickly decrease, whereas
the differential thermoelectric conductance is, unlike the Ma-
jorana case, always negative and decreases linearly with VT

(that is its absolute value grows). In contrast, when MBSs are
present, the differential shot noise is qualitatively singled out
by its nonmonotonic behavior characterized by a minimum,
specifying the thermoelectric crossover, as opposed to the
differential electric and thermoelectric conductances having
monotonic behavior exhibiting no minima or maxima for
|eV | � eVT � �.

Second, the three curves in Fig. 6, corresponding to three
different values of the gate voltage εd , demonstrate that in
the whole range of the thermal voltage VT the differential
shot noise is not universal, that is, in the absence of MBSs
∂S>(V,VT )/∂V depends on εd for any value of VT . This
nonuniversal behavior of ∂S>(V,VT )/∂V is qualitatively dif-
ferent from what has been demonstrated in Fig. 2 where
coupling to MBSs makes the thermoelectric branch (left side
of the crossover) of ∂S>(V,VT )/∂V universal that is indepen-
dent of εd . In contrast, without coupling to MBSs even small
variations of the gate voltage εd produce large changes in the
differential shot noise ∂S>(V,VT )/∂V in the whole range of
the thermal voltage VT as it is clearly seen in Fig. 6.

IV. CONCLUSION

We have explored the differential shot noise
∂S>(V,VT )/∂V in a Majorana entangled QD device driven
out of equilibrium by both the bias voltage V and thermal
voltage VT . The numerical analysis of high precision has
been used to reveal the existence of a crossover in the
behavior of ∂S>(V,VT )/∂V as a function of VT and identify
its analytic form. In particular, it has been shown that this
crossover results from an interplay between the two types
of nonequilibrium fluctuations induced by, respectively,
V and VT and separates thermoelectric nonequilibrium
behavior of the differential shot noise from its pure thermal
nonequilibrium behavior. The energy scale of the crossover
as well as its nonequilibrium fluctuation nature invisible
for mean current probes have been identified and the
crossover dependences on the gate voltage, bias voltage
and Majorana tunneling amplitude have been explicitly
shown. Additionally, various universal Majorana ratios
R1,2,3,4 involving the energy scale of the crossover have
been provided for a future experimental access to universal
fluctuation behavior of Majorana entangled states within
either pure noise measurements, ratios R1,3, or in combination
with measurements of mean currents, ratios R2,4. It has been
found that the crossover is destroyed when the two MBSs
of the topological superconductor start to overlap and merge
into a single Dirac fermion. This results in a disappearance
of the universal Majorana plateaus in the ratios R1,2,3,4 as has
been exemplified via numerical calculations for R4. Finally,
we have demonstrated that whereas for Majorana entangled
states the differential shot noise has a nonmonotonic behavior
characterized by a minimum with universal properties,
in conventional systems without coupling to MBSs the
differential shot noise is a monotonic and nonuniversal
function in the whole range of VT . Thus, in contrast to
Majorana entangled states, in setups without MBSs the
monotonic differential shot noise is not qualitatively different
from the differential electric and thermoelectric conductances
which are also monotonic functions of VT in the absence of
MBSs.

For an experimental verification of the theoretical results
presented in this work one might consider the devices studied
in Refs. [80,81]. These devices are based on InAs nanowires
covered by an Al layer grown by molecular beam epitaxy.
The Al layer is the superconductor which is used to induce a
topological superconducting state in the InAs nanowire whose
ends are assumed to host MBSs γ1,2. To couple γ1 to a QD
the Al layer is etched on one end of the InAs nanowire.
This bare part of InAs is the place where one forms a QD
coupled to the Majorana state γ1 with the coupling strength
|η|. As explained in Ref. [81], the occupancy (or the energy
level εd in our context) of the QD is tuned by proper gate
voltages. In addition to the setup in Refs. [80,81], one may
also form two independent normal metallic contacts coupled
to the QD with the coupling strength �. These two indepen-
dent normal metallic contacts may, in general, have different
chemical potentials μL,R and different temperatures TL,R. To
measure the differential shot noise one could try to adapt,
for example, the technology from Ref. [92] based on cou-
pling of a setup to a quantum noise detector. Here for the
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quantum noise detector one also uses Al as a superconductor
and thus it might be compatible with the above technol-
ogy [80,81] for topological superconductivity. The setup in
Ref. [92] is a carbon nanotube. It may be replaced with the
InAs nanowire from Refs. [80,81]. One possible problem here
is that measurements in Ref. [92] assume finite frequencies.
Nevertheless, one may still measure the differential shot noise
if the resonant frequencies in Ref. [92] are made smaller
than all the relevant energy scales of our setup. This might
be achieved, for example, by increasing the length of the
transmission lines in Ref. [92] or by other relevant tech-
niques.

Among possible outlooks we would like to mention se-
tups with Aharonov-Bohm fluxes [94] or setups where both
MBSs are directly entangled with a QD whose nonequilib-
rium states are governed by bias voltages and temperature
differences. Majorana interference effects in such setups will
emerge through the Majorana tunneling phases forming a
complex interplay with the two competing flows induced by,

respectively, V and VT and the fate of the Majorana crossover
in ∂S>(V,VT )/∂V in this situation is an interesting and
important problem. The results presented in this work have
been obtained assuming that interactions between the Ma-
jorana entangled setup and its environment are sufficiently
weak. Under certain circumstances, however, such interac-
tions may have a significant impact on the shot noise via
corresponding inelastic processes [95] and thus represent a
challenge for future models where MBSs are coupled to an
external environment. Another possibility is to study the dif-
ferential shot noise in nonequilibrium setups with poor man’s
MBSs [96,97] which may arise inside QDs when one fine-
tunes parameters of such setups to locate their states as close
as possible to their sweet spots.

ACKNOWLEDGMENT

The author thanks R. Egger for valuable comments.

[1] A. Yu. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[2] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[3] M. Leijnse and K. Flensberg, Introduction to topological super-
conductivity and Majorana fermions, Semicond. Sci. Technol.
27, 124003 (2012).

[4] M. Sato and S. Fujimoto, Majorana fermions and topology in
superconductors, J. Phys. Soc. Jpn. 85, 072001 (2016).

[5] R. Aguado, Majorana quasiparticles in condensed matter, La
Riv. del Nuovo Cimento 40, 523 (2017).

[6] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P.
Krogstrup, C. M. Marcus, and Y. Oreg, Majorana zero modes
in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018).

[7] V. V. Val’kov, M. S. Shustin, S. V. Aksenov, A. O. Zlotnikov,
A. D. Fedoseev, V. A. Mitskan, and M. Yu. Kagan, Topologi-
cal superconductivity and Majorana states in low-dimensional
systems, Phys. Usp. 65, 2 (2022).

[8] E. Majorana, Teoria simmetrica dell’elettrone e del positrone,
Nuovo Cimento 14, 171 (1937).

[9] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[10] D. E. Liu and H. U. Baranger, Detecting a Majorana-fermion
zero mode using a quantum dot, Phys. Rev. B 84, 201308(R)
(2011).

[11] L. Fidkowski, J. Alicea, N. H. Lindner, R. M. Lutchyn, and
M. P. A. Fisher, Universal transport signatures of Majorana
fermions in superconductor-Luttinger liquid junctions, Phys.
Rev. B 85, 245121 (2012).

[12] E. Prada, P. San-Jose, and R. Aguado, Transport spectroscopy
of NS nanowire junctions with Majorana fermions, Phys. Rev.
B 86, 180503(R) (2012).

[13] F. Pientka, G. Kells, A. Romito, P. W. Brouwer, and F. von
Oppen, Enhanced Zero-Bias Majorana Peak in the Differential
Tunneling Conductance of Disordered Multisubband Quantum-

Wire/Superconductor Junctions, Phys. Rev. Lett. 109, 227006
(2012).

[14] C.-H. Lin, J. D. Sau, and S. Das Sarma, Zero-bias conductance
peak in Majorana wires made of semiconductor/superconductor
hybrid structures, Phys. Rev. B 86, 224511 (2012).

[15] M. Lee, J. S. Lim, and R. López, Kondo effect in a quantum dot
side-coupled to a topological superconductor, Phys. Rev. B 87,
241402(R) (2013).

[16] A. Kundu and B. Seradjeh, Transport Signatures of Floquet Ma-
jorana Fermions in Driven Topological Superconductors, Phys.
Rev. Lett. 111, 136402 (2013).

[17] E. Vernek, P. H. Penteado, A. C. Seridonio, and J. C. Egues,
Subtle leakage of a Majorana mode into a quantum dot, Phys.
Rev. B 89, 165314 (2014).

[18] R. Ilan, J. H. Bardarson, H.-S. Sim, and J. E. Moore, Detect-
ing perfect transmission in Josephson junctions on the surface
of three dimensional topological insulators, New J. Phys. 16,
053007 (2014).

[19] M. Cheng, M. Becker, B. Bauer, and R. M. Lutchyn, Interplay
between Kondo and Majorana Interactions in Quantum Dots,
Phys. Rev. X 4, 031051 (2014).

[20] A. M. Lobos and S. Das Sarma, Tunneling transport in NSN
Majorana junctions across the topological quantum phase tran-
sition, New J. Phys. 17, 065010 (2015).

[21] Y. Peng, F. Pientka, Y. Vinkler-Aviv, L. I. Glazman, and F. von
Oppen, Robust Majorana Conductance Peaks for a Supercon-
ducting Lead, Phys. Rev. Lett. 115, 266804 (2015).

[22] G. Sharma and S. Tewari, Tunneling conductance for Majorana
fermions in spin-orbit coupled semiconductor-superconductor
heterostructures using superconducting leads, Phys. Rev. B 93,
195161 (2016).

[23] B. van Heck, R. M. Lutchyn, and L. I. Glazman, Conductance
of a proximitized nanowire in the Coulomb blockade regime,
Phys. Rev. B 93, 235431 (2016).

[24] S. Das Sarma, A. Nag, and J. D. Sau, How to infer non-Abelian
statistics and topological visibility from tunneling conductance

155416-9

https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0268-1242/27/12/124003
https://doi.org/10.7566/JPSJ.85.072001
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.3367/UFNe.2021.03.038950
https://doi.org/10.1007/BF02961314
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1103/PhysRevB.85.245121
https://doi.org/10.1103/PhysRevB.86.180503
https://doi.org/10.1103/PhysRevLett.109.227006
https://doi.org/10.1103/PhysRevB.86.224511
https://doi.org/10.1103/PhysRevB.87.241402
https://doi.org/10.1103/PhysRevLett.111.136402
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1088/1367-2630/16/5/053007
https://doi.org/10.1103/PhysRevX.4.031051
https://doi.org/10.1088/1367-2630/17/6/065010
https://doi.org/10.1103/PhysRevLett.115.266804
https://doi.org/10.1103/PhysRevB.93.195161
https://doi.org/10.1103/PhysRevB.93.235431


SERGEY SMIRNOV PHYSICAL REVIEW B 107, 155416 (2023)

properties of realistic Majorana nanowires, Phys. Rev. B 94,
035143 (2016).

[25] R. M. Lutchyn and L. I. Glazman, Transport through a Majorana
Island in the Strong Tunneling Regime, Phys. Rev. Lett. 119,
057002 (2017).

[26] C.-X. Liu, J. D. Sau, T. D. Stanescu, and S. Das Sarma, An-
dreev bound states versus Majorana bound states in quantum
dot-nanowire-superconductor hybrid structures: Trivial versus
topological zero-bias conductance peaks, Phys. Rev. B 96,
075161 (2017).

[27] H. Huang, Q.-F. Liang, D.-X. Yao, and Z. Wang, Majorana φ0-
junction in a disordered spin-orbit coupling nanowire with tilted
magnetic field, Physica C 543, 22 (2017).

[28] C.-X. Liu, J. D. Sau, and S. Das Sarma, Distinguishing topolog-
ical Majorana bound states from trivial Andreev bound states:
Proposed tests through differential tunneling conductance spec-
troscopy, Phys. Rev. B 97, 214502 (2018).

[29] Y.-H. Lai, J. D. Sau, and S. Das Sarma, Presence versus absence
of end-to-end nonlocal conductance correlations in Majorana
nanowires: Majorana bound states versus Andreev bound states,
Phys. Rev. B 100, 045302 (2019).

[30] L.-W. Tang and W.-G. Mao, Detection of Majorana bound states
by sign change of the tunnel magnetoresistance in a quantum
dot coupled to ferromagnetic electrodes, Front. Phys. 8, 147
(2020).

[31] G. Zhang and C. Spånslätt, Distinguishing between topological
and quasi Majorana zero modes with a dissipative resonant
level, Phys. Rev. B 102, 045111 (2020).

[32] F. Chi, T.-Y. He, and G. Zhou, Photon-assisted average current
through a quantum dot coupled to Majorana bound states, J.
Nanoelectron. Optoelectron. 16, 1325 (2021).

[33] Z.-H. Wang and W.-C. Huang, Dual negative differential of heat
generation in a strongly correlated quantum dot side-coupled to
Majorana bound states, Front. Phys. 9, 727934 (2021).

[34] T. H. Galambos, F. Ronetti, B. Hetényi, D. Loss, and J.
Klinovaja, Crossed Andreev reflection in spin-polarized chiral
edge states due to the Meissner effect, Phys. Rev. B 106, 075410
(2022).

[35] J. Jin and X.-Q. Li, Master equation approach for transport
through Majorana zero modes, New J. Phys. 24, 093009 (2022).

[36] W.-K. Zou, N.-W. Li, and F.-L. Chong, Charge and spin
transports through a normal lead coupled to an s-wave su-
perconductor and Majorana fermions, Phys. Status Solidi B,
2200472 (2023).

[37] M. Leijnse, Thermoelectric signatures of a Majorana bound
state coupled to a quantum dot, New J. Phys. 16, 015029 (2014).

[38] R. López, M. Lee, L. Serra, and J. S. Lim, Thermoelectrical
detection of Majorana states, Phys. Rev. B 89, 205418 (2014).

[39] H. Khim, R. López, J. S. Lim, and M. Lee, Thermoelectric
effect in the Kondo dot side-coupled to a Majorana mode, Eur.
Phys. J. B 88, 151 (2015).

[40] J. P. Ramos-Andrade, O. Ávalos-Ovando, P. A. Orellana, and
S. E. Ulloa, Thermoelectric transport through Majorana bound
states and violation of Wiedemann-Franz law, Phys. Rev. B 94,
155436 (2016).

[41] S. Smirnov, Dual Majorana universality in thermally induced
nonequilibrium, Phys. Rev. B 101, 125417 (2020).

[42] T.-Y. He, H. Sun, and G. Zhou, Photon-assisted Seebeck effect
in a quantum dot coupled to Majorana zero modes, Front. Phys.
9, 687438 (2021).

[43] D. Giuliano, A. Nava, R. Egger, P. Sodano, and F. Buccheri,
Multiparticle scattering and breakdown of the Wiedemann-
Franz law at a junction of N interacting quantum wires, Phys.
Rev. B 105, 035419 (2022).

[44] F. Buccheri, A. Nava, R. Egger, P. Sodano, and D. Giuliano, Vi-
olation of the Wiedemann-Franz law in the topological Kondo
model, Phys. Rev. B 105, L081403 (2022).

[45] P. Majek, K. P. Wójcik, and I. Weymann, Spin-resolved ther-
mal signatures of Majorana-Kondo interplay in double quantum
dots, Phys. Rev. B 105, 075418 (2022).

[46] N. Bondyopadhaya and D. Roy, Nonequilibrium electrical,
thermal and spin transport in open quantum systems of topolog-
ical superconductors, semiconductors and metals, J. Stat. Phys.
187, 11 (2022).

[47] W.-K. Zou, Q. Wang, and H.-K. Zhao, Aharonov-Bohm os-
cillations in the Majorana fermion modulated charge and heat
transports through a double-quantum-dot interferometer, Phys.
Lett. A 443, 128219 (2022).

[48] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire de-
vices, Science 336, 1003 (2012).

[49] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observa-
tion of Majorana fermions in ferromagnetic atomic chains on a
superconductor, Science 346, 602 (2014).

[50] Z. Wang, H. Song, D. Pan, Z. Zhang, W. Miao, R. Li, Z. Cao,
G. Zhang, L. Liu, L. Wen, R. Zhuo, D. E. Liu, K. He, R. Shang,
J. Zhao, and H. Zhang, Plateau Regions for Zero-Bias Peaks
within 5% of the Quantized Conductance Value 2e2/h, Phys.
Rev. Lett. 129, 167702 (2022).

[51] P. Yu, J. Chen, M. Gomanko, G. Badawy, E. P. A. M. Bakkers,
K. Zuo, V. Mourik, and S. M. Frolov, Non-Majorana states yield
nearly quantized conductance in proximatized nanowires, Nat.
Phys. 17, 482 (2021).

[52] S. Frolov, Quantum computing’s reproducibility crisis: Majo-
rana fermions, Nature (London) 592, 350 (2021).

[53] A. Ziesen, A. Altland, R. Egger, and F. Hassler, Statistical Ma-
jorana Bound State Spectroscopy, Phys. Rev. Lett. 130, 106001
(2023).

[54] D. E. Liu, M. Cheng, and R. M. Lutchyn, Probing Majorana
physics in quantum-dot shot-noise experiments, Phys. Rev. B
91, 081405(R) (2015).

[55] D. E. Liu, A. Levchenko, and R. M. Lutchyn, Majorana zero
modes choose Euler numbers as revealed by full counting statis-
tics, Phys. Rev. B 92, 205422 (2015).

[56] A. Haim, E. Berg, F. von Oppen, and Y. Oreg, Current corre-
lations in a Majorana beam splitter, Phys. Rev. B 92, 245112
(2015).

[57] S. Valentini, M. Governale, R. Fazio, and F. Taddei, Finite-
frequency noise in a topological superconducting wire, Physica
E 75, 15 (2016).

[58] A. Zazunov, R. Egger, and A. Levy Yeyati, Low-energy the-
ory of transport in Majorana wire junctions, Phys. Rev. B 94,
014502 (2016).

[59] S. Smirnov, Non-equilibrium Majorana fluctuations, New J.
Phys. 19, 063020 (2017).

[60] T. Jonckheere, J. Rech, A. Zazunov, R. Egger, A. L. Yeyati,
and T. Martin, Giant Shot Noise from Majorana Zero Modes in
Topological Trijunctions, Phys. Rev. Lett. 122, 097003 (2019).

155416-10

https://doi.org/10.1103/PhysRevB.94.035143
https://doi.org/10.1103/PhysRevLett.119.057002
https://doi.org/10.1103/PhysRevB.96.075161
https://doi.org/10.1016/j.physc.2017.10.005
https://doi.org/10.1103/PhysRevB.97.214502
https://doi.org/10.1103/PhysRevB.100.045302
https://doi.org/10.3389/fphy.2020.00147
https://doi.org/10.1103/PhysRevB.102.045111
https://doi.org/10.1166/jno.2021.3075
https://doi.org/10.3389/fphy.2021.727934
https://doi.org/10.1103/PhysRevB.106.075410
https://doi.org/10.1088/1367-2630/ac8beb
https://doi.org/10.1002/pssb.202200472
https://doi.org/10.1088/1367-2630/16/1/015029
https://doi.org/10.1103/PhysRevB.89.205418
https://doi.org/10.1140/epjb/e2015-60200-9
https://doi.org/10.1103/PhysRevB.94.155436
https://doi.org/10.1103/PhysRevB.101.125417
https://doi.org/10.3389/fphy.2021.687438
https://doi.org/10.1103/PhysRevB.105.035419
https://doi.org/10.1103/PhysRevB.105.L081403
https://doi.org/10.1103/PhysRevB.105.075418
https://doi.org/10.1007/s10955-022-02902-w
https://doi.org/10.1016/j.physleta.2022.128219
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.129.167702
https://doi.org/10.1038/s41567-020-01107-w
https://doi.org/10.1038/d41586-021-00954-8
https://doi.org/10.1103/PhysRevLett.130.106001
https://doi.org/10.1103/PhysRevB.91.081405
https://doi.org/10.1103/PhysRevB.92.205422
https://doi.org/10.1103/PhysRevB.92.245112
https://doi.org/10.1016/j.physe.2015.08.028
https://doi.org/10.1103/PhysRevB.94.014502
https://doi.org/10.1088/1367-2630/aa70a9
https://doi.org/10.1103/PhysRevLett.122.097003


MAJORANA DIFFERENTIAL SHOT NOISE AND ITS … PHYSICAL REVIEW B 107, 155416 (2023)

[61] S. Smirnov, Majorana finite-frequency nonequilibrium quan-
tum noise, Phys. Rev. B 99, 165427 (2019).

[62] J. Manousakis, C. Wille, A. Altland, R. Egger, K. Flensberg,
and F. Hassler, Weak Measurement Protocols for Majorana
Bound State Identification, Phys. Rev. Lett. 124, 096801 (2020).

[63] G.-H. Feng and H.-H. Zhang, Probing robust Majorana signa-
tures by crossed Andreev reflection with a quantum dot, Phys.
Rev. B 105, 035148 (2022).

[64] S. Smirnov, Revealing universal Majorana fractionalization us-
ing differential shot noise and conductance in nonequilibrium
states controlled by tunneling phases, Phys. Rev. B 105, 205430
(2022).

[65] S. Smirnov, Majorana tunneling entropy, Phys. Rev. B 92,
195312 (2015).

[66] E. Sela, Y. Oreg, S. Plugge, N. Hartman, S. Lüscher, and J. Folk,
Detecting the Universal Fractional Entropy of Majorana Zero
Modes, Phys. Rev. Lett. 123, 147702 (2019).

[67] S. Smirnov, Majorana entropy revival via tunneling phases,
Phys. Rev. B 103, 075440 (2021).

[68] S. Smirnov, Majorana ensembles with fractional entropy and
conductance in nanoscopic systems, Phys. Rev. B 104, 205406
(2021).

[69] M. Tanhayi Ahari, S. Zhang, J. Zou, and Y. Tserkovnyak, Bi-
asing topological charge injection in topological matter, Phys.
Rev. B 104, L201401 (2021).

[70] N. Hartman, C. Olsen, S. Lüscher, M. Samani, S. Fallahi, G. C.
Gardner, M. Manfra, and J. Folk, Direct entropy measurement
in a mesoscopic quantum system, Nat. Phys. 14, 1083 (2018).

[71] Y. Kleeorin, H. Thierschmann, H. Buhmann, A. Georges, L. W.
Molenkamp, and Y. Meir, How to measure the entropy of a
mesoscopic system via thermoelectric transport, Nat. Commun.
10, 5801 (2019).

[72] E. Pyurbeeva and J. A. Mol, A thermodynamic approach to
measuring entropy in a few-electron nanodevice, Entropy 23,
640 (2021).

[73] T. Child, O. Sheekey, S. Lüscher, S. Fallahi, G. C. Gardner, M.
Manfra, and J. Folk, A robust protocol for entropy measurement
in mesoscopic circuits, Entropy 24, 417 (2022).

[74] C. Han, Z. Iftikhar, Y. Kleeorin, A. Anthore, F. Pierre, Y. Meir,
A. K. Mitchell, and E. Sela, Fractional Entropy of Multichan-
nel Kondo Systems from Conductance-Charge Relations, Phys.
Rev. Lett. 128, 146803 (2022).

[75] E. Pyurbeeva, J. A. Mol, and P. Gehring, Electronic measure-
ments of entropy in meso- and nanoscale systems, Chem. Phys.
Rev. 3, 041308 (2022).

[76] T. Child, O. Sheekey, S. Lüscher, S. Fallahi, G. C. Gardner,
M. Manfra, A. Mitchell, E. Sela, Y. Kleeorin, Y. Meir, and J.
Folk, Entropy Measurement of a Strongly Coupled Quantum
Dot, Phys. Rev. Lett. 129, 227702 (2022).

[77] S. Smirnov, Universal Majorana thermoelectric noise, Phys.
Rev. B 97, 165434 (2018).

[78] S. Smirnov, Dynamic Majorana resonances and universal sym-
metry of nonequilibrium thermoelectric quantum noise, Phys.
Rev. B 100, 245410 (2019).

[79] Z. Cao, G. Zhang, H. Zhang, Y.-X. Liang, W.-X. He, K. He, and
D. E. Liu, Towards strong evidence of Majorana bound state by
a combined measurement of tunneling conductance and current
noise, arXiv:2301.06451v1.
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