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Quantum states of a few-particle system capacitively coupled to a metal gate can be discriminated by
measuring the quantum capacitance, which can be identified with the second derivative of the system energy
with respect to the gate voltage. This approach is here generalized to the multivoltage case, through the
introduction of the quantum capacitance matrix. The matrix formalism allows us to determine the dependence
of the quantum capacitance on the direction of the voltage oscillations in the parameter space and to identify
the optimal combination of gate voltages. As a representative example, this approach is applied to the case of
a quantum dot array, described in terms of a Hubbard model. Here, we first identify the potentially relevant
regions in the multidimensional voltage space with the boundaries between charge stability regions, determined
within a semiclassical approach. Then, we quantitatively characterize such boundaries by means of the quantum
capacitance matrix. Altogether, this provides a procedure for optimizing the discrimination between states with
different particle numbers and/or total spins.
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I. INTRODUCTION

The role played by quantum effects in determining the
capacitance of a nanoscopic system has been the subject of
a long investigation. These effects include electron statistics
[1], band structure and related density of states [2], Coulomb
interactions [3,4], reduced dimensionality [5], and the pres-
ence of charge impurities [6], just to mention a few.

Semiconductor quantum dots represent a particular class
of nanoscopic systems, which allows an extreme degree of
control on the number of confined charge carriers and on
their orbital and spin properties [7–9]. When coupled to a
classical circuit, the dots affect its properties by contributing
a complex parametric impedance [10–14]. In particular, the
reactive component of such impedance has a capacitive char-
acter if the carriers’ response to the applied voltage is faster
than the probing frequency [15]. There, a further distinction
is typically made between tunneling and quantum capaci-
tance (QC): the former results from population redistribution
processes amongst the eigenstates, induced by nonadiabatic
or incoherent transitions; the latter one, on which we focus
hereafter, is related to adiabatic evolution and to the curvature
of the energy levels [16].

Being the QC dependent on the charge and spin of
few-electron systems in tunnel-coupled quantum dots, its
measurement can be exploited to discriminate between quan-
tum states [17]. This mechanism, at sufficiently high values
of the signal-to-noise ratio and of the bandwidth, has in fact
enabled the dispersive readout of different spin qubits in semi-
conductor quantum dots [18–23]. A particularly promising
approach in terms of scalability is represented by gate reflec-
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tometry, where the readout process is based on the quantum
contribution of the qubit to the metal gate capacitance and on
the resulting frequency shift of a connected resonator [24,25].

Essentially, the QC is large at working points where small
changes in the gate voltage induce large and quantum-state
dependent fluctuations in the occupation of the underlying
dot(s). This criterion can be directly derived from the iden-
tification of the QC with the derivative of the dot occupation
with respect to the voltage V [26–29]. Alternatively, conve-
nient working points can be identified with those voltages at
which the energy levels undergo avoided crossings. This is
consistent with the definition of the QC in terms of the second
derivative of the relevant energy eigenvalue with respect to
V [30,31]. In double quantum dots, single- and two-particle
systems display an avoided level crossing as a function of the
detuning voltage as the ground state undergoes a transition
from one charge configuration to the other, which leads to a
convergence of the two above criteria. In fact, within a qubit
model, the definitions of the QC based on the first derivative
of a dot occupation and on the second derivative of the energy
eigenstate can be formally shown to coincide [16]. However,
the range of validity of such correspondence still needs to be
determined.

In the following, we consider a more general case, where
the energy of a confined few-particle system depends on M >

1 tunable gate voltages. The usual concept of a scalar QC must
thus be replaced with that of the QC matrix, whose elements
are related to the second mixed derivatives of the system
energy with respect to voltages. This matrix differs from the
classical capacitance matrix, which applies to systems of ideal
conductors and provides linear relations between their charges
and voltages [7]. While the scalar QC of a system is probed
by applying a small oscillating voltage to the metal gate, in
the multidimensional approach the measured QC depends on

2469-9950/2023/107(15)/155411(15) 155411-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2467-7908
https://orcid.org/0000-0002-0705-164X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.155411&domain=pdf&date_stamp=2023-04-10
https://doi.org/10.1103/PhysRevB.107.155411


ANDREA SECCHI AND FILIPPO TROIANI PHYSICAL REVIEW B 107, 155411 (2023)

the combination of the perturbations coherently applied to
M gates [32], corresponding to a specific direction in the
M-dimensional voltage space. Such dependence is fully cap-
tured by the QC matrix, which thus allows the identification
of an optimal direction in the voltage space, along which
the measured QC reaches its maximum absolute value for
a given working point. The optimal direction coincides with
that of the eigenvector of the QC matrix whose eigenvalue has
the largest modulus. In addition, the functional dependence
of the QC matrix on the charge density and its derivatives
with respect to the voltages—derived through the Hellmann-
Feynman theorem—generalizes the above-mentioned relation
derived for the case of an effective two-level system.

Applying the approach to a Hubbard model, which pro-
vides a simple representation of an array of tunnel-coupled
quantum dots, we then derive a discretized version of the
general equations. Here, the QC matrix is related via the
Hellmann-Feynman theorem to the dot occupations rather
than the charge density characterizing a continuous system.
The M-dimensional voltage space can be partitioned in charge
stability regions (CSRs), inside which the fluctuations in the
ground-state dot occupations are suppressed. The relevant fea-
tures of the QC are shown to occur at the boundaries between
adjacent CSRs; these features include peaks and plateaus—
the latter being a peculiarity of the multigate system. While
the positions of the boundaries are identified on the basis of
a semiclassical approach, the behavior of the QC matrix can
only be determined by means of a fully quantum approach,
as the QC features depend crucially on the quantum-tunneling
processes connecting the CSRs. In fact, the quantum approach
provides the optimal directions and the corresponding values
of the QC. Interestingly, the dependence of the charge stability
pattern on the number of particles (N) and on the total spin (S)
allows the identification of regions in the voltage space that
are suitable for the discrimination between different values
of N and/or S, thus extending the approach that has been
implemented for the readout of spin qubits in quantum dots.

The remainder of the paper is organized as follows. In
Sec. II, we derive general expressions for the QC in one-
dimensional (Sec. II A) and multidimensional (Sec. II B)
cases. Section III is devoted to the application of the approach
to a quantum dot array, represented in terms of a Hubbard
model. Finally, Sec. IV contains the conclusions and the out-
look.

II. MULTIDIMENSIONAL QUANTUM CAPACITANCE

Hereafter, the scalar expression of the QC is recalled and
related, through the Hellmann-Feynman theorem, directly to
the charge density and the voltage-dependent part of the
confinement potential (Sec. II A). The expressions are then
generalized to the multidimensional case, where we introduce
the concept of a QC matrix (Sec. II B).

A. Single gate voltage

In the one-dimensional case (M = 1), the system Hamil-
tonian, and therefore its eigenvalues and eigenstates, depend
on the voltage V applied to a single gate. If the value of the
voltage only undergoes small deviations from the working

point V0, then the energy Ek of the kth few-particle eigenstate
|ψk〉 at V = V0 + δV can be approximated by the lowest terms
of its Taylor expansion around V0,

Ek (V ) ≈ Ek (V0) + E ′
k (V0) δV + 1

2 E ′′
k (V0) (δV )2, (1)

where X ′ ≡ dX/dV . Here and in the following, we assume
that |ψk〉 is nondegenerate and that E ′

k (V0) and E ′′
k (V0) are

uniquely defined.
From Eq. (1), it follows that the dependence of the system

energy on V can be recast into that of a fictitious capacitor,
whose capacitance is identified with the second derivative of
the energy with respect to voltage [30,31]:

Ck (V0) ≡ E ′′
k (V0). (2)

In the following, to simplify the notation, we omit to spec-
ify that the derivatives with respect to the voltage, including
the QC, are always computed at V0. Combining the two
equations above, the energy eigenvalue in the vicinity of the
working point can be written in the form

Ek (V ) ≈ 1

2
Ck (V − V1)2 +

[
Ek (V0) − (E ′

k )2

2Ck

]
, (3)

where V1 ≡ V0 − E ′
k/Ck plays the role of the effective voltage

applied to the second plate of the fictitious capacitor, and the
term in square brackets represents an additive constant.

While the above expression relates the QC to the system
energy, it might be useful to highlight its direct relation to the
confinement potential, the charge density, and their derivatives
with respect to V . To do so, one can start by writing the N-
particle Hamiltonian as follows:

Ĥ = Ĥ0 + Ŵ , (4)

Ŵ =
∫

drW (r;V ) n̂(r), (5)

where Ĥ0 includes the kinetic and Coulomb-interaction terms,
and the contributions to the confinement potential that do not
depend on the gate potential, such as those resulting from the
band offsets in a heterostructure. The quantity W (r;V ) is the
voltage-dependent potential generated by the metallic gate,
n̂(r) = ∑

B ψ̂
†
B(r)ψ̂B(r) is the density operator at position r,

and B is a band (or spin) index.
Then, applying the Hellmann-Feynman theorem [33], the

first derivative of the energy eigenvalue with respect to the
voltage is written as

∂Ek

∂V
= 〈ψk|Ŵ ′|ψk〉 =

∫
drW ′(r;V ) nk (r). (6)

Here, W ′(r;V ) ≡ ∂W (r;V )/∂V , and nk (r) is the charge den-
sity corresponding to the kth eigenstate, given by nk (r) =
〈ψk|n̂(r)|ψk〉. A further differentiation yields the QC associ-
ated to the N-particle system:

Ck =
∫

dr [W ′′(r;V ) nk (r) + W ′(r;V ) n′
k (r)]. (7)

If the dependence of the function W on V is approximately
linear in the relevant range of values, the first term on the
right-hand side of Eq. (7) is small with respect to the second
one.
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B. Multiple gate voltages

The physical assumptions underlying the following ex-
pressions of the QC matrix are that the relevant eigenstate
(typically the ground state) is nondegenerate and that the
oscillations in the applied voltage are small enough to justify
the truncation of the energy eigenvalue to second order in the
Taylor expansion. Besides, as in the one-dimensional case,
it is assumed that the dynamics induced by the oscillating
voltage is adiabatic. If this is not the case, one should take
into account additional contributions, related to (coherent and
incoherent) nonadiabatic processes.

1. Quantum capacitance matrix

The above definitions of the QC can be generalized to the
case where the quantum system is electrostatically coupled
to a set of M gates. Their voltages Vi (i = 1, . . . , M) can
be regarded as the components of a vector V defined in a
M-dimensional parameter space. Along the same lines of what
has been done in the one-dimensional case, one derives a QC
matrix by expanding the kth energy eigenvalue around the
working point V 0,

Ek (V ) ≈ Ek (V 0)+
M∑

i=1

∂Ek

∂Vi
δVi+ 1

2

M∑
i, j=1

δVi
∂2Ek

∂Vi∂Vj
δVj, (8)

where V = V 0 + δV . The Hessian matrix of Ek is identified
with the QC matrix Ck , whose generic element is

Ck;i j ≡ ∂2Ek

∂Vi∂Vj
. (9)

The QC of the system thus depends on the direction v ≡
δV/|δV | = (v1, . . . , vM ) of the perturbation in the voltage
space:

Ck;v =
M∑

i, j=1

Ck;i jviv j . (10)

The QC matrix can also be related to the confining po-
tential, to the charge density, and to their derivatives with
respect to the gate voltages by applying the vectorial version
of the Hellmann-Feynman theorem. For an external potential
W (r;V ), which depends on the voltage vector V , the gradient
of the energy eigenvalue is given by

∂Ek

∂V
=

〈
ψk

∣∣∣∣∂Ŵ

∂V

∣∣∣∣ψk

〉
=

∫
dr

∂W (r;V )

∂V
nk (r). (11)

From this, it follows that the elements of the QC matrix can
be written as

Ck;i j =
∫

dr

[
∂2W (r;V )

∂Vi∂Vj
nk (r)+ ∂W (r;V )

∂Vi

∂nk (r)

∂Vj

]
. (12)

Although it is not obvious from the above expression, the QC
matrix is symmetric (see Appendix A). Therefore, it is always
possible to diagonalize it.

2. Eigenvalues and eigenvectors

The diagonal element Ck;ii of the QC matrix has a
straightforward physical meaning: it corresponds to the QC

associated with small changes of the potential along the co-
ordinate axis Vi. However, the coordinate axes might not
represent the optimal directions along which the perturbation
δV should be applied, i.e., the directions along which the
QC reaches its maximum absolute value. Instead, the optimal
direction can be identified by diagonalizing the matrix Ck and
thus deriving its eigenvalues Ck;n and normalized eigenvectors
vk;n (n = 1, . . . , M). If the voltage perturbation is parallel
to the nth eigenvector of the matrix, δV = vk;n δV , then the
corresponding energy can be approximated as

Ek (V ) ≈ Ek (V 0) + Qk;n δV + 1
2Ck;n (δV )2, (13)

where

Qk;n ≡ ∂Ek

∂V
· vk;n. (14)

Along the same lines of the single-voltage case, for any
nonzero eigenvalue Ck;n one can write

Ek (V ) ≈1

2
Ck;n (Vk;n − V1;k;n)2+

[
Ek (V 0)− (Qk;n)2

2Ck;n

]
, (15)

where Vk;n ≡ V · vk;n and V1;k;n = V 0 · vk;n − Qk;n/Ck;n. One
can thus associate to each nonzero eigenvalue of the QC
matrix a fictitious capacitor with capacitance Ck;n and voltage
V1;k;n applied to the second plate.

Applying a generic perturbation δV = δV v in the voltage
space causes the excitation of different normal modes of the
QC matrix. The corresponding QC [Eq. (10)] is the weighted
average of the eigenvalues Ck;n, with weights given by pk;n =
(vk;n · v)2, with

∑
n pk;n = 1. It follows that the value of Ck;v ,

for any v, is between the lowest and the highest eigenvalues
of the QC matrix at the same working point. Therefore, the
optimal strategy to maximize the QC consists of applying the
voltage perturbation along the direction vk;n that corresponds
to the eigenvalue Ck;n having the largest modulus (Fig. 1).

3. Estimate of the off-diagonal matrix elements

The QC matrix of a given system follows from the above
equations if the system Hamiltonian is known and the para-
metric dependence of the eigenvalues can be calculated.
If this is not the case, then the matrix has to be recon-
structed experimentally (fully or partially) from measurable
quantities [32].

The application of a perturbation to one of the gate voltages
at a time allows one to directly access the diagonal element of
the QC matrix corresponding to that gate voltage. In fact, let
ui be a M-dimensional unit vector, with u1 = (1, 0, 0, . . . , 0),
u2 = (0, 1, 0, . . . , 0), and so on. From Eq. (10), one can see
that, if v = ui, then the corresponding QC is Ck;v = Ck;ii.
Therefore, with single-gate perturbations one can access the
diagonal elements of the QC matrix.

Any off-diagonal element Ck;i j can be estimated by fol-
lowing a simple two-step procedure. In the first step, one
measures the diagonal terms Ck;ii and Ck; j j by following the
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FIG. 1. Schematic view of the procedure based on the QC matrix.
The Hamiltonian of the few-particle quantum system parametrically
depends on the voltages of the M metal gates (here M = 3). The
QC matrix is defined by the second partial derivatives of the relevant
energy eigenvalue with respect to the voltages. From the matrix diag-
onalization, one can derive a vector field in the voltage space, where
the direction and modulus of the field at each working point V 0,
respectively, define the optimal combination of voltage perturbations
δVi and the corresponding maximum of the QC.

procedure described above. In the second step, the perturba-
tion is applied along the diagonal direction: v = 1√

2
(ui + u j ).

The QC along this direction is given by [Eq. (10)]

Ck;v = 1
2 (Ck;ii + Ck; j j ) + Ck;i j . (16)

The off-diagonal element Ck;i j = Ck; ji can thus be derived as
the difference between the above QC and the average of the di-
agonal elements that have been measured in the first step. The
knowledge of the off-diagonal elements allows one to identify
the optimal voltage direction within the two-dimensional sub-
space spanned by ui and u j . This can be done by diagonalizing
the submatrix of the QC matrix defined by the ith and jth lines
and columns.

Analogously, one can identify the optimal voltage direction
within any subensemble formed by n of the M gate voltages
or, equivalently, within the subspace spanned by n vectors
ui in the voltage space. Therefore, either by computing the
parametric dependence of Ek on V or by repeating the above
procedure for each couple of gates (i, j) (with i < j), one can
reconstruct the whole QC matrix and the derive its eigenvalues
and eigenvectors by numerical diagonalization.

III. APPLICATION TO A QUANTUM DOT ARRAY

To illustrate the possible applications of the theory dis-
cussed so far, we consider an array of M > 1 tunnel-coupled

quantum dots, modeled by means of a Hubbard Hamiltonian.
We denote the number of electrons populating the system as
N . Because of the presence of tunneling between the dots,
the gate voltages allow one to modulate and probe interacting
N-particle states which are, in general, delocalized over the
whole array. We first derive several general properties of the
QC matrix for such a model (Sec. III A), and then show the
application of the theory to a few representative cases corre-
sponding to M = 3 (Sec. III B). With respect to the results
presented so far, the ones reported in the present section are
based on further assumptions about the system properties.
In particular, the expressions derived in Sec. III A present
the same range of validity of the underlying Hubbard model,
essentially based on the assumptions that the on-site repulsion
is much larger than the tunneling and the excited orbitals
of the three dots and the intersite repulsion do not to play
any role. As to the numerical results discussed in Sec. III B,
they are based on the further, simplifying assumption that
the gate voltages affect linearly the on-site energies and
leave unaffected both the tunneling amplitude and the on-site
repulsion.

A. Quantum capacitance in the Hubbard model

The quantum dot array is represented in terms of a Hubbard
model with one orbital per dot (site), whose Hamiltonian reads

Ĥ ≡
M∑

i=1

[
εin̂i + U

2
n̂i(n̂i − 1)

]
+ ĤT , (17)

where εi is the on-site energy of the ith quantum dot, U is
the on-site Coulomb-interaction energy, and n̂i = ∑

σ ĉ†
i,σ ĉi,σ

is the number operator of the ith quantum dot (σ =↑,↓ labels
the two possible single-electron spin orientations); ĤT is the
hopping Hamiltonian, which has the general form

ĤT =
M∑

i=1

M∑
j=1

Ti, j

∑
σ

ĉ†
i,σ ĉ j,σ . (18)

In general, all effective parameters εi, U , and Ti, j depend
on the gate voltages. Application of the Hellmann-Feynman
theorem to the N-electron eigenstate |ψk〉 with energy Ek

yields the equation

∂Ek

∂Vi
=

M∑
l=1

∂εl

∂Vi
〈n̂l〉k + ∂U

∂Vi

(
M∑

l=1

〈
n̂2

l

〉
k − N

)

+
M∑

l=1

M∑
l ′=1

∂Tl,l ′

∂Vi

∑
σ

〈ĉ†
l,σ ĉl ′,σ 〉k, (19)

where 〈 . . . 〉k ≡ 〈ψk| . . . |ψk〉. By further differentiating, one
obtains the following expression for the elements of the QC
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matrix:

Ck;i j=
M∑

l=1

∂2εl

∂Vi∂Vj
〈n̂l〉k +

M∑
l=1

∂εl

∂Vi

∂〈n̂l〉k

∂Vj

+ ∂2U

∂Vi∂Vj

(
M∑

l=1

〈
n̂2

l

〉
k − N

)
+ ∂U

∂Vi

M∑
l=1

∂
〈
n̂2

l

〉
k

∂Vj

+
M∑

l=1

M∑
l ′=1

∑
σ

(
∂2Tl,l ′

∂Vi∂Vj
〈ĉ†

l,σ ĉl ′,σ 〉k

+∂Tl,l ′

∂Vi

∂〈ĉ†
l,σ ĉl ′,σ 〉k

∂Vj

)
. (20)

For illustrative purposes, we now make some simplifying
assumptions. First, we assume that the on-site energy of each
dot is linearly dependent on the voltage applied to the corre-
sponding gate, and independent of the others:

∂εi

∂Vj
= αi δi, j . (21)

Second, variations of the gate voltages are assumed not to
significantly affect Ti, j and U . These assumptions are intro-
duced to simplify the discussion but are not required within
the proposed approach and can be removed to include further
aspects in the analysis of the quantum-dot array (see Ref. [34]
for the study of a case where the tunneling is affected by gate
voltages).

Under the above assumptions, Eq. (19) simplifies as

∂Ek

∂Vi
= αi

〈
ψk

∣∣∣∣∂Ĥ

∂εi

∣∣∣∣ψk

〉
= αi〈n̂i〉k, (22)

and the elements of the QC matrix become

Ck;i j = αi
∂〈n̂i〉k

∂Vj
= α j

∂〈n̂ j〉k

∂Vi
. (23)

The matrix element Ck;i j is thus related to the dependence
of the average occupation in dot i ( j) on the voltage Vj (Vi).
Even if the Hamiltonian terms involving the operator n̂i do not
depend on Vj for j 
= i (as per the above assumptions), the ex-
pectation value 〈n̂i〉k does because of the quantum correlations
induced by the Hamiltonian in its eigenstates |ψk〉. Therefore,
in general, the off-diagonal elements of the QC matrix differ
from zero.

From the Hellmann-Feynman theorem, one can also derive
the following sum rule:

M∑
i=1

1

αi

∂Ek

∂Vi
= N, (24)

where N is the number of particles. From this it follows
that the QC matrix always has a zero eigenvalue. In fact, by
combining Eqs. (22) and (24), one obtains

M∑
j=1

1

α j
Ck;i j = ∂

∂Vi
N = 0, (25)

for any i = 1, . . . , M. As a consequence, for any M and N ,
the normalized vector v = A(α−1

1 , . . . , α−1
M ) (where A−2 =∑M

i=1 α−2
i ) is an eigenvector of the QC matrix, with zero

eigenvalue. This physically corresponds to the case where
all the energies εi undergo the same perturbation, producing
a rigid shift of all the energy eigenvalues that—in view of
Eq. (21)—is linear in the voltage. Such a zero-capacitance
mode does not contribute to the QC Ck;v for any v, and can
be disregarded in the following analysis.

B. QC measurements in the case of a few-dot array

In the present subsection, we apply the results derived in
the previous one to the investigation of a few representative
cases, defined by specific numbers of sites (M) and of particles
(N). Each eigenstate is characterized by defined value of the
total spin S, because the total spin operator S2 commutes with
the Hubbard Hamiltonian.

The dependence of the QC on the working point and on
the direction of the voltage oscillations defines a pattern,
which presents N- and S-dependent features and can thus be
exploited to infer the values of these quantum numbers.

A preliminary characterization of these patterns is de-
rived hereafter on the basis of a semiclassical picture, and
then integrated by a fully quantum-mechanical approach. The
semiclassical picture identifies the regions in the voltage space
where the QC is expected to take significant values. The
quantum-mechanical approach determines the actual values
in such regions of the QC, and the directions along which the
voltage oscillations should be induced in order to maximize
its absolute value.

1. Semiclassical picture

General aspects. In general, the QC is expected to take sig-
nificant values at the boundaries between CSRs in the voltage
space, where small fluctuations in V can induce significant
rearrangements of the charge [Eq. (23)]. These boundaries
can be identified within a semiclassical picture, obtained by
removing the hopping term from the Hamiltonian [Eq. (17)],
and thus the quantum fluctuations in the dot occupations from
the eigenstates. The energies for each set of voltages V and
dot occupations n = (n1, . . . , nM ) are given by

En(V ) =
M∑

i=1

[
αiVini + U

ni(ni − 1)

2

]
. (26)

These energies approach the eigenvalues of the Hubbard
Hamiltonian in the limit where the biases induced by the
occupation-conserving terms, i.e., |εi − ε j | or |εi − ε j ± U |,
are much larger then the amplitude of the (direct or indirect)
particle hopping between sites i and j. Each CSR is identified
by the occupations n that, for each V belonging to the CSR,
minimize the energy Eq. (26).

One can show that the degeneracy between the energies of
any two configurations n and n′ occurs at hyperplanes in RM ,
specified by the equation

πA,B = {V ∈ RM : A + B · V = 0} (|B| = 1), (27)

where A is an offset and B is a M-dimensional vector perpen-
dicular to the hyperplane. All these hyperplanes are parallel to
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the direction D = (α−1
1 , . . . , α−1

M ), corresponding to the zero
eigenvalue of the QC matrix (see Appendix B). Therefore, any
two adjacent CSRs are separated by a part of a hyperplane,
delimited by intersections with other hyperplanes.

Whenever one moves from a CSR to an adjacent one by
crossing a hyperplane π , e.g., by varying the working point
in the voltage space starting at P0 and moving along the
line

lC,P0 = {t ∈ R : V 0 = P0 + tC} (|C| = 1), (28)

one expects a peak in the QC at the intersection between
lC,P0 and π . Intuitively, the highest peak is expected to be
achieved if the voltage oscillation δV is perpendicular to the
hyperplane (v ‖ B). In fact, any component of the oscillation
parallel to the plane is expected to induce no rearrangement of
the charge, and thus to provide no contribution to the QC.

Three-dot array. Many of the relevant aspects of the ap-
proach can be illustrated within a simple three-dot array (M =
3). In this case, the boundaries between stability regions are
given by planes perpendicular to one of the following three
vectors:

B1 = 1√
α−2

1 + α−2
2

(
1

α1
,− 1

α2
, 0

)
,

B2 = 1√
α−2

2 + α−2
3

(
0,

1

α2
,− 1

α3

)
,

B3 = 1√
α−2

1 + α−2
3

(
− 1

α1
, 0,

1

α3

)
. (29)

Physically, these directions correspond to transitions that in-
volve a charge transfer, respectively, between the first and the
second dot, the second and the third, and the first and the third.
The additive term A [Eq. (27)] is either 0 or ±U , depending on
whether or not the transition between CSRs implies a change
in the number of doubly occupied dots.

If the array is occupied by two or three particles, the
ground state corresponds to a spin singlet (S = 0) or doublet
(S = 1/2), respectively. The intersections between the CSRs,
identified by the dot occupations n = (n1, n2, n3) and the co-
ordinate planes ε2 = 0 and ε3 = 0 are reported in Figs. 2(a),
2(b) and 3, respectively, for the cases of N = 2 and N = 3.
In both cases, the pattern corresponding to the plane ε1 = 0 is
equivalent, up to a permutation of n1 and n3, to that displayed
for ε3 = 0. The pattern corresponding to any plane εi = K
is obtained from that for εi = 0, through a translation by a
quantity K along the other two coordinate axes.

The QC can be used to discriminate between quantum
states if it takes significantly different values for such states
in at least some region in the voltage space. The present
semiclassical picture allows us to anticipate an important con-
clusion, namely, that the boundaries display nonoverlapping
regions for states that differ either in the particle number N or
in the value of the total spin S. To assess the particle-number
discrimination, one can compare the corresponding panels in
Figs. 2(a), 2(b) and 3. In fact, the boundaries that characterize
the two patterns only overlap in three points; apart from these,
any working point V 0 that belongs to one boundary in one of

the two patterns is thus in principle suitable for discriminating
between the two values of N .

In Figs. 2(c) and 2(d), we show the CSRs for M = 3 and
N = 2 with the same conventions as in Figs. 2(a) and 2(b),
respectively, but in the situation where double occupancy of
a site is not allowed. This occurs due to Pauli’s exclusion
principle if the state of the system is a triplet (S = 1), rather
than a singlet, i.e., it is in a spin-polarized state. The com-
parison between the CSRs for S = 0 and S = 1 shows that
total-spin discrimination is feasible. The CSR boundaries that
are either added or removed in passing from one spin state
to the other precisely define the working points V 0 that are
suitable for the spin discrimination. In the case of M = 3 and
N = 3, the CSR diagram for the quadruplet (S = 3/2) states
is a trivial one, since only the configuration (1,1,1) is allowed
in the whole parameter space, in marked contrast with the
CSRs for the doublet which are displayed in Fig. 3. Again,
the difference between the CSRs in the two cases enables
total-spin discrimination.

We note that this represents an extension to larger dot
and particle numbers, and to different spin states, of the ap-
proaches that are currently used to read out the spin qubits
through a spin-to-charge conversion or the Pauli spin block-
ade.

2. Quantum-mechanical approach

While the semiclassical picture allows the identification of
the boundaries between CSRs and suggests the optimal di-
rections along which the voltage oscillation should take place
in the M-dimensional voltage space, quantitative estimates
require the quantum mechanical approach, i.e., the diagonal-
ization of the Hamiltonian and the derivation of the QC matrix
from the eigenenergies. In particular, this provides a validation
of the qualitative picture derived from the the semiclassical
approach; a qualitative integration of such picture, for exam-
ple, at the intersection between three planes; and a quantitative
estimate of the QC at the relevant working points.

Differently from the general semiclassical consideration
reported above, the details of the quantum-mechanical results
depend on the hopping Hamiltonian ĤT , which encodes the
geometry and the coordination of the quantum dot array. For
illustrative purposes, in the following we consider a one-
dimensional arrangement of M = 3 quantum dots, with only
nearest-neighbor tunneling, i.e.,

ĤT = T
2∑

i=1

∑
σ

(ĉ†
i,σ ĉi+1,σ + ĉ†

i+1,σ ĉi,σ )

+ χT (ĉ†
3,σ ĉ1,σ + ĉ†

1,σ ĉ3,σ ). (30)

Here, setting χ = 0 yields an open chain, while setting χ = 1
yields a closed ring, since it enables tunneling between the
first and the last site. In the following, we will consider both
cases to show typical situations where different geometries
(encoded in different tunneling Hamiltonians) give qualita-
tively different features in the QC.

Validation of the semiclassical picture. The semiclassical
picture suggests that a high value of the QC might be ob-
tained by choosing a working point that lies at the boundary
hyperplane between two CSRs and by varying the potentials

155411-6



THEORY OF MULTIDIMENSIONAL QUANTUM … PHYSICAL REVIEW B 107, 155411 (2023)

FIG. 2. Charge stability regions in the coordinate planes ε2 = 0 [(a), (c)] and ε3 = 0 [(b), (d)] for the spin-singlet [(a), (b)] and spin-triplet
[(c), (d)] ground states of N = 2 particles in a linear array formed by M = 3 quantum dots. Each region is denoted by the corresponding
occupations of the three dots.

FIG. 3. Charge stability regions in the coordinate planes ε2 = 0 (a) and ε3 = 0 (b), for the spin-doublet ground state of N = 3 particles in
a linear array formed by M = 3 quantum dots. Each region is denoted by the corresponding occupations of the three dots.
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FIG. 4. Comparison between the eigenvalues of the QC matrix [(a), (c)] and the scalar QC along the direction identified through the
semiclassical picture [(b), (d)], for the Hubbard model with M = 3 quantum dots and N = 3 particles, in the cases of an open chain [(a), (b)]
and of a closed ring [(c), (d)]. Both the direction along which the working point varies (C) and the direction along which the voltage oscillates
(v) are parallel to B1; specifically, ε = ε1(1, −1, 0) and v = 2−1/2(1,−1, 0). The boundary between the (1,1,1) and (0,2,1) stability regions is
crossed at ε1 = U/2. The calculations related to these graphs were done for T < 0, U = 10|T |, and for αi ≡ α ∀i.

along the direction perpendicular to such hyperplane. The
validity of such intuition can be verified by comparing the QC
C1;v [Eq. (10)] for v ‖ B with the lowest and largest-modulus
eigenvalue C1;1 of the QC matrix as a function of the working
point along the line perpendicular to the hyperplane [C = B
in Eq. (28)].

Such comparison is reported in Fig. 4 in a representative
case, namely, for N = 3 and for the boundary between the
CSRs n = (1, 1, 1) and n = (0, 2, 1) [see Fig. 3(b)]. We re-
port our results both for the open chain [Figs. 3(a) and 3(b)]
and for the closed ring [Figs. 3(c) and 3(d)]. In both cases,
the quantum calculations fully confirm the expectation based
on the semiclassical picture: the QC obtained for a direction
v of the voltage oscillation orthogonal to the separation plane
between the two CSRs coincides, to a good approximation,
with the largest-modulus eigenvalue of the QC matrix. This
also results from the eigenvector v1;1 of the QC matrix, which
is actually oriented along the direction B1 at the bound-
ary hyperplane. The other two eigenvalues, corresponding to
orientations along the boundary plane, are exactly or approxi-
mately zero [see Figs. 4(a) and 4(c)].

In this particular case, the difference in the two considered
geometries has a very small impact on the QC, as can be seen
by comparing Figs. 4(a) and 4(b), respectively, with Figs. 4(c)
and 4(d). This can be understood by noticing that the dominant
process determining the considered transition between charge
configurations (1,1,1) and (0,2,1) is the tunneling between
sites 1 and 2, which is the same in the two geometries that
we are comparing. The small differences between the two
cases are due to higher-order tunneling processes, which are
particularly weak close to the boundary between the CSRs

(i.e., ε1 = U/2). We will later show a case where the transition
is such that geometry has a relevant impact on the QC. For
the case at hand, in Appendix C we present an analytically
solvable reduced model, which reproduces the main features
of the QC displayed in Fig. 4.

Qualitative integration of the semiclassical picture. The
quantum approach allows a full characterization of the multi-
dimensional QC, especially at the boundaries between CSRs,
which are the most significant regions in the V space. It
provides the optimal directions for the voltage oscillations
and the corresponding largest-modulus eigenvalues of the QC
matrix. This is especially important close to the intersection
between different boundary planes, where the classical ex-
pectation might be wrong or even undefined. These aspects
are discussed in some detail hereafter for the representative
cases of M = 3 and N = 2, 3 in an open chain (Fig. 5). All
quantities are plotted as a function of the position of the
working point V 0 along the V1 axis.

In the case of N = 2, the working-point axis lies in the
CSRs (2,0,0) and (0,1,1), respectively, for ε1 = α1V1 < −U
and V1 > 0 (Fig. 2). In these regions, both the diagonal
elements of the QC matrix [Fig. 5(a)] and its eigenvalues
[Fig. 5(c)] vanish. For −U � α1V1 � U , the working point
lies at the boundary between the CSRs (1,1,0) and (1,0,1); in
fact, the extremes of such interval correspond to triple points,
where these two configurations are also degenerate with either
one or the other of the two above. The diagonal elements of the
QC matrix, corresponding to voltage oscillations along the co-
ordinate directions in the voltage space, display qualitatively
different behaviors. In particular, C1;11 (green curve) displays
two pronounced minima at the triple points, while C1;22 and
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FIG. 5. Several quantities related to the QC matrix of the Hubbard-model ground state for M = 3 and N = 2 [(a), (c), (e)] or N = 3 [(b),
(d), (f)] in the case of an open chain. The calculations are done for U = 10|T | and αi ≡ α ∀i. The various quantities are plotted as functions
of ε1, the working point being ε = (ε1, 0, 0). (a), (b) Diagonal elements C1;ii; (c), (d) eigenvalues C1;n; (e), (f) components v1;1 · ui of the QC
eigenvector v1;1 corresponding to the lowest eigenvalue [orange curves in (c) and (d)] along the coordinate unit vectors ui. QCs are displayed
in dimensionless form (see the label of vertical axes). The colors of the curves in (a), (b), (e), and (f) identify the corresponding value of i
according to the following color code: green → i = 1, blue → i = 2, red → i = 3.

C1;33 (red and blue curves) do not. In the region between the
triple points, C1;11 displays a reduced modulus, while C1;22 and
C1;33 take relatively large negative values. These latter aspects
are in qualitative agreement with the classical picture, accord-
ing to which the voltage oscillations should ideally take place
along the direction that is orthogonal to the boundary plane,
v = B2, which has components along the V2 and V3 axes, but
not along V1. The most negative eigenvalue of the QC matrix,
i.e., that with the largest modulus, displays relative minima
close to the triple points and an absolute minimum in the
intermediate region [Fig. 5(c)], where C1;1 is approximately
twice the QC obtained for voltage fluctuations along the co-
ordinate axes V2 and V3. The eigenstate corresponding to such
eigenvalue, which defines the optimal direction for the voltage
oscillation, is characterized by a highly nontrivial dependence
on V1, with drastic changes at the triple points [Fig. 5(e)].

In the case of N = 3, the working-point axis lies in the
CSRs (1,1,1) for −U < α1V1 < U , on the boundary between
(2,1,0) and (2,0,1) for α1V1 < −U , and between (0,2,1) and
(0,1,2) for α1V1 > U (Fig. 3). The extremes of the above
intervals correspond to two triple points, where three con-
figurations are degenerate. The behavior of all the plotted
quantities is qualitatively different from that of the N = 2
case, but also presents some clear analogies. In particular,
the diagonal elements [Fig. 5(b)] as well as the eigenvalues
[Fig. 5(d)] of the QC matrix vanish when the working point
is inside the CSR. As to the diagonal elements of the QC
matrix, C1;11 (green curve) displays two pronounced minima
near the triple points and vanishes elsewhere, while C1;22 and
C1;33 (red and blue curves) saturate at their minimal value for
|α1V1| > U and vanish in the region between the triple points.
The most negative eigenvalue of the QC matrix displays
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relative minima close to the triple points and a saturation at the
absolute minimum value in the external regions, where C1;1 is
approximately twice the QC obtained for voltage fluctuations
along the coordinate axes V2 and V3. The optimal direction for
the voltage oscillation is characterized by a highly nontrivial
dependence on V1, with abrupt changes at the triple points
[Fig. 5(f)].

Clearly, the quantum-mechanical calculations reveal cru-
cial information—both qualitative and quantitative—about
the QC that could not be predicted from the semiclassical
picture, including the optimal directions of the oscillations in
voltage space; the positions and values of the extremal points
for the QC along any direction, including the optimal one; the
behavior of the QC at triple points in the CSR graph, where
three boundary (hyper)planes intersect; and the existence of
plateaus in the dependence of the QC on the position of the
working point. Therefore, the semiclassical considerations are
useful to preselect the relevant regions in voltage space, where
interesting features of the QC occur, but accurate indications
can only be obtained from the quantum-mechanical treatment.

Quantitative integration of the semiclassical picture. A
peak in the QC is characterized not only by its position in the
voltage space but also by its height and width. These features
can be related to those which characterize the avoided level
crossing that the Hamiltonian ground and first-excited states
undergo as V crosses the boundary hyperplane separating two
CSRs with occupations n and n′. In addition, if other hyper-
planes are sufficiently far away in the voltage space, then the
transition between the stability regions can be approximately
described within a reduced subspace. This is spanned by dif-
ferent quantum states, sharing the dot occupations n or n′, and
differing from one another in terms of spin orientations.

In the simplest case, the avoided level crossing involves
only two basis states, one for each CSR. The effective Hamil-
tonian H eff on this two-dimensional space has the general
form

H eff =
[

En(V ) τ

τ En′ (V )

]
, (31)

where τ is the transition amplitude between the two basis
states, due to the terms of the Hamiltonian that do not con-
serve the dot occupations, and generally depends on n, n′,
and V . In the case of the Hubbard model, τ is related to
the hopping processes, which can be of different orders. The
eigenvalues of Heff read

E eff
± = 1

2 [En(V ) + En′ (V ) ±
√

δ2(V ) + 4|τ |2], (32)

where δ(V ) = En(V ) − En′ (V ). Under the assumptions that
the diagonal and off-diagonal elements of H eff are respec-
tively linearly dependent on V and independent of V , the
elements of the ground-state QC matrix at the avoided cross-
ing [δ(V ) = 0] are

∂2E eff
−

∂Vi∂Vj

∣∣∣∣∣
δ(V )=0

= − 1

4|τ |
∂δ(V )

∂Vi

∂δ(V )

∂Vj
. (33)

This indicates that the minimum value of the QC along any
direction is inversely proportional to |τ |. If the two basis states
are coupled by a first-order hopping process, then the tran-
sition amplitude τ is proportional to the hopping parameter

T . This is the case, e.g., for the transition between the CSRs
(1,1,1) and (0,2,1), taking place as V moves along the line B1

(Fig. 4). In this case, one can in fact solve the reduced model
analytically and show that τ = √

2T (Appendix C).
However, there are also pairs of CSRs that are coupled

by higher-order hopping processes, whose amplitude depends
not only on the hopping parameter T but also on the applied
voltages. As a consequence, also the height and width of the
QC peaks can be tuned by varying the applied voltages. This is
the case, for example, of the open chain when M = N = 3 and
V 0 lies on the V2 axis [vertical axis of Fig. 3(b)]. The obtained
behavior of C1;22 is qualitatively similar to that observed in
previous examples, with two peaks in the vicinity of the
triple points and vanishing values elsewhere [Fig. 6(a)]. More
interestingly, the diagonal elements C1;11 and C1;33, identical
by symmetry if αi ≡ α is independent of i, display no ab-
solute minimum and decrease monotonically for increasing
values of |ε2|. This peculiar behavior can be explained and
reproduced within a reduced model including four basis states
(Appendix D). The analytical solutions of the model, which
are in good agreement with the numerical solution of the full
Hamiltonian, show in fact that

Ceff
1;11 = Ceff

1;33 ≈ −α2 |ε2|
4T 2

(34)

for |ε2| � U, |T |. Unlike the previously considered case,
the transition between the configurations (2,0,1) and (1,0,2)
involves a second-order hopping process, with an intercon-
necting configuration (1,1,1) whose energy difference with
respect to the other two depends on V2. As a result, the ef-
fective amplitude of the transition, as results from Eq. (34),
is proportional to T 2 and inversely proportional to |V2|. In-
creasing values of |V2| beyond U thus give rise to peaks of
increasing height; correspondingly, the width of the curve
along the orthogonal axis V1 decreases [Fig. 6(b)]. The pos-
sibility of tuning the shape of the QC peak by modifying
the working point potentially has important practical implica-
tions. In fact, a higher peak, in principle, enhances the signal
and thus favors the discrimination of the states based on the
contrast in terms of QC. On the other hand, an increased peak
height also comes with a reduced width of the avoided level
crossing between the relevant quantum states. This typically
implies more stringent requirements in terms of the frequency
of the probe, if one wants to preserve the adiabatic character of
the dynamics. In addition, a narrow peak also implies a tighter
upper bound on the amplitude of the probe to avoid overdrive
errors [35].

As mentioned above, the effect depicted in Figs. 6(a) and
6(b) is due to transitions between configurations which, in
the case of an open chain, are connected by second-order
hopping processes. In the case of the closed ring, instead,
the configurations (2,0,1) and (1,0,2) [as well as (1,2,0) and
(0,2,1)] are connected by a first-order hopping process. As a
result, the diagonal elements of the QC matrix are different
from those of the open chain, and they are given by the curves
depicted in Figs. 6(c) and 6(d), respectively, for T < 0 and
T > 0. The main differences are that (i) C1;11 = C1;33 does not
diverge for |ε2| → ∞; (ii) energies (and, therefore, QCs) are
not even functions of T ; and (iii) in the considered domain, at
ε2 = 0 the closed ring has a degeneracy between two doublet
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FIG. 6. (a) Diagonal elements of the ground-state QC matrix C1;ii for the open chain with M = 3 sites and N = 3 electrons, as functions
of the central on-site energy ε2 for ε1 = ε3 = 0. Colors correspond to the value of i: green → i = 1 and i = 3 (the curves coincide), blue
→ i = 2. The three dots correspond to the values of ε2 considered in (b). In (b), we plot C1;11 at the working point (ε1, ε2, 0) as a function of ε1

for three selected values of ε2: black → ε2 = −10|T |, orange → ε2 = −15|T |, brown → ε2 = −20|T |. Calculations are done for U = 10|T |
and αi ≡ α ∀i. (c), (d) Diagonal elements of the ground-state QC matrix in the same domain and with the same conventions as in (a), but for
the case of the closed ring, respectively, for T < 0 and T > 0.

states, due to a local symmetry of the Hamiltonian. Therefore,
close to that point the definition of the QC as the Hessian
matrix of an eigenenergy loses its meaning and should be
replaced with the Hessian matrix of an appropriately defined
mixed state.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have provided a multidimensional gen-
eralization of the QC for a generic system of interacting
particles in the presence of multiple metal gates. This leads
to the introduction of the QC matrix, whose diagonalization
allows one to identify the optimal direction in the voltage
space along which to induce oscillations in order to maxi-
mize and detect the QC. As a possible application of this
approach, we have considered a Hubbard model describing
a linear quantum dot array. Based on the expressions obtained
within such a model, the potentially relevant working points
are identified with the hyperplanes defining the boundaries
between CSRs, which are determined by means of a semiclas-
sical picture. On the one hand, the quantum approach confirms
the relevance of such boundaries, where the QC displays its
maximal absolute values, and shows that the optimal direction
in general coincides with the normal to the hyperplane. On the
other hand, it accounts for a number of additional quantitative
and qualitative features, including the dependence of the QC
on the process responsible for the coupling between charge
configurations and its behavior at the intersections between
different hyperplanes. Altogether, these results clearly show
the possibility of using the QC as a means to discriminate

between different spin and charge states, along the lines of
what has been done in the readout of single- and two-spin
(singlet-triplet) qubits.

The presented results can be extended in different respects.
In particular, some of the assumptions that have been intro-
duced in the Hubbard model with the aim of simplifying
the discussion can be easily removed without significantly
modifying the approach. If, for example, the assumption con-
cerning the local character of the coupling between quantum
dots and metal gates [Eq. (21)] is not valid, then the expres-
sions derived for the Hubbard model no longer apply to the
gate voltages, but they do apply to the virtual gates. In the
presence of a nonlinear dependence of the on-site energy on
the applied voltage, an additional term in the expression of the
QC would result from the differentiation of Eq. (22). Also,
the separations between CSRs would no longer be given by
hyperplanes but rather by more general surfaces. This would
require a revisiting of the semiclassical approach, but the gen-
eral equations derived in the paper would still apply. We also
note that none of the general equations concerning the QC ma-
trix depend on the linear gate arrangements considered in the
presented applications. Different geometries would be sim-
ply characterized by different patterns of interdot couplings,
and thus by different eigenstates and eigenenergies. We have
shown how this can affect the measurable QCs by comparing
the two exemplary cases of an open chain and a closed ring
of Hubbard quantum dots. In the case of a more general
Hubbard model, including more than one orbital per site, the
above equations can be easily generalized by replacing the dot
occupations with those of the individual orbitals. Finally, the
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dependence of also other Hamiltonian parameters—such as
the interdot tunneling—on the voltages might in principle be
included, and could in practice become relevant in a regime
where small changes in the voltage can induce transitions
between configurations with different values of combined ex-
pectation values, including both dot occupations and interdot
coherences [34].

Beyond the Hubbard model, the equations reported in
Sec. II can be applied to a generic few-particle state affected
by a combination of gate voltages. In particular, combining
the present formalism with a detailed modeling of spin qubits
in single and coupled quantum dots [36–41] would allow
realistic theoretical characterizations of the QC and possibly
provide criteria for its enhancement through the tuning of the
device parameters. This might, in turn, allow an improvement
in the readout fidelity of different spin-based qubits.
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APPENDIX A: SYMMETRY OF THE QC MATRIX

We now demonstrate the symmetry of the QC matrix. The
first term on the right-hand side of Eq. (12) is evidently sym-
metric under exchange of indexes i and j. We need to address
the second term: ∫

dr
∂W (r,V )

∂Vi

∂nk (r)

∂Vj
. (A1)

We start by writing

∂nk (r)

∂Vj
= ∂〈ψk|

∂Vj
n̂(r)|ψk〉 + 〈ψk|n̂(r)

∂|ψk〉
∂Vj

, (A2)

where n̂(r) is the (many-body) density operator. If either |ψk〉
is nondegenerate or its degeneracy is due to a global symme-
try of the Hamiltonian that holds independently of V (e.g.,
time-reversal), then the derivative of the state vector |ψk〉 with
respect to parameter Vj can be expressed as

∂|ψk〉
∂Vj

=
(

〈ψk|∂|ψk〉
∂Vj

)
|ψk〉

+
∑

m:Em 
=Ek

1

Ek − Em

〈
ψm

∣∣∣∣ ∂Ĥ

∂Vj

∣∣∣∣ψk

〉
|ψm〉, (A3)

where Ĥ is the Hamiltonian, with eigenstates |ψm〉 and
eigenenergies Em. The first term on the right-hand side of
Eq. (A3) is purely imaginary due to the normalization con-
dition 〈ψk|ψk〉 = 1 and will be irrelevant in what follows.
Equation (A3) follows from the so-called out-of-diagonal
Hellmann-Feynman theorem [42].

Since the Hamiltonian depends on Vj only via the term Ŵ
[see Eq. (5)], the derivative of the Hamiltonian reads

∂Ĥ

∂Vj
=

∫
dr′ ∂W (r′,V )

∂Vj
n̂(r′). (A4)

Combining Eqs. (A1)–(A3) and (A4), one obtains∫
dr

∂W (r,V )

∂Vi

∂nk (r)

∂Vj

=
∫

dr
∫

dr′ ∂W (r,V )

∂Vi

∂W (r′,V )

∂Vj

×
∑

m:Em 
=Ek

nkm(r) nmk (r′) + nkm(r′) nmk (r)

Ek (V ) − Em(V )
, (A5)

where nkm(r) ≡ 〈ψk|n̂(r)|ψm〉, and the purely imaginary first
term on the right-hand side of Eq. (A3) canceled out in the
sum with its complex conjugate.

It is then seen that, if there are points in the parameter
space V = V mk such that Em(V mk ) = Ek (V mk ) for a certain
m, at those points a denominator in Eq. (A5) vanishes, and
consequently the QC (or some of its elements) might not exist.
The actual (non)existence depends on the limiting behavior of
the whole expression Eq. (A5) when V → V mk , and should be
evaluated case by case.

Physically, the working points at which an energy de-
generacy occurs are precisely the points where the adiabatic
theorem does not apply and the Hessian matrix of an eigenen-
ergy is not defined. Consistently, at those points the definition
of the QC matrix should be based on the expectation value of
the energy, Tr(Ĥ ρ̂ ), rather than on a specific eigenenergy.

Away from the degeneracy points, the QC is well-defined
and Eq. (A5) is clearly symmetric under the exchange i ↔ j,
which completes the proof that the whole QC matrix (12) is
symmetric.

APPENDIX B: HYPERPLANES SEPARATING THE CSRS

The equation for the hyperplane separating the two CSRs
specified, respectively, by occupations n and n′ is given by
En(V ) = En′ (V ). For the Hubbard model [Eq. (26)], the hy-
perplane equations have a simple form in the ε space, where
εi = αiVi:

ε · (n − n′) + U

2
(|n|2 − |n′|2) = 0. (B1)

Here we have used the fact that the CSRs correspond to
the same total number of particles:

∑M
i=1 ni = ∑M

i=1 n′
i = N .

The normal B′ to the hyperplane that represents the bound-
ary between two CSRs in the ε space thus has components
given by the difference in the occupations of the M dots. The
corresponding hyperplane in the voltage space is defined by a
normal vector B whose components coincide with those of B′,
up to multiplicative factors 1/αi. While these equations apply
to any pair of CSRs, the boundaries that are considered in the
present paper are specifically the ones between ground-state
configurations. In these cases, n and n′ turn out to differ by
two components i and j, with ni − n′

i = n′
j − n j = 1.

Using again the particle-number conservation, it is easily
shown that the vector B′ is also perpendicular to the M-
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dimensional vector (1, 1, . . . , 1) in the ε space. Therefore,
the vector D = (α−1

1 , . . . , α−1
M ) in V space is perpendicular

to any B that defines a boundary hyperplane, and thus parallel
to all the hyperplanes separating adjacent CSRs, as stated in
the main text.

APPENDIX C: ANALYTICAL MODEL FOR THE QC
RELATED TO THE (1, 1, 1) → (0, 2, 1) TRANSITION

We here consider the Hubbard model in the case of M = 3
and N = 3 and reduce it to an approximate, analytically solv-
able form to effectively describe the transition between the
CSRs (1,1,1) and (0,2,1) along the direction ε = ε1(1,−1, 0)
with ε1 > 0 (Fig. 4).

Since S2 and Sz commute with the Hamiltonian, we can
restrict our theory to a subspace with a defined, ground-
state value of both observables, namely, S = Sz = 1/2 (the
same analysis applies to the subspace Sz = −1/2). The basis
states involved in the (1, 1, 1) ↔ (0, 2, 1) transition are the set
{|↑,↑,↓〉, | ↑,↓,↑〉, | ↓,↑,↑〉}, with energy ε1 + ε2 + ε3,
and the state |0,↑↓,↑ 〉 with energy U + 2ε2 + ε3 [compare
with Eq. (26)]. On the domain ε = ε1(1,−1, 0), the latter
becomes the classical ground state for ε1 > U/2, where the
transition between the two CSRs occurs. Other states have
higher energies and will be neglected to obtain an analytical
solution.

Within the selected four-dimensional subspace, state
|↑,↑,↓〉 and the combination 1√

2
(| ↑,↓,↑ 〉 + | ↓,↑,↑ 〉)

are eigenstates of the Hamiltonian with energy ε1 + ε2 +
ε3, and do not couple with the other states. The other two
states, namely, 1√

2
(| ↑,↓,↑ 〉 − | ↓,↑,↑ 〉) and |0,↑↓,↑ 〉,

are coupled by tunneling and determine the ground state. In
particular, the relevant tunneling process is that between site
1 and site 2, which is the same in the two cases considered
here (open chain and closed ring). Therefore, in both cases,
the original system is effectively reduced to a two-state one,
whose Hamiltonian reads

H eff =
(

ε1 + ε2 + ε3

√
2T√

2T U + 2ε2 + ε3

)
. (C1)

This has the same form as Eq. (31), with the correspon-
dences En(V ) ↔ ε1 + ε2 + ε3, En′ (V ) ↔ U + 2ε2 + ε3, and
τ ↔ √

2T .
The ground-state energy is given by

E eff
1 = 1

2

[
ε1 + 3ε2 + 2ε3 + U−

√
8T 2 + (ε2 − ε1 + U )2

]
.

(C2)

From this expression, one can derive the QC matrix, which
has two zero eigenvalues, corresponding to the eigenvec-
tors (0,0,1) and (1,1,0), and a negative-defined eigenvalue
given by

Ceff
1;1 = −α2 8T 2

[8T 2 + (ε2 − ε1 + U )2]3/2
, (C3)

corresponding to the normalized eigenvector v1;1 =
2−1/2(1,−1, 0). Therefore, within this reduced model,
the eigenvectors are independent of ε and the eigenvalue with
the maximum modulus coincides with the QC produced by
a perturbation δV perpendicular to the hyperplane separating

the two CSRs, in agreement with the numerical results shown
in Fig. 4.

The minimum value of Ceff
1;1 [Eq. (C3)] on the domain ε =

ε1(1,−1, 0) is reached at ε1 = U/2, and is given by

min
{
Ceff

1;1

} = −α2 1

2
√

2|T | ≈ −0.3536
α2

|T | , (C4)

in good agreement with the numerical results obtained for
both the open chain and the closed ring regarding the eigen-
value,

min {C1;1} ≈ −0.3621
α2

|T | (chain),

min {C1;1} ≈ −0.3303
α2

|T | (ring), (C5)

as well as the QC along the classically suggested optimal
direction:

min
{
C1; 1√

2
(1,−1,0)

} ≈ −0.3616
α2

|T | (chain),

min
{
C1; 1√

2
(1,−1,0)

} ≈ −0.3302
α2

|T | (ring). (C6)

The small differences between the numerical results for the
chain and the ring (shown in Fig. 4), as well as the small
deviation from zero of one of the eigenvalues of the QC
matrix, are due to higher-order tunneling processes that are
not included in the reduced analytical model discussed in this
Appendix.

APPENDIX D: ANALYTICAL MODEL FOR THE QC AT
THE BOUNDARY BETWEEN CHARGE STABILITY
REGIONS (1,2,0) and (0,2,1), FOR AN OPEN CHAIN

We now formulate an analytical model, analogous to the
one discussed in Appendix C, for the transitions along the
line ε1 = ε3 = 0, with M = N = 3 and Sz = 1/2, in the case
of an open chain. In particular, we derive the expressions of
the diagonal elements of the QC matrix to account for the
peculiarities obtained numerically [Fig. 6(a)].

The aim is to achieve an accurate description for
the range of values ε2 � −U , where the set of lowest-
energy configurations include the three (1,1,1) configurations
{|↑,↑,↓〉, | ↑,↓,↑ 〉, | ↓,↑,↑ 〉}, with energy ε1 + ε2 + ε3;
the (1,2,0) configuration | ↑,↑↓, 0〉, with energy U + ε1 +
2ε2; and the (0,2,1) configuration |0,↑↓,↑ 〉, with en-
ergy U + 2ε2 + ε3. The Hubbard Hamiltonian is projected
on this five-dimensional subspace, ignoring the couplings
with higher-energy states. The (S = 3/2)-state 1√

3
(| ↑,↑,↓ 〉

+ | ↑,↓,↑ 〉 + | ↓,↑,↑ 〉) is an eigenstate with energy ε1 +
ε2 + ε3, and does not couple with the other states, which thus
define an independent four-dimensional subspace.

The analytical diagonalization of the Hamiltonian is not
possible for arbitrary values of the parameters. It is possible,
however, on the line ε1 = ε3 = 0, where the ground-state en-
ergy reads

E eff
1 = 1

2

[
3ε2 + U −

√
(ε2 + U )2 + 12T 2

]
. (D1)
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This energy has an avoided crossing with that of the fourth
excited state (E eff

5 ) in the five-dimensional reduced space;
analogously, there is an avoided crossing between the first
and third excited energies. The avoided crossing between E eff

1
and E eff

5 can be described in terms of a two-state reduced
model with τ = √

3T , because the transition along the line
ε1 = ε3 = 0 requires a first-order tunneling process. However,
such a picture cannot be applied to the transverse transitions,
which require the full four-dimensional subspace.

From Eq. (D1), by differentiating twice with respect to V2,
one can directly obtain the following diagonal element of the
QC matrix:

Ceff
1;22 = −α2

2
6T 2

[(ε2 + U )2 + 12T 2]3/2
. (D2)

The derivation of the two other diagonal elements is less
straightforward. It can be seen that, by symmetry, Ceff

1;11/α
2
1 =

Ceff
1;33/α

2
3 . To determine Ceff

1;11, one would need, in principle, to
diagonalize the reduced Hamiltonian in the case of ε3 = 0 and

ε1, ε2 
= 0, find the ground-state energy, and take its second
derivative with respect to ε1. However, if both ε1 and ε2 are

= 0, the ground-state energy is determined by a fourth-degree
polynomial equation that cannot be solved analytically. Still,
with some manipulations on that equation, and the knowledge
of Eq. (D1), it is possible to derive the analytical expression
for Ceff

1;11, even without having an explicit expression for the
ground-state energy.

The expression we finally obtain for the two diagonal ele-
ments of the QC matrix with i ∈ {1, 3} reads

Ceff
1;ii = − α2

i

8T 2

{
[(ε2 + U )2 + 9T 2]2 + 3T 4

[(ε2 + U )2 + 12T 2]3/2
− (ε2 + U )

}
.

(D3)

Equations (D3) and (D2) are in good agreement with the
results obtained from the numerical solution of the Hubbard
model. In particular, the analytical model accounts for the
large-|ε2| behavior of C1;11 and C1;33. In fact, when |ε2| �
U and |ε2| � |T |, one finds the limiting behavior given by
Eq. (34), which accounts for the indefinite increase of |C1;ii|
with |ε2| [Fig. 6(a)].

[1] S. Luryi, Appl. Phys. Lett. 52, 501 (1988).
[2] T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91,

092109 (2007).
[3] T. Kopp and J. Mannhart, J. Appl. Phys. 106, 064504 (2009).
[4] C. Berthod, H. Zhang, A. F. Morpurgo, and T. Giamarchi, Phys.

Rev. Res. 3, 043036 (2021).
[5] S. Ilani, L. A. K. Donev, M. Kindermann, and P. L. McEuen,

Nat. Phys. 2, 687 (2006).
[6] J. Xia, F. Chen, J. Li, and N. Tao, Nat. Nanotechnol. 4, 505

(2009).
[7] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.

Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.
75, 1 (2002).

[8] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and
L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

[9] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons,
L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith,
and M. A. Eriksson, Rev. Mod. Phys. 85, 961 (2013).

[10] C. Ciccarelli and A. J. Ferguson, New J. Phys. 13, 093015
(2011).

[11] S. J. Chorley, J. Wabnig, Z. V. Penfold-Fitch, K. D. Petersson,
J. Frake, C. G. Smith, and M. R. Buitelaar, Phys. Rev. Lett. 108,
036802 (2012).

[12] H. D. Cheong, T. Fujisawa, T. Hayashi, Y. Hirayama, and Y. H.
Jeong, Appl. Phys. Lett. 81, 3257 (2002).

[13] F. Persson, C. M. Wilson, M. Sandberg, G. Johansson, and P.
Delsing, Nano Lett. 10, 953 (2010).

[14] T. Frey, P. J. Leek, M. Beck, J. Faist, A. Wallraff, K. Ensslin, T.
Ihn, and M. Büttiker, Phys. Rev. B 86, 115303 (2012).

[15] A. Cottet, C. Mora, and T. Kontos, Phys. Rev. B 83, 121311(R)
(2011).

[16] R. Mizuta, R. M. Otxoa, A. C. Betz, and M. F. Gonzalez-Zalba,
Phys. Rev. B 95, 045414 (2017).

[17] F. Vigneau, F. Fedele, A. Chatterjee, D. Reilly, F. Kuemmeth, F.
Gonzalez-Zalba, E. Laird, and N. Ares, arXiv:2202.10516.

[18] C. Barthel, D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C.
Gossard, Phys. Rev. Lett. 103, 160503 (2009).

[19] A. Crippa, R. Ezzouch, A. Aprá, A. Amisse, R. Laviéville, L.
Hutin, B. Bertrand, M. Vinet, M. Urdampilleta, T. Meunier,
M. Sanquer, X. Jehl, R. Maurand, and S. De Franceschi, Nat.
Commun. 10, 2776 (2019).

[20] M. Urdampilleta, D. J. Niegemann, E. Chanrion, B. Jadot,
C. Spence, P.-A. Mortemousque, C. Bäuerle, L. Hutin, B.
Bertrand, S. Barraud, R. Maurand, M. Sanquer, X. Jehl, S. De
Franceschi, M. Vinet, and T. Meunier, Nat. Nanotechnol. 14,
737 (2019).

[21] A. West, B. Hensen, A. Jouan, T. Tanttu, C.-H. Yang, A. Rossi,
M. F. Gonzalez-Zalba, F. Hudson, A. Morello, D. J. Reilly, and
A. S. Dzurak, Nat. Nanotechnol. 14, 437 (2019).

[22] P. Pakkiam, A. V. Timofeev, M. G. House, M. R. Hogg, T.
Kobayashi, M. Koch, S. Rogge, and M. Y. Simmons, Phys. Rev.
X 8, 041032 (2018).

[23] G. Zheng, N. Samkharadze, M. L. Noordam, N. Kalhor, D.
Brousse, A. Sammak, G. Scappucci, and L. M. K. Vandersypen,
Nat. Nanotechnol. 14, 742 (2019).

[24] J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C. Doherty,
H. Lu, A. C. Gossard, and D. J. Reilly, Phys. Rev. Lett. 110,
046805 (2013).

[25] M. F. Gonzalez-Zalba, S. Barraud, A. J. Ferguson, and A. C.
Betz, Nat. Commun. 6, 6084 (2015).

[26] T. Duty, G. Johansson, K. Bladh, D. Gunnarsson, C. Wilson,
and P. Delsing, Phys. Rev. Lett. 95, 206807 (2005).

[27] D. L. John, L. C. Castro, and D. L. Pulfrey, J. Appl. Phys. 96,
5180 (2004).

[28] S. N. Shevchenko, D. G. Rubanov, and F. Nori, Phys. Rev. B
91, 165422 (2015).

[29] A. Crippa, R. Maurand, D. Kotekar-Patil, A. Corna, H.
Bohuslavskyi, A. O. Orlov, P. Fay, R. Laviéville, S. Barraud,
M. Vinet, M. Sanquer, S. De Franceschi, and X. Jehl, Nano Lett.
17, 1001 (2017).

155411-14

https://doi.org/10.1063/1.99649
https://doi.org/10.1063/1.2776887
https://doi.org/10.1063/1.3197246
https://doi.org/10.1103/PhysRevResearch.3.043036
https://doi.org/10.1038/nphys412
https://doi.org/10.1038/nnano.2009.177
https://doi.org/10.1103/RevModPhys.75.1
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1088/1367-2630/13/9/093015
https://doi.org/10.1103/PhysRevLett.108.036802
https://doi.org/10.1063/1.1515883
https://doi.org/10.1021/nl903887x
https://doi.org/10.1103/PhysRevB.86.115303
https://doi.org/10.1103/PhysRevB.83.121311
https://doi.org/10.1103/PhysRevB.95.045414
http://arxiv.org/abs/arXiv:2202.10516
https://doi.org/10.1103/PhysRevLett.103.160503
https://doi.org/10.1038/s41467-019-10848-z
https://doi.org/10.1038/s41565-019-0443-9
https://doi.org/10.1038/s41565-019-0400-7
https://doi.org/10.1103/PhysRevX.8.041032
https://doi.org/10.1038/s41565-019-0488-9
https://doi.org/10.1103/PhysRevLett.110.046805
https://doi.org/10.1038/ncomms7084
https://doi.org/10.1103/PhysRevLett.95.206807
https://doi.org/10.1063/1.1803614
https://doi.org/10.1103/PhysRevB.91.165422
https://doi.org/10.1021/acs.nanolett.6b04354


THEORY OF MULTIDIMENSIONAL QUANTUM … PHYSICAL REVIEW B 107, 155411 (2023)

[30] M. F. Gonzalez-Zalba, S. N. Shevchenko, S. Barraud, J. R.
Johansson, A. J. Ferguson, F. Nori, and A. C. Betz, Nano Lett.
16, 1614 (2016).

[31] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson,
G. A. C. Jones, and D. A. Ritchie, Nano Lett. 10, 2789
(2010).

[32] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp,
T. M. Hazard, and J. R. Petta, Nat. Commun. 10, 1063
(2019).

[33] R. P. Feynman, Phys. Rev. 56, 340 (1939).
[34] A. Secchi and F. Troiani, Entropy 25, 82 (2023).
[35] V. Derakhshan Maman, M. F. Gonzalez-Zalba, and A. Pályi,

Phys. Rev. Appl. 14, 064024 (2020).

[36] B. Venitucci, L. Bourdet, D. Pouzada, and Y.-M. Niquet, Phys.
Rev. B 98, 155319 (2018).

[37] L. Bellentani, M. Bina, S. Bonen, A. Secchi, A. Bertoni, S. P.
Voinigescu, A. Padovani, L. Larcher, and F. Troiani, Phys. Rev.
Appl. 16, 054034 (2021).

[38] A. Secchi, L. Bellentani, A. Bertoni, and F. Troiani, Phys. Rev.
B 104, 035302 (2021).

[39] H. E. Ercan, S. N. Coppersmith, and M. Friesen, Phys. Rev. B
104, 235302 (2021).

[40] S. Bosco, P. Scarlino, J. Klinovaja, and D. Loss, Phys. Rev. Lett.
129, 066801 (2022).

[41] P. M. Mutter and G. Burkard, Phys. Rev. B 104, 195421 (2021).
[42] S. B. Singh and C. A. Singh, Am. J. Phys. 57, 894 (1989).

155411-15

https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1021/nl100663w
https://doi.org/10.1038/s41467-019-08970-z
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.3390/e25010082
https://doi.org/10.1103/PhysRevApplied.14.064024
https://doi.org/10.1103/PhysRevB.98.155319
https://doi.org/10.1103/PhysRevApplied.16.054034
https://doi.org/10.1103/PhysRevB.104.035302
https://doi.org/10.1103/PhysRevB.104.235302
https://doi.org/10.1103/PhysRevLett.129.066801
https://doi.org/10.1103/PhysRevB.104.195421
https://doi.org/10.1119/1.15842

