
PHYSICAL REVIEW B 107, 155409 (2023)

Four-terminal quantum dot as an efficient rectifier of heat and charge currents
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We propose an efficient method of heat rectification in a simple system consisting of a quantum dot asymmet-
rically coupled to four mutually perpendicular electrodes. In such a device, the perpendicular charge and heat
currents appear in response to the voltage bias or temperature difference between one pair of electrodes. Even
though both longitudinal (along the bias) and perpendicular (to the bias) currents are rectified under appropriate
conditions, the rectification factor is typically much bigger for the latter currents. This is true for heat and charge
flow. The perpendicular currents are predicted to exist in linear as well as nonlinear transport regimes and require
broken mirror symmetry but not time reversal symmetry. The linear effect exists only in geometry which breaks
two inversion symmetries along two pairs of electrically coupled terminals. The proposed system is attainable
within current technology and provides a novel platform of simultaneous heat and charge management at the
nanoscale.
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I. INTRODUCTION

A rectifier is a device in which the magnitude of the
charge or heat current depends on the sign of the electric
or thermal bias. Efficient heat current rectifiers are among
the most desirable devices at the nanoscale as they allow for
heat management in miniaturized electronic devices. Various
geometries and devices have been proposed to reach the goal.
An early proposal of nanoscale heat rectification has appeared
in the context of molecular electronics [1] and is still debated
in the literature [2,3].

In recent years an increased interest is observed in the-
oretical analysis and experimental studies of thermal diodes
[4]. Besides molecules including those with negative U cen-
ters [5], many systems with tuned quantum properties have
been proposed as possible rectifiers [6]. These include in-
ter alia recently analysed two terminal junctions with bath
particles obeying different particle exchange statistics [7]
and the use of quantum entanglement as a possible tools
to enhance rectification properties [8]. Also various novel
solid state systems and materials have been put forward.
These include heterostructures, functionally graded or phase
changing normal materials, superconductors, etc. as reviewed
recently [9,10].

In the context of this paper, the rectifying devices based
on quantum dots are of special interest [11–24]. They consist
of a single or more quantum dots coupled to two external
reservoirs. Probably the first experimental demonstration of
rectifying properties of a two terminal quantum dot is that
in Ref. [25] inferred from the asymmetric line shape of the
thermopower. Rectification of both charge and heat currents in
the Coulomb blockade regime in the system with two quantum
dots has been studied in Ref. [21]. In Ref. [24], the authors
concentrate on heat rectification through quantum dots in the
Coulomb blockade regime using master equation approach.
They considered two-terminal and four-terminal devices. In
the latter case, two coupled quantum dots form a main

nanoscopic element in which each of the individual dots is
contacted by two separate terminals. Our four-terminal system
is different, as it relies on two pairs of electrodes coupled
to a single quantum dot. To the best of our knowledge, it
has not been studied before in the context of rectification.
The geometry allows for a new functionality which is the
rectification of both longitudinal and perpendicular currents.
This property might be of importance in nanosystems with
many terminals.

Quantum dots play an important role in novel electronic
devices like single electron transistors [26], heat nanoengines
[27], and many more, including building blocks of quantum
computers [28,29]. Quantum dots with large charging energy
U, coupled to external metallic leads behave like magnetic
impurities in noble metals [30,31] and at low temperature
show Kondo effect [32,33].

The device we are proposing consists of a single quan-
tum dot tunnel coupled to four normal electrodes in a cross
geometry as shown in Fig. 1. The application of the voltage
or thermal bias along LR electrodes (i.e., x direction) results
in a simultaneous flow of (longitudinal) charge and heat cur-
rents between L and R electrodes and also between U and D
electrodes (perpendicular currents) if the system breaks mir-
ror symmetry(-ies). A device with nonsymmetrical couplings
works as an efficient rectifier. The rectification is observed for
both currents and directions. If the interaction U of electrons
is non-negligible, as it is usually the case in small structures,
and if working temperature is low enough, the device allows
to study the effect of Kondo correlations on the longitudinal
and perpendicular currents.

Four terminal nanojunctions with similar geometry have
been studied previously. General symmetry properties of
phase coherent transport in the presence of magnetic flux were
derived in Ref. [34]. The same geometry was theoretically
analysed in the context of perpendicular currents and resis-
tances [35,36] taking into account polarization of electrons
and strong spin-orbit interaction in the central region. Wei
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FIG. 1. The four terminal quantum dot geometry used in this
work. The couplings �λ between the central dot and the terminals
(λ = L, R,U, D) take on arbitrary values. The external leads can
differ by the chemical potentials μλ and/or temperatures Tλ. Occa-
sionally we denote the direction along L and R terminals as the x
direction and that along U and D as the y direction.

et al. studied planar four terminal system [37] and found
the nonlinear Hall effect induced by the dipole of Berry
curvature. The hybrid structure consisting of a quantum dot
contacted by tunnel barriers to four electrodes including two
superconducting and two normal leads, allows [38] the control
of supercurrent flowing between a pair of superconducting
electrodes by the bias voltage applied to normal electrodes.
The cross geometry of the four terminal nanojunction con-
taining an asymmetric prismlike scatterer has been studied
experimentally [39]. Even though our system is different from
the experimental one it features similar antisymmetric de-
pendence of the four terminal resistance on the current as
discussed below.

We shall analyze two possible boundary conditions: open
with the floating U and D electrodes, and closed with flow of
the perpendicular current. There is no perpendicular voltage
[40] under open boundary conditions. However, the currents
perpendicular to the direction of the bias exist under the
closed boundary conditions. These conditions are necessary
but not sufficient for the observation of the perpendicular
currents. Breaking of single or two mirror symmetries is
needed. The system with broken symmetries shows rectifi-
cation properties. The rectification efficiency may attain its
maximal possible value equal unity. Tuning the system to such
hot spots allows perfect rectification of charge or heat. We
hope this property can be verified experimentally as the fabri-
cation of the proposed devices is possible by the present-day
technology.

The organization of the paper is as follows. In Sec. II, we
describe the studied device and its modeling. Two possible
boundary conditions are discussed in Secs. II A and II B.
The results of numerical calculations presented in Section (III)
are followed by the concluding section, Sec. IV. Some de-
tailed calculations of currents flowing in the system and the
on-dot Green function are relegated to Appendices A and B.

II. THE GEOMETRY, CURRENTS AND BOUNDARY
CONDITIONS

The time reversal symmetric nanostructure consisting of a
quantum dot tunnel-coupled to four normal leads is illustrated
in Fig. 1. The quantum dot is understood here as the small
grain with quantized spectrum, which can be modelled by a
single level. Electrodes or terminals are macroscopic objects
characterized by temperature Tλ = T + �Tλ. They may be
electrically biased (eVλ) with chemical potential μλ = μ +
eVλ, where μ is an equilibrium value of the chemical potential
and T the equilibrium temperature common to all electrodes.
We assume μ = 0.

The Hamiltonian describing the system under considera-
tion is a standard single-impurity Anderson model

H =
∑
λkσ

ελknλkσ +
∑

σ

εdσ nσ + Ud n↑n↓

+
∑
λkσ

(Vλkσ c†
λkσ

dσ + V ∗
λkσ d†

σ cλkσ ), (1)

where nλkσ = c†
λkσ

cλkσ and nσ = d†
σ dσ denote particle number

operators for the leads and the dot, respectively. The operators
c†
λkσ

(d†
σ ) create electrons in respective states λkσ (σ ) in the

lead λ (on the dot). The energies of the leads are measured
from their chemical potentials μλ, ελk = ε0λk − μλ, with the
dependence of ε0λk on λ allowing for a different spectrum
in each of the leads. Ud denotes the energy cost of placing
two electrons on a quantum dot. In this work, we neglect spin
dependence of the on dot energy εdσ = εd and electron hop-
ing amplitudes Vαkσ = Vαk . These approximations are relaxed
in hybrid system with normal and ferromagnetic electrodes
or in the presence of magnetic field. To study the transport
properties, we employ the nonequilibrium Greens function
technique. We express the currents flowing in the system by
the equilibrium Fermi distribution functions with parameters
adequate to corresponding terminals, the effective couplings
between the dot and terminals and the retarded dot Green
function (for details see Appendixes A and B).

A. Absence of Hall voltage in systems with open boundary
conditions

We start by assuming the bias B (this denotes either volt-
age V or temperature �T ) between L and R electrodes. For
open boundary conditions, chemical potentials μU and μD

are obtained by requiring that the currents in those electrodes
vanish: IU = 0 and ID = 0. We calculate these currents by
using the general equation (A2) and express the result in terms
of the integrals defined in equation (A4). Neglecting the spin
dependence, it is easy to show that under arbitrary voltage bias
VLR the vanishing of charge currents in the U and D electrodes
requires

FD − FU = 0 =
∫

dE

2π
( fD(E ) − fU (E ))N (E ). (2)

In the above formula, the density of states, defined in Eq. (A6),
is the nonequilibrium one. Due to the fact that N (E ) is a
strictly positive function of energy, the vanishing of the inte-
gral (2) requires equality of the equilibrium Fermi distribution
functions at the considered terminals: fD(E ) = fU (E ). For
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equal temperatures (TD = TU ) the only solution is μD = μU

and no voltage appears along UD direction, regardless the pa-
rameters of the model. This is valid for arbitrary voltages and
temperatures, i.e., in the linear and nonlinear regimes. Thus
under open boundary conditions there is no “Hall voltage” in
the system and thus no true Hall effect. This, however, does
not preclude flow of the currents along UD direction.

B. The perpendicular currents in the four terminal QD with
closed boundary conditions

The situation is completely different if one applies closed
boundary conditions and allows for a current flow along y
direction. We bias a system along the x direction with V =
VR − VL or �T = TR − TL and calculate the current flow along
the y, i.e., UD direction. It has to be noted that the voltage bias
induces both, heat JQ and charge I currents along LR and UD
and the same is true for the temperature bias. The currents
are calculated as ILR = (IL − IR)/2 and IUD = (IU − ID)/2
for charge and JLR

Q = (JL
Q − JR

Q )/2, JUD
Q = (JU

Q − JD
Q )/2 for a

heat flow.
The necessary condition for the existence of currents along

unbiased UD direction is broken mirror symmetry between
U and D electrodes. This is realized by assuming different
couplings to the dot. For a system with �U = �D, the perpen-
dicular currents vanish, IUD = 0 (JUD

Q = 0).
This general statement can be easily proved. Calculating

both, the heat and charge currents flowing along the UD
direction in the same way as explained in Sec. II A, one finds
that they can be generally expressed as

iUD = (�U − �D) fi({�λ}, {Vλ}, {�Tλ}) (3)

and thus vanish for �D = �U . Here fi is the numerically
evaluated function for a particular current, and iUD is used to
denote either IUD or JUD

Q . It is also of interest to note that the
currents are expected to change sign if the difference �U − �D

changes sign. It has to be stressed, however, that this is not the
universal feature as the function fi({�λ}, {Vλ}, {�Tλ}) which
is a combination of the appropriate integrals defined in (A4)
or (A5) disturbs the said proportionality depending on the
parameters. For a particular example, where one observes no
sign change of the currents IUD(V ) calculated for two sets of
�D and �U despite sign change of �D − �U see Sec. (III B).

In the linear response, the conditions for the existence of
the perpendicular currents are stronger and require breaking
of two mirror symmetries. This is easily seen assuming over
a range of voltages isothermal conditions (Tλ = T for all λ)
and the linear response regime (small voltage V = VL − VR).
For symmetric distribution of voltages VL/R = ±V/2 at the
corresponding terminals, one expands the Fermi functions

fλ(E ) = f0(E ) + f ′
0(E )(−eVλ), (4)

and using Eq. (A2) gets the perpendicular charge current

IUD = 4e2

h

(�U − �D)[�L − �R]∑
λ �λ

F ′
0V, (5)

where F ′
0 = ∫

dE
2π

(− ∂ f0(E )
∂E )N (E ). Both currents vanish for

�L = �R and/or �U = �D. This condition is relaxed in the

nonlinear regime and breaking the mirror symmetry along UD
is enough to get the perpendicular currents.

III. THE RESULTS

The asymmetry of the couplings plays an important role
and in most cases we shall characterize it by a single param-
eter α, which defines anisotropy of our system. It may take
arbitrary positive value but we shall study a few represen-
tative values only. In most studied cases, we assume simple
asymmetry with �R = �D = α�0 and �L = �U = �0, where
�0 is our energy unit. The calculations for the couplings less
symmetric give similar values of the currents. We stick to the
simplest choices, which allow to study the role which symme-
tries play in our model. We also assume Boltzmann constant,
Planck constant, and the electron charge as kB = h̄ = e = 1.
Thus energy E and other parameters like T , V andεd , are all
measured in units of �0.

A. The currents

Contrary to the linear regime in which existence of perpen-
dicular currents require breaking of two mirror symmetries,
in the nonlinear regime both charge I i j and heat Ji j

Q cur-
rents flow between i j = LR as well as i j = UD electrodes if
only a single mirror symmetry is broken along UD direction.
This is illustrated in Fig. 2 for voltage bias and three values
�D = 0.5, 1.5, 2 with all other couplings equal to �0 = 1.
In accord with Eq. (5) for �L = �R, the linear contributions
vanish and the perpendicular currents are (at least) quadratic
functions of voltage for small V . Simultaneously the longi-
tudinal currents (both ILR and JLR

Q ) are linear functions of
V for V → 0 with well visible departures from linearity at
larger voltages [see insets in Fig. 2(a) and 2(b)]. This agrees
with general analytical results of Sec. II B. Thermally induced
currents (not shown) exhibit the same behavior, namely, the
currents perpendicular to the bias are quadratic functions of
�T for small �T . These currents do not appear in the linear
order if the system breaks the single mirror symmetry only.
In full analogy to the voltage bias, the longitudinal thermally
induced currents are linear functions of �T for �T → 0, with
departures from linearity at elevated �T values.

For the particular set of parameters, the UD heat current
is positive for �D > 1 and negative for �D < 1. This is true
independently of the bias as visible from panel (b) in Fig. 2.
Similar symmetry is valid for heat currents along LR, which
for �D > 1 are of opposite sign to the currents corresponding
to �D < 1. The flow towards U is either blocked or facilitated.

The response of the system to applied bias quite gener-
ally depends on its symmetry and the set of parameters. To
illustrate this in Fig. 3, we show thermally induced charge
currents in panel (a) and heat currents induced by the volt-
age in panel (b). Panel (a) shows the currents in system at
temperature T = 2 with the quantum dot tuned to εd = −9,
and for two values of anisotropy α = 0.5, 1.5 and U = 12.
The currents flowing along the UD are about an order of
magnitude smaller then those along LR direction. However,
one notices that the charge perpendicular current for α = 0.5
vanishes for �T/2 ≈ 0.4 but is finite for �T/2 ≈ −0.4. This
is a bias for which the rectification factor is maximal (=1) as
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FIG. 2. Charge current IUD induced by voltage between LR ter-
minals is a symmetric (and roughly quadratic) function of V as
visible in (a). The same is true for heat current which is also
symmetric (and quadratic) function of voltage (b). Insets show the
corresponding currents along LR direction. These currents are lin-
ear functions at small voltages with nonlinear behavior observed at
high bias. Moreover, the charge currents along RL are very weakly
affected by the ratio �D/�U . Other parameters read T = 1, εd = −4,
U = 12, and �R = �L = �U = �0. All energies are measured in
units of �0.

we shall see in the following section. In panel (b), we show
perpendicular heat currents versus the voltage. Important fact
to note is the nonmonotonous dependence of currents on the
bias and the points were they vanish. These special points are
marked by asterisks.

B. Rectification

If mirror symmetries along LR and UD directions are bro-
ken both charge and heat currents in two pairs of electrodes
depend on the sign of bias B = V or B = �T , i.e. we find
ILR(B) �= ILR(−B) and IUD(B) �= IUD(−B). The same is true
for heat currents JLR

Q (B) and JUD
Q (B). To quantify the rec-

tification efficiency one introduces special parameter called
rectification coefficient. One possible definition is

Ri j = |(|I i j (B)| − |I i j (−B)|)|
[|I i j (B)| + |I i j (−B)|] . (6)

With this definition the rectification factor ranges from 0 to
1. The former means no rectification, while the latter perfect
rectification. Similar rectification coefficients are defined for

FIG. 3. In (a), we show thermally induced longitudinal charge
currents ILR (solid lines) and perpendicular currents IUD (lines with
symbols) for two values of asymmetry α = 0.5 and α = 1.5 as
functions of the temperature difference. In (b), the voltage depen-
dent perpendicular heat currents JUD

Q are shown together with points
marked with * where the currents vanish for one sign of voltages and
take on nonzero values for opposite sign. In both panels, U = 12 in
units of �0.

heat currents JQ(B) and we denote them by Ri j
Q in the

following.
Perfect rectification is expected in cases when the current

vanishes for one sign of the bias and attains finite value for
the other. The goal is to tune the parameters of the system to
such “hot spots.” In the panel (b) of Fig. 3 such hot spots have
been marked by asterisks. The rectification coefficient takes
on the maximal possible value at those points. In general it is
difficult to tune the system and find vanishing of charge cur-
rents. However, panel (a) of this figure shows points in which
perpendicular charge currents vanish for specific values of
�T . For α = 0.5, the IUD current vanishes for �T/2 close to
0.4, while for α = 1.5, the perpendicular charge current nearly
vanishes for �T/2 close to 2. In both cases, the currents are
relatively large for opposite sign of temperature bias.

The rectification coefficients for thermally induced charge
and heat currents flowing along LR and UD directions are
plotted in Fig. 4. Panel (a) shows Ri j for charge currents,
while panel (b) Ri j

Q for heat currents. The rectification of both
currents flowing along the bias direction (ILR and JLR

Q ) is rel-
atively small of order of a few percent. For the parameters of
the model presented in the figure, the coefficient RUD is of the
same order or slightly higher then RLR. Its maximal value is
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FIG. 4. Rectification ratios Ri j of charge (a) and heat Ri j
Q (b) cur-

rents as a function of �T/2 for a few values of α, voltage V = 0,
temperature T = 1, εd = −4, and U = 12.

about 10%. However, the heat rectification coefficient RUD
Q 	

RLR
Q and reaches values higher then 50%. It monotonously

increases with �T .
Temperature plays an important role in our interacting

system, as the Kondo effect sets in at low temperature. To
see this, we show in Fig. 5 results obtained for the same
system as in Fig. 4 with α = 0.5 and for two vastly different
temperatures. We plot rectification factors Ri j (main panel)
and the charge currents I i j (inset) versus voltage V for two
values of temperature. For lower temperature T = 0.01, the
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FIG. 5. Rectification ratios Ri j and currents I i j (inset) as a func-
tion of voltage for two temperatures T = 1 (solid lines) and 0.01
(lines with symbols). Other parameters εd = −4 and U = 12.

Kondo resonances are expected to appear in the density of
states.

The signature of the Kondo effect is visible in the inset of
Fig. (5) as a higher value of the current at a given voltage
at low T compared to the same current at higher tempera-
ture. Concomitantly the slopes (∂I/∂V ) of the curves IUD(V )
and ILR(V ) calculated for low temperature (T = 0.01 curves
with symbols, when a Kondo effect is expected to appear)
are higher then the slopes of the same currents calculated at
high temperatures (T = 1 thin solid lines when there is no
Kondo effect) leading to higher values of the low temperature
conductances. The effect is best visible close to V = 0. Also
at higher voltages the different values of currents show the
influence of the Kondo correlations despite the fact that in
the strongly nonlinear regime one calculates the current by
integrating the density of states over large energy window and
this makes the relative contribution of the Kondo resonances
smaller. We note in passing that the Kondo temperature esti-
mated from the Haldane’s formulas (A7) for the parameters
used in Fig. 5 is found TK ≈ 0.7. Another way to see the
Kondo effect on the current directly is to plot the latter as a
function of temperature for a constant value of the voltage.
As a result of the calculations (not shown) one gets the curve
which at temperature T well below the Kondo temperature TK

shows constant value of the current. With increasing tempera-
ture toward TK the current decreases in the expected manner.

Strong nonlinearities at elevated voltages combined with
well visible asymmetry of IUD current (at low T = 0.01) for
voltage around |V ∗| ≈ 1.2 result in |IUD(V ∗)| = |IUD(−V ∗)|
and vanishing of RUD(V ∗) as well as its nonmonotonous
dependence on voltage. At high temperature T = 1, there
is no Kondo effect and one obtains continuous increase of
rectification with V . The rectification of longitudinal current
RLR is affected by the Kondo effect only quantitatively. For
the particular set of parameters, its low temperature value
is roughly doubled with respect to higher temperature but
remains low, at the level of a few percent.

The general observation is that typically the rectification
factors for longitudinal currents are small of the order of a few
percent. This agrees with previous systematic calculations of
the rectification factor in Ref. [24] in a two terminal single
level quantum dot. The rectification factors were small of or-
der of a few percent like those for longitudinal currents in the
present work. In our four terminal geometry, the rectification
factor for the perpendicular currents is usually much higher
and may be as large 100%.

In view of the observation [24] that the rectification coef-
ficient for a two level quantum dot attains large value in the
two terminal system it would be of interest to extend our four
terminal model to two level quantum dot and to study how the
longitudinal and perpendicular currents and their rectification
factors are affected. This will be studied in a future work.

C. Four terminal resistance in the nonlinear regime

For many terminal nanojunctions with currents I i j and
voltages V kl measured between various pairs of electrodes
one defines [34], the four terminal resistances Ri j,kl = V kl

I i j .
The voltages are applied between terminals k and l and cur-
rents measured between terminals i and j. Here we shall

155409-5
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FIG. 6. Broken mirror symmetry along vertical direction only
�R = �L = �U = 1 and �D = 0.5, 1.5, and 2 results in the four
terminal resistivity antisymmetric with respect to the current flowing
along horizontal direction. This resembles experimental result [39]
found in the nonlinear transport regime of nanojunction with artificial
asymmetric scatterer.

calculate resistances for a special couplings which break a
mirror symmetry along y direction only. If we assume cou-
plings to L, R, and U terminals equal to �0 and only the
coupling to �D = (0.5, 1.5, 2)�0 different from others, the
resulting symmetry of the model resembles that of the nano-
junction earlier studied experimentally [39]. These authors
considered a four terminal structure with asymmetric trian-
gular prism-like scatterer placed in its center. The scatterer
effectively blocked the flow of charge from/to one of the
terminals. In our case it is the coupling �D which effectively
blocks (if <1) the current from/to this terminal. It should be
recalled that in the linear transport regime the resistances Ri j,kl

do not depend on the current. In the nonlinear regime, the
perpendicular current IUD depends on the longitudinal current
ILR and so does the resistance RUD,LR = V LR

IUD = RUD,LR(ILR).
Due to the vanishing of the perpendicular currents at some
voltages in our set-up, the four terminal resistance RUD,LR

is not well defined at those points. That is why we show
in Fig. 6 the inverse resistance R−1

UD,LR = IUD

V LR as a function
of the current I = ILR. It is seen that the resistance obeys
a symmetry RUD,LR(I ) = −RUD,LR(−I ). Interestingly, similar
symmetry of the four terminal resistance has been earlier
observed [39] in the nonlinear ballistic transport in the (al-
ready mentioned) four terminal microjunction with triangular
asymmetric (prismlike) scatterer. The absence of voltage V UD

between U and D electrodes in our model and its presence in
experimental setup is a main reason of the perfect symmetry
RUD,LR(I ) = −RUD,LR(−I ) in our case and only an approxi-
mate one in the nanojunction [39].

Inverse resistances R−1
UD,LR calculated in the Kondo regime

characterized by the parameters εd = −4, U = 12, and T =
0.01 display the same perfect antisymmetric dependence (not
shown) on the longitudinal current ILR. Needless to say that
this is true for the mirror symmetry broken along UD direction
in a similar way as in experiment [39].

D. Gate voltage dependence and the effect of interactions

In the nonlinear regime, the density of states (DOS) de-
fined in (A6) and entering formula (A4) is known to depend
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FIG. 7. The dependence of the longitudinal ILR (main panel) and
transverse IUD (inset) currents on the detuning δ = εd + U/2 (can
be changed by the gate voltage) for system with �L = �U = �0

and �R = �D = 1.5�0 (i.e., α = 1.5), U = 16, voltage bias V = 4
and for two temperatures T = 0.01 and 0.5. Signatures of the Kondo
effect visible as non smooth dependence of the currents on δ are
observed for T = 0.01.

crucially on the interactions U between carriers, voltages Vλ

and temperatures Tλ of the leads. We limit the studies of this
section to isothermal condition when all leads have the same
temperature Tλ = T . If temperature is low enough and the
on-dot level εd is slightly below the chemical potential(s),
the Kondo peak(s) appears in the density of states of the
interacting quantum dot. With chemical potentials μ = 0 at
electrodes U and D, μL/R = μ ± eV/2 at the left/right elec-
trode one expects three Kondo peaks pinned to the chemical
potentials of the electrodes. They are visible in Fig. 9 shown in
Appendix B. Various curves in the figure correspond to differ-
ent values of �R = �D = α�0 couplings with �L = �U = �0.
For εd outside the Kondo regime DOS around E = 0 changes
smoothly with α and voltage V (not shown).

In Fig. 7, we show the currents ILR (main panel) and IUD

(inset) as a function of dot energy εd at temperatures below
(T = 0.01) and above (T = 0.5) the Kondo temperature. The
dot energy can be easily changed by gate voltage. The system
breaks mirror symmetry with respect to both LR and UD di-
rections as we have assumed �L = �U = �0 and �R = �D =
1.5�0. At lower temperature one observes signatures of the
Kondo effect. These are peaks for those gate voltages for
which one expects the Kondo resonances in the density of
states (cf. Fig. 9). The effect is rather small due to the fact that
we integrate the density of states over a range (−V/2,V/2)
around E = 0. In this energy window, there are three Kondo
peaks including one well pronounced and voltage independent
at E = 0. It is bounded with the chemical potential μ = 0 of
both U and D electrodes. Interestingly, the effect of Kondo
correlations is more pronounced in the perpendicular current
IUD as compared to longitudinal one ILR.

In the upper panel of color coded Fig. 8, we show the de-
pendence of longitudinal ILR charge current on δ = εd + U/2
and voltage V . The lower panel shows similar dependence
for the perpendicular charge current IUD. Both currents are
calculated for temperature in the Kondo regime (T = 0.01)
and for U = 12. Note the same scale for both panels, however,
with perpendicular current multiplied by the factor of 10.
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FIG. 8. The maps show the charge currents on the plane (δ,V ).
Upper panel illustrates longitudinal current ILR(εd ,V ), while lower
panel the perpendicular current IUD(δ,V ). We assumed here U = 12
and temperature T = 0 and 0.01 in energy units.
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FIG. 9. The evolution of the on-dot density of states plotted as
a function of energy with changing the parameter α describing the
couplings between the dot and right (R) and down (D) terminals
with �R = �D = α�0, �L = �U = �0. The parameters take on the
following values: the on-dot energy εd = −5.0, the source-drain
voltage V = 2, temperature T = 0.01 and the interaction U = 12.
Note that the region of width V around the chemical potential μ = 0
is important as it contributes to the currents in particular terminals.

TABLE I. Necessary conditions for the rectification of the cur-
rents along LR and UD directions if the bias (voltage or temperature)
is applied between the L and R electrodes. The couplings �λ which
are not mentioned can take on arbitrary values.

linear regime nonlinear regime

ILR; JLR
Q �L �= �R �L �= �R

IUD; JUD
Q �L �= �R, �U �= �D �U �= �D

IV. SUMMARY AND CONCLUSION

We have studied the nonlinear transport characteristics of a
system consisting of strongly interacting quantum dot coupled
to two pairs of normal leads arranged in a cross geometry.
The voltage or thermal bias applied to one pair of the leads
induces the (heat and charge) current flow between both pairs
of terminals, provided the quantum dot is nonsymmetrically
coupled (cf. Table I). Different couplings between the leads
and the dot break mirror symmetries of the device. In the lin-
ear regime observation of two mutually perpendicular (charge
and heat) currents in response to the appropriate bias requires
breaking of both symmetries. Beyond linear regime, breaking
the mirror symmetry along UD is enough. All currents are rec-
tified in a system breaking both mirror symmetries, with the
rectification factors of perpendicular currents typically much
bigger then that of longitudinal currents. Interestingly the
rectification factor for heat typically exceed that for charge.

If only the symmetry between vertical leads (perpendicular
to those biased) is broken the resulting nonlinear four terminal
resistance Ri j,kl = V kl

I i j is an antisymmetric function of the
longitudinal current I = ILR, i.e., RUD,LR(I ) = −RUD,LR(−I ).
This is in qualitative agreement with experimental data [39]
on nonlinear transport in four terminal microjunction with
asymmetric prismlike scatterer. The notable difference is that
in our system the antisymmetry is exact while in experiment
it is approximate. It is important to recall that in the linear
regime Ri j,kl does not depend on the current I = I i j .

We want also to underline that the analyzed device with
a cross geometry enables the study of the Kondo effect on
both longitudinal and perpendicular currents. It turns out that
the Kondo resonance appearing in the density of states at
low temperature affects the longitudinal currents in the four
terminal system to lesser extend then in the corresponding two
terminal quantum dot geometry. Additionally in our geometry
the signatures of the Kondo effect in the perpendicular current
are more pronounced then in the longitudinal one.

Our results demonstrate a new route to achieve the effi-
cient rectification of longitudinal and perpendicular (heat and
charge) currents. The proposed system is attainable within
current technology and provides a novel platform of simul-
taneous heat and charge management at the nanoscale.
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APPENDIX A: THE CURRENT IN THE SYSTEM

Calculating the currents we follow the general definitions
relying on equation of motion of the number and energy oper-
ators [41,42]. The heat and charge currents are expressed by
the lesser and greater Green functions, which have to be cal-
culated for the fully interacting system. This is a difficult task,
especially for the strongly nonlinear regime, we are interested
in here. The required lesser Green function is calculated in a
standard way [43–45] on the time contour. It turns out that the
calculations can be simplified in the so called wide band limit.
In this limit, one assumes that the couplings between the dot
and the leads �λ

σ (E ) = 2π
∑

k |Vλkσ |2δ(E − ελk ) = �λ
σ do not

depend on energy. In this limit, one finds the exact relation,
first derived in Ref. [46]

〈d†
σ dσ 〉 = −i

∫
dE

2π
G<

σ (E )

= i
∫

dE

2π

∑
λ �λ

σ fλ(E )∑
λ �λ

σ

[Gr
σ (E ) − Ga

σ (E )], (A1)

which allows to write the charge and heat currents flowing out
of the λ electrode as (for details, see Refs. [45,46])

Iλ = 2e

h̄

∫
dE

2π

∑
σ

�λ
σ

×
∑

λ′ �λ′
σ ( fλ′ (E ) − fλ(E ))∑

λ′ �λ′
σ

ImGr
σ (E ), (A2)

Jλ = 2e

h̄

∫
dE

2π

∑
σ

�λ
σ (E )(E − μλ)

×
∑

λ′ �λ′
σ ( fλ′ (E ) − fλ(E ))∑

λ′ �λ′
σ

ImGr
σ (E ). (A3)

These expressions can be used for calculating the currents
in an arbitrary system consisting of the central dot and sev-
eral terminals under appropriate boundary conditions. Note
the Fermi-Dirac distribution function fλ(E )) depends on the
electrode λ via its chemical potential μλ = μ + eVλ or applied
voltage Vλ and temperature Tλ. The common value of the
chemical potential and temperature of the system in equilib-
rium is denoted μ, T . For generality we keep here the spin
dependence of adequate parameters.

It is convenient to express the currents in terms of auxiliary
integral

Fλσ =
∫

dE

2π
fλ(E )Nσ (E ), (A4)

F Q
λσ =

∫
dE

2π
(E − μλ) fλ(E )Nσ (E ), (A5)

respectively. In the above formulas,

Nσ (E ) = − 1

π
ImGr

σ (E , {Vλ}) (A6)

denotes density of states (DOS) on the dot for spin σ elec-
trons. In general, this quantity depends on the voltages {Vλ}
and temperatures Tλ of all terminals.

As our theory is valid also in the Kondo regime we finish
this Appendix with quoting the Haldane’s formula [47] for the
Kondo temperature expected in the system

TK = 0.5
√

U�N exp

(
πεd (εd + U )

2�NU

)
, (A7)

with �N = ∑
λ �λ.

APPENDIX B: THE DOT GREEN FUNCTION

For completeness, we recall the formulas for the on-dot
Green function which qualitatively correctly describe the
Kondo effect. One uses standard equation of motion technique
[44–46] and finds the dot Green function

Gr
σ (E ) = 〈〈dσ |d†

σ 〉〉r
E = 1 + Id (E )[〈nσ̄ 〉 + b1σ̄ − b2σ̄ ]

E − εσ − �0σ + �t (E )
,

(B1)
where

�t (E ) = Id (E )
[
�T

1σ + �T
2σ − (b1σ̄ − b2σ̄ )�0σ

]
, (B2)

Id (E ) = U

E − εσ − U − �0σ − �
(1)
σ − �

(2)
σ

. (B3)

The various pieces of the self-energy are supplemented by
the inverse life-times iγσ̄1/2 of the single particle σ̄ , respec-
tively two-particle 2 state and read

b1σ̄ (E ) =
∫

dε

2π

∑
λ �λ

σ̄ fλ(ε)〈〈dσ̄ |d†
σ̄ 〉〉a

ε

E − ε − ε1 + iγ̃ σ̄
1

, (B4)

b2σ̄ (E ) =
∫

dε

2π

∑
λ �λ

σ̄ fλ(ε)〈〈dσ̄ |d†
σ̄ 〉〉a

ε

E + ε − ε2 + iγ̃2
, (B5)

�T
1σ (E ) =

∫
dε

2π

∑
λ �λ

σ̄ fλ(ε)[1 + i
2�σ̄ 〈〈dσ̄ |d†

σ̄ 〉〉a
ε]

E − ε − ε1 + iγ̃ σ̄
1

, (B6)

�T
2σ̄ (E ) =

∫
dε

2π

∑
λ �λ

σ̄ fλ(ε)[1 − i
2�σ̄ 〈〈dσ̄ |d†

σ̄ 〉〉r
ε]

E + ε − ε2 + iγ̃2
. (B7)

In the above, we have introduced ε1 = ε̃σ − ε̃σ̄ , and ε2 =
ε̃σ + ε̃σ̄ + U . The subscripts 1 and 2 refer to the excited 1- and
2-electron states of the dot, respectively. The symbols a/r de-
note advanced/retarded Green function. The self-consistency
requires that input dot occupation 〈nσ̄ 〉 equals that obtained
from Gr

σ̄ (E ) in the consecutive iteration step with a given
accuracy. As noted earlier, there exists exact relation

〈nσ 〉 =
∫

dE

∑
λ �λ

σ fλ(E )∑
λ �λ

σ

(
− 1

π

)
ImGr

σ (E ), (B8)

valid for energy independent couplings; �λ
σ (E ) ≡ �λ

σ . If this
condition is violated, as it might be the case in graphene
[48–50], hybrid systems with one (or both) of the electrodes
being a superconductor, e.g., d-wave [51] one, other ap-
proaches are needed.

The inverse lifetimes γ̃α of the excited states α = |σ 〉, | ↑
,↓〉 stem from higher order processes [42,46]. They can be
calculated up to the desired order via the generalized Fermi
rule as

γ̃α = 2π
∑
| f 〉

|〈T (Eα )〉|2δ(Eα − E f ), (B9)
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with T (E ) = V̂ + V̂ g(E )V̂ + · · · the scattering matrix, where
V̂ denotes the part of the Hamiltonian describing the cou-
pling between quantum dot and reservoirs. In the discussed
approach, one also replaces εd by ε̃d , to be calculated self-
consistently from

ε̃d = εd + �T
1σ (ε̃d ) + �T

2σ (ε̃d ). (B10)

Finally, the self-energies �(1,2)
σ are equal to �0σ for iγ̃ α

1,2 =
i0+; however, for arbitrary values of iγ̃ α

1,2 they have to be
calculated directly from

�(1,2)
σ (E ) =

∑
λ

�λ
σ̄

∫
dε

2π

1

E ∓ ε − ε1,2 + iγ̃ σ̄
1,2

. (B11)

The on-dot density of states is obtained from the retarded
Green function. It is defined by Eq. (A6) and shown in Fig. 9
as a function of energy for a number of values of the asym-
metry factor α (cf. its definition in Sec. III affecting couplings
between the dot and leads). One observes three Abrikosov-
Suhl resonances pinned to Fermi levels of the left μL, right
μR and up and down μU = μD = μ = 0 electrodes. Terminal
R with μR = −1.0 is decoupled from the dot for α = 0 so the
corresponding density of states shows two Kondo resonances:
one at μU = 0 and other at μL = +1.0. With increasing α the
third Kondo resonance appears around energy E = −1 = μR.
It has to be noted that the Kondo peak at zero energy and
two such structures at VL/R make the dependence of currents
on gate voltage more complicated in comparison to the two
terminal case as the central resonance is always present and
only its weight changes with parameters.
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