
PHYSICAL REVIEW B 107, 155407 (2023)
Editors’ Suggestion

Image charge effect in layered materials: Implications for the interlayer coupling in MoS2
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The electronic and optical properties of layered materials, such as transition metal dichalcogenides, can be
strongly affected by their dielectric environment—this phenomenon is also known as the image charge effect. In
multilayers, the stacked crystal structure implies a layer-dependent variation of the image charge effect. However,
this variation and its implications on the interlayer coupling are heretofore not well understood. Here, we show
that the variation of dielectric screening effects in layered materials can be described by a macroscopic dielectric
continuum model within classical electrostatics. We present an efficient method that incorporates this effect in
electronic structure calculations. The present method is based on semi-empirical tight-binding and amenable to
use for large-scale systems. By applying this method to multilayer MoS2, we find an energetic decoupling of the
surface layer—at the K point of the Brillouin zone—which leads to the formation of a surface-layer band gap.
More generally, our calculations reveal that the image charge effect can cause spatial modulation of the interlayer
coupling by changing the band alignment between the layers.
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I. INTRODUCTION

Interlayer coupling plays a central role in determining
the properties of layered materials [1,2]. In transition metal
dichalcogenides (TMDCs), for example, interlayer coupling
leads to a crossover from a direct band gap in the monolayer to
an indirect band gap in multilayer materials [3–5]. Recently,
much effort has been put into actively controlling interlayer
coupling in layered materials to tailor their electronic [6,7]
and optical properties [8]. A comprehensive understanding of
the mechanisms underlying interlayer coupling is therefore of
great importance.

Key parameters that determine the interlayer coupling are
the interlayer hopping t , and the band offset � (see Fig. 1).
While interlayer hopping arises from the quantum-mechanical
interaction between orbitals on adjacent layers, the band offset
generally depends on several mechanisms, including dielec-
tric screening effects. In fact, screening effects play a crucial
role in layered materials. The atomically thin structure of
the layers is intrinsically linked to a weak screening [9,10].
Dielectric polarization of their surroundings can therefore
considerably modify the Coulomb interaction inside the lay-
ers, thus shifting their energy levels. This phenomenon, also
called the image charge effect, is well known in the context
of nanostructures [11,12], and molecules on surfaces [13,14].
Several studies, experimental and theoretical, have shown
that the electronic and optical properties of layered materials
strongly depend on their dielectric environment (vacuum, a
substrate, or adjacent layers) [15–26]. Yet, most studies on
screening effects focus on monolayers, while multilayer ma-
terials are rarely addressed. Notably, the stacked structure of
multilayer materials suggests a layer-dependent variation of
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the screening effects, affecting the band alignment between
the layers. Thus, it is important to investigate the variation of
screening effects in multilayer materials and analyze their role
in interlayer coupling. In fact, Winther and Thygesen reported
a spatially varying band gap in multilayer hexagonal boron
nitride [27]. However, while electrostatic interactions between
the layers were taken into account, interlayer hopping has
been disregarded.

A suitable theoretical framework that captures the relevant
physical mechanisms discussed above is given by many-body
perturbation theory. The GW method [28–30] has proven to
be an accurate tool for calculating quasiparticle (QP) energies,
i.e., electron addition and removal energies, including energy
level alignments [13,14]. In particular, dielectric polarization
effects are included via the screened Coulomb interaction in
terms of an electron self-energy. However, applying the GW
method to multilayer materials is a formidable task due to
the high computational cost. A possible way to overcome this
difficulty is to decompose the electron self-energy and only
retain those corrections that arise from dielectric polarization
effects of the environment. For silicon nanocrystals, Allan,
Delerue, and Lannoo have shown that these self-energy cor-
rections can be computed with good accuracy by using an
image potential derived from a continuum model [31–33].
However, it is not clear whether such a continuum model
approach is applicable to layered materials.

In the present paper, we discuss a computationally efficient
method to capture the image charge effect in semi-empirical
band structure calculations, which we call the TB+δ�

method. This method combines tight binding (TB) with
a self-energy δ�, derived in the GW approximation, that
solely accounts for the image charge effect. Focusing on
layered materials, we show that the interaction potential of
δ� can be well described by an image potential derived
from an anisotropic continuum model. With freestanding
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FIG. 1. Schematic illustration of the interlayer coupling between
two electronic states on adjacent layers. The coupling modifies the
orbital compositions and leads to an energy splitting between the
interacting states. Relevant parameters that determine the coupling
are the interlayer hopping t and the band offset �.

molybdenum disulfide (MoS2) as a prototypical example, we
investigate the variation of image-charge induced self-energy
corrections in multilayer materials as a function of layer posi-
tion and number of layers. We then use the TB+δ� method
to show how the image charge effect modifies the band align-
ment in multilayer materials, thereby affecting the coupling
between the layers. Specifically for the case of multilayer
MoS2 in vacuum, we show that the image charge effect leads
to an energetic decoupling of the outermost layer (surface
layer) at the K point of the Brillouin zone.

The present paper is organized as follows: In Sec. II, we
present the theoretical method used in this paper. Section III
is devoted to the screened image interaction in layered mate-
rials. In Sec. IV, we present results on the electronic structure
of mono- and multilayer MoS2 surrounded by vacuum. We
specifically focus on the multilayer, discussing the implica-
tions of the image charge effect for the interlayer coupling.
Section V concludes this paper with a summary of our main
results.

II. THEORETICAL FRAMEWORK

In this section, we present a method for electronic structure
calculations based on semi-empirical TB, taking into account
the image charge effect within many-body perturbation the-
ory.

First, in Sec. II A, we derive a practical expression for the
self-energy caused by the image charge effect—we call it the
image self-energy δ�—from the electron self-energy in the
GW approximation. In the subsequent Sec. II B, we introduce
the TB+δ� method used in this paper; an efficient method
for electronic structure calculations that includes the image
self-energy and is based on semi-empirical TB. Finally, in
Sec. II C, we work out the matrix elements of the image self-
energy in the framework of (nonorthogonal) semi-empirical
TB.

A. Image charge effect within many-body perturbation theory:
The image self-energy operator

The central quantity within many-body perturbation theory
is the electron self-energy operator. From this operator one
can calculate quasiparticle (QP) spectra, i.e., electron addition
and removal spectra. In Hedin’s GW approximation [28,30],

the electron self-energy operator is given by

� = iGW, (1)

where G is the single-particle Green’s function and W is the
screened Coulomb interaction of the system. Compared to the
case of an infinite bulk crystal, the interfaces of a system can
introduce drastical modifications in the screened interaction
and hence the electron self-energy. These modifications result
from the difference in the polarizability of the environment
(vacuum, substrate, etc.) compared to the bulk crystal.

In order to quantify the effect of the environment’s di-
electric polarizability, we rewrite the screened Coulomb
interaction of the system as follows:

W = Wbulk + (W − Wbulk)

= Wbulk + Wim, (2)

where Wbulk is the interaction with hypothetical screening of
the bulk crystal. The second term Wim is a correction that
accounts for the difference in the dielectric screening between
the actual system and its bulk counterpart. This term is entirely
due to the dielectric interfaces of the system and hence due
to the different polarizability of the environment. Following
classical electrodynamics, where the potential of this type of
interaction is often calculated using the method of images, we
call Wim the screened image interaction. The separation of the
screened Coulomb interaction in Eq. (2) transfers directly to
the electron self-energy operator defined in Eq. (1). That is,

� = iGWbulk + iGWim

= �bulk + δ�. (3)

The first term on the right-hand side of Eq. (3) represents
the self-energy of the system with hypothetical screening
of the bulk crystal. The second term δ� is the self-energy
due to the environment’s dielectric polarizability, or, more
precisely due to the different polarizability of the environment
compared to the bulk. Since δ� describes the image charge
effect, we call it the image self-energy operator.

Up to this point, we have restricted our discussion to formal
relations. In frequency space, the explicit expression for the
image self-energy operator reads as

δ�(r, r′; ω) = i

2π

∫
G(r, r′; ω + ω′)Wim(r, r′; ω′) dω′. (4)

In general, computing this convolution can be a difficult and
time-consuming task. To simplify the frequency integration,
we adopt the approximation of a statically screened image
interaction. Equation (4) can then be written in the form

δ�(r, r′) = −
occ.∑
nk

ψnk(r) ψ∗
nk(r′)Wim(r, r′)

+ 1

2
δ(r − r′)Wim(r, r′). (5)

This expression is consistent with the static Coulomb hole plus
screened exchange (COHSEX) approximation introduced by
Hedin [28]. It is important to note that we only consider this
approximation for the image self-energy δ�; not for the total
electron self-energy �. The first term in Eq. (5) represents a
screened exchange (SEX) interaction and the second term can
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be interpreted as a Coulomb hole (COH). While the Coulomb-
hole part is purely local, the screened-exchange part contains
nonlocal effects. In order to further simplify the computation
of the image self-energy operator, we neglect the nonlocal
contributions of the screened image interaction. The image
self-energy is thus given by

δ�(r, r′) = − 1

2

occ.∑
nk

ψnk(r) ψ∗
nk(r′) [Wim(r) + Wim(r′)]

+ 1

4
δ(r − r′) [Wim(r) + Wim(r′)], (6)

where Wim(r) ≡ Wim(r, r) denotes the local contribution of the
screened image interaction. For practical calculations, it is
useful to express the image self-energy operator as a matrix.
In a basis of single-particle states |nk〉, the matrix elements of
the image self-energy are given by

〈nk|δ�|n′k〉 = 1 − fnk − fn′k

2
〈nk|Wim|n′k〉

=
{− 1

2 〈nk|Wim|n′k〉 for n, n′ ∈ occ.

+ 1
2 〈nk|Wim|n′k〉 for n, n′ ∈ unocc.

. (7)

Here, fnk and fn′k denote the occupation numbers of the
single-particle states. These matrix elements correspond to
QP corrections resulting from the image charge effect; here
we emphasize that they are not intended to give the full QP
corrections of the electron self-energy � defined in Eq. (1).
The physical origin of the image charge effect arises from
the difference in the environment’s polarizability compared to
the bulk crystal of the system. Equation (7) will be central to
the TB+δ� method presented in Sec. II B. We note that the
expression given in Eq. (7) has already been derived before by
Delerue et al. [33] and Freysoldt et al. [34].

B. The TB+δ� method

We now present a method for calculating the elec-
tronic structure that incorporates the renormalization of the
Coulomb interaction arising due to the dielectric environment
of the system. This method, which we call TB+δ�, com-
bines the computational efficiency of semi-empirical TB with
the image self-energy δ� introduced in the previous section.
While other works have used a similar approach [31,33], we
extend these works by going beyond a perturbative treatment
of the image self-energy. Moreover, we discuss how to cal-
culate the matrix elements of the image self-energy for the
general case of a nonorthogonal TB model (see Sec. II C).

In order to motivate the Hamiltonian of the TB+δ�

method, we consider the QP Hamiltonian of the GW method.
In the usual formulation, with density functional theory (DFT)
as starting point, one can formally set up the Hamiltonian [35]

ĤGW = ĤDFT − Vxc + �. (8)

In the above equation, ĤDFT is the DFT Hamiltonian, Vxc is the
exchange-correlation potential of ĤDFT, and � = iGW is the
electron self-energy within GW. According to Sec. II A, we
can decompose � into the image self-energy δ� and the bulk-
screened self-energy �bulk. The QP Hamiltonian of Eq. (8) can

then be written in the form

ĤGW = ĤDFT − Vxc + �bulk + δ�. (9)

The starting point of the TB+δ� method is a semi-
empirical TB model. Such models are typically constructed on
the basis of DFT calculations, meaning ĤTB ≈ ĤDFT. Since
we are mainly interested in QP corrections induced by the di-
electric environment of the system, we shall neglect the terms
−Vxc and �bulk in the construction of the TB+δ� Hamilto-
nian; both terms do not contribute to the effect we want to
describe. Hence, in the TB+δ� method, the QP Hamiltonian
[Eq. (9)] simplifies to

ĤQP := ĤTB + δ� , (10)

and the corresponding QP equation that yields the QP energies
EQP

mk and wave functions ψ
QP
mk reads

(ĤTB + δ�) ψ
QP
mk (r) = EQP

mk ψ
QP
mk (r). (11)

In order to express the QP equation [Eq. (11)] as a matrix
equation, we expand the QP wave functions in the basis of the
TB wave functions ψTB

nk ,

ψ
QP
mk (r) =

∑
n

dn(m, k) ψTB
nk (r). (12)

In that basis, Eq. (11) becomes∑
n′

[
ETB

nk δn,n′ + δ�n,n′ (k)
]︸ ︷︷ ︸

ĤQP
n,n′ (k)

dn′ (m, k) = EQP
mk dn(m, k). (13)

A practical calculation within the TB+δ� method is done
in three consecutive steps. First, we compute the energies
ETB

nk and wave functions ψTB
nk of the TB Hamiltonian ĤTB. In

the second step, we construct the image self-energy operator
from the TB wave functions (see Sec. II C). Finally, we set
up the QP equation in the basis of the TB wave functions
[Eq. (13)] and solve it by diagonalizing the QP Hamiltonian.
In addition to the energies EQP

mk , diagonalizing the Hamiltonian
also yields new wave functions ψ

QP
mk [Eq. (12)]. It turns out

that the nonperturbative treatment of the image self-energy,
including the update of wave functions, can be a crucial factor
to obtain reliable results because of the spatial structure of the
image self-energy.

C. Building the image self-energy operator in tight binding

To set up the QP equation [Eq. (13)] of the TB+δ�

method, it is necessary to represent the image self-energy
operator δ� as a matrix in the basis of the TB wave functions.
According to Eq. (7), this requires to calculate the matrix
elements of the screened image interaction Wim in that basis.

In TB, the wave functions ψnk are expanded in a minimal
Bloch basis {χανk} constructed from atomic orbitals φα ,

χανk(r) = 1√
N

∑
R

eik(R+τν ) φα (r − R − τν ), (14a)

ψnk(r) =
∑
αν

cαν (n, k) χανk(r). (14b)

Here, N is the number of unit cells in the crystal, R is a lattice
vector of the Bravais lattice, τν gives the position of the νth

155407-3



P. MARAUHN AND M. ROHLFING PHYSICAL REVIEW B 107, 155407 (2023)

basis atom within the unit cell of the crystal, α labels the
atomic orbitals centered at atom ν, and cαν are the expansion
coefficients of the wave functions. Using Eqs. (14a) and (14b),
the matrix elements of the screened image interaction become

〈nk|Wim|n′k〉=
∑
αν

∑
α′ν ′

c∗
αν (n, k) cα′ν ′ (n′, k)〈χανk|Wim|χα′ν ′k〉,

(15)

where

〈χανk|Wim|χα′ν ′k〉 =
∑

R

eik(R−τν+τν′ )
∫

φ∗
α (r − τν )

× Wim(r) φα′ (r − R − τν ′ ) d3r. (16)

A difficulty in evaluating the expression in Eq. (16) arises
from the fact that the atomic orbitals are not explicitly defined
in semi-empirical TB. To overcome this problem, we use a
point-charge approximation,∫

φ∗
α (r − τν )Wim(r) φα′ (r − R − τν ′ ) d3r

≈ 1

2
[Wim(τν ) + Wim(τν ′ )]

×
∫

φ∗
α (r − τν ) φα′ (r − R − τν ′ ) d3r, (17)

in which the integral of Eq. (16) is reduced to the over-
lap of the atomic orbitals. Here, we have used the fact that
Wim(R+τν ′ ) = Wim(τν ′ ). The expression for the matrix ele-
ments of the screened image interaction in the Bloch basis
thus simplifies to

〈χανk|Wim|χα′ν ′k〉 ≈ 1

2
〈χανk|χα′ν ′k〉[Wim(τν ) + Wim(τν ′ )]

= Sαν,α′ν ′ (k)

2
[Wim(τν ) + Wim(τν ′ )]. (18)

In the above equation Sαν,α′ν ′ (k) is the overlap between the
corresponding Bloch states.

In the point-charge approximation, the matrix elements of
the screened image interaction between TB wave functions
[Eq. (15)] become

〈nk|Wim|n′k〉 = 1

2

∑
αν

∑
α′ν ′

c∗
αν (n, k) Sαν,α′ν ′ (k) cα′ν ′ (n′, k)

× [Wim(τν ) + Wim(τν ′ )]. (19)

By introducing generalized Mulliken charges [36] for each
atom site ν,

qnn′
ν (k) = 1

2

∑
α

∑
α′ν ′

[c∗
αν (n, k) Sαν,α′ν ′ (k) cα′ν ′ (n′, k)

+ c∗
α′ν ′ (n, k) Sα′ν ′,αν (k) cαν (n′, k)], (20)

we can rewrite Eq. (19) in the compact form

〈nk|Wim|n′k〉 =
∑

ν

qnn′
ν (k)Wim(τν ). (21)

The generalized Mulliken charge qnn′
ν (k) can be regarded as a

localized fractional point-charge, arising from the overlap of
the TB wave functions ψnk and ψn′k in the region of atom ν.

Finally, substituting Eq. (21) into Eq. (7) leads to the
following expression for the matrix elements of the image
self-energy operator:

δ�n,n′ (k) =
{− 1

2

∑
ν qnn′

ν (k)Wim(τν ) for n, n′ ∈ occ.

+ 1
2

∑
ν qnn′

ν (k)Wim(τν ) for n, n′ ∈ unocc.
.

(22)

The form of Eq. (22) provides an intuitive physical picture
of the image self-energy: It is built from the classical electro-
static self-energy of fractional point charges.

III. SCREENED IMAGE INTERACTION
IN LAYERED MATERIALS

In the previous section, we have introduced the image self-
energy to quantify the impact of the image charge effect on
the electronic structure of solids. The essential ingredient for
the calculation of the image self-energy is the screened image
interaction Wim. In this section, we deal with the calculation
of the screened image interaction in layered materials.

In the first part, Sec. III A, we describe a general scheme
to map a layered crystal, composed of an arbitrary number of
layers, onto a simple dielectric continuum model. From that
model we then derive a general expression for the screened
image interaction inside layered materials using macroscopic
electrostatics. In Sec. III B, we investigate the spatial variation
of the screened image interaction inside a layered material and
address the thickness dependence. In the last part, Sec. III C,
we validate the accuracy of the continuum model approach to
the screened image interaction.

A. Dielectric continuum model

The calculation of the screened Coulomb interaction in a
layered geometry using macroscopic electrostatics has been
extensively described in the literature [11,34,37,38]. Most of
the published work has dealt with isotropic dielectrics. Lay-
ered materials, however, are inherently anisotropic dielectrics:
The layered crystal structure with strong in-plane bonds and
weak van der Waals forces between the layers leads to high
charge susceptibility within the layers but low susceptibility
along the stacking direction. Many of these materials have
a high in-plane lattice symmetry, meaning their dielectric
properties are (only) uniaxially anisotropic. In the following,
we consider a layered crystal with uniaxially anisotropic di-
electric properties and derive an expression for the screened
image interaction Wim inside that crystal. A complete solution
to the screened Coulomb interaction in all regions along with a
more detailed derivation—for the general case of two arbitrary
dielectrics surrounding the layer—is given in the Appendix.

To calculate the screened image interaction in the frame-
work of macroscopic electrostatics, we map the atomic crystal
structure of the real system onto a dielectric continuum model.
Figure 2 illustrates our procedure to construct the dielectric
model system for an arbitrary layered crystal in vacuum. In
the continuum model, we replace the entire layered crystal
with a single homogeneous dielectric medium of thickness
L = Nd , where N is the number of layers and d is the thick-
ness of a single layer; for d , we use the layer-to-layer distance
of the bulk crystal. The uniaxial anisotropy in the dielectric
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FIG. 2. Illustration of our procedure to map a layered crystal
(left) onto a dielectric continuum model (right). The layered crystal
is mapped to a single homogeneous medium of thickness L = Nd; N
is the number of layers and d denotes the thickness of a single layer.
The uniaxially anisotropic dielectric properties of the layered crystal
are described by the two macroscopic dielectric constants, ε‖ and ε⊥.
Dielectric interfaces with the environment (black solid lines), here
vacuum, are assumed to be abrupt.

properties of the layered material is taken into account in the
model by the two macroscopic dielectric constants, ε‖ and
ε⊥. They represent the in-plane and out-of-plane dielectric
response of the layered crystal, respectively; as before, we use
the values of the bulk crystal. The vacuum above and below
the layered crystal is characterized by a dielectric constant of
εvac = 1. We assume sharp dielectric interfaces between the
layered crystal and the vacuum, meaning that the dielectric
properties change abruptly at the interfaces. Finally, we note
that internal interfaces within the layered crystal are not rele-
vant in our model by construction.

Starting from the dielectric continuum model, we now
derive an expression for the screened image interaction
inside the layered crystal. To this end, we consider an ad-
ditional/external point charge Q′ at position r′ = (ρ ′ = 0, z′)
inside the crystal, where we set ρ ′ = 0 without any loss in
generality. We note, that this can be seen as a simplified pic-
ture of a QP excitation. Poisson’s equation for the electrostatic
potential φ in the region of the layered crystal reads (see
Appendix)

ε‖
1

ρ

∂

∂ρ

(
ρ

∂φ

∂ρ

)
+ ε⊥

∂2φ

∂z2
= − 2

ρ
Q′ δ(ρ) δ(z − z′). (23)

The solution to this equation can be written in the form
φ = φbulk+φim. The first term φbulk is the potential of the
point charge in an infinite, uniaxially anisotropic, bulk crystal.
φbulk is a particular solution of the inhomogeneous Poisson
equation. The second term φim is the image potential. It is
the solution of the Laplace equation obtained by setting the
right-hand side of Eq. (23) to zero. Most importantly, the
screened image interaction Wim between two point charges Q
and Q′, located at r and r′ inside the layered crystal, is related
to the image potential by Wim(r, r′) = Qφim(r).

In the following, we focus on the local part of the screened
image interaction, relevant for the calculation of the image

TABLE I. Model parameters for the screened image interaction
in MoS2. The thickness d of a single layer is the layer-to-layer
distance of the bulk crystal, taken from Ref. [40]. The macroscopic
dielectric constants, ε‖ (in-plane) and ε⊥ (out-of-plane), are calcu-
lated within ab initio LDA+GdW for bulk MoS2.

Thickness Dielectric constants

d (Å) ε‖ (in-plane) ε⊥ (out-of-plane)

MoS2 6.147 10.70 7.45

self-energy δ� [see Eqs. (7) and (22)]. By solving Poisson’s
equation (see Appendix), we obtain the following result for
the local part of the screened image interaction inside a lay-
ered crystal surrounded by vacuum (in Hartree atomic units):

Wim(z) = 1

γ εeff

∞∑
n=1

ξ 2n

nL
+ 1

γ εeff

∞∑
n=0

ξ 2n+1

|(2n + 1)L + 2z|

+ 1

γ εeff

∞∑
n=0

ξ 2n+1

|(2n + 1)L − 2z| . (24)

In the above expression, εeff = √
ε‖ε⊥ is the effective

macroscopic dielectric constant of the layered material and
γ = √

ε‖/ε⊥ quantifies the dielectric anisotropy [39]; further-
more, ξ n = [(εeff − 1)/(εeff + 1)]n is the magnitude of the
nth-order image charge.

Equation (24) plays a central role in our calculations—with
the TB+δ� method—presented in Sec. IV. We use this form
of the screened image interaction to compute the matrix el-
ements of the image self-energy. Generalization of Eq. (24)
to the case of arbitrary dielectric environments is given in
the Appendix. As we will show below, the screened image
interaction [Eq. (24)] and hence the variation of dielectric
screening due to the image charge effect can be calculated
from the dielectric properties of the bulk crystal.

B. General features of the screened image interaction

It is useful to look at some general properties of the
screened image interaction Wim as given in Eq. (24). As an
illustrative example we consider the case of MoS2 in vacuum.
The model parameters we used for the calculation of the
screened image interaction in MoS2 are compiled in Table I.

Figure 3 shows the spatial variation of the screened image
interaction along the stacking direction of freestanding MoS2

for different numbers of layers (thickness). The qualitative
behavior of the interaction is the same for all crystal thickness.
The screened image interaction is positive in the whole region
of the crystal, because of the smaller dielectric constant of the
vacuum compared to MoS2. The energy curves are flat from
the center of the crystal to about the second layer from the
surface and then increase to finally diverge at the dielectric
interfaces to the vacuum. Physically, the screened image in-
teraction reflects the efficiency in dielectric screening relative
to the bulk crystal. Positive values correspond to less effec-
tive screening; negative values would mean more effective
screening. That is, the screened image interaction increases
towards the surface(s) of the crystal due to the absence of
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FIG. 3. Spatial variation of the screened image interaction in
MoS2 crystals of varying thickness (four to ten layers); all crystals
are freestanding (surrounded by vacuum). The solid curves depict the
image interaction energy Wim(z) as resulting from Eq. (24), using the
model parameters compiled in Table I. Arrows indicate characteristic
values of the screened image interaction discussed in the text and
shown in Table II. Gray regions mark the positions of the individual
layers.

dielectric polarizability in the vacuum. Put another way, di-
electric screening in the surface layer(s) is less effective
compared to deeper layers.

The asymptotic divergencies of the screened image inter-
action when |z| → L/2 are an artifact of the sharp dielectric
interfaces or, equivalently, of the step discontinuities in the
dielectric properties. We point out that these divergencies are
unproblematic for the computation of the image self-energy
in the TB+δ� method [Eq. (22)], since their locations do not
coincide with atomic positions by construction.

As is evident from Fig. 3, the screened image interaction
monotonically decreases with increasing thickness (number of

TABLE II. Thickness-dependence of the screened image inter-
action in MoS2 surrounded by vacuum. W bulk

im , value at the center of
the middle layer; W surf

im , value at the center of the surface layer; �surf
im ,

difference between the values at the surface and the second layer.
The crystal thickness of MoS2 is given in terms of the number of
layers. The model parameters used to compute the screened image
interaction are listed in Table I.

Crystal thickness W bulk
im (meV) W surf

im (meV) �surf
im (meV)

1L 701 701
2L 410 410
4L 181 289 108
6L 119 251 114
8L 88 231 115

10L 70 220 116
20L 35 197 116
40L 18 186 116
∞L 0 175a 117a

aComputed from the image potential in a half-space geometry, given
in Ref. [39]

layers) of the crystal. For a more quantitative discussion of the
thickness dependence, we focus on some characteristic values
of the screened image interaction: (i) The energy W bulk

im at the
center of the middle layer, (ii) the energy W surf

im at the center
of the surface layer, and (iii) the difference in the energy �surf

im
between the surface and the second layer; see Fig. 3. Table II
summarizes our computed values for MoS2 in vacuum, with
data covering the range from a monolayer (1L) up to a bulk
crystal with surface (∞L). At small thicknesses the screened
image interaction is quite substantial, with values in the range
of several hundred meV. The values of W bulk

im and W surf
im both

decrease as the number of layers increases. While the value in
the center of the crystal goes to zero, the value in the surface
layer approaches 175 meV. We find that both quantities are
converged to within 20 meV at a thickness of 40 layers. The
most interesting property of the screened image interaction is
the value of �surf

im , since it gives the largest difference in the
screened image interaction between two layers of the crystal.
The value amounts to ∼ 110 meV and is already converged
better than 10 meV at a crystal thickness of four layers.

As discussed above, for a bulk crystal with the surface to
vacuum (∞L), the screened image interaction in the surface
layer does not approach zero but remains positive. For layers
close to the surface, the absence of dielectric polarizability
in the vacuum always leads to a reduced screening compared
to the bulk counterpart, giving rise to the nonzero contribu-
tion of the image charge effect. From the image potential
in a half-space geometry derived by Mele [39], we deduce
the following expressions for the (local part of the) screened
image interaction in the surface layer W surf

im and its difference
between the surface and second layer �surf

im :

W surf,(∞L)
im = 1

γ εeff

εeff − 1

εeff + 1

1

d
, (25a)

�
surf,(∞L)
im = 1

γ εeff

εeff − 1

εeff + 1

2

3d
. (25b)

Note that these expressions correspond to the interface
material-vacuum. Finally, we point out that magnitude and
sign of Eqs. (25a) and (25b) depend on the dielectric contrast
between the material and its environment (here, vacuum).

C. Comparison with ab initio results

To determine the accuracy of our macroscopically derived
expression for the screened image interaction [Eq. (24)], we
compare it to ab initio GW calculations on the direct band gap
of monolayer MoS2 in different dielectric environments. We
begin by establishing a simple relation between the QP band
gap and the screened image interaction. From the discussion
of Sec. II we can write the QP band gap of the monolayer in
the form

Eg(ζ ) = Eg(∞) + [δ�c(ζ ) − δ�v(ζ )]

= Eg(∞) + �E (ζ ), (26)

where Eg(∞) stands for the bulk-screened QP band gap and
�E (ζ ) is the image self-energy correction induced due to
the dielectric environment ζ of the monolayer; δ�c(ζ ) and
δ�v(ζ ) are the image self-energy corrections of the conduc-
tion and valence state forming the band gap. In order to
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FIG. 4. Comparison of the screened image interaction (Model)
and ab initio computed band gaps (LDA+GdW) of the innermost
layer of a MoS2 crystal in vacuum as a function of crystal thickness
(number of layers). Since we neglected interlayer hopping within
LDA+GdW, changes in the band gap are completely due to dielectric
effects. The model gives the screened image interaction evaluated at
the center of the crystal with the bulk-screened monolayer band gap
(dashed line) as an additive offset [see Eq. (27)]. The parameters used
to compute the screened image interaction are summarized in Table I.

simplify the comparison with the ab initio computed band
gaps, we do not calculate δ�c(ζ ) and δ�v(ζ ) from the expec-
tation value of the screened image interaction in the respective
states [cf. Eq. (7)]; instead we simply evaluate the screened
image interaction in the center of the monolayer, meaning at
the height zM of the molybdenum atoms. This is justified by
the observation that the band edge states at the K point of
monolayer MoS2 mainly stem from localized d orbitals of the
molybdenum atoms [3,41,42]. In this approximation, Eq. (26)
simplifies to

Eg(ζ ) ≈ Eg(∞) + Wim(zM; ζ ), (27)

meaning that the ab initio computed band gap Eg(ζ ) can be
directly compared to the screened image interaction [up to the
constant offset Eg(∞)].

We use the LDA+GdW approximation [35] for the ab
initio calculations, since it allows for a simple realization
of arbitrary dielectric environments due to the usage of an
atom-resolved model dielectric function. We point out that
we have already successfully applied the LDA+GdW method
to describe the electronic and optical properties of mono-,
bilayer, and bulk crystals of several TMDCs [43–45].

In Fig. 4, we show the band gap of the innermost
layer of a MoS2 crystal as a function of crystal thickness.
Quantum-mechanical interaction between the layers (inter-
layer hopping) is not taken into account, such that changes
in the band gap are completely due to dielectric polarization
effects. It is shown that the band gap of the innermost layer
decreases with increasing thickness of the crystal: The po-
larizability of the other layers enhances the screening in the
innermost layer, thereby reducing its band gap. Our results

FIG. 5. Comparison of the spatial variation of the screened image
interaction (Model) with ab initio computed band gaps (LDA+GdW)
of the individual layers of a MoS2 crystal in vacuum; quantum-
mechanical interactions between the layers are neglected. Shown are
the results for a crystal of four, six, eight, and ten layers. The curves
of the model (screened image interaction) are the same as in Fig. 3,
shifted by Eg(∞) = 2.228 eV [see Eq. (27)]. The parameters used to
compute the screened image interaction are listed in Table I.

obtained from the screened image interaction [Eq. (24)] are
in good agreement with the ab initio results. The data shown
in Fig. 4 give direct evidence that the image charge effect
is the driving force behind the thickness dependence of self-
energy corrections observed in layered materials such as black
phosphorus [46], and TMDCs [47–49].

We have further calculated the variation of the band gap in
MoS2 crystals of different thickness as a function of the layer
position. Figure 5 shows the position-dependent band gap for
four crystals of different thickness; again, interlayer hopping
is not taken into account. The closer the layers to the surface,
the larger is their band gap. This effect can be explained with
the absence of polarizability in the vacuum, which leads to
weaker screening in layers close to the surface. The band gaps
computed from the screened image interaction agree well with
the ab initio ones for all crystal thickness.

We have shown that our macroscopic expression for the
screened image interaction in layered materials, Eq. (24),
provides a fairly good description of self-energy corrections
caused by dielectric polarization effects; the image charge
effect gives a simple explanation for these self-energy correc-
tions. This justifies the use of Eq. (24) to calculate the matrix
elements of the image self-energy operator δ� in the TB+δ�

method.

IV. IMAGE CHARGE EFFECT IN LAYERED MATERIALS

We now address the question of how the image charge
effect affects the electronic structure of layered materials.
Our main focus is set on the implications for the interlayer
coupling in multilayer materials. By means of the TB+δ�

method, we can trace modifications in the electronic structure
caused by the image charge effect in a direct way. Again,
we use MoS2 as a representative, as this material shows

155407-7



P. MARAUHN AND M. ROHLFING PHYSICAL REVIEW B 107, 155407 (2023)

TABLE III. Structural parameters of 2H-MoS2 taken from
Ref. [40].

Lattice constants Mo–S distance along z axis

a (Å) c (Å) zS (Å)

MoS2 3.160 12.294 1.586

pronounced interlayer interactions; these manifest themselves
in the transition from a direct band gap in the monolayer to an
indirect band gap in the bilayer and thicker crystals [3–5].

After a brief summary of the computational details in
Sec. IV A, we first apply the TB+δ� method to a monolayer
in Sec. IV B. Then, in Sec. IV C, we apply the TB+δ� method
to a multilayer crystal to finally discuss the implications of the
image charge effect on interlayer coupling.

A. Computational details

In order to compute the QP spectra and analyze the in-
terplay between interlayer hopping and the image charge
effect, we employ the TB+δ� method. Starting point of our
calculations is the nonorthogonal Slater-Koster TB model of
Ref. [50]; a generic model that can accurately reproduce the
DFT band structure of MoS2, from a monolayer up to a bulk
crystal. For the spin-orbit coupling, we use the parameters
from Ref. [51] as they yield better agreement with our DFT
band structure. Further, we use the structural parameters of
2H-MoS2 reported in Ref. [40], which are listed in Table III;
they correspond to averages computed from the results of
several experiments. We switch to these structure parameters
for consistency with the parameters for the screened image
interaction (see below).

While quantum-mechanical interactions between the layers
are already included in the Slater-Koster parameters of the TB
model, the image charge effect is explicitly taken into account
through the image self-energy in the TB+δ� method. We use
the parameters of Table I for the calculation of the screened
image interaction.

Finally, we mention that all calculations in the present
paper are carried out with a code implemented by ourselves.

B. Monolayer MoS2

The monolayer provides a natural system to study the na-
ture of the QP corrections caused by the image self-energy in
the absence of quantum-mechanical interlayer interactions.

Figure 6 shows the band structure of monolayer MoS2 in
vacuum calculated with TB and with the TB+δ� method. We
aligned the band structures by setting the top of the valence
band at the K point to 0 eV. As expected, the QP corrections
of the image self-energy operator δ� lead to an increase of the
band gap. The dispersion of the bands calculated with TB+δ�

closely follows that of the TB bands. The main effect of the
image self-energy operator is a scissor shift of the bands. This
is consistent with the results of Refs. [27] and [52]. Finally, we
note that the wave functions of the monolayer within TB+δ�

are almost identical to the TB ones.
Figure 7 gives a different perspective on the effect of the

image self-energy operator. Here, we plot the matrix elements

FIG. 6. Band structure of monolayer MoS2 in vacuum computed
with TB (thin dashed lines) and with TB+δ� (thick solid lines). We
aligned the band structures by setting the valence band edge at the K
point to 0 eV. The main effect of the image self-energy operator δ�

is to open the band gap from 1.8 eV in TB to 2.5 eV in TB+δ�.

or, equivalently, QP corrections 〈δ�〉 of the image self-energy
operator for the same system as before. The corrections are
negative for valence band states and positive for conduction
band states, with approximately the same magnitude. In both
cases the corrections are almost constant, varying by less than
50 meV. This explains why the dispersion is almost preserved
when going from TB to TB+δ� (cf. Fig. 6), and once more

FIG. 7. Quasiparticle (QP) corrections caused by the image
charge effect in a MoS2 monolayer in vacuum. The crosses cor-
respond to the corrections resulting from the image self-energy
operator δ� in the TB+δ� method; they are plotted against the
TB energies. The diamonds correspond to the image-charge induced
QP corrections resulting from the LDA+GdW method (see text);
they are plotted against the LDA energies. The QP corrections were
calculated at the high-symmetry points �, M, and K, of the first
Brillouin zone.
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FIG. 8. Band structure of 10-layer MoS2 in vacuum calculated
with TB (left) and with the TB+δ� method (right). Within both
methods, the smallest band gap is formed between the valence band
maximum at � and the conduction band minimum at � (halfway
along �K). The QP corrections of the image self-energy operator δ�

in TB+δ� result in an increase of the band gap by 0.07 eV compared
to TB.

shows that the main effect of δ� is a scissor shift. The (small)
scattering in the QP corrections reflects the different spatial lo-
calization of the respective states. To further validate the effect
of the image self-energy operator, we also show in Fig. 7 QP
corrections computed with the ab initio LDA+GdW method.
These corrections are evaluated for a monolayer in vacuum
relative to a bulk-screened monolayer, for which one would
obtain δ� = 0. The good agreement between the corrections
obtained from the two approaches justifies our approximations
used in the evaluation of the image self-energy operator within
the TB+δ� method.

C. Multilayer MoS2

In the following we consider 10-layer MoS2 in vacuum, but
similar results are obtained for other crystal sizes; the decisive
factor is a layer number greater than two, so that the layers
differ in terms of dielectric screening or, equivalently, in terms
of the screened image interaction.

In Fig. 8, we compare the band structure of 10-layer MoS2

calculated with TB and using the TB+δ� method. The bands
are shown along the high-symmetry line between � and K.
Both calculations, TB and TB+δ�, reveal an indirect band
gap with the valence band maximum at � and the conduction
band minimum at �; which is approximately halfway between
� and K. However, the magnitude of the band gap increases
from 1.48 eV in TB to 1.55 eV in TB+δ�. This increase in
the band gap completely results from the image charge effect,
not captured by the standard TB method. Note that we aligned
both calculations by setting the valence band maximum at the
K point to 0 eV.

In addition to the band gap renormalization, we observe
changes in the band structure calculated using TB+δ� that
cannot be explained by a rigid shift uniform for all valence and

FIG. 9. Band structure of freestanding 10-layer MoS2 in the re-
gion of the K point, computed with (a) TB and with (b) TB+δ�.
Shown are the subbands of the two uppermost valence bands and
the two lowermost conduction bands. All subbands are twofold
degenerate, dictated by the symmetry of the system. The image
charge effect—included in the TB+δ� method—leads to an ener-
getic decoupling of some subbands, labeled by small arrows. The
wave functions of these energetically decoupled subbands (c) are
strongly localized in one of the surface layers. The gray bars show the
distribution of the spin-up polarized state and the black bars show the
distribution of the spin-down polarized state of a pair of degenerate
subbands; evaluated at the K point.

conduction bands. These changes are particularly pronounced
around the K point and affect the topology of the subbands,
which can be considered the fingerprint of interlayer coupling
in layered materials. Figure 9 shows the subbands of 10-layer
MoS2 in the region of the direct band gap at the K point. We
first review the picture that emerges from the TB calculations
before turning to the changes in TB+δ�.

The valence bands shown in Fig. 9(a) cluster into two
groups of ten subbands each. Note that only five subbands per
group are visible because all subbands are twofold degenerate

155407-9



P. MARAUHN AND M. ROHLFING PHYSICAL REVIEW B 107, 155407 (2023)

due to the spatial inversion symmetry of the system. The
groups originate from the two uppermost spin-split valence
bands of the individual layers. The small energy splittings
within each group of subbands come from interlayer inter-
actions, while the much larger splitting between the groups
results from a combination of interlayer interactions and
(strong) spin-orbit coupling. The subbands from the two low-
ermost conduction bands basically show the same picture as
the valence bands. However, much weaker spin-orbit coupling
and negligible interlayer interactions lead to more closely
spaced subbands, specifically at the K point.

Remarkably, significant changes emerge in the pattern of
the subbands in going from TB to TB+δ� [cf. Figs. 9(a) and
9(b)]. In each group, one pair of degenerate subbands splits off
and shifts to a distinctly different energy, away from the band
gap. That is, these subbands decouple energetically from the
other bands. In the valence bands, they shift to lower energies,
while in the conduction bands they shift to higher energies.

In order to shed light on the energetic decoupling observed
in TB+δ�, we analyze the wave functions of the respective
subbands. Figure 9(c) shows the layer-resolved electron/hole
distribution of the relevant subbands at the K point. The wave
functions of all energetically decoupled subbands are strongly
localized in the surface layer of the crystal. In contrast, the
hole distributions obtained in TB resemble that of a quantum
well, superimposed with a layer-by-layer oscillation due to
the alternating spin-polarization of the bands (not shown).
That is, the image charge effect leads to the formation of a
surface-layer band gap at the K point. The surface-layer band
gap amounts to 2.02 eV and is between 0.12 eV and 0.21 eV
greater than the “bulk” band gap of the 10-layer crystal
[see Fig. 9(b)].

As a final point, we emphasize that full diagonalization of
the TB+δ� Hamiltonian is mandatory to obtain physically
meaningful results. Without diagonalization, the bands show
unphysical dispersion at several points in the Brillouin zone.

The foregoing discussion demonstrates that the image
charge effect can modify the interlayer coupling in MoS2.
The observed decoupling of the surface layer at the K point
does not occur universally in the band structure, but rather
shows a complicated wave vector and band dependence (cf.
Fig. 8). For example, looking at the lowest conduction bands,
the topology of the subbands changes drastically at the K
point, while there are no significant changes near �. In the
balance of this section, we examine how the image charge ef-
fect changes the interlayer coupling, and take up in more detail
the variations of the surface layer (de-)coupling in MoS2.

Interlayer coupling generally depends on two factors: The
hopping matrix element between the layers, and the energy
offset of their bands prior to coupling. To explore how the
image charge effect modifies the interlayer coupling in MoS2,
we analyze the nature of the self-energy corrections within the
TB+δ� method. For this purpose, we express the image self-
energy δ� of the multilayer crystal in the basis of the valence
and conduction states of the individual layers before coupling.
We shall refer to these states as intralayer basis states.

Using the aforementioned representation, we find that the
image self-energy resembles a layer-resolved scissors oper-
ator for the intralayer basis states. The position-dependent
magnitude of the scissors shift originates from the spatial

FIG. 10. Hopping matrix elements (interlayer hopping) between
the surface layer and the second layer of 10-layer MoS2. The inter-
layer hopping is shown for (a) the highest valence band and (b) the
lowest conduction band, calculated with TB+δ�. Almost the same
results are obtained with standard TB. The black hexagon outlines
the area of the first Brillouin zone. We point out that top and bottom
surface of the crystal yield the same results due to spatial inversion
symmetry.

structure of the screened image interaction (cf. Sec. III B); the
greatest shift occurs in the surface layer. Moreover, the repre-
sentation of the image self-energy δ� in terms of intralayer
basis states reveals that the hopping matrix elements between
the layers remain almost unchanged. Consequently, the image
charge effect modifies the interlayer coupling by altering the
energy offset between the bands of the individual layers of the
multilayer crystal prior to coupling.

To better understand the interlayer coupling in MoS2 and
to clarify the variations observed in the image-charge induced
decoupling of the surface layer, we examine the interaction
of the surface layer with the second layer by computing the
hopping matrix elements between their intralayer basis states.
Such matrix elements are also called interlayer hopping ele-
ments. Due to the spatial inversion symmetry of the system,
the top and bottom surface of the crystal show the same
results. Figures 10(a) and 10(b) show the interlayer hopping—
calculated with the TB+δ� method—for the highest valence
band and the lowest conduction band in the entire Brillouin
zone. In addition, Table IV gives a summary of the values
at selected points of the Brillouin zone. We observe a strong

TABLE IV. Hopping matrix elements between the surface layer
and the second layer of 10-layer MoS2. The matrix elements were
calculated with the TB+δ� method, but almost the same re-
sults are obtained with standard TB. Results are listed for the highest
valence band and the lowest conduction band at three selected points
of the Brillouin zone. All energies are given in meV.

Highest valence band Lowest conduction band

� 290 40
� 5 165
K 60 0

155407-10



IMAGE CHARGE EFFECT IN LAYERED MATERIALS: … PHYSICAL REVIEW B 107, 155407 (2023)

variation of the interlayer hopping as a function of the wave
vector and the band index, arising from the different orbital
compositions of the relevant states. From a qualitative point of
view, this explains the variations in the image charge-induced
decoupling of the surface layer. We find that decoupling
caused by the image charge effect only occurs in regions of
weak interlayer hopping. For example, Table IV shows that
interlayer hopping for the band edge states at the K point is
small; for the lowest conduction band, interlayer hopping is
forbidden by symmetry arguments [53]. This facilitates the
decoupling of the surface layer through the image charge
effect (i.e., through δ�) at that point.

V. SUMMARY

In this paper, we have presented an efficient method
to study the implications of dielectric screening effects of
the environment (image charge effect) on the interlayer
coupling in layered materials. The TB+δ� method com-
bines semi-empirical TB with a self-energy that accounts for
interface-induced changes in the screened Coulomb interac-
tion. We have demonstrated that these changes in the screened
Coulomb interaction can be described by a simple dielectric
continuum model. Using classical macroscopic electrostatics,
we have derived a general expression for the screened image
interaction in layered materials with uniaxially anisotropic
dielectric properties.

We have presented results on the electronic structure of
monolayer and multilayer MoS2 surrounded by vacuum,
calculated with the TB+δ� method. In the case of the mono-
layer, the image charge effect caused a “scissors shift” of
the valence and conduction bands, increasing the band gap
by about 0.7 eV. In contrast, the self-energy corrections in
the multilayer cannot be reduced to a scissors shift. We have
found that, at the K point, the surface layer energetically
decouples from the other layers. The image charge effect
results in a formation of a surface-layer band gap that is about
0.2 eV larger than the smallest (“bulk”) band gap at that point.
An analysis of the image self-energy revealed that the image
charge effect modifies the interlayer coupling by changing the
band offset between the layers. We further demonstrated that
the interlayer hopping in MoS2 strongly varies as a function of
the wave vector and the band index, explaining the variations
of the image-charge induced decoupling of the surface layer.

The energetic decoupling of the surface layer of MoS2

at the K point of the Brillouin zone should be relevant in
interpreting the results of surface-sensitive experiments such
as two-photon photoemission spectroscopy [54]. More gen-
erally, our results suggest the possibility of “layer-selective”
excitations in multilayer crystals.

In summary, we find that the TB+δ� method provides an
efficient way to study the image charge effect in mono- and
multilayer materials. As a central result, we have found that
the image charge effect can modify the interlayer coupling in
layered materials.
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FIG. 11. A point charge inside a layer with uniaxially anisotropic
dielectric properties (region II), sandwiched between two materials
with different dielectric constants (regions I and III).

APPENDIX: SCREENED COULOMB INTERACTION
INSIDE A LAYER WITH UNIAXIALLY ANISOTROPIC

DIELECTRIC PROPERTIES

In this Appendix, we derive an expression for the screened
Coulomb interaction of a point charge—a simplified picture
of a QP excitation—inside a layer with uniaxially anisotropic
dielectric properties. This also includes the expression for
the screened image interaction given in Eq. (24); note that
this equation (only) gives the local part. As a reminder,
the screened image interaction describes the modification
of the Coulomb interaction due to the dielectric environ-
ment of the layer. We derive the expressions within classical
macroscopic electrostatics. Different from Sec. III A, here we
consider the more general case of two different, arbitrary
dielectrics surrounding the uniaxially anisotropic layer. Our
derivation closely follows the work of Mele [39], who consid-
ered the case of a uniaxially anisotropic dielectric medium in
a half-space geometry.

We consider the situation depicted in Fig. 11, where a point
charge Q′ is located at the position r′ = (ρ ′ = 0, z′) inside
a layer of thickness L (region II). The dielectric properties
of the layer are uniaxially anisotropic, with the dielectric
constant for the in-plane and out-of-plane direction denoted
by ε‖ and ε⊥, respectively. The layer is sandwiched between
two materials, each described by a different dielectric constant
ε1 (region I) and ε3 (region III).

We begin with region II. The electrostatic potential inside
the uniaxially anisotropic dielectric layer satisfies the Poisson
equation (in Hartree atomic units)

∇2φ2(r) = −4π Q′ δ(r − r′) − 4π nind(r), (A1)

where nind is the induced charge density within the layer. It is
related to the potential φ2 by

nind(r) = −∇ · P

= ∇χ · ∇φ2(r). (A2)

Here, P is the polarization and χ is the susceptibility tensor
of the layer. As the layer has uniaxially anisotropic dielectric
properties, the susceptibility tensor can be expressed as

χ =
⎛
⎝χ‖ 0 0

0 χ‖ 0
0 0 χ⊥

⎞
⎠. (A3)
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By substituting Eqs. (A2) and (A3) into Eq. (A1), Poisson’s
equation for the potential inside the layer takes the form

ε‖
1

ρ

∂

∂ρ

(
ρ

∂φ2

∂ρ

)
+ ε⊥

∂2φ2

∂z2
= − 2

ρ
Q′ δ(ρ) δ(z − z′). (A4)

Note that Eq. (A4) is given in cylindrical coordinates. The
macroscopic dielectric constants ε‖ and ε⊥, which we have
introduced in Eq. (A4), are connected to the diagonal elements
of the susceptibility tensor by the following relations:

ε‖ = 1 + 4πχ‖, (A5a)

ε⊥ = 1 + 4πχ⊥. (A5b)

In the regions above and below the layer, i.e., regions I and
III, the Poisson equation for the electrostatic potential reduces
to the Laplace equation (in cylindrical coordinates)

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ ∂2

∂z2

)
φ1/3(ρ, z) = 0. (A6)

In order to solve Eqs. (A4) and (A6), we make use of the
Hankel transform method. By applying the zero-order Hankel
transform to the Poisson equation for the potential inside the
layer [Eq. (A4)], we obtain(

ε⊥
∂2

∂z2
− ε‖ q2

)
φ̃2(q, z) = −2Q′ δ(z − z′). (A7)

The solution to this equation can be expressed as

φ̃2(q, z) =
φ̃im︷ ︸︸ ︷

F+(q) eqγ (z+L/2) + F−(q) e−qγ (z−L/2)

+ Q′

εeff

1

q
e−qγ |z−z′ |

︸ ︷︷ ︸
φ̃bulk

, (A8)

where εeff = √
ε‖ε⊥ is the effective macroscopic dielectric

constant of the uniaxially anisotropic layer, and γ = √
ε‖/ε⊥

is an anisotropy parameter [39]. The first two terms on the
right-hand side of Eq. (A8) correspond to the solution of
the homogeneous portion of Poisson’s equation; they con-
stitute the image potential. The functions F+(q) and F−(q)
will be determined by the present boundary conditions. The
last term in Eq. (A8) is a particular solution of Poisson’s
equation and corresponds to the potential in case of an infinite
bulk crystal. Turning to region I and III, the zero-order Hankel
transform of the Laplace equation for the potential [Eq. (A6)]
reads (

∂2

∂z2
− q2

)
φ̃1/3(q, z) = 0. (A9)

The solution to this equation can be written in the form

φ̃1/3(q, z) = F1/3(q) e±q(z±L/2), (A10)

where F1(q) and F3(q) will be determined by the boundary
conditions; as above. The plus/minus sign in Eq. (A10) applies
to the electrostatic potential in region I/III.

The present boundary conditions at the interfaces between
the layer and its surrounding materials are

E (1)
‖ (ρ, z = −L/2) = E (2)

‖ (ρ, z = −L/2), (A11a)

E (3)
‖ (ρ, z = +L/2) = E (2)

‖ (ρ, z = +L/2), (A11b)

D(1)
⊥ (ρ, z = −L/2) = D(2)

⊥ (ρ, z = −L/2), (A11c)

D(3)
⊥ (ρ, z = +L/2) = D(2)

⊥ (ρ, z = +L/2). (A11d)

In the mixed-space representation—applying the zero-order
Hankel transform—the boundary conditions can be written in
the form

φ̃1(q, z = −L/2) = φ̃2(q, z = −L/2), (A12a)

φ̃3(q, z = +L/2) = φ̃2(q, z = +L/2), (A12b)

ε1
∂φ̃1

∂z

∣∣∣∣
z=−L/2

= ε⊥
∂φ̃2

∂z

∣∣∣∣
z=−L/2

, (A12c)

ε3
∂φ̃3

∂z

∣∣∣∣
z=+L/2

= ε⊥
∂φ̃2

∂z

∣∣∣∣
z=+L/2

. (A12d)

From these boundary conditions, we obtain

F+(q) = Q′

εeff

1

q

βe−2qγ L

1 − αβe−2qγ L
[eqγ (z′+L/2) + α e−qγ (z′+L/2)],

(A13a)

F−(q) = Q′

εeff

1

q

αe−2qγ L

1 − αβe−2qγ L
[e−qγ (z′−L/2) + β eqγ (z′−L/2)],

(A13b)

F1(q) = Q′

εeff

1

q

(1 + α) e−qγ L

1 − αβe−2qγ L
[e−qγ (z′−L/2) + β eqγ (z′−L/2)],

(A13c)

F3(q) = Q′

εeff

1

q

(1 + β ) e−qγ L

1 − αβe−2qγ L
[eqγ (z′+L/2) + α e−qγ (z′+L/2)].

(A13d)

The quantities α and β are defined by

α = εeff − ε1

εeff + ε1
, and β = εeff − ε3

εeff + ε3
. (A14)

Substituting Eqs. (A13a)–(A13d) into Eqs. (A8) and (A10)
gives the mixed-space representation of the potential inside
and outside the uniaxially anisotropic layer.

To obtain the real-space expressions of the potentials,
we calculate the inverse Hankel transform of Eqs. (A8) and
(A10). For the interior potential, we find

φ2(ρ, z) = φbulk(ρ, z) + φim(ρ, z), (A15)

where φbulk is given by

φbulk(ρ, z) = Q′

εeff

1√
ρ2 + γ 2(z − z′)2

(A16)
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and the image potential—solution to the homogeneous part of the Poisson equation [Eq. (A4)]—is given by

φim(ρ, z) = Q′

εeff

∞∑
n=1

[
(αβ )n√

ρ2 + γ 2(2nL + z − z′)2
+ (αβ )n√

ρ2 + γ 2(2nL − z + z′)2

]

+ Q′

εeff

∞∑
n=0

[
αnβn+1√

ρ2 + γ 2((2n + 1)L + z + z′)2
+ αn+1βn√

ρ2 + γ 2((2n + 1)L − z − z′)2

]
. (A17)

For the sake of completeness, we also give the expressions for the exterior potentials,

φ1(ρ, z) = Q′

εeff
(1 + α)

∞∑
n=0

[
(αβ )n√

ρ2 + (γ [{2n + 1}L − z′ + L/2] − z − L/2)2

+ αnβn+1√
ρ2 + (γ [{2n + 1}L + z′ − L/2] − z − L/2)2

]
, (A18)

φ3(ρ, z) = Q′

εeff
(1 + β )

∞∑
n=0

[
(αβ )n√

ρ2 + (γ [{2n + 1}L − z′ − L/2] + z − L/2)2

+ αn+1βn√
ρ2 + (γ [{2n + 1}L + z′ + L/2] + z − L/2)2

]
. (A19)

From these expressions, the individual contributions to the Coulomb interaction can be readily computed. For instance, the
screened image interaction between a charge Q′ at r′ and a charge Q at r, both located inside the layer, is given by Wim(r, r′) =
Qφim(r).

Finally, to obtain the expression of Eq. (24) for the screened image interaction, we consider the special case of vacuum in
region I and III. In this case, α and β take the same value

ξ ≡ α = β = εeff − 1

εeff + 1
. (A20)

Substituting this into Eq. (A17) and evaluating the screened image interaction at r = r′—since we are only interested in the local
part—we arrive at the expression given in Eq. (24).
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