
PHYSICAL REVIEW B 107, 155406 (2023)

Optimizing tip-surface interactions in ESR-STM experiments
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Electron-spin resonance carried out with scanning tunneling microscopes (ESR-STM) is a recently developed
experimental technique that is attracting enormous interest on account of its potential to carry out single-spin
on-surface resonance with subatomic resolution. Here we carry out a theoretical study of the role of tip-adatom
interactions and provide guidelines for choosing the experimental parameters in order to optimize spin resonance
measurements. We consider the case of the Fe adatom on a MgO surface and its interaction with the spin-
polarized STM tip. We address three problems: first, how to optimize the tip-sample distance to cancel the
effective magnetic field created by the tip on the surface spin, in order to carry out proper magnetic field sensing.
Second, how to reduce the voltage dependence of the surface-spin resonance frequency, in order to minimize
tip-induced decoherence due to voltage noise. Third, we propose an experimental protocol to infer the detuning
angle between the applied field and the tip magnetization, which plays a crucial role in the modeling of the
experimental results.
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I. INTRODUCTION

Properly designed experiments seek to minimize the in-
fluence of the probing apparatus on the system of interest.
This becomes increasingly difficult at the nanoscale, where
macroscopic instruments interact with nanometric systems,
and particularly challenging when it comes to probe quantum
systems. In this work, we address this issue in the context
of electron spin resonance (ESR) driven with a scanning tun-
neling microscope (STM). After several decades of attempts
[1,2], reproducible ESR-STM of individual adatoms on a sur-
face of MgO(100)/Ag was reported in 2015 [3]. This has
paved the way for many other outstanding advances in the
study of spin physics of individual magnetic atoms [4–13].
Spin resonance of isolated magnetic atoms promises novel
applications ranging from quantum information technology to
atomic-scale magnetometry.

ESR-STM has now been implemented in several different
labs, extending the temperature range, both down to the mili-
Kelvin regime [14,15], as well as towards higher temperatures
[16,17]. Recently experiments with higher driving frequencies
were performed [18]. ESR-STM has been demonstrated now
in individual atoms (Fe, Cu), hydrogenated Ti [6,10,15,19],
both alone and in artificially created structures such as dimers
[6,9,19,20], trimers, and tetramers [21], and on alkali atoms on
MgO [22], as well as molecules [23,24]. The state-of-the-art
spectral resolution of this ESR-STM, down to a few MHz,
makes it possible to resolve the hyperfine structure of Fe, Ti,
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and Cu atoms [8,10,25]. ESR-STM setup can also be used to
manipulate surface spins coherently [26], with pulses, as well
as to drive nuclear spin states [10].

Different mechanisms can account for the driving of the
surface spin by the tip bias voltage [2,27–33]. For instance,
in Ref. [29], two of us proposed a mechanism based on the
modulation of the exchange interaction between the magnetic
tip and the magnetic adatom, that originates from the piezo-
electric distortion of the adatom. In Ref. [32], we proposed
another complementary mechanism, that can coexist with the
others, based on the electric modulation of the g tensor asso-
ciated with the piezoelectric distortion of the adatom.

Spin interactions between the tip and on-surface species
are definitely needed for the detection of ESR-STM, as the
resonance readout is magnetoresistive, but they also bring
unwanted features, such as uncontrolled variations of the lo-
cal magnetic field of the surface spins that make absolute
magnetometry measurements difficult and may also induce
dephasing on the surface spin as mechanical and electrical
noise leads to spin noise. Expectedly, the magnetic interaction
between the tip and the surface spins strongly depends on
their separation, the nature of the ad-atom, the tip design,
and the angle formed by the tip magnetization vector and the
applied field, which is nonzero on account of the tip magnetic
anisotropy [12,29,34]. Importantly, the tip-atom distance is
expected to depend on the DC voltage drop at the STM-
surface junction, on account of the piezoelectric displacement
of the surface spins [29,35]. Therefore we see the tip exerts an
influence on the surface spins.

The main goal of the present work is to provide a theoreti-
cal basis that permits to control and quantify this influence,
thereby improving the sensing capabilities of ESR-STM.
Specifically, we consider the case of a single Fe atom on MgO
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and address three problems: First, we analyze the optimal
tip-adatom distance that minimizes the tip-induced effective
magnetic field on the surface spin. This point is known as the
No-tip influence (NOTIN) point zn and it was described by
Seifert and co-workers in Ref. [34] as the sweet spot where
the tip does not influence the measured resonance frequency.
Second, we study how to reduce the voltage dependence of the
surface-spin resonance frequency and we show how this re-
duces tip-induced decoherence due to voltage noise. Third, we
propose an experimental protocol to infer the detuning angle
η between the applied field and the tip magnetization, which
plays a crucial role in modeling the experimental results.

The rest of this paper is organized as follows. In Sec. II,
we present our models to address the problem of ESR-STM
experiments in Fe at MgO. Section III is devoted to the study
of the resonance frequency and the effect of the tip in ESR-
STM experiments. We analyze, in detail, the possibility of
optimizing the tip-sample interaction to perform ESR-STM
experiments. In Sec. IV, we propose a simple method to
determine the main magnetic properties of the STM tip. Fi-
nally in Sec. V, we describe the most important findings and
summarize the conclusions of the work.

II. MODEL HAMILTONIAN

A. Spin Hamiltonian

The spin physics of individual adatoms can be described
at two different levels [36]. First, a multiorbital electronic
model for the outermost d electrons, which includes Coulomb
interactions, crystal field, and spin-orbit coupling, which we
describe in Appendix A. The ground state manifold, obtained
by numerical diagonalization, can be also described with an
effective spin model. For the case of Fe on MgO, the effective
spin model, at zero field and ignoring coupling to the tip, is
given by [3,32,37,38]

Ĥeff = −D2Ŝ2
z + D4Ŝ4

z − F (Ŝ4
+ + Ŝ4

−), (1)

where the spin operators act on the S = 2 subspace. The
anisotropy terms D2, D4, and F can be obtained from the
diagonalization of the multiorbital electronic model (MoEM)
as shown in Appendix B. Now, the spectrum of the ground
state manifold has an ESR active space formed by a doublet of
states with Sz = ±2. Yet, this doublet has a zero-field splitting
(ZFS), given by �ZFS = 48F = 0.2 µeV, due to quantum spin
tunneling [39–41]. We treat tip spin as a classical unit vector
�nT . As a result, the interaction of the adatom with the tip can
be treated as an effective field:

H1 = μB

∑
β=x,y,z

gβBβ

effS
β. (2)

If the magnetic field is along the z direction, we find that
the gap between the ground state and the first excited state is

� ≈ 2
√

(24F )2 + (
2μBgzBz

eff

)2
. (3)

This equation is still true if we add the component of the
magnetic field along the x direction, as long as the Zeeman
energy associated to Bx

eff is smaller than D2 + D4, as we show
in Appendix B. In the present case, the effective field �Beff is
the sum of three contributions, external magnetic field, dipolar

field of the tip, and exchange field of the tip:

Bβ

eff = Bβ + Jex(z)

gβμB
nβ

T + Bβ

dip ≡ Bβ + Bβ

tip, (4)

where Bβ is the β = x, y, z component of the external mag-
netic field,

Jex(z) = 〈Stip〉J0 e−z/l0 (5)

is the distance-dependent tip-adatom exchange, Stip is the
spin of the tip and nβ

T are the components of the unit vector
that describes the orientation of the tip spin. The exchange
coupling can be written as in most of the experimental works
[12] as Jex(z) = 〈Stip〉J∗

0 e−(z−zpc )/l0 by doing J0 = J∗
0 ezpc/l0 and

zpc is the tip height above point contact and can be measured
for the Fe atom [12] (zpc � 0.4 nm). Because of its magnetic
anisotropy, the tip magnetization can be misaligned from the
external field by an angle η:

n̂T = (cos(θ + η), 0, sin(θ + η)). (6)

Given the C4 symmetry of the Fe adatom on top of an
oxygen atom on the 001 MgO surface, we can assume the
external field lies in the xz plane:

�B = B(cos θ, 0, sin θ ). (7)

The dipolar interaction between the magnetic moment of
the tip and the surface spin comes from the magnetic field
created by the tip [12],

�Bdip = μ0Mtip

4π |z|3 (n̂T − 3(n̂T · ẑ) · ẑ), (8)

where Mtip = μBgtipNt 〈Stip〉, gtip is the g-factor of the atoms
in the tip, Nt is the number of Fe atoms in the tip and �z
and ẑ are the vector and the unit vector from tip to surface
atom, respectively. When the Fe atom and the tip are just
above the O atom we have �Bdip = μ0 Mtipn̂dip/(4π |z|3), where
n̂dip = (cos(θ + η), 0,−2 sin(θ + η)). In the literature [12],
the values of Mtip � 10μB − 40μB seems to be reasonable.

Altogether, we obtain the following expression for the z
component of the effective field that acts on the Fe adatom:

B(z)
eff =

(
Jex(z)

gzμB
− 2

μ0 Mtip

4π |z|3
)

sin(θ + η) + B sin θ (9)

In the rest of the work, and so that our results show agreement
with some of the last experiments, we will use Mtip = 30μB,
l0 = 0.04 nm, J∗

0 = 1 meV (J0 = 20 eV), and 〈Stip〉 = 2.

B. Effect of the tip-electric field on the surface spin

In actual ESR-STM experiments, there is a DC bias, with
amplitude VDC, superimposed to the AC bias VRF sin (ωt ).
Applying an electric field induces a strain δz of the bond
between the Fe adatom and the oxygen atom underneath [29].
This leads to a modulation of the crystal field [29,32] and the
magnetic field induced by the tip [29] (see Appendix C). The
electric field across the gap between the STM and the Fe atom,
E = VDC/dtip, where dtip is the tip-atom distance when there
is no electric field and z = dtip − δz, induces a force on the
adatom, F � qVDC/dtip on account of its charge q. This force
is compensated by a restoring elastic force F = −kδz. Then,
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we can evaluate how much the Fe atom is displaced from its
equilibrium position [29]:

δz � qVDC

kdtip
. (10)

With this sign convention, increasing VDC leads to a stretch-
ing of the Fe-O bond and a reduction of the tip-Fe distance. In
the present case, we have q = 2 and, from DFT calculations
for Fe on MgO [29,32], we obtain k = 600 eV nm−2. We
find a modulation of the crystal field parameters in the mul-
tiorbital fermionic model (see Appendix A and Appendix C)
whose low energy states are described by Eq. (1). Using DFT
calculations, we have computed this dependence for Fe on
MgO [29,32]. Numerical diagonalization of the multiorbital
model that takes into account the modulation of the crystal
field parameters as we described in Appendix C gives

Di = Dieq + αDi δz,

F = Feq + αF δz,

gβ = gβ
eq + αgβ δz, (11)

where the equilibrium parameters are those corresponding to
a zero electric field when the piezoelectric displacement is
not present. The parameters αX are defined and evaluated in
Appendix C and account for the effect of the piezoelectric
displacement on the atom-surface interaction.

The combination of the piezoelectric distortion of the
atom-tip distance due to the external electric field [Eq. (10)]
and the crystal field parameter modulation [Eq. (11)] lead also
to a modulation of the effective tip-induced field:

∂Bβ

eff

∂z
= ∂Jex(z)

∂z

1

gβμB
nβ

T + ∂Bβ

dip

∂z
− Jexc(z)

(gβ )2μB

∂gβ

∂z
. (12)

Finally, we can express the shift in the adatom resonance
frequency, f = �/h, as follows:

δ f = ∂ f

∂Bβ

eff

∂Bβ

eff

∂z
δz + ∂ f

∂F
∂F
∂z

δz + ∂ f

∂gβ

∂gβ

∂z
δz (13)

with β = z.

III. SWEET SPOTS FOR OPTIMAL TIP-SAMPLE
INTERACTIONS

We now study how to optimize experimental parameters
in the ESR-STM setup, such as the tip-adatom distance dtip

and the DC voltage VDC. Specifically, we devote ourselves to
describing two special points of operation. First, the optimal
dtip for which the effective magnetic field of the tip vanishes.
Second, the regions in the dtip,VDC plane where the variation
of the frequency with respect to VDC is either large, affording
voltage-controlled resonance frequency, or vanishing, which
will mitigate dephasing.

A. No-tip influence distance

To establish to what extent the magnetic field induced by
the tip affects the measurements, we must know how the
resonance frequency, given in Eq. (3) behaves as a function of
tip-sample distance when we experiment with different STM
tips.

FIG. 1. Sketch of a Fe atom in MgO/Ag and an SPSTM tip.

The influence of the tip arises from the z component of
the total magnetic field term [see Eq. (9)]. It is important to
note that F is small and therefore, in most situations, we can
usually assume that � � 4μBgzBeff (z). In Fig. 2, we depict
the ESR frequency as a function of the tip-adatom distance for
different values of the tip anisotropy, η (see Fig. 1). In solid
lines, we show the corresponding calculations obtained by di-
rect diagonalization of our multiorbital electronic model (see
Appendix A) for two different experimental situations. Filled
dots in Fig. 2 show calculations performed using the perturba-
tive expression Eq. (3). Panel (a) corresponds to an external
magnetic field almost in-plane [6–8,10–13] while in panel
(b) an out-of-plane external magnetic field is applied [35].
Expectedly, the resonance frequency goes to a plateaulike
regime for a large atom-tip distance, as both exchange and
dipolar interactions fade away.

Interestingly, we observe in Fig. 2 a point at which all the
curves intersect at a value approximately given by 4μBgzBz,
independent of the dipolar and exchange field of the tip. This
happens when the off-plane component of the tip field van-
ishes, B(z)

tip = 0 [see Eqs. (4) and (9)]. Using the expressions
for the dipolar and exchange fields we obtain an implicit
equation for the tip-atom distance zn for which these two
contributions cancel each other:

J0e−zn/l0 = gzγt Mtip

z3
n

, (14)

where γt = μBμ0/4π . The NOTIN distance zn depends on the
voltage through the g-factor as shown Eq. (11). For the choice
of J0, l0, Mtip and VDC = 0, we find the NOTIN point at z(0)

n =
0.59 nm. The super index in zn indicates that the calculations
were performed with no external electric field. As shown in
the last equation and in Fig. 2, this value remains independent
of both the orientation and magnitude of the external magnetic
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FIG. 2. Resonance frequency as a function of the tip atom dis-
tance for different values of the tip anisotropy η and VDC = 0 mV.
(a) shows results for θ = 8◦ and Bext = 0.9 T. (b) corresponds to
the results with θ = 90◦ and Bext = 0.1 T. Solid lines show results
obtained by direct diagonalization of the multiorbital model while
dots represent perturbative results obtained using Eq. (3).

field. Equation (14) allows the NOTIN distance to be related
to the parameters that describe the behavior of the tip and the
adatom. The dependence of this particular point on the surface
atom is through g, whereas the influence of the tip comes
through J0, Mtip, and l0. Figure 3 shows the position where
the field of the tip is zero as a function of the parameters that
define the tip. It is clear from Fig. 3 and Eq. (14), as we should
expect, that for exchange-only tips (Mtip = 0) or dipolar-only
tips (J0 = 0), there is no NOTIN distance. It is also clear from
the figure that for a wide range of the parameter J∗

0 (J∗
0 >

0.5 meV) the variations in the parameters do not have a great
influence on the position of the NOTIN. It is important to note,
as shown in Fig. 3(b), that the results obtained using Eq. (14)
are in complete agreement with the results obtained by the
direct diagonalization of the multiorbital model.

FIG. 3. Notin distance as a function of the tip parameters J∗
0 and

Mtip. (a) Contour map of the NOTIN distance (for VDC = 0 mV)
as a function of the exchange coupling between the tip and the
surface atom J∗

0 and the magnetic moment of the tip Mtip. (b) NOTIN
distance z(0)

n as a function of J∗
0 for four different values of Mtip. Filled

dots show calculations with the multiorbital electronic model and
continuous lines show calculations using Eq. (14).

We observe, for the parameters employed in Fig. 2, that
displacements of 10 pm from the NOTIN point produce tip
magnetic fields of 50 mT. Although the NOTIN position
seems to be optimal to carry out most of the measurements,
it is clear that any small tip drift or tip vibration can make
the scenario a little more complex by inducing unwanted
magnetic fields and unexpected frequency alterations. For in-
stance, the NOTIN distance has a small dependence on VDC,
by virtue of the piezoelectric displacement of the surface atom
and the modulation of its g factor, given in Eq. (11). For the
chosen value of tip parameters and up VDC = 200 mV, we
obtain changes around 1 pm or less in the NOTIN tip position.

B. Control of the VDC dependence

We now analyze how the DC electric field of the tip
changes the resonance frequency of the surface spin. This
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FIG. 4. Shift of the resonance frequency versus VDC [Eq. (15)].
(a) Contour map of |δ f | as a function of the tip atom distance and
external voltage for η = 60◦ and B = 0.9 T almost in-plane (θ = 8◦).
In (b), we plot the shift δ f (a horizontal section of the map) as a
function of the external voltage for five different tip-atom distances.

dependence arises from the combination of the piezoelectric
displacement of the surface atom [Eq. (10)] and the distance
dependence of the frequency [Eq. (13)]. Depending on the tar-
get application, this dependence could be either a resource, for
instance, to control f without modifying the applied magnetic
field, or a problem to avoid, as it can bring additional dephas-
ing, as discussed below. In order to quantify these matters, we
define the variation of the resonant frequency f with respect
to its VDC = 0 value,

δ f = f (VDC) − f (VDC = 0). (15)

The contour map of Fig. 4(a) shows |δ f | [Eq. (15)] as a
function of both the external voltage and the tip-atom distance,
for θ = 8◦, η = 60◦, and Bext = 0.9 T. We focus our attention
first on regions where δ f is small. This happens both for
dtip � 0.7nm and dtip � 0.9 nm. In these two regions, we have
df /dVDC = 0 [see Eq. (3)] at VDC = 0.

We now discuss how a small value of df /dVDC mitigates
decoherence. It is known that, for a two-level system, stochas-
tic fluctuations of fluctuating energy difference lead to pure
dephasing. Specifically, let us write the effective field as the
sum of the static contribution and a time-dependent fluctu-
ation part, Bz

eff = Bz
eff,0 + b(t ). For the fluctuation function,

we assume that the time average vanishes, b(t ) = 0 but has
nonvanishing short-memory fluctuations over time, Sb(t ) ≡
b(t )b(t + τ ) that decay rapidly when t 
 τ , and have an
amplitude that scale with b2

0. We define the Fourier trans-
form k(ω) ≡ 1

2

∫ ∞
−∞ b(t )b(t + τ )e−iωt dt . We thus see that the

stochastic field is characterized by the amplitude b0 and a
correlation time τ . We can write down the decoherence rate
as [42]

1

T2
= (2gzμB)2

h̄
k(0) ∝ (2gzμB)2

h̄
b2

0τ. (16)

We note this dephasing mechanism is independent of the
current-induced dephasing that has been observed experimen-
tally [7] and would act even if no current is tunneling through
the surface spin. Now, it is apparent both electrical noise in
VDC, δVDC(t ), and mechanical noise in δz(t ) will contribute to
the amplitude of the fluctuations of the effective field:

b(t ) = ∂Bz
eff

∂z

(
∂z

∂VDC
δVDC(t ) + δz(t )

)
(17)

and thereby to dephasing. Equation (17) describes the stochas-
tic fluctuations of the effective magnetic field acting on
the surface spin, b(t ), related to the tip-adatom distance-
dependent interaction. These are driven by two independent
mechanisms: first, voltage noise, that in turn produces piezo-
electric displacements of the adatom; second, mechanical
noise of the adatom. Given that, according to Eq. (16) T −1

2 ∝
b2

0, and in turn, the amplitude of the fluctuations satisfies
b0 ∝ δ f , the regions in Fig. 4 where δ f is small imply reduced
decoherence due to electric and mechanical noise.

Importantly, since the ESR-STM driving of Fe on MgO
is associated with the in-plane component of the effective
field [29] and the frequency is dominated by the off-plane
component, it is possible to have a vanishing df /dz, and at
the same time a large Rabi coupling.

Let us consider how the regions where df /dVDC is not
small so that the DC bias could be used to achieve elec-
trical control of the resonance frequency. In Fig. 4(b), we
plot the change as a function of applied external voltage for
five particular tip-atom distances. For dc1 � 0.67 nm (violet
line) and dc2 � 0.9 (cyan dashed line) we retrieve the stable
regions discussed above, for which f is independent of VDC.
In contrast, for the other three values of dtip we find a strong
dependence of f on VDC. We draw attention to the immense
value of df /dVDC at the NOTIN point.

IV. DETERMINATION OF TIP ANISOTROPY

So far, we have assumed that η, the misalignment angle
between the tip magnetic moment and the external mag-
netic field, is unknown and can take values in a rather wide
range, going from almost 0 ◦ up to 60◦ [11,35]. The origin of
this misalignment is necessarily related to some type of tip
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FIG. 5. Resonance frequency as a function of the external mag-
netic orientation, θ , for different values of η. The calculation was
performed by exact diagonalization of the few electron model (see
Appendix A). All the calculations were performed for B = 0.1 T and
dtip = 0.7 nm.

magnetic anisotropy that can arise both from anisotropy in the
g factor and single-ion anisotropies [11,29,32,35,43].

We now propose a simple experiment to determine η,
similar to the one carried out by Kim et al. [44] to probe
the magnetic anisotropy of hydrogenated Ti on the surface
of MgO. Essentially, we propose to measure the resonant
frequency for Fe on MgO as a function of the angle θ formed
between the external magnetic field and the surface, away
from the NOTIN point. Our calculations (see Fig. 5) show a
marked dependence of f on θ , expected because the Fe atom
is sensitive mostly to the z component of the effective field.
We note how, for different values of η, our calculations show
a lateral shift of the curves. Specifically, we find a dependence
of the maximum as a function of the tip anisotropy η.

Imposing that the derivative of Eq. (3) with respect to θ

vanishes and using Eq. (9), we obtain the following implicit
equation for η:

tan(θmax) = εext + εtip cos (η)

εtip sin (η)
. (18)

where

εext = gzμB B ,

εtip = εexc − εdip ,

εexc = 2J0 e−z/l0 ,

εdip = 2γt
gz Mtip

|z|3 . (19)

Here, gz is defined in Eq. (11) and z = dtip − δz. Thus exper-
imental determination of θmax and the tip effective fields, εtip

and εexc, permit to read out the value of η. Importantly, in the
limit of a very small magnetic field, we have a simple linear
relation between η and θmax, independent of εtip and εexc,

η = π

2
− θmax. (20)

FIG. 6. Detuning angle η as a function of θmax (dtip = 0.7 nm)
obtained with two methods: solid lines show the results obtained
from the exact diagonalization of the few electron model while dots
show results obtained from the transcendental Eq. (18).

In Fig. 6, we plot the anisotropy angle η as a function of
θmax for different values of the external magnetic field. Solid
lines and filled circles show an excellent agreement of the
results obtained by numerical diagonalization of our multi-
orbital model and the ones obtained from solving Eq. (18).
It is clear from this figure that in the small magnetic field
limit (Bext → 0) all the curves converge to the expression in
Eq. (20). This suggests that carrying out the experiments with
small magnetic fields (it is even possible to carry them out at
a vanishing field [13]) would make it possible to estimate the
misalignment angle η without having to infer the values of εdip

and εexc. We also note that, in this limit, the relation between
η and θmax is independent of VDC, which should simplify the
experiment.

V. SUMMARY AND CONCLUSIONS

In this work, we have studied the interactions between an
STM tip and a single Fe atom on a MgO surface, relevant
for single spin ESR-STM experiments [3,7]. The tip influ-
ences the surface spin via three different mechanisms: dipolar
coupling, exchange interactions, and the electric coupling that
induces piezoelectric displacements of the Fe ion, modulating
both its spin interactions with the tip as well as its g factor and
crystal field parameters. All these interactions produce shifts
of the Fe energy levels and a modification of the resonance
frequency f . Therefore, in order to use the surface spin as
a sensor for magnetometry, it is important to assess the tip
contributions.

The main implications of our results for future experimen-
tal work are the following.

(1) We have provided a theoretical basis for the existence
of a sweet spot at which the dipolar and exchange spin
couplings cancel each other, the so-called NOTIN point. In
figure 2 we have calculated the NOTIN point for VDC = 0.
We have then discussed the influence of VDC on the resonance
frequency f and the NOTIN point.
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(2) We have calculated a phase diagram for the stability
of f with respect to variations in VDC as a function of both
tip-atom distance dtip and VDC. We stress that two different
regimes may be of practical interest. First, the regions in this
phase diagram where the frequency is very stable with respect
to voltage fluctuations. We have discussed how in this re-
gion decoherence due to both mechanical and electrical noise
would be mitigated. Second, regions in which large variations
of the resonant frequency can be obtained by changing VDC.
Whereas this would increase decoherence it would permit
an electrical control of the resonant frequency that may be
convenient in some situations.

(3) We have proposed an experimental protocol to mea-
sure η, the misalignment angle between the tip magnetization
and the external magnetic field. The protocol is based on
measuring f (θ ), where θ is the orientation of the applied field.
We have shown that the maxima of this curve depend on η

and in the limit of vanishing external field, this relation is
straightforward: these angles, θ and η, are dephased by 90◦
[see Eq. (20)].

We hope that all of these results may help the design
of future ESR-STM experiments, especially in cases where
accurate magnetometry is required [45,46]. In this work, we
have focused on the case of Fe adatoms on MgO. Similar
results should be obtained in the case of other ESR-STM
active adatoms, such as Ti-H on MgO, with quantitative mod-
ification arising from the differences of g factor anisotropies
and magnetic moments between these systems.
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APPENDIX A: MULTIORBITAL ELECTRONIC MODEL

We start with the Hamiltonian for the 6 electrons in the d
levels of Fe:

HFe = HCF + HSO + HZ + Hee + HTip, (A1)

where HCF is the crystal field Hamiltonian, HSO is the spin-
orbit coupling, HZ is the Zeeman Hamiltonian, Hee is the
Coulomb term, and HTip accounts for the interaction of the
atom with the tip. The crystal field part of the Hamiltonian
is obtained from the representation of the DFT Hamilto-
nian in the basis of maximally localized Wannier orbitals
[29,38,47,48]

HCF = 1

2

∑
m,m′,σ

〈m|hCF|m′〉d†
mσ dm′σ , (A2)

where d†
mσ (dmσ ) denotes the creation (annihilation) operator

of an electron with spin σ in the � = 2, �z = m state of the Fe
atom, denoted by φm(�r), assumed to be equal to the product

of a radial hydrogenic function (with effective charge Z and a
effective Bohr radius aμ) and a spherical harmonic. The one-
particle elements are calculated from [29]

hCF = Dl2
z + F

(
l4
x + l4

y

)
, (A3)

where D = −290 meV and F = −10 meV are crystal field
parameters obtained from DFT calculations and wannier-
ization [29,32]. We add the spin-orbit coupling operator
[29,38,48]

HSO = λSO

∑
mm′,σσ ′

〈mσ | �� · �S|m′σ ′〉d†
mσ dm′σ ′, (A4)

where we take λSO = 35 meV [29,38]. Zeeman Hamiltonian
reads

HZ = μB �B ·
∑

mm′,σσ ′
〈m, σ |(�l + g�S)|m′σ ′〉d†

mσ dm′σ ′ , (A5)

where g = 2. The Coulomb term reads

Hee = 1

2

∑
m,m′
n,n′

Vmnm′n′
∑
σσ ′

d†
mσ d†

nσ ′dn′σ ′dm′σ . (A6)

For the evaluation of the Coulomb integrals Vmnm′n′ , we
transform the angular part to a basis of eigenstates of l = 2.
In the basis of eigenstates of l = 2, all the Coulomb integrals
scale linearly with the value of V0000 = U [38,48]. Here we
take, as in previous works, U = 5.0 eV [29,38]. Now, to end
with an adequate description of the situation, we need to de-
scribe the interaction of the atom with the tip. Along this work,
we consider exchange and dipolar interaction Htip = Hex +
Hdip. We can write the exchange interaction as Jex(z)�Stip · �S
[29] where Stip is the total spin of the spin-polarized tip and
Jex is the exchange coupling between the surface spin and
the tip. The exchange coupling depends exponentially on the
tip-adatom distance and it can be written [29]

Jex(z) = J0 e−z/l0 . (A7)

where J0 and l0 depend on the tip and the adatom. We ignore
the quantum fluctuations of the magnetic moment of the apex
atom or atoms, quenched by the combination of an applied
magnetic field and strong Korringa damping with the tip elec-
tron bath [49]. Therefore we treat the tip spin in a mean-field
or classical approximation, following Refs. [29,50], and re-
place Stip by its statistical average 〈Stip〉. Then, the tip-atom
exchange interaction contribution to the Hamiltonian reads

Hex = Jex〈�Stip〉 ·
∑

mm′,σσ ′
〈m, σ |�S|m′σ ′〉d†

mσ dm′σ ′, (A8)

where 〈 �Stip〉 = 〈Stip〉 n̂T and n̂T = (cos(θ + η), 0, sin(θ + η))
(see Fig. 1).

The dipolar interaction between the magnetic moment of
the tip and the surface spin, where the tip creates a magnetic
field whose orientation depends on the tip characteristics,
gives us a dipolar term of the form

Hdip = μB �Bdip ·
∑

mm′,σσ ′
〈m, σ |(�l + g�S)|m′σ ′〉d†

mσ dm′σ ′ , (A9)
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where the effective magnetic field created by the tip is defined
in Eq. (8).

The few-body Hamiltonian Eq. (A1) is solved exactly, by
numerical diagonalization in a space constructed with all the
states that accommodate six electrons in five spin-degenerate
d orbitals.

APPENDIX B: EFFECTIVE SPIN MODEL

The lowest energy manifold of the Hamiltonian defined in
the previous section has five states separated from the rest of
the spectra. These states correspond to a ground state with
S = 2 result of accommodating six electrons in 5 d orbitals
and can be described in terms of a simple effective spin model
[32,38]:

Ĥeff = −D2Ŝ2
z + D4Ŝ4

z − F (Ŝ4
+ + Ŝ4

−) + H1 , (B1)

where the spin operators act on the S = 2 subspace. The
term H1 accounts for the interaction of the adatom with
the tip and the external field [see Eqs. (4) and (2)]. The
anisotropy terms D2, D4, and F can be obtained from the
diagonalization of Hamiltonian Eq. (A1) with no magnetic
field and no tip. We obtain D2 = 4.86 meV, D4 = 0.23 meV,
and F = 4.06 neV. Now, the spectrum of the ground state
manifold has an ESR active space formed by a doublet of
states with Sz = ±2. Yet, this doublet has a zero-field splitting
(ZFS), given by � = 48F = 0.2 µeV, due to quantum spin
tunneling [39–41].

Our model for the Fe atom at MgO taking into account
the interaction of the surface spin with the magnetic moment
of the tip, described by Hamiltonian (A1), can be solved
by numerical diagonalization. We can calculate the reso-
nance frequency f = �/h = (E1 − E0)/h as a function of
the tip-atom distance z = dtip for different values of J0 and
Mtip. Comparing with experimentally determined parameters
and the resonance frequency curves obtained experimentally
[7,8,12,13,18,34,35], in particular paying attention to the re-
sults presented in Refs. [12,34,35], a reasonable set of values
are l0 = 0.04–0.06 nm, J0 = 10–60 eV (J∗

0 = 0.5–3 meV),
and Mtip = 10μB–40μB.

Perturbative expressions

The eigenvalues of the effective spin Hamiltonian assum-
ing B(x)

eff = 0 can be written

E4 = 0,

E3 = −D2 + D4 + gzμBBz
eff ,

E2 = −D2 + D4 − gzμBBz
eff ,

E1 = −4D2 + 16D4 +
√

(24F )2 + (
2gzμBBz

eff

)2
,

E0 = −4D2 + 16D4 −
√

(24F )2 + (
2gzμBBz

eff

)2
, (B2)

and the eigenvectors

|4〉 = |Sz = 0〉 ,

|3〉 = |Sz = 1〉 ,

|2〉 = |Sz = −1〉 ,

|1〉 = C1
1 |Sz = 2〉 + C1

2 |Sz = −2〉 ,

|0〉 = C0
1 |Sz = 2〉 + C0

2 |Sz = −2〉 , (B3)

where {|Sz = i〉} are eigenstates of Sz for S = 2. We introduce
Bx

eff as a perturbation. Using perturbation up to second order
in Bx

eff , we have that

E (2)
i = E (0)

i + (
μBgxBx

eff

)2
4∑

m �=i

| 〈m|Ŝx|i〉 |2
E (0)

i − E (0)
m

. (B4)

Assuming Beff << Di with i = 2 and 4, we obtain

E (2)
i = E (0)

i + 3

2

(
μBgxBx

eff

)2

E (0)
i − E (0)

3

. (B5)

We thus see that, in the subspace of the two lowest energy
states of the Fe adatom, the effect of Bx is negligible, to linear
order in Bx. and finally we can write the gap of the system as
follows:

� ≈ 2
√

(24F )2 + (
2μBgzBz

eff

)2
. (B6)

As the anisotropy terms, we obtain the g tensor from the di-
agonalization of Hamiltonian Eq. (A1). For the values quoted
above and ignoring the effect of the tip, we get gz = 2.8.

APPENDIX C: EFFECT OF THE EXTERNAL ELECTRIC
FIELD ON THE HAMILTONIAN PARAMETERS

Our model assumes a piezoelectric distortion of the
atom-tip distance due to the external electric field. This dis-
tortion modulates crystal field parameters in the Hamiltonian
Eq. (A1):

F = Feq + dF

dz

∣∣∣∣
zeq

δz ,

D = Deq + dD

dz

∣∣∣∣
zeq

δz , (C1)

and tip terms directly by their dependency with δz through z =
dtip − δz, where dtip is the tip-atom distance at the equilibrium.
Here we take, using DFT calculations [29], dF

dz |zeq = 280 meV
nm

and dD
dz |zeq = 0.

For the effective spin Hamiltonian, Eqs. (B1) and (1), we
can calculate the modulation of the parameters by direct diag-
onalization of Eq. (A1) taking into account the modulation of

TABLE I. Parameters of the effective Hamiltonian and their
modulations.

X Xeq αX

D2 4.9 meV 134 µeV/pm
D4 0.2 meV 14 µeV/pm
F 4.1 neV −0.0002 µeV/pm
gx 2.0 −0.36 nm−1

gz 2.8 9.02 nm−1
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the crystal field parameters described above:

D2 = D2eq + αD2 δz,

D4 = D4eq + αD4 δz,

F = Feq + αF δz,

gx = gx
eq + αgx δz,

gz = gz
eq + αgz δz (C2)

with

αX = ∂X

∂F

∂F

∂z

∣∣∣∣
zeq

+ ∂X

∂D

∂D

∂z

∣∣∣∣
zeq

. (C3)

Finally, calculated modulation and equilibrium parameters
for the effective Hamiltonian are depicted in Table I.
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