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Light emission in delta-T -driven mesoscopic conductors
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The scattering picture of electron transport in mesoscopic conductors shows that fluctuations of the current
reveal additional information on the scattering mechanism not available through the conductance alone. The
electronic fluctuations are coupled to the electromagnetic field and a junction at finite bias or temperature
will emit radiation. The nonsymmetrized current-current correlators characterize the emission and absorp-
tion spectrum. Recent interest is focused on the so-called delta-T noise, which is the nonequilibrium noise
caused by a temperature difference between the terminals. Here, we generalize the notion of delta-T noise
to the nonsymmetrized current-current correlator at finite frequencies. We investigate the spectral density for
energy-independent scattering and for a resonant level as an example of energy-dependent scattering. We find
that a temperature difference �T leads to a partial reduction of the noise for certain frequency ranges. This
is a consequence of temperature broadening in combination with a frequency shift of the involved Fermi
distributions. In the case of energy-independent scattering, the lowest order is a quadratic ∝ (�T )2 correction
of the thermallike noise spectrum. For the resonance, an additional contribution to the delta-T noise spectrum
arises that is ∝�T to the lowest order.
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I. INTRODUCTION

The electron transport in mesoscopic conductors is investi-
gated using the statistics of the electron current where the first
moment corresponds to the average current and the second
moment to the noise [1–3]. Unavoidable sources of noise are
thermal noise at a finite temperature—the so-called Nyquist-
Johnson noise [4,5] and nonequilibrium shot noise [6]. The
former is caused by thermal fluctuations in the occupation
number and the latter by the stochastic partitioning of charge
carriers. The noise at a tunnel junction can be used for primary
thermometry [7].

At finite frequencies, the noise involves current opera-
tors taken at different times. In general, these operators do
not commute, so the symmetrized correlator is studied as
an observable [1,8]. A detector that distinguishes between
the transfer of an energy quanta h̄ω from or to the conduc-
tor can access the nonsymmetrized correlator [8,9]. Indeed,
when the fluctuations interact with an electromagnetic field,
the energy transfer rate is connected to the nonsymmetrized
noise spectrum. Negative frequencies account for the radiated
power when one photon is generated in the radiation field and,
vice versa, positive frequencies for the absorbed power when
one photon is annihilated. In a thermally occupied radiation
field, the measured noise power spectrum is a sum of the
nonsymmetrized noise spectra at negative and positive fre-
quencies. The prefactors are determined by the Bose-Einstein
distribution and, consequently, by the temperature of the elec-
tromagnetic field [8,9].

Shaping a possible AC excitation can strongly influence the
noise properties [10] and can be interpreted as electron-hole
pair excitation on the Fermi sea [11]. A noise reduction due
to driving was experimentally observed [12,13], and measure-
ments at finite frequency reveal a squeezed nonequilibrium
state [14].

A fundamental nonequilibrium noise due to a temperature
difference �T was recently demonstrated by Lumbroso and
co-workers [15–17] in atomic and molecular junctions. This
noise, dubbed delta-T noise, is related to the voltage-driven
shot noise and inherits the properties of partition noise [18].
Using the scattering approach, they obtain an approxima-
tion of the noise, which is then decomposed into a thermal
and a delta-T component. The thermal component corre-
sponds to thermal noise at the average temperature, and the
lowest-order delta-T component is similar to the quantum
shot noise except for different numerical prefactors and scales
with (�T )2 instead of the voltage squared. Another study
[17] measured and calculated the noise of a voltage- and
temperature-biased metallic tunnel junction. This setup oper-
ates at a very low temperature and is not restricted to small
relative temperature differences. At the limit, when one ter-
minal is at zero temperature and no voltage is applied, the
noise has the form of thermal noise with an additional factor 2
ln 2 [18].

In a quantum Hall bar furnished with a quantum point
contact, the delta-T noise can serve as an instrument to
discriminate between electron and quasiparticle tunneling
[19,20]. Tunneling of chiral fractional quantum Hall edge
states exhibits a negative delta-T noise, in contrast to a
positive contribution in the noninteracting case. A sign in-
version, from negative back to positive, may also be forced
by changing the transmission of the quantum point contact
or applying a voltage. The negative signal is attributed to
the scaling dimension of the leading charge tunneling op-
erator [21,22]. Their results suggest that the negative sign
is a property due to many-body interactions. In comparison,
a quantum dot in the SU (2) Kondo region has no negative
delta-T noise [23], thus, the effect does not occur in this
case despite the presence of strong correlations. Furthermore,
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FIG. 1. The mesoscopic conductor consists of a hot reservoir
with a temperature Th and a cold reservoir with a temperature Tc,
separated by a potential barrier. In the hot reservoir, more electrons
are excited at higher energies as illustrated by electrons farther away
from the surface. The current-current correlator depends on the scat-
tering amplitudes (simplified depicted by the arrows) of electrons
(depicted by circles with a minus sign) and holes (depicted by circles
with a plus sign) as well as the probability distribution of the terminal
from which they originated. Current-current fluctuations are related
to the energy transfer rate between the mesoscopic conductor and
an electromagnetic field, i.e., to the emission and absorption spec-
trum. The energy difference h̄ω between the electron and the hole
corresponds to the energy of the annihilated or excited photon. We
separate the spectrum into an equilibrium part (thermallike), a super-
position of hot and cold emitters, and a nonequilibrium part, given by
a delta-T noise spectrum. The delta-T noise spectrum is negative at
some frequencies, thus, diminishing the thermallike noise spectrum.
In the shown case, energy-independent scattering is assumed.

delta-T noise was employed to study experimentally the heat
transport of edge modes [24].

An investigation of the relative sizes shows that delta-T
noise never exceeds the thermallike noise under the zero-
average current condition [25]. In Ref. [25], they studied
a resonant level as an example for energy-dependent scat-
tering. In the limit of a small resonance width, the size
of delta-T noise approaches the thermallike noise. Further-
more, they investigated noise of heat transport, which is
not subject to a limit, such as charge noise. More recently,
bounds on the spin and heat current noise were investigated
[26].

In this paper, we address the nonsymmetrized finite-
frequency noise spectrum of a temperature-biased mesoscopic
conductor. We are interested in separating the light emission
and absorption into a thermallike and delta-T spectrum. Fig-
ure 1 gives an illustrative summary of the considered system
and our findings in the case of energy-independent scattering.
The mesoscopic conductor is described within the scatter-
ing approach where one terminal assumes a hot temperature
and the other a cold temperature. We define the thermallike
noise spectrum as the average of the thermal noise spectra at
the hot and the cold temperature. Consequently, the delta-T

noise spectrum is defined similar to the excess noise spectrum
[1,27,28]. Two distinct contributions to the delta-T noise are
obtained, S�T

1 (ω) comes from the correlations of occupied
and free electronic states with different Fermi statistics, and
S�T

2 (ω) from occupied and free states with the same statistics
but associated with a different rate per recombination event
than assumed in the thermallike noise. If the scattering is
energy independent or the same from both sides, the latter
contribution vanishes. Our main result is that the delta-T noise
spectrum can get negative at some frequencies, reducing the
thermallike noise spectrum. Below, we investigate the spectra
for energy-independent scattering and a single resonant level
model. In the resonant case S�T

1 (ω) has a suppressed nega-
tive part for the chosen parameters and additionally shows a
contribution S�T

2 (ω).
The work is structured as follows. In Sec. II, we intro-

duce the scattering approach and summarize the connection
to light emission and absorption. Afterwards, we define the
thermallike noise spectrum and discuss the delta-T noise
spectrum for general scattering matrices. As an application,
we consider energy-independent scattering in Sec. III and
then a resonant level in Sec. IV. Our results are recapped in
Sec. V.

II. SCATTERING APPROACH TO
DELTA-T -DRIVEN CONDUCTORS

We consider a mesoscopic two-terminal conductor mod-
eled in the scattering approach as two macroscopic electron
reservoirs connected by waveguides to a scattering region
[1,29]. Uncorrelated electrons leave the reservoir and trans-
verse through the scattering region where they are elastically
scattered. Interactions between the electrons and the charging
effects are disregarded. We denote the hot terminal as 1 and
the cold one as 2. The Fermi functions fα (E ) = {exp[βα (E −
μα )] + 1}−1 govern the energy distribution of emanating elec-
trons from terminals α ∈ {1, 2}. The parameters β1 = 1/kBTh

and β2 = 1/kBTc are determined by the temperatures Th and
Tc of the hot and cold reservoirs, respectively. We suppose
that there is no applied voltage and set μ1 = μ2 = 0 in the
following. The transport is described by the unitary scattering
matrix,

s(E ) =
(

s11(E ) s12(E )

s21(E ) s22(E )

)
. (1)

In the submatrix sαβ (E ), index β indicates where the electrons
originated and the left index α where the electrons head to. For
a given energy, we assume that a finite number of quantum
channels contribute, which determines the size of the sub-
matrices. Overall, the transport properties of the mesoscopic
conductor are determined by the scattering matrix and the
Fermi distributions of the reservoirs.

A. Noise spectrum and light emission

The current operator Îα (t ) describes the electric current in
terminal α ∈ {1, 2} at time t [1,30,31]. By averaging over the
quantum statistical ensemble, the average current 〈Îα (t )〉 is
obtained. A positive sign means that the current leaves the
reservoir, and vice versa, a negative sign means that it enters.
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Current fluctuations are characterized by the auto- and cross
correlations of the current operator. We are interested in the
nonsymmetrized correlator,

Sαβ (t, t ′) = 〈�Îα (t )�Îβ (t ′)〉, �Îα (t ) = Îα (t ) − 〈Îα (t )〉.
(2)

In the absence of a time-dependent external field, the cor-
relations depend only on the time difference t − t ′. As
a result, the Fourier transform of the current correlations
yields Sαβ (ω,ω′) = 2πδ(ω + ω′)Sαβ (ω), with Sαβ (ω) =
2

∫
eiωt 〈�Îα (t )�Îβ (0)〉dt as the noise spectrum. At different

times, the current operators do not commute. This results in
an asymmetrical noise spectrum. For α = 1, β = 2, the noise
spectrum has the form

S12(ω) = e2

π h̄

∫
dE

{
f1(E ) f h

1 (E + h̄ω)Tr[s†
21(E + h̄ω)s21(E )[s†

11(E )s11(E + h̄ω) − 1]]

+ f1(E ) f h
2 (E + h̄ω)Tr[s†

11(E )s12(E + h̄ω)s†
22(E + h̄ω)s21(E )]

+ f2(E ) f h
1 (E + h̄ω)Tr[s†

12(E )s11(E + h̄ω)s†
21(E + h̄ω)s22(E )]

+ f2(E ) f h
2 (E + h̄ω)Tr[s†

12(E )s12(E + h̄ω)(s†
22(E + h̄ω)s22(E ) − 1)]

}
, (3)

with e is the elementary charge, h̄ is the reduced Planck
constant, † is the conjugate transpose, Tr(·) the trace over
the quantum channels and spin, and f h

α (E ) ≡ 1 − fα (E ) is the
distribution of an unoccupied electronic state (hole). In gen-
eral, s†(E )s(E ′) �= 1 for E �= E ′ and, thus, the noise spectrum
can be complex.

We focus on the total current Î (t ) = [Î1(t ) − Î2(t )]/2 and
investigate the total noise spectrum for this symmetric choice
of the currents [32–34],

S(ω) := 2
∫

dt eiωt 〈�Î (t )�Î (0)〉

=
∑

α,β∈{1,2}

∫
dE γαβ (E , ω) fα (E ) f h

β (E + h̄ω), (4)

with

γαβ (E , ω) = e2

4π h̄
Tr[Aαβ (E , ω)A†

αβ (E , ω)], (5)

and the matrices,

A11 = s†
21(E + h̄ω)s21(E ) + 1 − s†

11(E + h̄ω)s11(E ),

A22 = s†
12(E + h̄ω)s12(E ) + 1 − s†

22(E + h̄ω)s22(E ),

A12 = s†
21(E )s22(E + h̄ω) − s†

11(E )s12(E + h̄ω),

A21 = s†
22(E )s21(E + h̄ω) − s†

12(E )s11(E + h̄ω). (6)

Further on, the term total noise spectral density is abbreviated
as noise spectrum. The form Eq. (4) directly implies that
the noise spectrum is positive, since for a complex matrix
A, the matrix A†A has only positive eigenvalues and, thus, a
positive trace Tr(A†A) � 0. With the same argument and the
monotonic decrease in the Fermi functions, the inequality,

S(ω) � S(−ω) for ω � 0 (7)

follows. This result holds irrespective of the applied voltage
or temperature difference. In the next paragraph, we introduce
the connection to light emission and absorption where the
inequality has an illustrative interpretation.

The mesoscopic conductor can act as an antenna, where
the current fluctuations couple to an electromagnetic field

[8,9,35]. We assume a linear coupling between the total cur-
rent operator Î (t ) and the electromagnetic vector potential
operator. Fermi’s golden rule gives the transition rates for
absorption and emission of a photon and thus the rate at
which energy is transferred [36]. To establish a connection,
we consider the rewritten noise spectrum,

S(ω) = 2π
∑
i, f

pi|〈i|�Î (0)| f 〉|2δ(Ei − E f + h̄ω), (8)

where pi is the statistical weight along with Ei the energy
of the initial state |i〉, and E f is the energy of the state | f 〉.
The energy transfer rate when emitting one photon from the
conductor is proportional to the noise spectrum for ω < 0
and vice versa when absorbing one photon to the noise spec-
trum for ω > 0. Therefore, the noise spectrum at negative
frequencies is referred to as the emission spectrum and that
of positive frequencies as the absorption spectrum. Utilizing
�Î (0) instead of Î (0) in expression (8) differs by a DC com-
ponent, which contributes nothing to the energy transfer. The
inequality (7) now states that the energy transfer rate at which
the conductor absorbs from the electromagnetic field is always
greater than or equal to the rate at which it transfers energy to
the field.

We follow the interpretation in Ref. [37]. The physical
processes involve electrons with energy E and holes with
energy E + h̄ω, which are scattered in the mesoscopic con-
ductor and afterwards recombine to emit or absorb energy
h̄ω. When electrons come from terminal α and holes from
terminal β, then they contribute γαβ (E , ω) fα (E ) f h

β (E + h̄ω)
to the differential energy transfer rate,

dS(E , ω) =
∑

α,β∈{1,2}
γαβ (E , ω) fα (E ) f h

β (E + h̄ω)dE . (9)

On average, there are fα (E ) electrons and f h
β (E + h̄ω) holes

participating in fα (E ) f h
β (E + h̄ω) recombination events. This

is evident by rewriting fα (E ) f h
β (E + h̄ω) = 〈n̂e

α (E )n̂h
β (E +

h̄ω)〉 as the expectation value of the electron number operator
n̂e

α (E ) and the hole number operator n̂h
β (E ). The functions γαβ

correspond to the rates per recombination event. They depend
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solely on the scattering amplitudes of the electrons and holes
traversing the conductor.

B. Definition of the delta-T noise spectrum

In the tradition of analyzing noise, two distinct contribu-
tions of different origins were identified [1,4–6]. One is the
equilibrium noise (Nyquist-Johnson noise) at thermal equilib-
rium, attributed to the thermal agitation of the charge carriers,
and the other is the nonequilibrium partition noise (shot
noise), which arises because an incident charge-carrier beam
is stochastically divided. Hence, it is a consequence of charge
quantization. In the next paragraph, we are concerned with
the question how can the noise spectrum be partitioned into
an equilibrium (thermallike) and a nonequilibrium (delta-T )
component in the presence of a temperature difference.

In the case of zero frequency and an energy-independent
scattering matrix, the thermallike noise is given by

Sth(ω = 0) = Sth = 2GkBTh + 2GkBTc, (10)

with G = G0
∑

n Dn as the conductance, the conductance
quantum G0 = 2e2/h, and Dn as the transmission probability
of the nth eigenchannel [1]. Half of the thermallike noise con-
sists of the Nyquist-Johnson noise at the hot temperature and
half at the cold temperature. We interpret that as the thermal
agitation of two isolated equilibrium systems and understand
the thermallike noise as the average Sth = (STh + STc )/2 of
them with STα

as the noise at zero frequency and equal tem-
perature Tα in both reservoirs. Following this interpretation,
the thermallike noise for finite frequencies is defined as

Sth(ω) := STh (ω) + STc (ω)

2
, (11)

where STα
(ω) is the noise spectrum at equal reservoir tempera-

ture Tα . From the standpoint of light emission, the thermallike
spectrum manifests as the superposition of independent hot
and cold emitters. In Ref. [23] an equivalent definition is used
to account for the thermallike part in a system with interact-
ing electrons. After some calculation and using the unitary
property of the scattering matrix, the thermallike noise can be
written as

Sth(ω) =
∫

dE γ th(E , ω)
∑

α∈{1,2}

fα (E ) f h
α (E + h̄ω)

2
, (12)

with,

γ th(E , ω) = γ11(E , ω) + γ12(E , ω) + γ21(E , ω) + γ22(E , ω)

= e2

4π h̄
Tr[|s11(E ) − s11(E + h̄ω)|2

+ |s22(E ) − s22(E + h̄ω)|2

+ |s12(E ) + s12(E + h̄ω)|2

+ |s21(E ) + s21(E + h̄ω)|2], (13)

where |a|2 = a†a is implied in the multichannel case. At zero
frequency, the expression coincides with the thermallike noise
defined in Ref. [25] and reduces to

Sth = 2e2

π h̄

∫
dE

∑
n

Dn(E )
∑

α=1,2

fα (E ) f h
α (E ), (14)

with Dn(E ) as the energy-dependent transmission probability.
Equipped with the definition of the thermallike noise,

the nonequilibrium contribution is identified as the excess
noise spectrum S�T (ω) := S(ω) − Sth(ω). This nonequilib-
rium noise spectrum is referred to as the delta-T noise
spectrum. We interpret the delta-T noise spectrum by using
the picture of recombining electrons and holes. Electrons
are denoted as hot or cold if they are distributed according
to the Fermi function f1 = 〈n̂e

1〉 with temperature Th or ac-
cording to the Fermi function f2 = 〈n̂e

2〉 with temperature Tc,
respectively. This designation also applies to holes. The same
rates γαβ are present in the entire noise spectrum (4) and the
thermallike spectrum (12). The difference manifests itself in
the number of recombination events. For example, the ac-
tual noise spectrum includes the contribution γ12〈n̂e

1n̂h
2〉 where

hot electrons recombine with cold holes. The corresponding
term γ12〈(n̂e

1n̂h
1 + n̂e

2n̂h
2)/2〉 in the thermallike noise spectrum

involves only recombination events of hot electrons with hot
holes and cold electrons with cold holes. This is accounted for
by a factor γ12〈[n̂e

1(n̂h
2 − n̂h

1) + (n̂e
1 − n̂e

2)n̂h
2]/2〉 in the delta-

T noise spectrum, which depends on the excess amount of
cold and hot holes 〈n̂h

2 − n̂h
1〉 and the excess number of hot

and cold electrons 〈n̂e
1 − n̂e

2〉. Another example is the noise
contribution γ11〈n̂e

1n̂h
1〉, which has the counterpart γ11〈(n̂e

1n̂h
1 +

n̂e
2n̂h

2)/2〉 in the thermallike noise spectrum. The delta-T
contribution assumes the form γ11〈(n̂e

1n̂h
1 − n̂e

2n̂h
2)/2〉 and de-

pends on the difference between hot and cold recombination
events.

We distinguish between these two cases and split the delta-
T noise spectrum into

S�T (ω) := S�T
1 (ω) + S�T

2 (ω)

=
∫

dE
∑

α �=β∈{1,2}
γαβ (E , ω)Fαβ (E , ω)

+
∫

dE [γ11(E , ω) − γ22(E , ω)]F (E , ω), (15)

with functions,

� fαβ (E ) = fα (E ) − fβ (E )

Fαβ (E , ω) = fα (E )� fαβ (E + h̄ω) + � fαβ (E ) f h
β (E + h̄ω)

2

F (E , ω) = f1(E ) f h
1 (E + h̄ω) − f2(E ) f h

2 (E + h̄ω)

2
. (16)

The unitary property of the scattering matrix guarantees
the symmetry Tr A12A†

12 = Tr A21A†
21. Moreover, F12(E , ω) +

F21(E , ω) reduces to � f12(E )� f12(E + h̄ω) and the first con-
tribution is given by

S�T
1 (ω) =

∫
dE γ12(E , ω)� f12(E )� f12(E + h̄ω). (17)

This contribution stems from recombinations of electrons and
holes with different temperatures, e.g., hot electrons with cold
holes. It depends only on the excess number of electrons
〈n̂e

1 − n̂e
2〉 and holes 〈n̂h

2 − n̂h
1〉. In the lowest order, the differ-

ence � f12(E ) is linear in �T and, therefore, the whole term
is quadratic.
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The thermallike noise spectrum (12) includes recombina-
tion events of hot electrons with hot holes with a rate γ22.
In contrast to the spectrum (4), where this rate is associated
with cold electrons recombining with cold holes. A similar
situation arises for the rate γ11 where the thermallike spectrum
contains cold recombination events and the actual spectrum
contains hot recombination events. These cases are covered
by the second contribution S�T

2 (ω). This contribution does
not depend on the difference between the Fermi functions
but rather on the difference between the number of hot and
cold recombination events 〈n̂e

1n̂h
1 − n̂e

2n̂h
2〉. An expansion in

�T results in a linear dependence at the lowest order. For the
part that depends on the scattering matrix, we find

Tr[A11A†
11 − A22A†

22]

= 2 Re Tr[s22(E )s†
22(E + h̄ω) + s21(E )s†

21(E + h̄ω)

− s11(E )s†
11(E + h̄ω) − s12(E )s†

12(E + h̄ω)], (18)

with Re denoting the real part. At zero frequency, this ex-
pression disappears because of the unitary property of the
scattering matrix. The entire spectrum S�T

2 (ω) vanishes in two
ways: First, when the scattering properties from both sides are
indistinguishable, i.e., s11(E ) = s22(E ), s12(E ) = s21(E ), or
second, the reservoirs assume the same temperature.

At zero frequency, the delta-T noise decreases to

S�T = 2e2

π h̄

∫
dE

∑
n

Dn(E )[1 − Dn(E )][� f12(E )]2, (19)

and matches with the definition given in Ref. [25].

III. ENERGY-INDEPENDENT SCATTERING

The model is specified further by assuming an energy-
independent scattering matrix s(E ) ≈ s. From the well-known
equilibrium spectrum [1,8], we obtain

Sth(ω) = Gh̄ω

[
2 + coth

(
h̄ω

2kBTh

)
+ coth

(
h̄ω

2kBTc

)]
. (20)

The thermal spectra STh (ω), STc (ω) are not additive, i.e.,
STh (ω) + STc (ω) cannot be written as a thermal noise spectrum
with adjusted temperature. A consequence of this is that at a
fixed average temperature T̃ = (Th + Tc)/2, the thermallike
spectrum still changes for different temperature differences
�T = Th − Tc. Nevertheless, for convenience, the average
temperature and the temperature difference are used hereafter.

The difference between the absorption and emission spec-
trum obeys Sth(ω) − Sth(−ω) = 4Gh̄ω,ω > 0. It is sufficient
to investigate the emission spectrum since emission and ab-
sorption differ only by the zero-point fluctuations. Figure 2(a)
depicts the thermallike spectrum for various �T . The curves
vary continuously from �T = 0 to the maximum �T = 2T̃
where the curve for �T = 0 sets a lower bound and for
�T = 2T̃ an upper bound.

The examination of the delta-T noise spectrum reveals that
S�T

2 (ω) vanishes for energy-independent scattering, and the
delta-T component reduces considerably to

S�T (ω) = 2GF
∫

dE � f12(E )� f12(E + h̄ω), (21)
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FIG. 2. Emission spectra of (a) the thermallike noise (20) and
(b) the delta-T noise (21) from �T = 0 to 2T̃ = Th + Tc. The ab-
sorption spectrum of (a) results from Sth(ω) − Sth(−ω) = 4Gh̄ω and
of (b) equals the emission spectrum because of S�T (ω) = S�T (−ω).
The thermallike spectrum depends on the temperature difference
�T , and all curves lie between the extreme points �T = 0 and
�T = 2T̃ in the gray area. The delta-T noise changes its sign from
positive to negative at a certain frequency (compare to Fig. 3), which
depends on the temperature difference. The curves are not enveloped
by the extreme points. The overall noise Sth + S�T � 0 does not
change its sign.

where F = ∑
n Dn(1 − Dn)/

∑
n Dn represents the Fano fac-

tor. The Fano factor indicates the property of a partition noise
and is a shared property with the shot noise at zero frequency
[1]. If the barrier is completely transparent or reflective, Dn =
1 or Dn = 0, ∀ n, then the Fano factor vanishes and so does
the delta-T noise spectrum, although a temperature difference
might be present. The system consists then of isolated hot and
cold electron transports, each in thermal equilibrium, which is
why we call the term thermallike.

At the maximal temperature difference �T = 2T̃ , it is
given as

S2T̃ (ω)

GF
= 8kBT̃ ln

[
2 cosh

(
h̄ω

4kBT̃

)]

− |h̄ω| − h̄ω coth

(
h̄ω

4kBT̃

)
. (22)

In the limit ω → 0, we get back the factor 2 ln 2 as in
Ref. [17]. The delta-T emission and absorption spectrum
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FIG. 3. Illustration (a) shows the excess number of recombina-
tion events due to recombinations between hot and cold particles,
i.e., the integrand in (21). At a given frequency (here e.g., h̄ω =
0, 2, 4kBT̃ ), one of the differences � f12 is shifted by h̄ω in relation
to the other. In the interval (−h̄ω, 0), the contribution is negative,
and outside, it is positive. Inset (b) depicts the hot and cold Fermi
functions drawn over energy. The gray-shaded area denotes ener-
gies where the sign of f1(E ) − f2(E ) and the shifted f1(E + h̄ω) −
f2(E + h̄ω) differ. The terminals are assumed to be at temperatures
Tc = 0, Th = 2T̃ .

for different �T ’s is shown in Fig. 2(b). The delta-T noise
spectrum starts at a maximum, then decreases and intersects
the ω axis at a certain point. After that, the course reaches
a minimum and converges back to zero. Above a certain
point, the delta-T noise spectrum is negative and decreases the
thermallike noise. Negative delta-T noise (at zero frequency)
has been reported for transport in a fractional quantum Hall
bar [19]. The decrease in fluctuations is there attributed to
interactions and related to the tunneling of quasiparticles. In
our case, interactions are not considered by the model. The
combination of temperature broadening of the Fermi function
and the frequency shift between distributions of the occupied
and free states plays the crucial role here. A comparison be-
tween the cold and hot distribution shows [see for an example
Fig. 3(b)], that the hot reservoir has fewer occupied states for
E < 0, more for E > 0 and coincides for E = 0. This leads
to a negative sign of f1(E ) − f2(E ) for E < 0 and a posi-
tive sign for E > 0. The integrand [ f1(E ) − f2(E )][ f1(E +
h̄ω) − f2(E + h̄ω)], i.e., the excess number of recombination
events, has a negative sign in the interval E ∈ (−h̄ω, 0). In the
complement interval, the signs are equal, and the integrand is
positive. The delta-T noise spectrum turns negative when the
area under the negative part of the integrand exceeds the area
under the positive part. Figure 3(a) depicts the excess number
of recombination events for different shifts in the extreme case
Tc = 0 and Th = 2T̃ .

IV. RESONANT LEVEL

This paragraph sheds light on the influence of energy-
dependent scattering, using a resonant level as an example.
We assume a resonance energy of ε0 and a lifetime of h̄/
. For
simplicity, we only consider one open quantum channel. The
scattering matrix can be modeled by the Breit-Wigner formula
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0.0

[ S
th

(ω
)
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S
T̃
(ω
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/
G
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0

2
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ΔT = 0.4T̃

ΔT = 0.8T̃

ΔT = 1.2T̃

ΔT = 1.6T̃

ΔT = 2.0T̃

FIG. 4. The deviation of the thermallike noise spectrum (24)
from the thermal spectrum at average temperature ST̃ (ω) is shown
for various temperature differences. In the inset, we depict the ther-
mallike noise spectrum at the extremes �T = 0, �T = 2T̃ in order
to give an idea of its shape and size. The units are the same as in
the whole figure. The resonant level is located at ε0 = 0, i.e., at the
terminal’s chemical potential, and has the widths 
1 = (2/3)kBT̃ ,

2 = (1/3)kBT̃ .

[30,38],

sαβ (E ) = δαβ − i
√


α
β

E − ε0 + i
/2
, α, β ∈ {1, 2}, (23)

where 
1, 
2 are the partial widths, 
 = 
1 + 
2 is the total
width, and δαβ is the Kronecker delta. Inserting this scattering
matrix into the thermallike noise spectrum (12) results in

Sth(ω) = G0

4

∫
dE

∑
α=1,2

fα (E ) f h
α (E + h̄ω)D(E + h̄ω)D(E )

×
[

(h̄ω)2


2
1

+ (h̄ω)2


2
2

+ 8

(
E + h̄ω

2 − ε0
)2 + 
2

4


1
2

]
,

(24)

where,

D(E ) = 
1
2

(E − ε0)2 + 
2/4
(25)

represents the transmission probability through the resonance.
Figure 4 depicts the deviation of thermallike spectrum from
the thermal spectrum at average temperature. We fix the
average temperature and consider different temperature dif-
ferences for an asymmetric resonance 
1 = (2/3)kBT̃ , 
2 =
(1/3)kBT̃ . The curves for �T �= 0 intersect with the curve
for �T = 0 at three points and have a smaller value in two
intervals.

The resonance provides an example where both contribu-
tions in the delta-T noise spectrum are relevant. We write the
first contribution in the form

S�T
1 (ω) = 2G0

∫
dE � f12(E )� f12(E + h̄ω)

×D(E )D(E + h̄ω)

[(
E + h̄ω

2 − ε0
)2 + 
2

4


1
2
− 1

]
.

(26)
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FIG. 5. Spectra of the contribution (5) at different �T ’s. Emis-
sion and absorption spectra are identical because this delta-T
contribution is symmetric in frequency. The resonance is assumed
to be at ε0 = 0 and has the widths 
1 = (2/3)kBT̃ , 
2 = (1/3)kBT̃ .
The inset shows the spectra at the transition from positive to negative.
This negative part is almost suppressed but still present.

Figure 5 depicts this contribution for several temperature dif-
ferences. In the integral (26), the Fermi distributions enter in
the same way as for the energy-independent scattering. Tem-
perature broadening in connection with the frequency shift
leads again to a negative integrand in the interval (−h̄ω, 0).
The difference is that the resonance introduces an additional
weight, which emphasizes, for the chosen parameters, the
positive areas of Fig. 3(a) and leads to a suppression of the
negative contribution.

If the resonance is asymmetric 
1 �= 
2, then we obtain a
nonvanishing second component,

S�T
2 (ω) = G0

4
(h̄ω)2 
2

1 − 
2
2


2
1


2
2

×
∫

dE D(E )D(E + h̄ω)F (E , ω), (27)

which is not symmetric in frequency. As a consequence, the
emission spectrum differs from the absorption spectrum. The
spectrum exhibits a peak at negative frequencies and, thus, an
enhancement in the emission. For positive frequencies, a dip
occurs, which results in a reduction of the absorption. It is
the other way around if 
1 < 
2 is used instead of 
2 < 
1.
First and second components are of similar size. In Fig. 6, the
second component S�T

2 (ω) is shown for different temperature
differences.
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FIG. 6. Spectra of the second component (27) at different tem-
perature differences �T . The partial widths are 
1 = (2/3)kBT̃ ,

2 = (1/3)kBT̃ , and the resonance energy is ε0 = 0. In the emission
spectrum, we see an enhancement, and in the absorption spectrum, a
reduction.

V. CONCLUSION

We have investigated the nonsymmetrized noise spectral
density in mesoscopic conductors subjected to a temperature
difference. The thermallike spectrum was identified as the
average thermal noise spectrum [STh (ω) + STc (ω)]/2 and, con-
sequently, the delta-T noise spectrum as the excess spectrum.
We further decomposed the delta-T noise spectrum into two
contributions, one depending on the frequency-shifted differ-
ences of Fermi functions and the other on the difference of the
combined Fermi functions. In the case of energy-independent
scattering, only the first contribution survived, and the spec-
trum was proportional to the Fano factor. We have discovered
a partially negative delta-T noise spectrum that is positive at
low frequencies and becomes negative above a certain fre-
quency. A similar behavior, but with a suppressed negative
part, was obtained for a resonant level with the selected pa-
rameters. In addition, the second component occurred for an
asymmetric resonance.
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