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For electron optics in graphene, the propagation effect has so far been the only physical mechanism avail-
able. The resulting optics-inspired electronic components are large in size and operate at low temperatures
to avoid violating the ballistic transport limits. Here, electron metasurfaces, i.e., electronic counterparts of
optical metasurfaces, are introduced for graphene electronics. We theoretically implement various angles of
electron beam bending, as well as beam splitting at corresponding angles in the same metasurface with the
functionalities switched freely by controlling the applied gate biases. The wavefront of electron beams is shaped
within a distance far below the ballistic transport distance at room temperature, allowing for the realization
of optics-inspired electronic devices that can operate under ambient conditions. The concept of metasurface
electron optics, based on elaborate design of more complex spatial phase patterns, might also open up a promising
avenue for achieving more appealing applications such as electron metalenses, metasurface holography, as well
as metasurface-based digital coding technology in graphene.
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I. INTRODUCTION

Low-energy graphene electrons behave like light because
of their lightlike dispersion and the ballistic transport [1].
Electron optics in semiconductor structures can be natu-
rally extended to graphene. Both naturally occurring and
non-naturally occurring optical phenomena, such as the Goos-
Hanchen shift [2], self-collimation [3], whispering-gallery
modes [4–8], and negative-index [9–12] and zero-index [13]
behaviors, have been reproduced by graphene electrons.
Accordingly, various optics-inspired functional units, such
as two-dimensional electron microscopes [14,15], quantum
switches [16–18], Fabry-Pérot cavities [19], electron waveg-
uides [20–22], splitters [23,24], and Veselago lenses [10–12],
have been demonstrated. However, these remarkable achieve-
ments were made by following procedures used for bulk
optical materials where wavefront shaping is accomplished
via light propagation over a distance much larger than the
wavelength. The propagation effect dictates that the optics-
inspired electronic components are large in size. But, even if
the large size of the devices can be tolerated, the required long
propagation distances often challenge the ballistic transport
limits. To avoid violating these ballistic transport limits, these
components have been designed to operate at low temper-
ature since the mean free path of graphene electrons, l =
μ

√
ρ/πh/2e, which determines the ballistic transport limit,

becomes larger at low temperature with enhanced carrier mo-
bility μ [25].

The emergence of optical metasurfaces [26,27] and meta-
gratings [28,29] opens the door to flat optics technology
characterized by a single layer of nanoparticles. Wavefront
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shaping in optical metasurfaces is achieved over the scale of
the free-space wavelength or on a smaller scale by introducing
abrupt changes in phase or amplitude, following the general-
ized Snell’s law [26,30]. This is fundamentally different from
conventional diffractive optics based on the propagation ef-
fect. While metasurfaces greatly shrink the size of devices and
simplify the fabrication process in contrast to bulk materials,
they can also mould optical wavefronts into shapes that are
designed at will [30]. Inspired by the compactness features
and the remarkable capabilities of wavefront engineering,
we explore the possibility of realizing electron metasurfaces
for electrons in graphene. As will be demonstrated, electron
metasurfaces are usually only a few nanometers thick, far
smaller than the ballistic transport distance (about 1 μm) of
graphene electrons at room temperature. As a result, electron
metasurfaces break the dimensional limit of optics-inspired
electronic devices and enable them to operate under ambient
conditions. Also worth noting is that Dirac fermion meta-
gratings with the same compactness have been demonstrated
in graphene [31]. However, incident electron waves are only
channeled into the direction of a specific diffracted order
supported by metagratings. As a comparison, an arbitrary
channel direction is obtainable in metasurfaces by engineering
the phase gradient along the interfaces. This has led to the
realization of spherical-aberration-free, high numerical aper-
ture optical flat lenses [32]. Moreover, hologram metasurfaces
and programmable coding metasurfaces have brought about
unprecedented opportunities for the improvement of holog-
raphy [33,34] and optical information technologies [35,36].
The same opportunities could be brought to graphene electron
systems via electron metasurfaces. In addition to the inherent
advantages of metasurfaces such as compactness, low loss,
and easy fabrication, we will show that electron metasur-
faces are exceptional in many other aspects such as perfect
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FIG. 1. Schematic view of the bending of electron beams by a metasurface realized by a one-dimensional array of QDs with the spacing
between QDs d on graphene. The munit QDs with linear increasing bias Vs applied constitute a unit cell of the metasurface with unit cell length
(or the period of the metasurface is) � = (munit − 1)d . Phase shifts in one unit cell cover the 0 to 2π range to realize the full control of the
wavefront. QDs are denoted by the green circular regions and the munit is set to 6 in the diagram.

operating efficiency and high tunability, which are not even
expected in optical metasurfaces.

II. RESULTS AND DISCUSSION

Formally, an electron metasurface is a linear array of
gate-bias-controlled circular quantum dots (QDs), as shown
schematically in Fig. 1 where the green circular regions repre-
sent QDs. The scattering electron waves off of each QD differ
in phase so as to construct a constant gradient of phase jump
in metasurfaces. For the sake of understanding, we analogize
the QDs with optical systems and can think that the QD
phase response is related to their “refractive index,” which is
defined as ns = (E − Vs)/E , where E is the incident energy
and Vs the applied bias [37]. The dependence of ns on Vs

allows the same QDs to exhibit a different phase response by
controlling the applied bias voltages Vs and enables the design
of unit cells of metasurfaces with the same QDs. The unit
cells consist of munit QDs and their length � = (munit − 1)d
is the period of the metasurface. A unit cell usually covers the
entire 0-2π range and thus introduces a lateral wave number
kadd

x = d�/dx = 2π/� because of the gradient change of the
phase response between QDs.

The low-energy electron dynamics can be described by the
single-valley Dirac-Hamiltonian [37–43],

H = −ih̄vF ∇σ + Vs�(Rs − r), (1)

in the presence of circular QDs whose potentials are smooth
on the scale of the graphene’s intrinsic lattice constant, but
sharp on the scale of the de Broglie wavelength. Here, Rs

is the radius of QDs and the potential is described by the
Heaviside step function �(Rs − r), which is an approximation
to the gradual transition of potentials. In practice, it has been
shown that the electron scattering behavior of QDs remains
nearly the same [44] when the transition distance is less than
0.5Rs. For the Hamiltonian in Eq. (1), the conserved quantity
is the pseudo-angular momentum operator ĵ = l̂ + 1

2σz with
the eigenvalue j = m + 1

2 (see the Appendices). The corre-
sponding eigenvector is

ψm =
(−ih(1)

j (k0r)einφ

αh(1)
j+1(k0r)ei(n+1)φ

)
∝

(−iH (1)
m (k0r)einφ

αH (1)
m+1(k0r)ei(n+1)φ

)
,

(2)

where m = 0,±1,±2, . . . , h(1)
n and H (1)

n are the nth-order
spherical and cylindrical Hankel function of the first kind.
With the help of the complete spherical wave basis, the Mie
scattering method used widely in optics is applicable to the
electron scattering problem by such QDs [37–43] (see the
Appendices). Many important results have been predicted by
the method, some of which have been verified in experiment
[45–49].
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FIG. 2. The scattering field of the individual QDs constituting the unit cell of a metasurface. The tilted black straight line is the envelope
of the projections of the cylindrical waves scattered by the QDs. A complete phase coverage from 0 to 2π is shown with an approximately
constant phase difference �φ = π/5 between neighbors. The number of QDs in the unit cell is munit = 10 and the biases Vs applied on each
QD are given above each plot. The inter−QD coupling interaction has been considered in this calculation.

As is well known, the behavior of a wave in a metasurface
follows the generalized Snell’s law of refraction [26],

nt sin θt − ni sin θi = 1

k0

d�

dx
, (3)

where k0 is the magnitude of the free-space wave vector, θi

and θt are, respectively, the angle of incidence and refraction,
and ni and nt are the respective “refractive indices” of media
on the incident and transmission sides of the metasurface.
The phase gradient d�/dx implies an effective wave vector
(equivalently, an effective momentum) along the interface that
is produced and is imparted to the transmitted and reflected
electrons. Thus the transmitted and reflected electron beams
can be deflected through arbitrary angles, depending on the
direction and magnitude of the phase gradient. The phase
gradient is created within a unit cell consisting of several
QDs to which the linearly increasing biases Vs are respec-
tively applied. The variation of bias indicates the difference
in refractive index between the QDs and thus the difference
in the phase response of the electron waves. Figure 2 il-
lustrates a linear phase distribution of the scattering fields
in a unit cell composed of 10 QDs. Throughout this paper,
the energy of the incident electron beams with waist radius
w = 240 nm is chosen to be E = 65.82 meV and the ra-
dius of the QDs to be 5 nm, with a spacing d = 14.6 nm
between them. So the period of the metasurface in Fig. 2 is
� = 9d = 131.4 nm; in this figure, the biases are given above
each scattering field plot. Highly collimated electron beams
with angular width 18◦ or narrower have been experimentally
achieved in graphene by using collinear pairs of slits with
absorptive sidewalls between the slits [15]. Figure 2 shows
that a complete phase coverage from 0 to 2π is obtained
with an approximately constant phase difference �φ = π/5
between neighbors. Thus the magnitude of the introduced
wave vector in the x direction is kadd

x = d�/dx = 2π/� =
0.048/nm. When a normal-incidence electron beam impinges
on the metasurface, the transmitted beam will be bent at an
angle θcalc = arctan(kadd

x /k0), where k0 is the magnitude of
the free-space wave vector with ni = nt = 1. This is simulated

in Fig. 3(a), and the travel direction of the transmitted beam
agrees well with the calculated bending angle, θcalc = 25◦.
Note that the scattering field of each QD in Fig. 2 is calculated
by considering the inter-QD coupling interaction and employ-
ing multiple scattering theory [31,50,51]. This ensures that
the constant gradient of the phase jumps really exists in the
metasurface since the scattering field of an isolated QD may
be very different from that of the same QD in a linear array.
The bending angle can be altered by adjusting the spacing d
with a slight change of bias.

A unit cell which covers the entire 0–2π range can also be
composed of different numbers of QDs by adjusting only the
bias while keeping the array invariant. We denote the number
of the QDs in a unit cell by munit. A decrease of munit implies a
larger phase gradient and also a larger introduced wave vector
and a larger bending angle. Figures 3(b)–3(f) show the bend-
ing of the electron beams by metasurfaces with munit = 9, 8, 7,
6, and 5. The bending angle increases gradually from Fig. 3(b)
to Fig. 3(f). In addition, the Dirac fermion metasurfaces show
a remarkable property in Fig. 3, i.e., electron waves can be
bent with nearly perfect efficiency, especially for bending
angles below 45◦. This is strikingly different from optical
metasurfaces, in which an efficiency near 100% is difficult to
achieve. It shows that electrons can more easily react to the
lateral momentum introduced by the phase gradient than can
photons. Moreover, comparing the panels in Fig. 3 shows that
the efficiency is closer to 100% in the case of the longer unit
cells because electrons have more opportunities to react to the
introduced lateral momentum. Finally, perfect efficiency can-
not be divorced from the successful suppression of reflection
in the metasurfaces (see Fig. S2 in the Supplemental Material
[52]).

To verify that the beam bending at various θactu in Fig. 3
can be well explained by the introduced wave vectors due to
phase gradient, we made a comparison between the two for all
the cases in Table I where tan θcalc = kadd

x /k0 and tan θactu are
given. Here, kadd

x = 2π/� = 2π/munitd and θactu is directly
read from Fig. 3. The calculated bending angles agree well
with the actual ones for munit between 7 and 10, but there are
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FIG. 3. The bending of electron beams after passing through the metasurface composed of unit cells with the number of QDs munit equal
to (a) 10, (b) 9, (c) 8, (d) 7, (e) 6, and (f) 5. Linearly increasing biases with constant gradient are applied to the QDs in the unit cells. They are,
respectively, Vs = 375, 420, 465, 510, 555, 600, 645, 690, and 735 meV for munit = 9; Vs = 385, 440, 495, 550, 605, 660, 715, and 770 meV
for munit = 8; Vs = 385, 440, 495, 550, 605, 660, and 715 meV for munit = 7; Vs = 400, 470, 540, 610, 680, and 750 meV for munit = 6; and
Vs = 390, 450, 510, 570, and 630 meV for munit = 5.

distinct deviations for munit = 6 and 5. To make matters worse,
a weak beam is transmitted to the left of the normal in the
latter two cases. In an effort to find the causes of these devia-
tions, we examine the phase response of each quantum dot for
the case of munit = 6, as shown in Fig. 4(a). One can see that
only the former five QDs contribute to the formation of the
linear phase gradient, whereas the QD with Vs = 750 meV
has a phase that goes against the linear gradient change.
Moreover, this QD and the next two QDs of Vs = 680 meV
and Vs = 400 meV together form a phase gradient increasing
in the opposite direction; hence, a left-oriented wave vector
is produced, as shown in Fig. 4(a). Thus a small portion
of electrons will propagate on the left side of the normal
in Fig. 3(e). Accordingly, the magnitude of the introduced
right-oriented wave number should be calculated in terms of
the period �′ = 4d = 58.4 nm. The new tan θcalc calculated by
kadd

x = 2π/�′ is equal to 1.075 and agrees well with tan θactu

in Table I. Similarly, the deviation in the case of munit = 5 in
Table I has the same cause (see Fig. S1 in the Supplemental
Material [52]).

Exploring the causes of deviations can help to improve the
efficiency of metasurfaces. We note that the electron scattering
of the QD of Vs = 750 meV is weak in contrast to other QDs

TABLE I. Comparison between the calculated and actual bend-
ing angles for various munit .

munit 10 9 8 7 6 5

tan θcalc 0.480 0.535 0.600 0.715 0.861 1.074
tan θactu 0.468 0.526 0.620 0.760 1.000 1.700

in the unit cell. So the scattering of the other QDs will hardly
be impacted if this QD is removed from the unit cell. Such a
unit cell is schematically shown in the lower panel in Fig. 4(b)
and the phase distribution is given in Fig. 4(c). We see that
the opposite phase gradient is eliminated and thus only a
right-oriented wave vector is introduced. The electron density
distribution displayed in Fig. 4(d) shows that the electron
beam bends to the right side of the normal with near-unit
efficiency when the QD of Vs = 750 meV is removed.

Since two equal and oppositely directed phase gradients
represent left- and right-oriented equal-magnitude wave vec-
tors, we can introduce them simultaneously in a metasurface
to design an ultrathin electron splitter. One simple route for
splitters is to achieve a right-oriented wave vector by the
unit cells in the right half of the array and a left-oriented
wave vector by the unit cells in the left half. This can be
implemented by applying the biases enhanced from left to
right to the QDs in the unit cells in the right half, as shown
in Fig. 3, and the same biases but enhanced in the opposite
direction in the left half. The impinging beam is split into two
sub-beams at various angles to each other, as demonstrated in
Figs. 5(a)–5(f). We see that the beams are split with nearly
perfect efficiency again and the splitting ratio is 50-50 in all
cases.

Three points are worth emphasizing in the model. First of
all, all the results reported in this paper are obtained in the
same linear array of QDs. Specifically, the radius of the QDs
and the spacing between them remain invariant in all simula-
tions and we only modulate the biases on the QDs to realize
both beam bending and beam splitting at various angles. The
fast switching time of bias systems allows for high modula-
tion efficiency. Second, near-perfect efficiency is obtainable,
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FIG. 4. (a) The scattered field of the individual QDs in the presence of all six QDs. The tilted black and blue solid lines indicate,
respectively, the desired and undesired phase gradients formed in the unit cell. (b) Schematics of the unit cells in the presence of all the
QDs in the upper panel and in the absence of the QD of Vs = 750 meV in the lower panel. (c) The scattered field of the individual QDs with the
QD of V = 750 meV removed. The phase gradient increasing in the opposite direction that appears in (a) is eliminated. (d) The beam bending
occurring with near-unit efficiency when the QD of Vs = 750 meV is removed, in sharp contrast to Fig. 3(e).

FIG. 5. The splitting of electron beams after passing through a metasurface composed of unit cells with the number of QDs munit equal to
(a) 10, (b) 9, (c) 8, (d) 7, (e) 6, and (f) 5. The unit cells in the right half of the metasurfaces in (a)–(f) are the same as those in Figs. 3(a)–3(f),
respectively, whereas the unit cells in the left half have the biases increasing in the opposite direction.
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which is fundamentally different from optical counterparts.
The performance of optical metasurfaces is subject to the
intrinsic nature of light. The introduced momentum through
the phase gradient cannot be perceived by all the photons
due to the absence of interaction between photons. Because
electrons are distinct from photons, the electron metasurfaces
have near-perfect operating efficiency. Third, the 5-nm radius
QDs used in our simulations fall within current experimental
manufacturing tolerance. Very recently, even smaller circular
QDs with atomically sharp boundaries have been obtained by
substrate engineering in experiment [46–48]. QDs can also
be created by positioning a charged scanning tunneling mi-
croscopy (STM) tip above graphene [49] or by some chemical
approaches [53]. The fabrication techniques of high-precision
QDs and the tunability of bias Vs applied on them makes
experimental realization of the metasurfaces feasible. Finally,
it is worth noting that the electron metasurfaces in graphene
that we are studying are extremely different from “graphene
metasurfaces.” The latter refers to a class of optical metasur-
faces made from graphene.

III. CONCLUSION

In summary, we have demonstrated theoretically the
feasibility of realizing metasurfaces for graphene ballistic
electrons. A simple metasurface is a linear array of quantum
dots (QDs) of the same radius. Phase discontinuities, the es-
sential ingredient of gradient metasurfaces, are acquired by
applying difference biases to the QDs. Following the gen-
eralized Snell’s law, the metasurface imposes a control over
electrons in a rather compact way, with wavefront shaping
accomplished below the ballistic transport limit at room tem-
perature. Such metasurfaces dramatically reduce the size of
electron-optics-based components and enable them to get rid
of the dependence on low-temperature conditions. The two
kinds of transistors we demonstrated, beam benders and beam
splitters, are achieved in the same linear array of QDs and
can be conveniently switched back and forth by tuning the
biases applied to the QDs. Electron metasurfaces represent
a promising way to develop more practical and accessible
electron optics technologies.

APPENDIX A: THE SPHERICAL WAVE BASIS
OF EIGENSTATES OF THE SINGLE-VALLEY DIRAC

HAMILTONIAN

The problem we consider in this paper only deals with
the dynamics on the scale much larger than the graphene’s
intrinsic lattice constant and intervalley scattering can there-
fore be neglected. Thus, the low-energy electron dynamics is
described by the single-valley Dirac-Hamiltonian [37,42],

H0 = −ih̄vF ∇σ. (A1)

We first consider the eigenproblem of the Hamiltonian

H0ψ = εψ, (A2)

where ψ is the two-component spinor,

ψ (r) =
(

ϕ

χ

)
. (A3)

In the plane-wave basis, the expression of ψ (r) is ψ (r) =
(A
B)eik·r. Substituting it into (A2), one obtains the relativistic

dispersion ε = αh̄kvF , where α = ±1 distinguishes between
the particle and hole sectors. It follows that

ψ (r) = 1√
2

(
e−i

ϕk
2

αei
ϕk
2

)
(A4)

from ψ†(r)ψ (r) = 1, with ϕk the incident angle.
To develop the scattering theory of circular gate-controlled

quantum dots, we need to express the eigenstates in the spher-
ical wave basis. This can be done based on the fact that
for a rotational symmetric potential, the pseudo-angular mo-
mentum operator is the conserved quantity, i.e., [ ĵz, H] = 0,
where ĵz + 1

2σz. Another conserved quantity is the parity of
the states which requires that the spinor components trans-
form as ϕ(−r) = ϕ(r) and χ (−r) = −χ (−r) under inversion
r → −r (i.e., ϕ → ϕ + π ). We know that the angular parts of
ϕ and χ are of the eimϕ form, similar to the two-dimensional
(2D) nonrelativistic scalar particle. Under the conservation
of parity, the angular parts of ϕ and χ correspond to lz = m
and lz = m + 1, respectively, so that the m component of ψ

has the definite parity (−1)m. Thus, ψm with fixed projection
m = 0,±1,±2, . . ., of angular momentum on the z axis, can
be expressed as

ψm(r) =
(−iFm(r)eimϕ

Gm(r)ei(m+1)ϕ

)
. (A5)

Substituting it into the eigenequation, we obtain the differ-
ential equations that the radial functions Fm(r) and Gm(r)
satisfy:

−1

r

d

dr

(
r

dFm

dr

)
+ m2

r2
Fm = k2Fm, (A6)

−1

r

d

dr

(
r

dGm

dr

)
+ (m + 1)2

r2
Gm = k2Gm. (A7)

They can be reduced to the Bessel equations that have two
linear independent solutions, i.e., cylindrical Bessel function
and Hankel function of the first/second kind (or Neumann
function Nm). Though the spherical wave basis of the eigen-
states is the intended result, the final radial wave function
is the cylindrical Bessel functions. This is because the con-
served quantity is the pseudo-angular momentum operator
with the eigenvalue j = m + 1

2 . As a result, the spherical
Bessel functions jm(kr) are transformed into the cylindrical
Bessel functions Jm(kr). The Bessel function Jm and Jm+1

should be, respectively, chosen for Fm(r) and Gm(r) regular
at the origin. Once Fm(r) and Gm(r) are known, ψm(r) in
(A5) is completely given. For more details, please refer to
Ref. [41].

These ψm(r)(m = 0,±1,±2, . . .) constitute a complete
spherical wave basis by which the Mie scattering method can
be developed to solve the electron scattering problem by a
circular potential.
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APPENDIX B: MIE SCATTERING METHOD
AND MULTIPLE SCATTERING METHOD

For an incident plane wave, it can be expanded in the
spherical wave basis as

ψin = 1√
2

+∞∑
m=−∞

im+1

(
−ipA

mJm(k0r)eimφ

αpB
mJm+1(k0r)ei(m+1)φ

)
, (B1)

by substituting the decomposition of the plane wave,

eik·r =
+∞∑

n=−∞
imeiϕk Jm(kr)eimϕ, (B2)

into (A4). Here, pA
m = e−i(m+ 1

2 )ϕk and pB
m = e−i(m− 1

2 )ϕk , with
ϕk the incident angle. (B1) is equally applicable to an incident
Gaussian beam and the difference from a plane incident wave
is only pA

m and pB
m.

We consider elastic electron scattering off a circular gate-
controlled quantum dot of radius Rs whose potential is
described by the Heaviside step function Vs�(Rs − r). The
Hamiltonian is

H0 = −ih̄vF ∇σ + Vs�(Rs − r). (B3)

The Mie scattering method now can be developed to solve
the electron scattering problem of a single gate-controlled
quantum dot (QD) in graphene [37–44] by expanding the
scattering waves and the inner waves using (B2). The scattered
waves are written as

ψs = 1√
2

+∞∑
m=−∞

amim+1

(
−iH (1)

m (k0r)eimφ

αH (1)
m+1(k0r)ei(m+1)φ

)
, (B4)

when Fm and Gm are selected as Hankel functions of the first
kind. The inner field inside the dot can be written as

ψ ins = 1√
2

+∞∑
m=−∞

dmim+1

(−iJm(ksr)eimφ

α′Jm+1(ksr)ei(m+1)φ

)
, (B5)

where Bessel functions are used to guarantee that the spinor
wave is regular at the origin. Here, k0 and ks are, respectively,
the wave vector in the background region and the QD, the
index α = 1 represents the conduction band, α′ = −1 rep-
resents the valence band, and ks = nsk0 with the refractive
index ns = E−Vs

E . After imposing the boundary condition at
the surface of the QD with its radius Rs, the size parameter

ρ = k0Rs is introduced and the scattering coefficient am is
given,

am = −Jm(ρ)Jm+1(Nρ)pA
m − αα′Jm+1(ρ)Jm(Nρ)pB

m

Jm+1(Nρ)H (1)
m (ρ) − αα′Jm(Nρ)H (1)

m+1(ρ)
, (B6)

a−m = −Jm(ρ)Jm−1(Nρ)pA
−m − αα′Jm−1(ρ)Jm(Nρ)pB

−m

Jm−1(Nρ)H (1)
m (ρ) − αα′Jm(Nρ)H (1)

m−1(ρ)
.

(B7)

The relation between the scattering coefficients a and the in-
cident coefficients (pA

pB) in (B6) and (B7) can also be expressed
as a = Sp by a scattering matrix S.

In a linear QD array, the incident wave that strikes the
surface of QD j consists of two parts: (1) the initial incident
wave ψ0

inc( j) and (2) the scattered waves of all other QDs
according to multiple scattering theory [50,51] (also known
in solid-state physics as the K.K.R. method [54,55]). Thus it
can be written as

ψinc( j) = ψ0
inc( j) +

∑
l �= j

ψs(l ). (B8)

By the translational addition theorem, the scattered wave from
any other potential l (with l �= j) can be expanded as follows:

ψs(l ) = 1√
2

+∞∑
n=−∞

a(l )
n in+1

(
−iH (1)

n (k0r)einφ

αH (1)
n+1(k0r)ei(n+1)φ

)

= 1√
2

+∞∑
m=−∞

im+1

(
−ip(l, j)

m Jm(k0r)eimφ

αp(l, j)
m Jm+1(k0r)ei(m+1)φ

)
, (B9)

where

p(l, j)
m =

∑
n

i(m−n)H (1)
m−n(kdl j )e

−i(m−n)φl j a(l )
n

and dl j = dl jcosφl j êx+dl jsinφl j êy is the vector extending
from the center of QD l to that of QD j. In the main text,
the linear QD array is placed along the x axis, so the angle
θWA between the incident wave and the array equals the angle
of incidence, φinc.

Substituting (B9) into (B8) and a( j) = Sp( j), one will yield
a set of linear equations that contains the iterative scatter-
ing coefficients. With the equations, we can compute the
scattering field at any position. In our practical numerical cal-
culation, the series expansion was truncated at some n = nc,
which is chosen such that a further increase in nc does not
change the value of the calculated field.
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