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Simple derivation of moiré-scale continuous models for twisted bilayer graphene
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We provide a formal derivation of a reduced model for twisted bilayer graphene (TBG) from Density
Functional Theory. Our derivation is based on a variational approximation of the TBG Kohn-Sham Hamiltonian
and asymptotic limit techniques. In contrast with other approaches, it does not require the introduction of an
intermediate tight-binding model. The so-obtained model is similar to that of the Bistritzer-MacDonald (BM)
model but contains additional terms. Its parameters can be easily computed from Kohn-Sham calculations on
single-layer graphene and untwisted bilayer graphene with different stackings. It allows one in particular to
estimate the parameters wAA and wAB of the BM model from first principles. The resulting numerical values,
namely wAA = wAB � 126 meV for the experimental interlayer mean distance are in good agreement with the
empirical values wAA = wAB = 110 meV obtained by fitting to experimental data. We also show that if the BM
parameters are set to wAA = wAB � 126 meV, the BM model is an accurate approximation of our reduced model.
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I. INTRODUCTION

Moiré materials [1,2] have attracted a lot of interest in
condensed matter physics since, notably, the experimental
discovery of Mott insulating and nonconventional supercon-
ducting phases [3] in twisted bilayer graphene (TBG) for
specific small twist angles θ . In particular, the experiments
reported in Ref. [3] were done with θ � 1.1◦. For such small
twist angles, the moiré pattern is quite large and typically
contains on the order of 11 000 carbon atoms. In addition, the
system is aperiodic (incommensurate), except for a countable
set of values of θ . All this makes brute force first-principle
calculations extremely challenging.

Most theoretical investigations on TBG rely on contin-
uous models [4–7] such as the Bistritzer-MacDonald (BM)
model [6], an effective continuous periodic model describing
low-energy excitations in TBG close to half filling. The BM
Hamiltonian is a self-adjoint operator on L2(R2;C4) given by

HBM
θ =

(
vFσ−θ/2 · (−i∇ ) V (kθx)

V (kθx)∗ vFσθ/2 · (−i∇ )

)
, (1)

where vF is the Fermi velocity in single-layer graphene,
σ±θ/2 = e∓i θ

4 σ3 (σ1, σ2)e±i θ
4 σ3 are rotated Pauli matrices, and

kθ = 8π
3a0

sin(θ/2), with a0 the single-layer graphene lattice
constant. The function V : R2 → C2 is quasiperiodic at the
so-called moiré scale (see Sec. III D for details) and depends
on two empirical parameters wAA and wAB describing in-
terlayer coupling in AA and AB stacking respectively. A
rigorous mathematical derivation of the BM model from a
tight-binding Hamiltonian whose parameters satisfy suitable
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scaling laws, was recently proposed in Ref. [8]. A simpli-
fied chiral BM model, obtained by setting wAA = 0, was
notably used in Refs. [9–11] to prove the existence of per-
fectly flat bands at the Fermi level for a sequence of so-called
“magic” angles. From a physical point of view, the existence
of partially occupied almost flat bands in the single-particle
picture may reflect the presence of localized strongly cor-
related electrons, and provide a possible explanation of the
experimentally observed superconducting behavior [12]. An
alternative approach to using effective models at the moiré
scale is to develop atomic-scale models and efficient compu-
tational methods adapted to incommensurate two-dimensional
(2D) heterostructures [13–17].

This article is concerned with the derivation of BM-like
effective models directly from Density Functional Theory
(DFT). In contrast with other approaches [6,8,18–22], our
derivation does not involve an intermediate tight-binding
model and is based on real-space (not momentum-space)
computations.

II. APPROXIMATION OF THE KOHN-SHAM
HAMILTONIAN FOR TBG

A. Single-layer graphene

We denote the position variable by r = (x, z) ∈ R3 where
x = (x1, x2) ∈ R2 and z ∈ R are, respectively, the longitudinal
(in-plane) and transverse (out-of-plane) position variables. Let
V be the Kohn-Sham potential for a single-layer graphene in
the horizontal plane z = 0. The space group of graphene is
Dg80 = D6h � L (p6/mmm), so V has the honeycomb sym-
metry and is L periodic, where L = Za1 + Za2 and

a1 = a0

(
1/2

−√
3/2

)
and a2 = a0

(
1/2√
3/2

)
.
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FIG. 1. Single-layer graphene. Left: atomic positions of the car-
bon atoms (A and B sublattices) in the physical space, and lattice
vectors a1 and a2. Right: reciprocal lattice vectors a∗

1 and a∗
2 , and

first Brillouin zone in momentum space; the positions of the K and
K′ Dirac points are also indicated.

Here, a0 = √
3a is the graphene lattice constant (a � 0.142

nm � 2.68 bohr is the carbon-carbon nearest-neighbor dis-
tance). We set � := R2/L the Wigner-Seitz cell (see Fig. 1).

The single-layer graphene Kohn-Sham Hamiltonian reads

H (1) := − 1
2� + V. (2)

We denote by H (1)
k its Bloch fibers. Recall that these operators

have domains representing the k–quasiperiodic boundary con-
ditions �(x − R, z) = eik·R�(x, z) for all R ∈ L. The map
k �→ H (1)

k is L∗ periodic, where L∗ is the dual lattice of L.
Explicitly, L∗ = a∗

1Z + a∗
2Z with

a∗
1 =

√
3kD

(√
3/2

−1/2

)
and a∗

2 =
√

3kD

(√
3/2

1/2

)
,

where kD := 4π
3 a0

. At the special Dirac point

K := 1
3 (a∗

1 + a∗
2 ) = kD(1, 0)T , (3)

H (1)
K has an eigenvalue of multiplicity 2 at the Fermi level μF .

We denote by �1 and �2 two corresponding eigenvectors, ori-
ented so that 〈�1, (−i∇x)�1〉 = 〈�2, (−i∇x)�2〉 = (0, 0)T ,
and

〈�1, (−i∇x)�2〉 = vF

(
1
−i

)
, (4)

with vF > 0 the Fermi velocity. We refer to the Supplemental
Material [23] for an explanation of how to achieve such an
orientation. Finally, we denote by u1 and u2 the periodic parts
of �1 and �2, i.e., u j (r) := � j (r)e−iK·x.

B. Kohn-Sham model for TBG

We now consider two parallel layers of graphene, separated
by a distance d > 0, and with a twist angle θ between the two.
More precisely, we first place the top layer in the plane z = d

2

and the bottom layer in the plane z = − d
2 in AA stacking, and

then rotate counterclockwise the top layer by −θ/2 and the
bottom layer by θ/2 around the z axis, placing the origin at
the center of a carbon hexagon. We set

cθ := cos
θ

2
and εθ := 2 sin

θ

2
.

Note that εθ ∼ θ in the small-angle limit. We denote by Rθ the
2D rotation matrix of angle θ ∈ R, specifically

Rθ := cθ I2 − εθJ, with J :=
(

0 1
−1 0

)
,

and we introduce the unitary operator

(Ud,θ f )(x, z) := f (R∗
−θ/2x, z) = f

(
cθx − 1

2
εθJx, z − d

2

)
.

The inverse of Ud,θ is U −1
d,θ

= U ∗
d,θ = U−d,−θ .

For twist angles θ giving rise to a periodic structure at the
moiré scale, the TBG Kohn-Sham potential is a well-defined
moiré-periodic function. It is unclear how to define a mean-
field potential for incommensurate twist angles. This problem
actually occurs for all infinite aperiodic systems (see Ref. [24]
for a mathematical definition of a mean-field model in an
ergodic setting). Here, we assume that this potential exists,
and can be approximated using the procedure in Ref. [25]. We
consider an approximate Kohn-Sham potential for the TBG of
the form

V (2)
d,θ

(x, z) := (Ud,θV )(x, z) + (
U −1

d,θV
)
(x, z) + Vint,d (z).

Each component U ±1
d,θ

V represents a layer of graphene shifted

by ± d
2 ez, and twisted by an angle ∓θ/2. The last term Vint,d

is a correction which takes into account the relaxation of the
Kohn-Sham potential due to interlayer coupling. This term is
constructed as follows. For each disregistry vector y ∈ �, we
denote by V (2)

d,y the mean-field Kohn-Sham potential for the
configuration where the two layers are aligned (no twist angle)
with the top one shifted by y in the longitudinal direction. The
potential Vint,d (z) is defined as the average

Vint,d (z) =
 

�

Vint,d,y(z)dy

where
ffl

�
:= |�|−1

´
�

, and with Vint,d,y(z) defined by
 

�

(
V (2)

d,y (x, z) − V

(
x, z + d

2

)
− V

(
x − y, z − d

2

))
dx.

In other words, Vint,d is the mismatch between the interacting
Kohn-Sham potential and the noninteracting one, averaged
over all possible disregistries y ∈ �. Note that Vint,d(z) only
depends on the z variable and satisfies Vint,d (−z) = Vint,d (z).

In what follows, we study the approximate TBG Kohn-
Sham Hamiltonian

H (2)
d,θ

:= − 1
2� + V (2)

d,θ
(x, z). (5)

Our goal is to derive a 2D reduced model describing the low-
energy band structure around the Fermi level μF in the limit
of small twist angles.

III. REDUCED MODEL

The potential V (2)
d,θ

is of the form V (2)
d,θ

(x, z) =
vd (cθx, εθ x, z), with

vd (x, X, z) := V

(
x − 1

2
JX, z − d

2

)
+ V

(
x + 1

2
JX, z + d

2

)
+ Vint,d (z).
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The potential vd is L periodic in the first variable x, and
2JL periodic in its second variable X. In the limit θ → 0,
vd (cθx, εθ x, z) has a natural two-scale structure, so that H (2)

d,θ

could be studied using adiabatic theory, semiclassical anal-
ysis, and/or homogenization theory. In this article however,
we take a different route, and present a simple approximation
scheme to derive an effective Hamiltonian describing elec-
tronic transport around the Fermi level.

A. Variational approximation of low-energy
wavepacket dynamics

The main idea of our approach is to project the time-
dependent Schrödinger equation

i∂t
(t, r) = (
H (2)

d,θ
− μF

)

(t, r), 
(0, r) = 
0(r) (6)

onto the two-scale approximation space

Xd,θ := {(α : �)d,θ , α : R2 → C4}, (7)

where we set

(α : �)d,θ (x, z) :=
∑
η∈{±1}
j∈{1,2}

αη, j (εθx)
(
U η

d,θ
� j

)
(x, z).

The trial functions in Xd,θ are linear combinations of four
wavepackets, each one consisting of an envelope function α

oscillating at the moiré scale ε−1
θ multiplied by one of the two

(translated and rotated) Bloch waves �1 or �2 of one of the

two layers. Note that both the TBG approximation subspace
Xd,θ and Hamiltonian H (2)

d,θ
depend on the small parameter θ .

Given an initial state of the form 
0 = (α0 : �)d,θ , the
true solution 
(t ) of Eq. (6) is expected to be close to
(α(εθ t ) : �)d,θ up to times of order ε−1

θ , where α(t ) satisfies
α(t = 0) = α0, and solves the projected equation

i∂t 〈(̃α : �)d,θ , (α(εθ t ) : �)d,θ 〉
= 〈

(̃α : �)d,θ ,
(
H (2)

d,θ
− μF

)
(α(εθ t ) : �)d,θ

〉
(8)

for all α̃ : R2 → C4. The time variable has to be rescaled as
τ := εθ t in order to obtain wavepacket propagation with finite
velocity at the moiré scale.

B. Formulation of the reduced model

It follows from tedious calculations detailed in Appendix A
that if we let θ go to zero in Eq. (8) for fixed trial smooth
functions α̃ and α, we obtain the asymptotic equality

i∂τ 〈̃α,Sdα(τ )〉 = 〈̃α,Hd,θα(τ )〉 + O
(
ε∞
θ

)
, (9)

where the overlap operator Sd and the Hamiltonian operator
Hd,θ act on L2(R2;C4), and are defined by

Sd :=
(

I2 �d (X)
�∗

d (X) I2

)
and

Hd,θ :=
(

vFσ−θ/2 · (−i∇X) ε−1
θ Vd (X)

ε−1
θ Vd (X)∗ vFσθ/2 · (−i∇X)

)
+

(
ε−1
θ W +

d 0

0 ε−1
θ W −

d

)

+
(

0 cθJ (−i∇�d (X)) · (−i∇ )
cθ J (−i∇�∗

d )(X) · (−i∇ ) 0

)
− εθ

2
∇ ·

((
I2 �d (X)

�∗
d (X) I2

)
∇•

)
. (10)

The 2 × 2 matrix-valued functions �d (X), Vd (X), and Wd (X) are given by

[�d (X)] j j′ := e−iJK·X((u j, u j′ ))
+−
d (X),

[Vd (X)] j j′ := e−iJK·X
(((

V + Vint,d

(
· +d

2

))
u j, u j′

))+−

d

(X),

[W ±
d (X)] j j′ := ((u ju j′ ,V ))±∓

d (X) + (
W ±

int,d

)
j j′

,

where for all L-periodic functions f and g

(( f , g))ηη′
d (X) :=

ˆ
�×R

f

(
x − η

1

2
JX, z − η

d

2

)
× g

(
x − η′ 1

2
JX, z − η′ d

2

)
dx dz, (11)

and where

(W ±
int,d ) j j′ :=

ˆ
�×R

(u ju j′ )

(
x, z ∓ d

2

)
Vint,d (z)dx dz.

All these quantities can be computed from the single-layer
potential V , the Bloch wavefunctions u1 and u2, and the Kohn-
Sham correction potential Vint,d .

It is not obvious that the operator Hd,θ is Hermitian.
It is however the case. For instance, one can check that

((u, v))+−
d (X) = ((u, v))+−

d (X), which proves that the matrices
W +

d (X) and W −
d (X) are Hermitian. In addition, from the

equality divJ∇ = −∂2
x1x2

+ ∂2
x2x1

= 0, we see that the third
matrix in the definition Eq. (10) of Hd,θ also defines an Her-
mitian operator.

The asymptotic equality Eq. (9) leads us to introduce the
following effective model for the propagation of low-energy
wavepackets in TBG:

i∂τ (Sdα)(τ, X) = (Hd,θα)(τ, X). (12)

At this stage, we have kept all the terms in Sd and Hd,θ ,
and only thrown away the remainders of order ε∞

θ . Indeed,
εθ should not be considered as the only small parameter in
this problem. The interlayer coupling is also small, hence the
operators W ±

d can be considered to be small as well. The
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FIG. 2. Moiré lattice vectors for twist angle θ � 2.2◦.

interplay between the two parameters εθ and w (the inter-
layer characteristic interaction energy) is subtle and will be
explored in a future work.

Remark 1. A similar approach can be used to derive an
effective model for wavepacket propagation in monolayer
graphene in an energy range close to the Fermi level and
localized in the K valley in momentum space. One obtains
the effective Hamiltonian

H(1)
ε = vF σ · (−i∇ ) + 1

2ε(−i∇ )2

acting on L2(R2;C2). Neglecting the second term, we recover
the usual massless Dirac operator. This effective model was
rigorously derived in Ref. [26] using other methods.

C. Translational covariance

For any L-periodic functions f and g, the maps
(( f , g))±∓

d (X) defined in Eq. (11) are JL periodic. This sug-
gests to introduce the rescaled moiré lattice

LM := JL,

which satisfies LM = a1,MZ + a2,MZ with lattice vectors
a1,M = Ja1 and a2,M = Ja2. Explicitly,

a1,M = a0

(−√
3/2

−1/2

)
and a2,M = a0

(√
3/2

−1/2

)
.

The corrresponding Wigner–Seitz cell is �M := R2/LM, and
its dual basis is given by a∗

1,M = Ja∗
1 and a∗

2,M = Ja∗
2, that is

a∗
1,M =

√
3kD

( −1/2
−√

3/2

)
and a∗

2,M =
√

3kD

(
1/2

−√
3/2

)
.

We also introduce the vectors (see Fig. 3)

q1 := kD

(
0

−1

)
= 1

3
(a∗

1,M + a∗
2,M),

q2 := kD

(√
3

2
1
2

)
= 1

3
(−2a∗

1,M + a∗
2,M) = R 2π

3
q1,

q3 := kD

(
−

√
3

2
1
2

)
= 1

3
(a∗

1,M − 2a∗
2,M) = R 2π

3
q2.

FIG. 3. Path K2 → K1 → �′ → M → � → K2 in momentum
space, the hexagon centered at � corresponds to the mini Brillouin
zone.

These vectors satisfy q1 + q2 + q3 = 0 and correspond to
the K valley of the moiré Brillouin zone. Actually, we have
q1 = JK.

Going back to our reduced model, we see that the diagonal
elements W ±

d are LM periodic, while for RM ∈ LM ,

Vd (X − RM ) = eiq1·RMVd (X), (13)

and similarly for �d . Writing RM = m1a1,M + m2a2,M , we
have eiq1·RM = ω(m1+m2 ), where we set ω := ei 2π

3 . Since ω3 =
1, our model is 3LM periodic.

Thus, although the true moiré pattern generated by the
superposition of two twisted honeycomb lattices is not pe-
riodic for a generic twist angle θ , our reduced model is. In
some sense, the moiré pattern looks ε−1

θ LM periodic at the
mesoscopic scale ε−1

θ for θ � 1 (see Fig. 2).

D. Comparison with the Bistritzer-MacDonald model

The BM Hamiltonian [Eq. (1)] can be written more explic-
itly [6,8,9] as

HBM
θ =

(
vFσ−θ/2 · (−i∇x) V (εθx)

V (εθx)∗ vFσθ/2 · (−i∇x)

)
,

with

V (X) :=
(

wAA G(X) wAB F (−X)
wAB F (X) wAA G(X)

)
, (14)

where wAA and wAB are the two real parameters describing
the interlayer coupling in AA and AB stacking, and

F (X) := e−iq1·X + ωe−iq2·X + ω2e−iq3·X, (15)

G(X) := e−iq1·X + e−iq2·X + e−iq3·X. (16)

The BM potential satisfies, for all RM ∈ LM ,

V (X − RM ) = eiq1·RMV (X) = ω(m1+m2 )V (X), (17)

so that the BM potential V and our reduced potential V have
the same covariance symmetries. They actually share many
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other symmetries (see Sec. II in the Supplemental Materials
[23] for a comprehensive analysis of the symmetries of our
reduced model).

Rescaling lengths and energies as X = εθx and E = ε−1
θ E

(in the BM model, the Fermi level is set to zero), we obtain
the rescaled BM Hamiltonian

HBM
θ =

(
vFσ−θ/2 · (−i∇X) ε−1

θ V (X)

ε−1
θ V (X)∗ vFσθ/2 · (−i∇X)

)
. (18)

Going back to our model in Eq. (10), we see that the two
models are similar under the following assumptions (which
will be justified numerically in Sec. IV): (1) the matrix �d (X)
and its gradient can be neglected; (2) the term − 1

2εθ� can be
neglected, which is the case if the oscillations of the envelope
functions αη, j at the moiré scale contribute more than those
at the atomic scale; (3) the functions W ±

d are almost propor-
tional to the identity matrix (and thus only induce a global
energy shift); (4) the function Vd is close to Eq. (14) for some
well-chosen parameters wAA and wAB.

As for the last point, first-principle values of the BM pa-
rameters can be inferred from our reduced model by setting

wd
AA := 1

3|�M|
ˆ

�M

[Vd ]11(X)G(X) dX, (19)

wd
AB := 1

3|�M|
ˆ

�M

[Vd ]21(X)F (X) dX, (20)

where we used the fact that
´

�M
|F |2 = ´

�M
|G|2 = 3|�M|.

Note that from Eqs. (13) and (17), the integrands are LM-
periodic functions, and that |�M| = |�| =

√
3

2 a2
0. We prove in

Appendix B that wd
AA = wd

AB.

IV. NUMERICAL RESULTS

In this section, we numerically study the generalized spec-
tral problem associated with the operators (Hd,θ ,Sd ). Due to

the energy shift in Eq. (6) and the rescaling by εθ , the spectrum
of the operator H (2)

d,θ
close to μF is related to the spectrum of

(Hd,θ ,Sd ) around 0 by

σ
(
H (2)

d,θ

) � μF + εθσ (Hd,θ ,Sd ) = μF + εθσ (H̃d,θ , S̃d ),

where H̃d,θ and S̃d are LM-periodic operators obtained from
Hd,θ and Sd by the gauge transformation specified in the next
section.

A. Gauge transformation

First, we perform a gauge transformation in order to
remove the phase factors in Eq. (13) and end up with an LM-
periodic model. The same arguments can be used for the BM
model. Let K1 and K2 be two vectors such that K1 − K2 = q1,
e.g., K2 = q3, and K1 = −q2 (recall that q1 + q2 + q3 = 0).
We introduce the unitary multiplication operator

P(X) :=
(

eiK1·XI2 0
0 eiK2·XI2

)
,

with inverse P−1(X) = P∗(X) = P(−X). First, we have

S̃d := PSd P∗ =
(

I2 �̃d (X)

�̃d
∗
(X) I2

)
,

with �̃d (X) = ei(K1−K2 )·X�d (X). Using the definition of �d

and the fact that q1 = JK, we obtain

�̃d (X) = eiq1·X�d (X) = ((u j, u j′ ))
+−
d (X).

The S̃d matrix-valued function is now LM periodic. Similarly,
we find, using the notation ∇k := ∇ − ik,

H̃d,θ =
(

vFσ−θ/2 · (−i∇K1 ) ε−1
θ Ṽd (X)

ε−1
θ Ṽd (X)∗ vFσθ/2 · (−i∇K2 )

)
+

(
ε−1
θ W̃ +

d 0

0 ε−1
θ W̃ −

d

)

+
(

0 cθJÃd (X) · (−i∇K2 )

cθ JÃ∗
d (X) · (−i∇K1 ) 0

)
+ εθ

2

(
(−i∇K1 )2 (−i∇K1 ) · [�̃d (−i∇K2 )•]

(−i∇K2 ) · [�̃d
∗
(−i∇K1 )•] (−i∇K2 )2

)
,

(21)

with components given by

[�̃d (X)] j j′ := ((u j, u j′ ))
+−
d (X),

[Ṽd (X)] j j′ :=
(((

V + Vint,d

(
· +d

2

))
u j, u j′

))+−

d

(X),

[W̃ ±
d (X)] j j′ := ((u ju j′ ,V ))±∓

d (X) + (W ±
int,d ) j j′ ,

Ãd := eiq1x(−i∇�d ) = (−i∇q1 )�̃d .

In this gauge, the model is LM periodic, and we can apply
the usual Bloch transform to compute its band diagram. For
the sake of illustration, we display on Figs. 4 and 5 the band
diagrams of the BM model (black) and of our continuous

model (red). The path in momentum space used to produce
the bands diagrams is displayed in Fig. 3.

Quantities are computed with d = 6.45 bohr for our ef-
fective model. There are at least two ways of characterizing
special angles associated to almost flat bands: the standard
one is to consider the local minimizers of the Fermi velocity
(called magic angles); an alternative consists of considering
the local minimizers of the almost flat bands bandwidth.
We choose here the second way. The first minimizing angle
is θ � 1.175◦ for the BM model (black lines) with wAA =
wAB = 110 meV, and θ � 1.164◦ for our effective model (red
lines). A noticeable difference between our effective model
and the BM model is that for both definitions of the special
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FIG. 4. Left: band diagram of HBM
θ (black) with wAA = wAB =

110 meV for the first bandwidth minimizing angle θ � 1.175◦ (band-
width 1.1 meV). Right: band diagram of (H̃d,θ , S̃d ) (red) for the first
minimizing bandwidth angle θ � 1.164◦ (bandwidth 2.3 meV). In
both cases, the zero of the energy scale is the center of the almost flat
band which is obtained by shifting the middle band diagram (red) of
957 meV.

angles (minimal Fermi velocity vs minimal bandwidth), the
BM Hamiltonian is not gapped at the flat bands while ours
is so. Finally, we remark that the BM model with wAA =
wAB = 110 meV (the empirical values used in Ref. [6]) is a
better approximation of our model than the BM model with
wAA = wAB = 126 meV (the values derived from DFT, see
next section).

A thorough comparison of the band diagrams of various
continuous models (including atomic relaxation) will be the
matter of a forthcoming paper.

B. Numerical details

In order to numerically compute the Fourier coefficients of
[�̃d ] j j′ , [Ṽd ] j j′ , and [W̃ ±

d ] j j′ , we have developed a code in
Julia [27], interfaced with the DFTK planewave DFT package
[28].

The single-layer graphene Kohn-Sham model is solved
with DFTK using the PBE exchange-correlation functional
with Goedecker-Teter-Hutter (GTH) pseudopotential, a unit
cell of height Lz = 110 bohr, an energy cutoff of Ecut =
900 eV, and a (5 × 5 × 1) k-point grid. We extract from the
DFTK computation L-periodic functions u1 and u2 such that

FIG. 5. Normalized Fermi velocities vF,θ /vF, band gaps, and
bandwidths of the almost flat bands, where vF is the Fermi velocity
of the monolayer of HBM

θ (black) with wAA = wAB = 110 meV, of
HBM

θ (blue) with wAA = wAB = 126 meV, and of (H̃d,θ , S̃d ) (red) as
functions of θ .

�1(r) = eiK·xu1(r) and �2(r) = eiK·xu2(r) form an orthog-
onal basis of Ker(H (1)

K − μF), where H (1)
K is the Bloch fiber

of the single-layer graphene Kohn-Sham Hamiltonian at the
Dirac point K. We also extract the local component of the
single-layer graphene Kohn-Sham potential V (as well as the
required information on the nonlocal component of the car-
bon atom GTH pseudopotential, see Supplemental Materials
[23] for details). More precisely, DFTK returns the Fourier
coefficients of the L-periodic functions u j [assumed to be
well-oriented, see Eq. (4)] and V , of the form

f (r) =
∑

m1,m2,mz∈Z
[ f ]m1,m2,mz

ei
(

(m1a∗
1+m2a∗

2 )·x+mz
2πz
Lz

)
|�|1/2L1/2

z

. (22)
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FIG. 6. Effective potential Vint,d and in-plane averages of the ver-
tically shifted single-layer Kohn-Sham potential V and Bloch wave
densities |�1|2 for interlayer distance d = 6.45 bohr.

At the discrete level, these sums are finite and run over the
triplets of integers (m1, m2, mz ) ∈ Z3 such that

|m1a∗
1 + m2a∗

2 + K|2 + m2
z

4π2

L2
z

2
� Ecut.

The Kohn-Sham potential V (2)
int,d is computed by averaging

the disregistries y in a (5 × 5) uniform grid of the graphene
unit cell. In the results reported below, we used the experi-
mental interlayer mean distance d = 6.45 bohr. In accordance
with the results in Ref. [25], the potential Vint,d,y(z) only
slightly depends on y:

δVint,d :=
´

�×R

∣∣Vint,d,y(z) − Vint,d(z)
∣∣2

dydz

|�| ´R Vint (z)2 dz
� 1 × 10−4.

The effective potential Vint,d and in-plane averages of the ver-
tically shifted single-layer Kohn-Sham potential V and Bloch
wave densities |�1|2 are plotted in Fig. 6.

For f and g of the form Eq. (22), we find that

(( f , g))+−
d (X) =

∑
m1,m2∈Z

[ f |g]d,m1,m2

ei(m1a∗
1,M+m2a∗

2,M )·X

|�M |1/2
,

where the coefficient [ f |g]d,m1,m2 is given by

|�M|1/2
∑

mz∈Z
[ f ]−m1,−m2,mz [g]−m1,−m2,mz e

imz
2π
Lz

d
.

For d = 6.45 bohr, we obtain the BM parameters

wd=6.45 a.u.
AA = wd=6.45 a.u.

AB � 126 meV,

in good agreement with the value wAA = wAB = 110 meV
chosen in Ref. [6] to fit experimental data.

C. Numerical justification of the Bistritzer-MacDonald model

As discussed in Sec. III D, the BM model can be deduced
from our reduced model by assuming that �d (X) and its
gradient can be neglected, that W ±

d (X) is proportional to the
identity matrix, and that Vd (X) is of the form Eq. (14) for
some well-chosen parameters wAA and wAB. To test these
assumptions, we first plot in Figs. 7–10 the real-space struc-
tures and magnitudes of the functions [�d ] j j′ (X), |∇�d (X)|,
[W ±

d ] j j′ (X) − ffl
�

[W ±
d ] j j′ , and [Vd ] j j′ (X) − V j j′ (X) for d =

6.45 bohr and wAA = wBB = 126 meV. We can see these

FIG. 7. The 4 entries of, respectively, the real part, the imaginary
part, and the modulus of the matrix-valued function �d (X) for d =
6.45 bohr.

fields are indeed small in the relevant units: �d (X) is small
(∼0.03 compared to 1), |∇�d (X)| is small (∼0.03 com-
pared to the Fermi velocity vF � 0.380), and Vd (X) − V (X)
and W ±

d (X) − ffl
�
W ±

d are small (respectively, ∼1 meV and
∼40 meV compared to the interlayer characteristic interaction
energy 126 meV). This provides a new argument supporting
the validity of the BM model.

FIG. 8. The 4 entries of the matrix-valued function |∇�d (X)|/vF

for d = 6.45 bohr.
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FIG. 9. The 4 entries of, respectively, the real part, the imaginary
part, and the modulus of the matrix-valued function Vd (X) − V (X)
for d = 6.45 bohr and wAA = wBB = 126 meV.

V. CONCLUSION AND PERSPECTIVES

We have proposed a simple direct space construction of an
effective model for TBG at the moiré scale from DFT based
on

FIG. 10. The 4 entries of, respectively, the real part, the imagi-
nary part, and the modulus of the matrix-valued function W +

d (X) −ffl
�
W +

d for d = 6.45 bohr.

(1) an approximation of the TBG Kohn-Sham Hamiltonian
following the method introduced in Ref. [25];

(2) a variational approximation of the so-obtained Hamil-
tonian at the Dirac point K around the Fermi level;

(3) an asymptotic expansion valid for small twist angles θ .
This effective model has a structure similar to the one of the

Bistritzer-MacDonald model, but contains additional terms: a
nontrivial overlap operator Sd , intralayer effective potentials
W ±

d , more complicated interlayer effective potentials Vd , and
higher-order corrections. We show numerically that both mod-
els give rise to similar band diagrams, the main difference
being that at the first magic angle, the almost flat bands are
separated from the rest of the spectrum in our model, which is
not the case in the BM model.

It is well established that atomic relaxation plays a key
role in the electronic properties of TBG (see, e.g., Ref. [29]
and references therein), especially at very small twist angles
θ < 1◦. We derived our reduced model Eq. (12) for an un-
relaxed configuration, but it can be extended to take both
in-plane and out-of-plane relaxation [19,30,31] into account.
The derivation and numerical simulation of such a model is
work in progress.

The same methodology can be applied to study the prop-
agation of low-energy wavepackets localized in momentum
space in both the K and K′ valleys. The approximation space
then contains functions of the form

(α : �)d,θ (x, z) :=
∑

p∈{K,K′}

∑
η∈{±1}
j∈{1,2}

αη, j,p(εθx)
(
U η

d,θ
�

p
j

)
(x, z).

For the unrelaxed configuration, it can be checked that the
two valleys are uncoupled. Intervalley coupling may appear,
however, when taking atomic relaxations into account.
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APPENDIX A: DERIVATION OF THE EFFECTIVE MODEL

Our goal is to identify the leading orders terms in Eq. (8)
in the limit of small twist angle. For that, we use the following
elementary lemmas. Here S is the Schwartz class of smooth
function decaying faster than any polynomial.

Lemma 1. Let β ∈ S (R2,C) and u ∈ L1
per (� × R;C).

Then, as ε → 0, we haveˆ
R3

β(εx)u(x, z) dx dz = ε−2

(
1

|�|
ˆ

�×R
u

)(ˆ
R2

β

)
+ O(ε∞).

Proof. Expanding u as u(x, z) = ∑
G∈L∗ uG(z)eiG·x and

making the change of variable X = εx, we obtain that the
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left-hand side equals

ε−2
∑

G∈L∗

(ˆ
R

uG(z)dz

) ˆ
R

β(X)eiε−1G·X dX

= ε−2
∑

G∈L∗

(ˆ
R

uG(z) dz

)
β̂(ε−1G).

As β ∈ S (R2;C), β̂ decays faster than any polynomial. Iso-
lating the term G = 0 gives the result. �

We now denote by L2
K the set of locally square integrable

functions which are K quasiperiodic.
Lemma 2. Let β ∈ S (R2,C), �,�′ ∈ L2

K(� × R;C), and
η, η′ ∈ {±1}. Then, as ε → 0, we have

ˆ
R3

β(εθx)
(
U η

d,θ
� · U η′

d,θ
�′)(x, z) dx dz

= ε−2
θ

|�|
ˆ
R2

β(X)〈〈�,�′〉〉ηη′
d (X)dX + O

(
ε∞
θ

)
,

where 〈〈�,�′〉〉ηη′
d (X) is defined by

ˆ
�×R

�

(
x − η

1

2
JX, z − η

d

2

)
× �′

(
x − η′ 1

2
JX, z − η′ d

2

)
dx dz.

In the case η = η′, we have 〈〈�,�′〉〉ηη′
d (X) =

〈�,�′〉L2(�×R), independent of X. When η �= η′, the function

〈〈�,�′〉〉ηη′
d (X) does depend on X in general and is JL

periodic.
Comparing 〈〈·, ·〉〉d and ((·, ·))d in Eq. (11), we see that with

� = eiK·xu,

〈〈�,�′〉〉+−
d (X) = e−iJK·X((u, u′))+−

d (X),

and

〈〈�,�′〉〉++
d = ((u, u′))++

d = 〈�,�′〉 = 〈u, u′〉.

In what follows, we express our quantities with 〈〈�,�′〉〉d , but
we translated our results with ((u, u′))d to present our reduced
model.

Proof of Lemma 2. In the case η = η′, the left-hand side
equals

ˆ
R3

β(εθx)(��′)
(

Rη θ
2
x, z − η

d

2

)
dx dz

= ε−2
θ

ˆ
R3

β(X)(��′)
(
ε−1
θ Rη θ

2
X, z

)
dX dz.

As the function ��′ is L periodic, the result can be obtained
by applying the same arguments as in the proof of Lemma 1.

Let us now focus on the case when η �= η′, and prove the
result for η′ = +1 and η = −1, the other case being similar.
Let u(r) := e−iK·x�(r) and u′(r) := e−iK·x�′(x) be the peri-
odic components of the Bloch waves � and �′ respectively.

We have (
Ud,θ� · U −1

d,θ �
′)(x, z)

= eiKεθ ·Jxu

(
cθx − 1

2
εθJx, z − d

2

)
× u′

(
cθ x + 1

2
εθJx, z + d

2

)
.

Introducing the Fourier expansions of u and u′, this is also

1

|�|
∑

G,G′∈L∗

[
uG

(
z − d

2

)
u′

G′

(
z + d

2

)
ei(G′−G)·cθ x

]

× ei
1
2 (G+G′+2K)εθ ·Jx

.

Note that the last phase factor varies at the moiré scale. The
term in brackets is a c−1

θ L-periodic function with zero mean
unless G = G′. Reasoning as above, we obtain

ˆ
R3

β(εθx)
(
U η

d,θ
� · U η′

d,θ
�′)(x, z) dx dz

= ε−2
θ

|�|
ˆ
R2

β(X)

[
eiK·JX

∑
G∈L∗

( ˆ
R

uG

(
z − d

2

)

× u′
G

(
z + d

2

)
dz

)
eiG·JX

]
dX + O

(
ε∞
θ

)
.

Finally, by Parseval theorem, the term in brackets is equal to
〈〈�,�′〉〉ηη′

d (X), which proves the result. �

1. Effective overlap operator

Let us first focus on the left-hand side of Eq. (8). Set-
ting �η j := U η

d,θ
� j , we have (all quantities are summed over

η, η′ ∈ {±1} and j, j′ ∈ {1, 2})

〈(̃α : �)d,θ , (α(εθ t ) : �)d,θ 〉

=
ˆ
R3

(̃αη jαη′ j′ (t ))(εθx) × (�η′ j′�η j )(x, z) dx dz.

Using directly Lemma 2 (with β = α̃η jαη′ j′ ), we obtain that
this term equals

ε−2
θ

ˆ
R2

(̃αη jαη′ j′ (εθ t ))(X)〈〈� j,� j′ 〉〉ηη′
d (X)dX

up to errors of order O(ε∞). Ranking the components of α as
α = (α+,1, α+,2, α−,1, α−,2)T (the first two entries correspond
to the top layer, the last two to the bottom one), we obtain

∂t 〈(̃α : �)d,θ , (α(εθ t ) : �)d,θ 〉 = ε−1
θ

|�| 〈̃α,Sd∂τα(εθ t )〉

up to errors of order O(ε∞
θ ), with

Sd =
(

I2 �d (X)
�∗

d (X) I2

)
, [�d ] j j′ (X) := 〈〈� j,� j′ 〉〉+−

d (X).
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2. Effective Hamiltonian operator

We now focus on the terms on the right-hand side. First,
we record that( − 1

2�r
)
[β(εθ x)ϕ(r)]

= ε2
θ

( − 1
2�β

)
(εθx)ϕ(r) + εθ (−i∇β )(εθx) · (−i∇xϕ)(r)

+ β(εθx)
( − 1

2�ϕ
)
(r). (A1)

This gives〈
(̃α : �)d,θ ,

(
H (2)

d,θ
− μF

)
(α : �)d,θ

〉 = g1 + g2 + g3,

with

g1 := ε2
θ

ˆ
R3

[
α̃η, j

(
−1

2
�αη′, j′

)]
(εθx)(�η, j�η′, j′ )(r)dr,

g2 := εθ

ˆ
R3

[̃αη, j (−i∇αη′, j′ )](εθx) · [�η, j (−i∇x�η′, j′ )](r)dr,

g3 :=
ˆ
R3

[̃αη, jαη′, j′ (εθx)] · [�η, j ×
(
H (2)

d,θ
− μF

)
�η′, j′ )

]
(r)dr.

For the first term g1, we apply directly Lemma 2, which gives

g1 = 1

|�|
ˆ
R2

(
α̃η j

(
−1

2
�αη′ j′

))
(X)〈〈� j,� j′ 〉〉ηη′

d (X)dX

up to errors of order O(ε∞
θ ). This term can be written as g1 =

|�|−1〈̃α, G1α〉 + O(ε∞
θ ) with

G1 := Sd (X)
( − 1

2�
)
.

For the second term g2, we first notice that

(−i∇x�η′, j′ )(r) = (−i∇x)

[
� j′

(
R−η′

−θ/2x, z − η′ d
2

)]
= Rη′

−θ/2

[
U η′

d,θ
(−i∇x� j′ )

]
(r).

This gives, using arguments similar to the ones of Lemma 2,
that g2 equals

ε−1
θ

|�|
ˆ
R2

(̃
αη j (−i∇αη′ j′ )

)
(X) · Rη′

−θ/2〈〈� j, (−i∇x� j′ )〉〉ηη′
d

× (X)dX

up to errors of order O(ε∞). To deal with the diagonal terms
η = η′, we use our orientation Eq. (4). Regarding the off-
diagonal terms (here for η = +1 and η′ = −1), we have,

using that JT = −J ,

∇〈〈�,�′〉〉+−
d (X) = 1

2
J
ˆ

�×R
(∇x�)

(
x − 1

2
JX, z − d

2

)
× �′

(
x + 1

2
JX, z + d

2

)
dx dz

− 1

2
J
ˆ

�×R
�

(
x − 1

2
JX, z−d

2

)
(∇x�

′)

×
(

x + 1

2
JX, z + d

2

)
dx dz.

Integrating by part the first term in the RHS, and multiply-
ing by (−i) shows that

〈〈�, (−i∇x)�′〉〉+−
d = J (−i∇ )〈〈�,�′〉〉+−

d .

Similarly, in the case η = −1 and η′ = 1, we have

〈〈�, (−i∇x)�′〉〉−+
d = −J (−i∇ )〈〈�,�′〉〉−+

d .

This gives g2 = |�|−1〈̃α, G2α〉 + O(ε∞
θ ) with G2 of the form

(we use that R−θ/2 = cθI2 + 1
2εθJ)

cθ

εθ

(
vF σ · (−i∇ ) J (−i∇�d )(X) · (−i∇ )

J (−i∇�∗
d )(X) · (−i∇ ) vF σ · (−i∇ )

)
+ 1

2

(
vF σ · [J (−i∇ )] (−i∇�d )(X) · (−i∇ )

(−i∇�∗
d )(X) · (−i∇ ) −vF σ · [J (−i∇ )]

)
.

Finally, for the term g3, we recall that � j is an eigenvector of
the single-layer graphene Hamiltonian H (1) associated with
the eigenvalue μF and get[(

H (2)
d,θ

− μF
)
�η, j

] = (
U −η

d,θ
V

)
(r)�η, j (r) + Vint,d (z)�η, j (r),

and

g3 =
ˆ
R3

[(̃αη′, j′αη, j )(εθx)]

× [(
U −η

d,θ
V

)
�η′, j′�η, j + Vint,d�η′, j′�η, j

]
(r)dr.

Using reasoning similar to the proof of Lemma 2, we obtain
that g3 = 〈̃α, G3α〉 + O(ε∞

θ ), with

G3 = ε−2
θ

(
W +

d (X) Vd (X)
Vd (X)∗ W −

d (X)

)
,

where [recall that the notation (( f , g))d was defined in Eq. (11),
and is used when f and g are periodic]

[Vd (X)] j j′ = 〈〈V � j,� j′ 〉〉+−
d (X) +

ˆ
�×R

� j

(
x − 1

2
JX, z − d

2

)
� j′

(
x + 1

2
JX, z + d

2

)
Vint,d (z) dr,

[W ±
d (X)] j j′ = ((� j� j′ ,V ))±∓

d (X) +
ˆ

�×R
(� j� j′ )

(
x, z ∓ d

2

)
Vint,d (z)dr.

The second term of W ±
d is a constant matrix (independent of X). We prove in the Supplemental Material [23] that this term is

proportional to I2. Finally, since Vint,d (−z) = Vint,d (z), this matrix is the same for the W +
d and the W −

d terms.
To conclude and obtain the expression in Eq. (10), we have used the equality

�d
( − 1

2�
) + 1

2 (−i∇�d ) · (−i∇ ) = − 1
2 div(�d (X)∇•).
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APPENDIX B: PROOF THAT wd
AA = wd

AB

Recall that wd
AA and wd

AB are defined, respectively, in Eqs. (19)-(20). We prove in the Supplemental Material [23] that [Vd ]11

satisfies [Vd ]11(R 2π
3

X) = [Vd ]11(X), where R 2π
3

is the 2π/3 rotation. Recalling the definition of G(X) in Eq. (15) and using that

q3 = R 2π
3

q1 while q2 = (R 2π
3

)2q1, we obtain

wd
AA = 1

3|�M|

(
3∑

n=1

ˆ
�M

[Vd ]11(X)eiqn·X dX

)
= 1

|�M|
(ˆ

�M

[Vd ]11(X)eiq1·X dX
)

.

From the definition of V and the fact that q1 = JK, while |�M | = |�|, we get

wd
AA =

ˆ
R

(ˆ
�

[(
V + Vint,d

(
· +d

2

))
u1

](
x, z − d

2

)
dx

)( 
�

u1

(
x, z + d

2

)
dx

)
dz.

A similar calculation leads to

wd
AB =

ˆ
R

(ˆ
�

[(
V + Vint,d

( · +d

2

))
u2

](
x, z − d

2

)
dx

)( 
�

u1

(
x, z + d

2

)
dx

)
dz.

In the Supplemental Materials [23], we prove that u j (x1, x2, z) = −u j (−x1, x2, z). Since V and Vint are real valued, with
V (x1, x2, z) = V (−x1, x2, z), the parameters wd

AA and wd
AB are real valued. In addition, we also proved that u2(x1,−x2, z) =

u1(x1, x2, z). Together with the fact that V (x1,−x2, z) = V (x1, x2, z), we deduce wd
AA = wd

AB.
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