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Design of a room-temperature topological exciton-polariton laser
in a ZnO/TiO2 photonic crystal slab
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We propose theoretically a scheme to get a room-temperature two-dimensional topological exciton-polariton
laser with propagating topological lasing modes. The structure uses guided modes in a photonic crystal slab. A
ZnO layer provides strong excitonic resonances stable at room temperature. It is capped by a TiO2 layer pierced
by a triangular lattice of air holes. The exciton-polariton modes of the three-dimensional structure are computed
by solving numerically Maxwell’s equations including the excitonic response. The designed triangular lattice of
circular air holes shows a transverse electric band gap. The triangular lattice of air holes is shown to be well
described by a staggered honeycomb tight-binding lattice, associated with valley Chern numbers defining the
interface states. The interface between two shifted triangular lattices of air holes supports two counterpropagating
modes lying in the gap of the bulk modes, analogous to quantum pseudospin Hall interface states. These modes
show orthogonal polarizations. They can be selectively excited using polarized excitation and are well protected
from backscattering. These modes can benefit from the exciton-polariton gain at room temperature because
of their sufficiently large exciton fraction and favorable position in energy. The strong localization of these
propagating modes makes them suitable to host topological lasing triggered by a nonresonant pump localized on
the interface.
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I. INTRODUCTION

Topology is one of the most active fields of research in
modern physics. Appearing as a field in the 19th century, it
started to grow faster at the end of the 20th century [1,2],
first to explain solid-state phenomena [3], and then extended
to topological photonics [4–6]. Topological singularities, such
as Dirac points [7–10], Weyl points [11–15], or exceptional
points [16–19], carry a topological charge describing how
the eigenstates evolve critically close to the singularity [20].
The large variety of singularities explains that there are many
different topological classes and phases [21–24].

Topological photonics has been initiated by Haldane and
Raghu [4,5] and Soljačić’s group [25,26]. They proposed to
break the time-reversal symmetry (TRS) in photonic crystal
slabs (PCSs) in order to mimic the quantum anomalous Hall
effect [3] realizing one-way edge modes. This requirement to
break TRS first implied working with gyromagnetic materi-
als typically at microwave frequencies. The extension of this
regime toward optical frequencies and the key role played by
the transverse electric–transverse magnetic (TE-TM) photonic
spin-orbit coupling [27] emerged by considering the proper-
ties of exciton-polariton modes [28,29]. The key advantage
of this broken-TRS phase is that it allows realizing truly
topologically protected one-way modes. The disadvantage is
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that applying magnetic fields remains inconvenient for future
applications, such as integrated photonic circuits.

As a consequence, another class of topological phases,
which can be generically labeled the quantum pseudospin Hall
effect, became extremely popular in photonics [6]. In analogy
with the quantum spin Hall effect [30,31], each pseudospin
component of a two-level system is characterized by a topo-
logical invariant, which is changing sign through an interface
supporting a pseudospin current. These pseudospins can rep-
resent the valley degree of freedom in a staggered honeycomb
lattice [32], the angular momentum of ring resonators [33],
and even light polarization [34] in systems where the permit-
tivity equals the permeability, ε = μ, and where the TE-TM
splitting is suppressed, or even p and d orbitals in shrunken-
expanded honeycomb lattices [35,36]. In all these cases, the
two pseudospin components must be uncoupled, which is
the case if some symmetries are preserved, for example, a
crystalline symmetry in the quantum valley Hall effects and
shrunken-expanded honeycomb lattices. These modes have
interesting properties, such as the possibility to go around
sharp corners (of 120◦, which preserves the valley), but these
interface modes are a priori not protected from random local
fluctuations of the Hamiltonian (structural disorder), which
are necessarily present in real structures. However, it turned
out that in staggered and shrunken-expanded honeycomb lat-
tices based on photonic crystal slabs the valley pseudospin is
coupled to the circular polarization degree of light [37], pro-
viding extra protection against intervalley scattering. A recent
work [38] aims at quantifying the topological protection of
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such interface modes. Recent works have also shown that a
staggered honeycomb lattice in a PCS is even not required to
get valley-polarized interface states and that using interfaces
between triangular lattices of air holes is sufficient [39–41].
In this case, as we show in this paper, the PCS states are still
mapped to a tight-binding model with a staggered honeycomb
lattice with nonzero valley Chern numbers. This is because
the location of the suppressed air hole still hosts an s-like
state. This state serves as the basis for the upper band. This
type of triangular lattice of holes is very advantageous from
a technological point of view, since it removes the necessity
to create the smallest of the two types of holes of a staggered
honeycomb lattice PCS.

One of the most emblematic devices born in the field of
topological photonics is the topological laser, where lasing
occur on topological edge or interface states. It took some
time for the community to propose this concept, probably
because topological photonics was initially developed in a
wavelength range for which gain is essentially absent. A
topological laser was proposed based on a one-dimensional
(1D) Su-Schrieffer-Heeger (SSH) chain of zero-dimensional
(0D) exciton-polariton modes [42], which is a type of sys-
tem where lasing occurs quite naturally [43,44]. It was then
proposed in purely photonic 1D lattices [45], where the
term “topological lasing” was introduced. It was experimen-
tally realized soon after at low temperature in a polaritonic
system [46–48] using etched microcavities. Slightly later,
two-dimensional (2D) topological lasers hosting propagating
edge or interface modes were proposed [49] and realized
either in broken-TRS phases (quantum anomalous Hall effect)
[50] or in a quantum pseudospin Hall effect setting [51].
Since then, the field considerably expanded. One can cite
the realization of electrically pumped 2D topological lasers
first at low temperature using valley edge modes [52], and
then at room temperature with ring resonator lattices [53]. In
strongly coupled polaritonic systems, a 1D room-temperature
topological polariton laser [47] showing high coherence [48]
has been demonstrated in organic-based systems. 2D topolog-
ical lasers based on coupled-cavity lattices under magnetic
field were proposed [54], but in a scheme typically limited
to low temperatures. The quantum pseudospin Hall effect has
been implemented at room temperature using transition metal
dichalcogenide monolayers placed on PCSs [55], but lasing
has not yet been demonstrated. Historically, the achievement
of room-temperature polariton lasing has relied on using
large-band-gap semiconductors, ZnO and GaN, first in micro-
cavities [56–59], then using guided polariton modes [60–62],
which allows long propagation distances (∼100 µm).

In this work, we propose a feasible design of a 2D
room-temperature topological polariton laser with propaga-
tive interface states. The waveguide structure is composed
of a ZnMgO cladding, of a ZnO layer providing strong and
stable excitonic resonances, and of a TiO2 layer with a high
refractive index. The latter is etched with a triangular lattice
of circular air holes. We solve numerically Maxwell’s equa-
tions by finite element method for a three-dimensional (3D)
structure periodic in the (x, y) plane and find the dispersion
of 3D polaritonic modes, the excitonic resonance being taken
into account in the permittivity. We find a gap in the dispersion
of TE modes of 50 meV width, whose energy can be set up to

3.25 eV with an exciton fraction of gap edge modes around
0.2, which are favorable parameters to get room-temperature
polariton lasing in ZnO-based materials [59,60]. We then
model a 3D structure hosting topological interface states by
creating an interface between two triangular lattices with the
same parameters, without resorting to a staggered honeycomb
lattice. Numerical constraints do not allow finding directly
the polaritonic modes in such a structure, so we compute
the bare photonic modes and describe the coupling between
those modes and the ZnO excitonic resonances through an
effective Hamiltonian. We show that by exciting the inter-
face with a well-defined circular polarization, the propagation
occurs only at the interface and in a unique direction with
a very good selectivity. We finally discuss the possibility to
trigger polariton lasing specifically at the interface states using
a focused nonresonant optical pumping, because its overlap
with the interface modes can be made considerably larger
than with bulk states. The scheme we propose could be used
for developments in integrated photonics and/or polaritonics,
that is, on-chip integration of room-temperature topological
polariton lasers.

II. TOPOLOGICAL INTERFACE IN A TRIANGULAR
LATTICE

In this section, we demonstrate that the interface between
two triangular lattices (which have the same geometric param-
eters) can host propagative interface states in the gap of the
bulk bands.

We begin by considering a honeycomb lattice of circular
holes. The TE band structure with the electric field of the
eigenstates localized inside the air holes exhibits conical inter-
sections (Dirac points) at the corners of the Brillouin zone (K
and K ′) [63]. In a tight-binding description of such a lattice,
the two Dirac points are characterized by opposite winding
±1 of the sublattice pseudospin. The staggering of the lattice
makes sites A and B different. It opens a gap at the two K and
K ′ points, also called valleys. The Berry curvature of bands is
opposite in the two valleys, so a valley Chern number can be
defined. It has opposite signs at K and K ′. Making an interface
between two lattices with opposite staggering and inverted
valley Chern numbers realizes the so-called quantum valley
Hall effect, where the direction of propagation of interface
modes is associated with a given valley.

Figures 1(a) and 1(b) show the TiO2 2D photonic crystal
(PC) we simulate [Fig. 1(a)], together with its dispersion
[Fig. 1(b)] obtained by 2D simulations using COMSOL MUL-
TIPHYSICS. In this section, we restrict our simulations to 2D
structures for simplicity, because we focus on the effects of
different kinds of patterning which are already visible in two
dimensions. The software solves the Helmholtz equation:

∇ × (∇ × E(r)) = k2εr (r)E(r), (1)

where E(r) is the electric field profile, εr (r) the permittivity
tensor, and k the wave vector. It finds the spatial profiles and
the energies of the eigenmodes. The structure we simulated
is schematically shown in Fig. 1(a). It is a ribbon in the y
direction and an infinite structure in the x direction using
Floquet periodicity. The interface is a line in the x direction.
We took a ribbon of 16 periods in the y direction both for
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FIG. 1. 2D simulations demonstrating the presence of topolog-
ical interface states even with a triangular lattice. [(a), (c)] PC of
circular air holes in a dielectric matrix and topological interface
using (a) a staggered honeycomb and (c) a triangular lattice of air
holes. The unit cell is emphasized in red, showing the difference
between the upper and lower PCs. The triangular lattice is obtained
by continuously reducing and ultimately removing the small hole of
the staggered honeycomb lattice. A ribbon of a0 width along the x
direction and several periods in the y direction, as used in the simula-
tions to emulate an infinite system in the x direction, is surrounded by
black lines. [(b), (d)] Band structures with interface states (blue and
red lines excited by a σ±-polarized pump) in the gap (green area) of
the structures with topological interfaces of (b) staggered honeycomb
and (d) triangular lattices. The bulk modes (grey areas) are delimited
by black thick lines. Note that interface states exist in both cases,
whereas the gap is much larger in the triangular PC.

the PC above and below the interface. We can see that the
upper PC has a staggering opposite to the one of the lower
PC, as emphasized by the unit cells in red (the lattice constant
is noted a0). The dispersion of the TE modes of the structure
is plotted in Fig. 1(b) where the energy is calculated in re-
duced coordinates, the radii of the small and big holes being
R− = 0.1a0 and R+ = 0.25a0, respectively.

We see that there is an energy range (green area) where
no bulk states (grey areas surrounded by black lines) are
present. This area is the band gap. To have this gap close
to the exciton energy in ZnO and GaN (around 3.2–3.4 eV)
one needs to take a0 ∼ 100 nm corresponding to a small hole
radius around R− ≈ 15 nm, which is extremely challenging
from the technological point of view. Inside the gap, there
are two interface states (red and blue lines) with a nonzero
group velocity. Because those states are in the gap of both the
upper and lower PCs, they cannot scatter into the bulk states,
so they propagate only at the interface with the direction of
propagation associated with a valley.

The size of the gap is crucial in determining how well
the interface states will be isolated from bulk states. It is
determined by the radii of the two holes: if they are equal,
the gap is null (there is a Dirac point), and the gap increases
as they become more and more different [63,64]. The limit
R− = 0 is a triangular lattice of circular holes, as represented
in Fig. 1(c). It presents a particularity: a straightforward

R->0 R-=0

0
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E
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x
y
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(b)
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FIG. 2. 2D simulations demonstrating the equivalence between a
staggered honeycomb lattice of air holes and a triangular lattice of
air holes. [(a), (b)] Electromagnetic energy density in a unit cell for
R− = 0.1a0 and R+ = 0.25a0 at the K point. This corresponds to a
staggered honeycomb lattice of air holes. [(c), (d)] Electromagnetic
energy density in a unit cell for R− = 0 and R+ = 0.25a0 at the K
point. This corresponds to a triangular lattice of air holes. (a) and
(c) are the higher energy states while (b) and (d) are the lower energy
states. Note the continuous deformation from (a) to (c).

calculation for a tight-binding triangular lattice gives zero
Berry curvature, but there is no topological transition separat-
ing this limit from the phase with nontrivial valleys at R− �= 0,
because the band is globally trivial. The symmetry indicators,
calculated from the wavefunction at the high-symmetry points
of the reciprocal space and allowing to determine the topol-
ogy without integrating the Berry curvature over the whole
Brillouin zone [65], also do not change [39,66,67]. We com-
pute the dispersion in this case (with the same R+) and plot
it in Fig. 1(d), and find that the interface states still exist in
the gap, and the gap is much larger. This is in agreement
with recent numerical and experimental studies [39–41,67].
Moreover, we can see that this situation is advantageous be-
cause it makes a bigger gap, which leads to an energy range
where a mode of a given circular polarization propagates in
only one direction. This can be found as well in a staggered
honeycomb of air holes with different parameters [64], but the
region where the states are unidirectional is always larger for
a triangular lattice of air holes compared to the same lattice
containing a small hole.

In a PC, staggered honeycomb and triangular lattices are
topologically equivalent and going from one to another repre-
sents a continuous deformation. This is demonstrated by Fig. 2
showing the profile (electromagnetic energy density E) of the
two bulk modes at the K point in a unit cell of a PC with a
staggered honeycomb lattice of air holes [Figs. 2(a) and 2(b)]
and with a triangular lattice of air holes [Figs. 2(c) and 2(d)].
We see that the profile of the lower energy state [Figs. 2(b)
and 2(d)] does not change much when the small air hole
disappears, as expected, because it is anyway confined mostly
in the big air hole. The second mode (of higher energy) in both
cases is shown in Figs. 2(a) and 2(c). It is very similar as well,
and we see that the suppression of the small air hole does not
drastically change the profile of the mode. We can conclude
that in both cases, the appropriate tight-binding description
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for these modes is provided by a staggered honeycomb lattice.
When the two air holes are of the same size, the states confined
in both holes have the same energy, and the dispersion shows
a Dirac point. When we reduce one air hole, the energy of
the two modes becomes different and a gap opens at the Dirac
point. The energy difference between the two modes increases
when one hole is reduced, and it could be increased even
beyond the value obtained for a vanishing hole, if a higher-
index material cylinder is inserted at the hole’s location.

In the following, we capitalize on this behavior that facil-
itates the fabrication of structures and study a 3D polaritonic
structure with two PCSs of simple triangular lattices of circu-
lar holes.

III. PHOTONIC CRYSTAL SLAB WITH
EXCITON-POLARITONS IN ZnO

The photonic crystal slab structure we consider is schemat-
ically depicted in Fig. 3(a). It consists of a two-layer
waveguide isolated from the substrate by a cladding layer
(ZnMgO). The waveguide is made of patterned TiO2 PCS
(thickness h0) and a bulk ZnO layer (thickness hZnO). The
PCS consists of a triangular lattice of circular holes. The
lattice constant is a0 and the diameter is 2R. This part of the
waveguide provides the topological properties of the guided
mode, whereas the ZnO part provides the strong coupling with
an excitonic resonance, giving rise to exciton-polaritons. The
structure we consider directly comes out of the specifications
explained hereafter. We want to build a structure capable of
robust lasing behavior at room temperature so that it could be
used in integrated photonics to pump photonic circuits. The
lasing mechanism we want to use comes from the bosonic
nonlinearity of exciton-polaritons, giving rise to polariton las-
ing in the guided configuration [60]. One, therefore, needs to
fabricate a photonic crystal slab structure on a substrate, and
not free standing, to provide efficient heat dissipation. More-
over, the room-temperature specification requires the use of
wide-band-gap semiconductors, and the robustness restrains
the choice essentially to GaN and ZnO. We have considered
both and have finally chosen to focus on ZnO because of the
following reasons.

Nowadays, ZnO can be grown on ZnMgO (itself grown on
a ZnO or sapphire substrate) with a very good quality [68].
The ZnMgO layer serves as an optical cladding for the ZnO
core, isolating it from the substrate, and as a buffer improving
the growth quality. The best quality is obtained with m-plane
ZnO [68]. However, the refractive indices of ZnO and ZnMgO
are too close to each other, which prevents one from making a
PCS by patterning directly the ZnO, because patterning makes
its effective index smaller than that of ZnMgO, which sup-
presses the vertical confinement. Thus, we suggest using an
extra layer with an effective index higher than that of ZnO for
patterning. The TiO2 is a particularly good candidate because
of well-developed deposition and etching techniques.

After deposition, the PCS is formed by etching only the
TiO2 layer. Close to the exciton resonance of ZnO (EX ≈
3380 meV), the refractive index of TiO2 is high (nTiO2 ≈ 3)
and the losses are sufficiently low (kTiO2 ≈ 10−4) [69]. Etch-
ing it can give a slab with an effective refractive index of
about 2.2, close to the one of ZnO at these energies [68]. We

FIG. 3. (a) Scheme of the PCS structure studied. A two-layer
waveguide (TiO2 in yellow and ZnO in pink) is separated from the
substrate by a cladding layer (ZnMgO in purple). Only the TiO2 layer
is etched with a triangular lattice of circular holes. The thicknesses
of the TiO2 layer, h0, and ZnO layer, hZnO, are indicated. The 3D unit
cell is shown in black and a 2D cut of it in the TiO2 layer is shown in
the inset with the geometric parameters of the lattice, R and a0. [(c),
(d)] Refractive indices of the different layers in the z direction for
a structure using (b) ZnO and (c) GaN. The effective indices of the
TE1,2 modes are indicated in blue. (d) Dispersion of the three modes
below the exciton energy. There are two quasi-TE modes (blue solid
lines) and one quasi-TM mode (green dashed line). The TE gap is
emphasized by the light green area. Black lines represent the light
cones; only modes below them are guided. Exciton energies are close
and represented as a unique thick red line. (e) Energy of the center
of the gap, E�, and exciton fraction CX with respect to the period
of the lattice, a0. The dispersions plotted in this work correspond to
a0 = 110 nm, represented as a vertical dashed line.

represent schematically the refractive indices of the dif-
ferent layers in Fig. 3(b), showing that the etched TiO2

layer provides light confinement for the two first TE modes
TE1,2. A similar analysis is displayed in Fig. 3(c) for an
AlGaN/GaN/TiO2 structure. It shows that TE modes are not
confined in this structure, because of the excessive value of
the AlGaN refractive index (for ∼20% of Al). A GaN-based
structure would require a dielectric layer with a larger refrac-
tive index and small losses around the GaN exciton energy
(around 3.5 eV).

In the simulations, we use frequency-dependent
anisotropic permittivities for ZnO and ZnMgO layers [69]
and isotropic for TiO2. For ZnO, the m-plane growth brings
in-plane anisotropy of both the background permittivity
and the exciton resonances. Thus, in the (x, y, z) basis,
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we have

εZn(Mg)O =

⎛
⎜⎝ ε

||
Zn(Mg)O(ω) 0 0

0 ε⊥
Zn(Mg)O(ω) 0

0 0 ε⊥
Zn(Mg)O(ω)

⎞
⎟⎠.

(2)

The ZnO exciton response is taken into account in the permit-
tivity [70]:

εZnO(ω) = ε∞ +
∑

i=A,B,C

fi

ω2
i − ω2

, (3)

where A, B, and C are the excitons of ZnO, fi their respective
oscillator strengths, and ωi their respective resonance frequen-
cies. The nonradiative exciton lifetime can be added as an
imaginary part. The permittivity of Zn1−xMgxO is taken from
Ref. [71] for x ≈ 0.2, while the one of ZnO is extracted from
Ref. [68]. For ZnO, the exciton resonances are located ap-
proximately at 3375 meV (A), 3380 meV (B), and 3410 meV
(C) at room temperature, while the oscillator strengths are
approximately fA = 1.5 × 105 meV2, fB = 2.5 × 105 meV2,
and fC = fA + fB.

Because we now consider a 3D structure, TE and TM
modes are ill defined, but we can still distinguish between
quasi-TE and quasi-TM modes, the modes that are the 3D
extensions of TE and TM modes, respectively. Numerically,
COMSOL finds all photonic modes (quasi-TE and quasi-TM),
and we only keep the quasi-TE modes by comparing the
values of the electric and magnetic fields along the z direction.
For TE modes, Ez = 0, and for TM modes, Hz = 0. So, the 3D
modes with a large ratio |Ez|/|Hz| are the quasi-TM modes,
whereas those where the ratio is small are the quasi-TE modes
(the ones that we keep).

The dispersion of the quasi-TE polariton modes is plotted
in Fig. 3(d) for the path �-M-K-� in the reciprocal space,
which follows high-symmetry points of the lattice. Despite
the broken symmetry along the z direction and the presence of
excitons, the dispersion is quite typical for this kind of PCS,
although flattened. Because we work with guided modes, we
are interested in the modes that lie below the light cone.
Moreover, we notice a gap between the two quasi-TE bands.
This gap is centered around 3125 meV and of amplitude � ≈
50 meV. We calculated the exciton fraction fX of the modes
near the gap edges by comparing the group velocity with exci-
tons, vX = ∂Eep/∂k, and without them, v0 = ∂Ep/∂k, where
Eep is the energy of the lower polariton branch. In the end,
we find fX = 11 ± 2 % for the interface states, which is suffi-
ciently large to observe polariton lasing [59,60].

The size of the gap reaches such a value for the set of
parameters hZnO = 50 nm, h0 = 130 nm, a0 = 110 nm, and
2R = a0/2 = 55 nm, according to our optimization study.
Those dimensions, although challenging to obtain, must be
achievable in state-of-the-art realizations, especially because
we use a circular geometry for holes. The main challenge is
to etch holes of such small diameter with a depth of more
than 100 nm. It could happen that the holes are not completely
etched, meaning that they have the correct diameter but they
do not reach the ZnO layer. We performed additional simula-
tions proving that a deviation of the order of a few nanometers

of the depth of etching does not affect the results we present
below.

However, we noticed that under-etching (the situation that
is more probable experimentally) is less deleterious than
over-etching (which is anyway less probable experimentally).
In the following, we consider that the TiO2 slab is completely
etched, and the ZnO layer remains intact.

There are no propagative quasi-TE states at the energies
lying inside the gap. However, we show that there is still a
quasi-TM mode that is inside the quasi-TE gap [in Fig. 3(d),
the dashed green line is the quasi-TM mode which is inside
the green area, the quasi-TE gap]. It has a very small overlap
with the quasi-TE modes, so it will be disregarded as in the
other works [36,37,64]. A complete band gap for both quasi-
TE and quasi-TM modes requires a very strong anisotropy
of the refractive indices between in-plane and out-of-plane
components [63], and the anisotropy that we have in ZnO,
despite being not negligible, is still too weak. However, we
note that, due to the exciton resonance, the second TM mode
(the mode TM2) is not present below the exciton resonance.
This means that there is an effective TM gap starting from
the TM1 mode up to the next mode, which is above the
exciton. This is an interesting feature that we think may be
used to create a PCS with a full quasi-TE and quasi-TM
band gap.

Figure 3(e) shows the energy of the center of the gap, E�,
with respect to the lattice constant a0 for the same structure.
The size of the hole is varied accordingly, in order to keep
the filling factor of the TiO2 layer constant. The closer to
the exciton we are, the higher the energy and the exciton
fraction. When the energies are too high (E� > 3.25 eV), the
modes cross the light cone, the confinement is lost, and they
penetrate into the cladding (the dashed lines continuing the
solid lines). One can engineer the position of the center of the
gap and the exciton fraction to get a polariton laser, as we will
discuss later. The vertical dashed line indicates a period of
a0 = 110 nm, which corresponds to the situation considered
in Fig. 3(d). This leads to an energy of the middle of the gap
of E� ≈ 3125 meV and an exciton fraction of approximately
CX ≈ 15%.

IV. INTERFACE STATES IN THE 3D PCS STRUCTURE

We now consider the structure discussed before, but the top
layer is now composed of two triangular lattices of circular
holes shifted with respect to each other, forming an interface.
A scheme of the top layer is shown in Fig. 1(c) and the full 3D
structure is represented in Fig. 4(a). Here, the symmetry in the
z direction is broken and one needs to check if the results of
the 2D case (Fig. 1) are still valid. The structure we consider
is a triangular lattice of circular air holes, infinite in the x
direction and 24-period large in the y direction. The upper half
of the PCS is translated in the y direction by δy = −a0

√
3/6,

which creates an interface between two triangular lattices of
air holes. We use the same parameters as before, that is,
a0 = 110 nm and 2R = 55 nm.

The knowledge of the permittivity of each material should
be sufficient to find the dispersion of the structure, as we did
for Fig 3(d). However, the strong variation of the permittivity
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FIG. 4. (a) Sketch of the 3D PCS structure hosting topological
interface states. The slabs are the same as previously (TiO2 in yellow,
ZnO in pink, and ZnMgO in purple), but the top layer now contains
an interface between two PCSs of triangular lattices of circular holes
(emphasized in red), where interface states can propagate in the left
(blue) or right (red) direction. The black lines mark the 3D ribbon
used in the simulations. (b) Polaritonic band structure calculated
for a finite ribbon in the y direction and infinite structure in the
x direction, including the interface. Note the interface states that
can propagate in the gap formed by the bulk modes. An excitation
with circular right (left) polarization leads to propagation in the
right (left) direction (red and blue lines). [(c), (d)] Electromagnetic
energy density profiles of (c) the bulk state and (d) the interface state
calculated from COMSOL. The corresponding states of these profiles
in the dispersion (b) are indicated by the grey (blue) point for the bulk
(interface) state. [(e), (f)] Profiles of the interface states calculated by
FDTD under (e) a circular right-polarized excitation and (f) a circular
left-polarized excitation located below the interface. Note that the
propagation occurs mainly in the right or left direction (dashed white
line). (g) Same as (f), but with a defect at the interface. Note the very
good similarity between (g) and (f).

close to the exciton resonance prevents COMSOL from finding
the eigenstates properly [72]. To circumvent this problem,
we look for the dispersion of purely photonic modes Ep(k)
(neglecting the exciton resonance), and we postprocess them
to include properly the coupling to an effective excitonic
resonance. For that purpose, we use the matrix describing the
strong coupling of excitons and photons [44,70,73,74],

MSC =
(

EX ρ h̄
R

ρ h̄
R Ep(k)

)
, (4)

where 2h̄
R = 125 meV is the estimated Rabi splitting for
the thicknesses of ZnO that we deal with [75–77], EX =
3380 meV is the energy of the exciton (we consider only one
exciton resonance of the polarization corresponding to the TE
photonic bands), and ρ is the fraction of the mode confined
in the ZnO layer. It is really important to take it into account
because the waveguide we consider contains two layers, and
thus an important part of the mode is not confined in ZnO,
but rather in the PCS, which does not contain any exciton.
We simulate this structure in COMSOL and find the dispersion
Ep(k) of photonic modes and their spatial distribution to ex-
tract ρ. The lower energy band (mode TE1) is less confined
in ZnO (ρ ∼ 10%) than the upper energy band (mode TE2)
for which the confinement in ZnO is approximately ρ ∼ 20%,
which is also the case for the interface modes. We neglect the
wave-vector dependence of the exciton energy.

As a next step, we diagonalize matrix (4) and find the
polaritonic dispersion:

ELP = EX + Ep(k)

2
−

√
(ρ h̄
R)2 +

(
EX − Ep(k)

2

)2

. (5)

The corresponding band structure is plotted in Fig. 4(c). It
is consistent with the band structure found in Fig. 3(d), but
the structure is here infinite only in the x direction. We still
find a band gap for the bulk states at the same energy and
of the same amplitude � ≈ 50 meV, but now there are two
modes in the gap of the bulk states, which are localized at
the interface between the two triangular lattices of air holes.
The two states are counterpropagating, one going in the +x
direction and the other going in the −x direction, as expected.
The group velocity of the interface states is vg = 25 µm/ps,
which is consistent with the existing literature [78].

We note that Eq. (4) is written for a single photon polar-
ization (the one of the bulk modes), which couples to a single
exciton. The interface modes are circularly polarized, so they
also couple to the other exciton. This aspect is neglected in
our calculation, because the anisotropy of the exciton response
at the frequencies of the interface modes (up to the highest
exciton fraction considered) is less than 7%. It is just 1% at
the frequency of the interface modes shown in the paper. We
consider that such error is negligible with respect to the other
uncertainties (including the experimentally measured exciton
response itself).

In Figs. 4(c) and 4(d), we show the spatial profile (obtained
from the electromagnetic energy density E) in the (y, z) plane
of the mode corresponding to the gray and blue points in
Fig. 4(b), respectively. We can see that the state corresponding
to the gray point is not localized at the interface, but rather
spread in the bulk of the PCS, while the state corresponding
to the blue point is strongly localized at the interface, with a
very narrow profile of only a few periods in the y direction.
We conclude that the blue line indeed corresponds to inter-
face states, while the bulk states are in the grey regions, as
expected.

So far, the interface modes are just two states of opposite
wave vectors propagating in opposite directions. One could
think that they could elastically scatter (by disorder) from
one to another, which would give rise to Anderson-localized
states. However, the interface state propagating to the right
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[+ states in Fig. 4(b)] is circularly polarized σ+ on one
side of the interface and σ− on the other side. The counter-
propagating mode [−states in Fig. 4(b)] shows the opposite
polarization pattern. These features can be found both from
a tight-binding description of a staggered honeycomb lattice
with TE-TM splitting and by examining the electric field pat-
tern of modes numerically computed by COMSOL. These two
counterpropagating states are orthogonal from a polarization
point of view which prevents scattering from one to another
by elastic scattering on the structural disorder. This protection
from backscattering occurs for the vectorial electromagnetic
field (photons), but does not a priori hold for the electronic
quantum valley Hall effect.

Next, we further illustrate this crucial property by simu-
lating the propagation of wave packets on the interface. This
can be numerically simulated by using the finite difference
time-domain (FDTD) method. Time-dependent simulations
are realized using the software LUMERICAL. We used it to solve
time-dependent Maxwell equations [including excitonic con-
tributions in the permittivity given by Eq. (2)] in this structure
and probe the existence of interface states. By choosing the
excitation position and polarization, it is possible to excite uni-
directional interface states at a topological interface between
two PCSs [79]. We use this method and pump the interface
with a circular left or circular right polarized electric dipole
with frequency f ≈ 755 THz, corresponding approximately
to the center of the gap [see Fig. 4(b)]. We then observe
the propagation of the interface state for a few picoseconds
and a few micrometers, as expected from the dispersion. In
Figs. 4(e) and 4(f), we plot the electromagnetic energy density.
The image is plotted in the middle of the TiO2 slab, ∼100
fs after the beginning of the simulation. The excitation pulse
duration is chosen to be sufficiently long (δτ ∼ 1 ps) to be
narrow in frequency (δ f ∼ 1 THz). We can see from the
image that the propagation is mainly at the interface and that
the signal propagates to the right (left) of the injection point
if the excitation is polarized circular right in Fig. 4(e) [left
in Fig. 4(f)], as expected [79]. Indeed, we pump below the
interface for both images, so that the direction of propagation
of the topological interface states is given only by the polar-
ization of the excitation. Note that exciting above the interface
leads to inverted results, meaning that exciting circularly right
(left) implies propagation to the left (right), because of the
preserved chiral symmetry.

We calculate the directional selectivity (left-to-right) ratio,

fL/R = PL − PR

PL + PR
, (6)

where PL,R is the magnitude of the Poynting vector far from
the injection (∼4 µm away) integrated over a narrow 2D zone
of few periods in both x and y directions and normalized.
In the end, we find fL/R = −0.93 ± 0.04 for an excitation
with circular right polarization and fL/R = 0.93 ± 0.04 for
an excitation with circular left polarization, which confirms
a very high selectivity.

Moreover, we perform an additional simulation to verify
that defects at the interface do not prevent topological in-
terface states to propagate. We reproduce the simulation of
Fig. 4(f), but we double the radius of one hole at the interface,
on the path of the propagating topological interface state. The

FIG. 5. (a) Electric field profile (square amplitude) of the pump
(dashed lines) and states (solid lines) in the y direction. The norm of
the electric field of the states is integrated along the x and z directions
(and restricted to the ZnO) to give the profile. A broad pump has a
good overlap with the interface states while the overlap is smaller for
a narrow pump. (b) Ratio between the overlap of the pump profile
with the interface �int and bulk �bulk states with respect to the size of
the Gaussian pump, here its full width at half maximum (FWHM). A
ratio of 1 is indicated by the dashed line.

profile of the mode is shown in Fig. 4(g), where we can
see that, despite the defect indicated with a white circle, the
profile of the mode is very similar. We calculate in this case
the directional selectivity ratio and find fL/R = 0.90 ± 0.03,
which is a bit lower than the one found without defect, but
still very close to one, as expected. We estimate that the
backscattering on the defect is about 3%, which is very low.
This can be attributed to the topological nature of the states.
However, it is not completely zero, because scattering to the
opposite polarization is still possible although minimized by
the polarization properties of the modes.

V. TOPOLOGICAL POLARITON LASING

By itself, the presence of interface states does not ensure
that there can be lasing from them. There is first a need for
gain, which can be electron-hole gain in a standard laser or po-
laritonic gain in a polariton laser. Room-temperature polariton
lasing in ZnO cavities [59] and waveguides [60] has already
been reported. In these references, lasing was achieved around
3.2–3.25 eV with exciton fractions CX of the order of 20%.
In the previous sections, we considered a structure showing
a gap at approximately 3.1–3.15 eV. Figure 3(e) shows the
energy of the center of the gap, E�, versus the lattice period
a0 for the structure without interface. We find that the upper
side of the gap remains below the light cone up to 3.25 eV for
the energy of the gap center. We conclude that a topological
gap around 3.2 eV is feasible (a0 = 107 nm), which allows
keeping the interface modes below the light cone, but it is
the maximum value that can be achieved. The corresponding
interface state shows an exciton fraction around 0.2, slightly
larger than modes having the same energy in bulk cavities,
because the overlap between the electric field and excitons is
a little bit better in guided geometry.

The second condition to get topological lasing is that
mode competition should favor the topological interface
states instead of bulk states. The most efficient approach
is to focus the nonresonant pump laser on the topological
state (on the interface), as proposed in Ref. [42] and done
in Ref. [46]. Figure 5(a) shows the spatial distribution along
y of the interface mode at 3.2 eV and of a bulk state. They
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exhibit a small overlap. The thin dashed lines represent two
Gaussian excitations (narrow and broad). The ratio between
the pump-to-interface �int and the pump-to-bulk �pump

overlap versus the full width at half maximum (FWHM)
of the Gaussian is shown in Fig. 5(b). This ratio can be
made arbitrarily large by considering a large sample, which
increases the size of the bulk only. The qualitative conclusion
is that a typical micrometer-sized pump laser excites the
interface modes more than the bulk modes. For a pump
smaller than ∼4 µm, the overlap with the interface states is
twice larger than with the bulk states. The overlap between
the pump and the interface states is always better than with
bulk states [the ratio �int/�pump is always larger than 1; see
the dashed line in Fig. 5(b)], which favors lasing specifically
on the interface states rather than on bulk states.

Another requirement is that lasing occurs on the interface
states lying in the gap, rather than interface states outside the
gap that are resonant with bulk modes. In practice, interface
modes out of the gap are expected to suffer losses due to
their coupling to the bulk modes by elastic scattering on
the disorder, which is extremely significant in this frequency
range so that the in-gap interface states are expected to be
strongly favored. On the other hand, both interface modes
propagating in opposite directions are expected to be excited
by the nonresonant pump, as was the case in previous papers
reporting topological lasers based on the quantum pseudospin
Hall effect [51]. This can be overcome by using a circularly
polarized nonresonant pump spatially shifted with respect to
the interface, similarly to what is done in this work. Such

pumping should favor one of the two interface modes leading
to directional lasing, provided the generated exciton reservoir
does not lose completely its polarization.

VI. CONCLUSION

To conclude, we propose a realistic design for a room-
temperature 2D topological polariton laser. We model the full
3D structure of a photonic crystal slab including a ZnMgO
cladding, an active ZnO layer, and a patterned TiO2 layer.
The full structure demonstrates a quasi-TE gap for bulk modes
and topological interface states in this gap, whose energy and
exciton fraction are optimal to get room-temperature polari-
ton lasing. We find that the topological interface states have
an excellent one-way character upon appropriate excitation,
because they are protected from backscattering by their polar-
ization.
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Mirek, M. Muszyński, R. Mazur, P. Morawiak, W. Piecek, P.
Kula et al., Nat. Commun. 13, 5340 (2022).

[20] B. Mera and T. Ozawa, Phys. Rev. B 104, 045104 (2021).
[21] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[22] L. Fidkowski and A. Kitaev, Phys. Rev. B 81, 134509 (2010).
[23] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.

Phys. 88, 035005 (2016).
[24] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J.

Slager, Phys. Rev. X 7, 041069 (2017).
[25] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljačić,
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