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Multipolar order in bulk crystalline solids is characterized by multipole densities—denoted as polarizations in
this work—that cannot be cleanly defined using the concepts of classical electromagnetism. Here we use group
theory to overcome this difficulty and present a systematic study of electric, magnetic, and toroidal multipolar
order in crystalline solids. Based on our symmetry analysis, we identify five categories of polarized matter,
each of which is characterized by distinct features in the electronic band structure. For example, Rashba spin
splitting in electropolar bulk materials like wurtzite represents the electric dipolarization in these materials.
We also develop a general formalism of indicators for individual multipole densities that provide a physical
interpretation and quantification of multipolar order. Our work clarifies the relation between patterns of localized
multipoles and macroscopic multipole densities they give rise to. To illustrate the general theory, we discuss its
application to polarized variants of hexagonal lonsdaleite and cubic diamond structures. Our work provides a
general framework for classifying and expanding current understanding of multipolar order in complex materials.
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I. INTRODUCTION

It is well-known that a proper definition of electric dipo-
larization as a bulk property is nontrivial [1,2]. The naive
electromagnetic definition of electric dipolarization as the
dipole moment of a unit cell is unsatisfactory as this quantity
generally depends on the arbitrary choice of a unit cell [3].
Thus a proper description of the electromagnetic properties
of solids requires tools beyond those supplied by classical
electrodynamics.

Important progress has been made by introducing the
modern theories of electric dipolarization and magnetization
where geometric phases are used to quantify these dipole
densities (multipole order � = 1) independently of the choice
of unit cell [1,2,4,5]. Within the modern theory, the electric
dipolarization has a clear physical interpretation relative to a
reference state. However, for systems showing a spontaneous
electric dipolarization, the interpretation and observability of
this quantity have remained ambiguous. Also, it is a signif-
icant challenge to extend the modern-theory approaches to
multipole densities of higher multipole order � > 1 [6].

Even before the advent of the modern theories, some early
studies did not make any reference to electromagnetism in
their investigation of dipolarizations in materials, as they
recognized how crystal symmetry allows one to identify
crystal structures that permit a bulk electric dipolarization
(so-called polar crystals include pyroelectric and ferroelectric
media [7–9]) or a bulk magnetization (ferromagnetic crystals
[10–12]). According to Neumann’s principle (see Refs. [7,8]
for seminal discussions), the crystal classes can be rigor-
ously divided into those that permit a macroscopic electric

dipolarization or magnetization, and those for which these
phenomena are forbidden. Magnetic crystal classes that do not
permit a magnetization have been generically associated with
antiferromagnetism [12].

The approach pursued in the present work overcomes the
unsatisfactory electromagnetic definition of electric and mag-
netic multipole densities that is inadequate for crystalline
solids; we rely entirely on symmetry to extend the notion of
bulk dipolarization and magnetization to electric and mag-
netic multipole densities of higher orders � > 1. To this end,
we treat the black-white symmetries space inversion symme-
try (SIS) and time inversion symmetry (TIS) on the same
footing [13]. Moreover, we treat electric and magnetic or-
der on the same footing. Our systematic theory provides a
broader framework for recent efforts to study electric and
magnetic multipolar order in solids [14–18] and lends itself
for wider application in the context of complex materials
[19–24]. Throughout this work, we focus on systems that are
in thermal equilibrium, thus leaving aside the interesting topic
of current-induced multipolar order [25].

In the following, the term polarization refers to a gen-
eral realization of bulk multipolar order with � � 0. Four
types of polarizations—electric, magnetic, electrotoroidal,
and magnetotoroidal—are presented in Table I. The sig-
nature ss′ indicates how a polarization behaves under
space inversion (even/odd if s = +/−) and time inversion
(even/odd if s′ = +/−). The electric (magnetic) polariza-
tion of order � = 1 corresponds to the electric dipolarization
(magnetization), having signature −+ (+−). This gen-
eral group-theoretical definition of electric and magnetic
multipolar order is independent of the arbitrary choice
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TABLE I. Signature ss′ of multipoles of order �. The four differ-
ent types of multipoles arising for any given � are associated with the
respective irreducible representations Dss′

� of the full rotation group
Ri×θ ≡ R × Ci×θ , where R ≡ SO(3) is the proper rotation group.

Electric Magnetic Electrotoroidal Magnetotoroidal

� even ++ −− −+ +−
� odd −+ +− ++ −−

of a unit cell. It is also independent of a material’s
electrodynamic properties and, therefore, applies to both in-
sulators and metals.

A comprehensive classification of ways to combine polar-
izations is based on their transformation behavior under SIS,
TIS, and the combined inversion symmetry (CIS) represented
by the operations i, θ , and iθ , respectively. Five distinct inver-
sion groups can be formed from these symmetry operations, as
defined in Table II, where we also indicate which polarizations
are permitted under these groups. The only types of polariza-
tions permitted under the full inversion group Ci×θ ≡ Ci × Cθ

are even-� electric polarizations called parapolarizations, and
we label the associated matter category parapolar. On the
opposite extreme, the trivial inversion group C1 containing
only the identity e as a symmetry element allows all polar-
ization types, and we label the category of polarized matter
associated with C1 multipolar. Each of the remaining inver-
sion groups contains strictly one inversion operation i, θ , or
iθ as a symmetry element. As a result, only a single type of
electric or magnetic polarization is symmetry-allowed: odd-�
electropolarizations for the time inversion group Cθ , odd-�
magnetopolarizations for the space inversion group Ci, and
even-� antimagnetopolarizations for the combined inversion
group Ciθ . Our unified treatment reveals a far-reaching corre-
spondence between electric and magnetic order in crystalline
solids.

Our theory enables us to identify measurable indicators
that signal the presence of electric and magnetic order in the
electronic band structure. Some of these indicators are quite
familiar, though their relation to electric and magnetic order
was not established previously.

A classical example for a bulk crystal with a spontaneous
electric dipolarization is wurtzite [26,27]. Wurtzite is also the

classical example for a bulk crystal showing the Rashba effect
[28]. Generally, the Rashba effect is characterized by a term
α · (k × σ), where h̄k is crystal momentum and the vector σ

of Pauli spin matrices represents the spin degree of freedom
of the Bloch electrons [29]. By definition, the Rashba effect
is proportional to a polar vector α. In confined geometries,
the vector α is commonly associated with a built-in, or ex-
ternal, electric field that controls the magnitude of the Rashba
effect [30,31]. In bulk materials like wurtzite, no such intuitive
picture exists for the vector α, and its physical meaning has
remained unclear [28,32]. The Rashba effect exists in all bulk
crystal structures that belong to one of the ten polar crystal
classes [8]. We argue that, in these structures, the vector α

represents the bulk dipolarization (� = 1). The Rashba effect
is thus a measure of the spontaneous electric dipolarization
in bulk wurtzite structures and other polar crystals. Similarly,
the Dresselhaus term [33] in bulk zincblende structures rep-
resents an electric octupolarization (� = 3), and Dresselhaus
spin splitting provides a measure of the spontaneous electric
octupolarization in bulk zincblende structures.

In finite systems such as molecules, only the lowest-� non-
vanishing electric and magnetic multipoles are well-defined
because higher-order multipoles depend on the choice of
origin of the coordinate systems [34,35]. This problem is
closely related to the problem described above, where, for
infinite crystalline solids, even the multipole density of lowest
nonvanishing order cannot be identified with the multipole
moment of a unit cell because this moment depends on the
arbitrary definition of the unit cell. We show that multipole
densities in crystalline solids must, indeed, be divided into
four families representing even-� and odd-� electric and mag-
netic multipoles. Within each family, only the lowest-order
multipole density is well-defined. However, even-� electric
(magnetic) multipole densities can be defined independent of
odd-� electric (magnetic) multipole densities.

Atomic multipoles can act as microscopic building blocks
for macroscopic multipolar order, including higher-order
atomic magnetic multipoles beyond magnetic dipoles [36].
We demonstrate that the order and orientation of these local
multipoles are fixed by site symmetries that are tabulated
for all crystallographic space groups [37,38]. However, the
order of the local multipoles proves to not be simply related
to the order � of the macroscopic multipole densities they

TABLE II. Families of electric, magnetic, and toroidal multipole densities (polarizations) of order � permitted by SIS, TIS and CIS.
Symmetry operations present (absent) in a given inversion group are labeled “•” (“◦”). Polarizations that are allowed (forbidden) under an
inversion group are likewise labeled “•” (“◦”). We also list the signature ss′ for each family of polarizations, with s = ± (s′ = ±) indicating
transformation behavior under space inversion i (time inversion θ ). Each inversion group defines a category of polarized matter, as indicated
in the last column.

I S

E M M M

C

Electrotoroidal
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TABLE III. Magnetic point groups of electrically and magnetically polarized variations of lonsdaleite and diamond. Starting from a pristine
crystal structure (lonsdaleite or diamond) that is compatible with an even-parity electric polarization (� = 2 in lonsdaleite and � = 4 in
diamond), its symmetries are broken by electric and/or magnetic polarizations as indicated. We use an extended Schönflies notation [13]
where minor groups with respect to space inversion i, time inversion θ , and their combination iθ are denoted by G[G̃], G(G̃), and G{G̃},
respectively. The symbols Ci, Cθ , and Ciθ denote the order-2 groups associated with i, θ and iθ , and Ci×θ ≡ Ci × Cθ is the full inversion
group. Expressions on the right-hand side of an ”=” sign reveal how the black-white symmetries i, θ and iθ are combined with proper
rotations [13].

Polarization ss’ Category Lonsdaleite family Diamond family

� = 4 electric ++ PP Oh × Cθ = O × Ci×θ (diamond)
magnetic −− AMP D6h(D3h ) = D6(D3) × Ciθ Oh(O) = O × Ciθ

� = 3 electric −+ EP D3h × Cθ = D6[D3] × Cθ Td × Cθ = O[T ] × Cθ (zincblende)
magnetic +− MP D6h(D3d ) = D6(D3) × Ci Oh(Th ) = O(T ) × Ci

� = 2 electric ++ PP D6h × Cθ = D6 × Ci×θ (lonsdaleite) D4h × Cθ = D4 × Ci×θ (strain)
magnetic −− AMP D4h(D2d ) = D4(D2) × Ciθ

electric ‖ magnetic −− AMP D6h(D6) = D6 × Ciθ D4h(D2d ) = D4(D2) × Ciθ

electric ⊥ magnetic −− AMP D2h(C2v ) = D2(C2) × Ciθ D2h(C2v ) = D2(C2) × Ciθ

� = 1 electric −+ EP C6v × Cθ = D6[C6] × Cθ (wurtzite) C4v × Cθ = D4[C4] × Cθ

magnetic +− MP D6h(C6h ) = D6(C6) × Ci D4h(C4h ) = D4(C4) × Ci

generate. For example, in diamond structures, atomic sp3

hybrid orbitals form local electric octupoles whose config-
uration results in a macroscopic hexadecapolarization with
� = 4.

Toroidal order has been viewed as an essential complement
to electric and magnetic multipolar order [39–43]. However,
the physical significance of toroidal moments is being debated
[44]. Our work clarifies the role of toroidal order in solids. Un-
der the full rotation group Ri×θ ≡ R × Ci×θ , where R ≡ SO(3)
is the proper rotation group, toroidal moments are fundamen-
tally distinct from electric and magnetic multipoles, where
these moments transform according to different irreducible
representations (IRs) of Ri×θ (Table I). This distinction is lost
in a crystalline environment, where the IRs of Ri×θ represent-
ing toroidal moments are mapped onto the same finite set of
IRs of the crystallographic point groups as the IRs of Ri×θ

representing electric and magnetic multipoles. Therefore the
observable physics one can associate with toroidal moments
in crystalline solids is indistinguishable from the physics due
to electric and magnetic multipoles.

We illustrate our general theory taking polarized versions
of lonsdaleite and diamond as examples; two highly sym-
metric crystal structures whose variations are realized in
numerous technologically relevant materials. An overview
of the specific types of crystal structures considered in the
present work is presented in Table III. The space-inversion and
time-inversion symmetric pristine lonsdaleite and diamond
structures are compatible with even-� electric polarizations
of order � � 2 for lonsdaleite and � � 4 for diamond, re-
spectively [45]. Introduction of odd-� electric polarizations
(also � = 2 in diamond) and even- or odd-� magnetic po-
larizations reduce the crystal symmetries to those specified
by the magnetic point groups [13,46] given in Table III.
For example, SIS of the lonsdaleite structure is broken in
the wurtzite structure with an � = 1 electropolarization (i.e.,
an electric dipolarization). Similarly, the zincblende structure
constitutes a broken-SIS diamond structure due to an � = 3

electropolarization (i.e., an electric octupolarization). We also
consider the structures where TIS is broken instead of SIS
by introducing different magnetic polarizations ranging from
� = 1 to � = 4. Lonsdaleite and diamond structures with a
magnetic quadrupolarization (� = 2) or hexadecapolarization
(� = 4) are antiferromagnets [47] that break both SIS and TIS
individually but preserve CIS.

The remainder of this article is organized as follows. We
start by developing the general theory in Sec. II. Results
obtained from application of the theory to crystal structures
from the lonsdaleite and diamond families are presented in
the subsequent Secs. III and IV, respectively. Each main sec-
tion has a preamble that gives a more detailed overview of the
topics discussed there. Conclusions and a brief outlook are
presented in Sec. V.

II. GENERAL THEORY

In this section, we develop a rigorous theory of multi-
polar order in crystalline solids based on group theory. The
symmetry properties of electric and magnetic multipoles in
free space are discussed in Sec. II A, with special focus on
their classification according to transformation behavior under
space inversion i and time inversion θ . Section II B considers
multipole densities in crystalline solids, which we refer to as
polarizations. Five distinct categories of polarized matter are
identified. Sections II C and II D develop the mathematical
tools required to enable the derivation of distinctive indicators
for multipolar order in Sec. II E. The consideration of symme-
try hierarchies in Sec. II F provides a platform for addressing
the subtle issue of when and how coexisting multipole densi-
ties can be properly defined in a solid. Section II G identifies
distinctive band-structure features for each category of polar-
ized matter. Toroidal moments are discussed in Sec. II H. The
final Sec. II I elucidates the relationship between macroscopic
multipole densities in a solid’s bulk and microscopic multi-
poles localized on atomic sites.
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A. Multipoles

We are interested in electric and magnetic multipolar
order in a crystalline environment. In free space, electric
and magnetic multipoles M of order � can be viewed as
spherical tensors that transform irreducibly under the rotation
group Ri×θ [48], i.e., they can be classified by the (2� + 1)-
dimensional IRs Dss′

� (� = 0, 1, 2, . . .) of Ri×θ according to
which these quantities transform [34,49,50]. Below we distin-
guish the components of these (2� + 1)-dimensional IRs via
an index m in the usual way [49,50].

The signature ss′ indicates how a quantity behaves under
space inversion (even/odd if s = +/−) and time inversion
(even/odd if s′ = +/−). For even �, electric (magnetic) mul-
tipoles transform according to the IR D++

� (D−−
� ) of Ri×θ ,

while for odd �, electric (magnetic) multipoles transform
according to D−+

� (D+−
� ), see Table I. Thus even-� electric

multipoles preserve both SIS and TIS, whereas even-� mag-
netic multipoles break both SIS and TIS, but the combined
inversion iθ remains a good symmetry. Odd-� electric (mag-
netic) multipoles break SIS (TIS). The distinct behavior of
these multipoles under SIS and TIS suggests to divide these
multipoles into four families representing even-� and odd-�
electric and magnetic multipoles.

The behavior of the four families of electric and magnetic
multipoles under SIS and TIS can be classified via the five
inversion groups Ci×θ , Cθ , Ci, Ciθ and C1 that can be formed
from space inversion i and time inversion θ . (See the explicit
definitions given in the left column of Table II.) Under the
full inversion group Ci×θ , when i and θ are independently
good symmetries, only even-� electric multipoles (signature
++) are allowed. Under Cθ , i.e., when i is broken, we may
also have odd-� electric multipoles (−+). Under Ci, on the
other hand, i.e., when θ is broken, we may have instead odd-�
magnetic multipoles (+−). When both i and θ are broken,
but iθ remains a good symmetry so that we get the group Ciθ ,
we may have even-� magnetic multipoles (−−). Even-� and
odd-� electric and magnetic multipoles (all signatures ss′) are
allowed simultaneously if none of the operations i, θ , and iθ
represent good symmetries, i.e., we get the trivial group C1

that only contains the identity e.

B. Categories of polarized matter

An extended crystal must be characterized in terms of mul-
tipole densities m instead of multipoles M. To emphasize
the conceptual difference between the quantities m, which
constitute a macroscopic property of the bulk material, and
the localized multipoles M characterizing, e.g., molecules
[34,35], we refer to m as a polarization. Nonetheless, from
the perspective of group theory, both M and m are spherical
tensors of order � that share the same transformation prop-
erties under the point-group symmetries discussed here. The
multipoles M of localized systems such as molecules can be
characterized in terms of the point groups G characterizing
these systems [51]. Similarly, in a crystalline environment, the
symmetry is reduced compared with free space. According to
Neumann’s principle, the relevant symmetry group for mate-
rial tensors such as multipole densities is the crystallographic
point group G defining the crystal class of a crystal structure

[7,8,52]. These groups are finite subgroups of the rotation
group Ri×θ .

In total, 122 magnetic crystallographic point groups G can
be formed [10,12,53]. To categorize these groups, we expand
on the classification of multipolar order based on the inversion
symmetries γ = i, θ , and iθ . We decompose

G = G̃ × Cγ , (1)

where G̃ denotes the proper or improper subgroup of G that
contains none of the inversion symmetries γ as individual
group elements, and Cγ is the inversion group that can be
formed from the inversion symmetries γ that appear as group
elements in G. In this way we identify five qualitatively dis-
tinct categories of macroscopic electromagnetic multipolar
order based on the five inversion groups Cγ [54]. The five
categories are listed in the last column of Table II, and their
properties are as follows.

(i) The full inversion group Ci×θ defines parapolar systems
that have the highest symmetry. Even-� electric multipole den-
sities (signature ++) are the only electromagnetic multipole
densities permitted by Ci×θ , and we use the label parapolar-
ization for members of this family. Parapolar systems are thus
both paraelectric and paramagnetic.

(ii) The noncyclic group Ci×θ has order 4. It is isomor-
phic to the Klein four-group in abstract group theory [13].
Accordingly, the group Ci×θ has three order-2 subgroups Cθ ,
Ci, and Ciθ that represent mutually exclusive alternatives to
reduce the symmetry of parapolar systems. We elaborate
on each one of these in turn. (ii-a) The group Cθ defines
electropolar systems that may possess odd-� electric multi-
pole densities (signature −+, any member of this family is
labeled an electropolarization), including an electric dipole
density (an electric dipolarization with � = 1). Therefore elec-
tropolar systems include, e.g., pyroelectrics and ferroelectrics
[7,8,55,56]. (ii-b) The group Ci defines magnetopolar sys-
tems that may possess odd-� magnetic multipole densities
(a magnetopolarization, +−), including a magnetic dipole
density (a magnetization with � = 1). Therefore magnetopolar
systems include, e.g., ferromagnets [11,12,55,57]. (ii-c) The
group Ciθ defines antimagnetopolar systems that may possess
even-� magnetic multipole densities (an antimagnetopolar-
ization, −−). Antiferromagnets can be antimagnetopolar or
magnetopolar as illustrated below [58]. We denote the elec-
tropolar, magnetopolar and antimagnetopolar groups jointly
as unipolar groups.

(iii) The trivial inversion group C1 defines multipolar
systems that may possess electric and magnetic multipole
densities of any order � (all signatures ss′) so that they can
be simultaneously electropolar and (anti-)magnetopolar. Mul-
tipolar systems include, e.g., multiferroics [59,60].

The five inversion groups Cγ treat the black-white sym-
metries i and θ on the same footing. Closely related, the
five categories in Table II treat electric and magnetic or-
der on the same footing. Here we complement the standard
Schönflies notation for magnetic point groups [13,46] with
the corresponding expressions according to Eq. (1) that re-
veal how the inversion operations are combined with proper
rotations.
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C. Compatibility relations

The crystallographic point groups G are finite subgroups
of the rotation group Ri×θ , and the IRs Dss′

� of Ri×θ can be
mapped onto the IRs �α of G

Ri×θ �→ G : Dss′
� �→

∑
α

�α. (2)

Ignoring TIS, i.e., considering only the nonmagnetic crystal-
lographic point groups, the compatibility relations (2) were
tabulated up to rank � = 6 by Koster et al. [45,61]. These
relations indicate how spherical tensors m decompose into
components mG

α transforming irreducibly (IR �α) under a
crystallographic point group G

m =
∑

α

mG
α . (3)

For brevity of notation, we ignore in Eqs. (2) and (3) that there
may be multiple irreducible components mG

α transforming
according to the same IR �α . (This is expressed by the multi-
plicities with which an IR �α of G is contained in an IR Dss′

�

of Ri×θ .) The components mG
α can be obtained by projecting

m onto the IRs �α of G. The IRs of the crystallographic
point groups are at most three-dimensional, i.e., spherical
multipole densities m of order � � 2 decompose into mul-
tiple irreducible components under all crystallographic point
groups G.

We make extensive use of Koster’s tables [45], though
occasionally we need to deviate from Koster’s conventions
regarding the choice of coordinate systems used to define the
group elements and basis functions. Koster et al. define the
IRs for the 32 nonmagnetic crystallographic point groups G
via their characters and representative basis functions. Koster
et al. consider only SIS but not TIS, and they use a single
superscript s = ± to denote IRs that are even or odd under
SIS. So-called type-III magnetic point groups [53] are iso-
morphic to nonmagnetic point groups (provided we do not
consider double groups [62], as appropriate for Neumann’s
principle [52]). However, in order to identify representative
basis functions for the IRs as tabulated by Koster et al. [45],
we consider the IRs of the respective nonmagnetic subgroups
of the type-III magnetic groups. Below we indicate these
homomorphisms relating the magnetic groups with their non-
magnetic subgroups via an arrow, e.g., Ri×θ → Ri ≡ R × Ci.
The approach followed here is thus similar to how TIS can be
taken into account for nonmagnetic systems, starting with the
representations of point groups ignoring TIS and subsequently
incorporating the effect of TIS [52].

If the symmetry of a “parent” crystalline environment is
reduced from a group G to a subgroup U of G, the IRs �α of
G can likewise be mapped onto the IRs �β of U [63]

G �→ U : �α �→
∑

β

�β. (4)

The compatibility relations for the IRs of the crystallographic
point groups have also been tabulated by Koster et al. [45].
They imply that, similar to Eq. (3), components mG

α of a mul-
tipole density m that transform irreducibly under G can be
decomposed into components mU

β that transform irreducibly

under U ⊂ G

mG
α =

∑
β

mU
β . (5)

The decomposition of a (spherical or Cartesian) material
tensor T into its irreducible components under a point group G
enables one to determine which components of T are allowed
to be nonzero according to crystal symmetry. Components of
a material tensor T are allowed by crystal symmetry [52] if
these components transform according to the identity (unit)
representation of G (always denoted �1 in Koster’s notation
[45]). For higher-rank Cartesian tensors with multiple indices,
additional constraints for nonzero tensor components may
arise from symmetry under permutation of indices. Nonzero
tensor components for a range of common material tensors
have been tabulated for the 32 nonmagnetic crystallographic
point groups in, e.g., Refs. [8,55,56]. Material tensors have
been discussed for the magnetic crystallographic point groups
in, e.g., Refs. [55–57].

The criterion for nonzero tensor components implies that
more tensor components become allowed to be nonzero if the
symmetry of a system is reduced, e.g., via external perturba-
tions or due to a phase transition [13]. This can be derived
in detail from the compatibility relations between the IRs
of the crystallographic point groups [45]. These techniques
have been exploited earlier to study and characterize material
tensors [8].

The above considerations apply, in particular, to electric
and magnetic multipole densities m. The decomposition (3)
can be performed for multipole densities of any order � and
any crystallographic point group G [45]. However, m remains
forbidden by symmetry unless the decomposition (3) includes
the identity representation �1 of G.

Phrased differently, suppose a crystal structure has a group
G that requires m = 0 for a given multipole density of order
�, so that Eq. (3) does not include a term associated with �1.
If the multipole density m becomes nonzero (e.g., because
of external perturbations or due to a phase transition), the
symmetry of the system is reduced from G to a subgroup U of
G that is defined by the condition that the nonzero component
of m denoted mU

1 transforms irreducibly according to the
identity representation �1 of U , i.e., mU

1 is a scalar under U
[64]. Again, we ignore for brevity of notation that m may
contain multiple distinct components that transform according
to �1 of U . We call mU

1 the scalar of the multipole density m
under U .

The subgroup U ⊂ G generally depends on which com-
ponent of m has become nonzero. For electric and magnetic
dipole densities, the resulting subgroups U have likewise been
tabulated by Koster et al. [45]. Groups permitting a macro-
scopic electric dipole density (� = 1) have previously been
called polar [8], and groups permitting a magnetic dipole den-
sity (magnetization) represent ferromagnetism [11,12,55,57].
According to Neumann’s principle, the respective point
groups G can be identified via the criterion that the com-
patibility relation (2) for the IR D−+

1 (D+−
1 ) of the electric

(magnetic) dipole density includes the identity representation
�1 of G. More explicitly, we obtain the nonzero component
m1 of m by projecting m onto �1 of G [52].
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More generally, we can classify the crystallographic point
groups G based on the lowest-order electric (�(e,λ)

min ) and
magnetic (�(m,λ)

min ) multipole densities permitted in a crystal
structure by its point group G (ignoring the electric monopole
density transforming according to D++

0 that is always allowed)
[45]. The superscript λ distinguishes between the lowest even
(λ = g) and odd (λ = u) orders � corresponding to the dif-
ferent families of polarizations. Generally, the higher the
symmetry of a system is (as characterized via its group G), the
higher are the orders �

(e,λ)
min and �

(m,λ)
min , with �

(e,u)
min = ∞ when

SIS is a good symmetry and �
(m,λ)
min = ∞ for nonmagnetic

groups. The quantities �
(e,λ)
min and �

(m,λ)
min thus define a physically

motivated hierarchy among the crystallographic point groups
G. This symmetry-based classification of macroscopic electric
and magnetic order is independent of how the order is realized
microscopically. For example, as discussed in Sec. IV A, an
sp3 tight-binding (TB) model can describe macroscopic elec-
tric hexadecapole densities (� = 4), and locally alternating
magnetic dipoles can give rise to quadrupolar magnetic order
(Secs. III F and IV H).

As per the definition of �
(e,λ)
min and �

(m,λ)
min , a group G may also

permit electromagnetic multipole densities of higher order
than �

(e,λ)
min and �

(m,λ)
min . However, it is well-known for finite,

localized systems that the higher-order multipoles are gener-
ally not well-defined [34,35]. We discuss this point in greater
detail in the context of bulk multipole densities of crystalline
solids in Sec. II F.

D. Theory of invariants

The theory of invariants [31,52,65] provides a systematic
framework to describe the dynamics of Bloch electrons in
the presence of perturbations such as electric and magnetic
multipole densities. For conceptual clarity we restrict the dis-
cussion in the present work to nondegenerate bands, though
it is well-known how the theory of invariants can be ex-
tended to bands involving degeneracies [31,52]. We consider
a system with crystallographic magnetic point group G. The
general arguments presented in this section apply to any crys-
tallographic point group G. Later on, we focus specifically
on G = D6h × Cθ (lonsdaleite) and G = Oh × Cθ (diamond).
Note that these two groups constitute the highest-symmetry
crystallographic point groups. All nonmagnetic crystal struc-
tures have point groups that are proper or improper subgroups
of D6h or Oh (ignoring TIS; see Fig. 5 in Ref. [45]), and we get
subgroups of D6h × Cθ and Oh × Cθ for magnetic structures.

The theory of invariants is based on the fact that the Hamil-
tonian must transform according to the identity representation
�1 of G. More generally, any operator transforming according
to �1 of G has a nonzero expectation value (unless the system
possesses “hidden symmetries” so that G is not actually the
symmetry group of the system). In contrast, the expectation
values of operators not transforming according to �1 of G
must vanish.

In the theory of invariants, the Hamiltonian is built up
from invariants that transform each according to the identity
representation �1 of G. Such invariants can be expressed in
terms of scalar products of tensor operators O and O′ that
transform according to complex-conjugate representations �

and �∗ of G (because the product representation � × �∗ nec-
essarily contains �1). It is preferable, though not necessary,
that O and O′ are chosen such that their representations �

and �∗ are irreducible under G. For the groups D6h × Cθ ,
Oh × Cθ , and relevant subgroups discussed below, all IRs are
real, �∗ = �.

We may add terms to the Hamiltonian that describe the
effect of electric and magnetic multipole densities m. The
respective invariant interaction terms can be written as a sum
of scalar products [52]∑

α

aG
α KG

α · mG
α , (6)

where the sum runs over the IRs �α appearing in the decom-
position (3), and the irreducible tensor operators KG

α transform
according to the respective complex-conjugate IRs �∗

α . For
brevity of notation, we ignore that, in general, we have mul-
tiple irreducible tensors mG

α (KG
α ) that transform according

to the same IR �α (�∗
α) of G. Furthermore, we restrict the

present analysis to effects linear in the multipole densities
m. The irreducible tensors mG

α can also be used to construct
irreducible tensors of higher degree in the components of m
(similar to the tensor operators KG

α discussed below that may
be higher-degree polynomials in the components of crystal
momentum h̄k). The expansion coefficients aG

α are material-
specific parameters that are generally different for different
electronic bands.

When the theory of invariants is applied to the dynamics
of Bloch electrons, the components of the tensor operators
KG

α are polynomials in the components of crystal momentum
h̄k and of spin (h̄/2)σ (and sometimes also components of
orbital angular momentum representing band degeneracies).
Given the transformational behavior of k and σ under G, all
tensor operators KG

α of given degrees in k and σ [even beyond
those relevant for the decomposition (3)] can be derived in
a systematic way using the coupling coefficients tabulated
by Koster et al. [45]. This makes the theory of invariants a
comprehensive theory regarding the effects induced by multi-
polar order on the dynamics of Bloch electrons. For systems
with spherical symmetry and ignoring SIS and TIS so that
the symmetry group is R, the tensor operators must trans-
form according to the IR D� of the multipole density m,
compare Eq. (9) below. In this case, the components of the
tensor operators KR can be chosen to be the familiar harmonic
polynomials, the degree of which equals the order � of m
[49]. When the symmetry group G is a finite subgroup of
Ri×θ , the degree of the polynomials KG

α need not match the
order � of the corresponding multipole density m. Instead,
SIS and TIS require that the signature ss′ of m must equal the
signature of the tensor operators KG

α . Therefore the signatures
of k (−−) and σ (+−) represent constraints on the degree of
the polynomials KG

α , see Table IV. (We do not consider higher
powers in σ because σ 2

j = 1.) For example, tensor operators
KG

α associated with electric and magnetic multipole densities
for odd � necessarily involve the spin operator (h̄/2)σ. Purely
orbital operators KG

α associated with odd � may arise for
degenerate and off-diagonally coupled bands [31,52,66] that
are not studied in the present work. Concrete examples for
how tensor operators KG

α represent multipoles are given in
Secs. III and IV.
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TABLE IV. Powers of Cartesian components of the wave vector (collectively denoted k) and components of spin (collectively denoted σ )
required for a polynomial representation of tensor operators with signature ss′ associated with multipoles of order �. The symbol n denotes a
non-negative integer.

Electric Magnetic Electrotoroidal Magnetotoroidal

� even ++ : k2n+2 −− : k2n+1 −+ : k2n+1σ +− : k2nσ

� odd −+ : k2n+1σ +− : k2nσ ++ : k2n+2 −− : k2n+1

E. Indicators of multipolar order

We begin with the case that, for a given group G, the
invariant expansion (6) is formulated for a multipole density
m of order � < �min when m = 0, and the sum over IRs �α

of G does not include the identity representation �1. In this
case, the expectation values of all irreducible tensor operators
KG

α appearing in the expansion (6) must vanish, 〈KG
α 〉 = 0.

As discussed above, if, starting from a group G that re-
quires m = 0, the multipole density m becomes nonzero
(e.g., because of external perturbations or due to a phase
transition), the symmetry of the system is reduced from G to
a subgroup U of G, and the nonzero component mU

1 of m
transforms according to the identity representation �1 of U .
This implies, in turn, that the corresponding tensor operator
KU

1 also transforms irreducibly according to �1 of U and has
a nonzero expectation value, 〈KU

1 〉 �= 0. The tensor operator
KU

1 thus provides a probe for the presence of the multipole
density mU

1 .
Given a multipole density m for some �, under G each

irreducible component mG
α of m defines the indicator

IG
α = ∂H

∂mG
α

= aG
α KG

α (7)

as an operator that is independent of the presence of the mul-
tipole density m. In a system without multipolar order, i.e.,
when the group G requires m = 0, the expectation value 〈IG

α 〉
must vanish, 〈IG

α 〉 = 0 because �α �= �1. Conversely, when
some component mU

1 of mG
α becomes finite, the respective

component 〈IU
1 〉 of 〈IG

α 〉 becomes nonzero. For small |mG
α |,

the expectation value 〈IG
α 〉 is given by the linear-response

expression 〈
IG
α

〉 = χG
α mG

α , (8)

with the matrix χG
α denoting the static uniform IG

α -IG
α response

function [67] in the parent structure with group G. According
to Eq. (8), the expectation value 〈IG

α 〉 is a direct quantitative
probe of the multipole density m. Therefore, in the system
with point group U , where the nonzero component of 〈IG

α 〉 is
given by 〈IU

1 〉, we have mU
1 = [χG

α ]−1 〈IU
1 〉.

A familiar example for the indicator formalism is given
by exchange coupling in ferromagnets. Here the invariant is
an exchange term (g/2) μB σ · x with magnetic dipole den-
sity x. The g-factor g is generally an effective parameter
that characterizes the parent structure with group G; it may
deviate from the free-electron value g = 2 [68,69]. In an
anisotropic crystal environment, the exchange term may break
up into multiple invariant terms representing different crys-
tallographic directions and weighted with different g-factors
g [52]. The indicator representing exchange coupling is the
magnetic-moment operator (g/2) μB σ whose nonzero expec-

tation value signals the presence of ferromagnetic order. After
the system has undergone a phase transition to a ferromagnetic
state, the nonzero component of 〈(g/2) μB σ〉 is given by
χG

P xU
1 , with χG

P denoting the Pauli susceptibility in the par-
ent structure. Knowing the latter thus enables determination
of the ferromagnetic structure’s magnetic dipole density via
xU

1 = [χG
P ]−1 〈(g/2) μB σ〉.

For a structure with group U giving mU
1 �= 0, the parent

structure with group G � U and m = 0 takes the role of a
reference state. The need for a reference state also arises in the
modern theories of electric dipolarization [4,70] and orbital
magnetization [71,72] that do not define these quantities on
an absolute scale. Instead, they are defined as differences
between two states of the material that can be connected by an
adiabatic switching process [2,5]. Similarly, it was noticed in
an early study of the thermodynamics of pyroelectricity that
only the differences between the dipolarization in different
states of the system are physically significant [7].

F. Symmetry hierarchies

The irreducible components mG
α and mU

β of electric and
magnetic multipole densities m of different order � that are
permitted by different crystallographic groups G and sub-
groups U define a physically motivated hierarchy among these
groups. This hierarchy is complemented by a matching hi-
erarchy of tensor operators KG

α and KU
β that obey the same

sequence of compatibility relations (for the complex conju-
gate IRs) as mG

α , and mU
β [Eqs. (3) and (5)].

The hierarchy can be extended to include the rotation group
Ri×θ at the top, known as spherical approximation to the
dynamics of Bloch electrons [31,73]. Under Ri×θ , the invari-
ant interaction between a spherical multipole density m and
crystal electrons can be written as a scalar product [49] similar
to Eq. (6)

aRKR · m. (9)

Here, conceptually similar to the tensor operators KG
α , the

components of KR are harmonic polynomials in the compo-
nents of crystal momentum h̄k and spin (h̄/2)σ. Ignoring SIS
and TIS, the harmonic polynomials transforming according
to the IR D� of R can be chosen as polynomials of degree �

[49]. With SIS and TIS taken into account, the polynomials
KR must transform according to the IR Dss′

� of Ri×θ so that
these polynomials are at least of degree � to be consistent with
Table IV. By definition, an electric monopole density � = 0
transforms according to the identity representation D++

0 of
Ri×θ , i.e., it is always allowed in the spherical approximation.
The corresponding scalar tensor operators KR are given by
even powers of the wave vector k.
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Often in applications of the theory of invariants to the
dynamics of Bloch electrons, the main physics is already
captured by a Hamiltonian H with spherical symmetry, i.e.,
a Hamiltonian that is invariant under the rotation group Ri×θ

[31,73]. Starting from such a model we can add successively
the effect of electric and magnetic multipoles m of decreasing
order � till the symmetry is reduced to the actual symme-
try group G0 of the real system. (This concept has been
called symmetry hierarchy [31] or hierarchy of approxima-
tions [74]. Conceptually, this approach is closely related to
the virtual crystal approximation employed in first-principles
electronic band-structure methods [75].) The importance of
different multipoles m is reflected by the magnitude of
the prefactors aG appearing in the invariant expansion for
these multipoles. Commonly, the magnitude of the prefac-
tors aG decreases with decreasing order � of the multipoles
[31,73,74,76].

Interestingly, this well-established scheme appears to vi-
olate the fact known for finite localized systems that only
the multipole M of lowest nonvanishing order � = �min is
well-defined because the coefficients of the higher-order mul-
tipoles M depend in general on the choice of origin [34,35].
However, the situation is qualitatively different in extended
crystalline solids where even the multipole density m of
lowest nonvanishing order � = �min cannot be defined in terms
of multipole moments per unit cell because this multipole
moment depends on the arbitrary definition of a unit cell [3].
The modern theory of electric dipolarization and magnetiza-
tion thus defines the � = 1 multipole densities in terms of
geometric phases that are independent of the definition of the
unit cell [1,2].

In crystalline solids, the nonuniqueness of higher-order
multipoles takes a distinct twist. Within each family of po-
larizations (even-� electric, odd-� electric, even-� magnetic,
and odd-� magnetic), the respective invariants appearing in
the expansion (6) are not uniquely defined, as any linear
combination of invariants in a family is again an invariant
in that family, see footnote 35 in Ref. [76]. For a crys-
tal structure with symmetry group G0, this ambiguity is
resolved, but only for the multipole density m of lowest
nonvanishing order in each family, by requiring that the
tensor operator KG0

1 associated with mG0
1 has a vanishing

projection on the identity representation �1 of the super-
group G � G0 that characterizes the system when m =
0. This implies that even-� electric (magnetic) multipole
densities can be defined (together with their associated in-
variants) independent of odd-� electric (magnetic) multipole
densities.

For example, pristine diamond with point group Oh sup-
ports an electric hexadecapole density � = 4, see Sec. IV A. If
the symmetry is reduced from Oh = O × Ci to O, the system
also supports electric multipole densities with odd �. How-
ever, the lowest-order electric multipole density with odd �

permitted by the group O has � = 9 (while the associated
lowest-degree invariant is of Dirac type, a(e,9)m(e,9) σ · k,
see Sec. V, i.e., it corresponds to n = 0 in the notation
of Table IV). For a system with point group O, the elec-
tropolarization with � = 9 and its associated invariant are
well-defined, despite the concurrent presence of a parapolar-
ization with � = 4 (hexadecapolarization).

TABLE V. Band degeneracies imposed by inversion symmetries
for the categories of polarized matter. Lines connect band energies
that are equal.

C

G. Band-dispersion characteristics of the categories
of polarized matter

According to Table IV, the five categories of polarized
matter have unique patterns of band dispersions Eσ (k) as
sketched in Fig. 1. Band degeneracies for the five categories
are summarized in Table V. The parapolar category with the
highest symmetry is characterized by a spin-degenerate band
dispersion that only involves even powers of the wave vector
k. The patterns exhibited by the remaining four categories
depend on the non-negative integer n determining the pow-
ers of the Cartesian components of the wave vector k; see
Table IV. Generally, the case n = 0 is qualitatively dis-
tinct from n � 1. When n = 0 (lower row in Fig. 1) the
electropolar, antimagnetopolar, and multipolar categories are
characterized via a finite slope of the dispersion at k = 0.

More specifically, the patterns of band dispersions depend
on the particular tensor operators that couple to the multipole
densities m according to the theory of invariants. This is illus-
trated in Table VI for the invariants associated with multipole
densities in the diamond family. (These invariants are derived
in Sec. IV.) The electropolar category with n = 0 is realized
by Rashba spin-orbit coupling [28], while the case n = 1
includes Dresselhaus spin-orbit coupling [33]. The magne-
topolar category with n = 0 yields the exchange coupling
in ferromagnets, while for n = 1 it includes altermagnets
[77–79]. An example for the antimagnetopolar category with
n = 1 is the Néel term in diamond antiferromagnets derived
in Ref. [66].

H. Toroidal moments

For each � = 0, 1, 2, . . . the rotation group Ri×θ has four
IRs Dss′

� . As discussed in Sec. II A, for even �, electric (mag-
netic) multipole densities transform according to D++

� (D−−
� ),

while for odd �, electric (magnetic) multipole densities trans-
form according to D−+

� (D+−
� ). The remaining IRs for each �

have been associated with electrotoroidal (D∓+
� ) and magne-

totoroidal (D±−
� ) moments [39–43], see Table I. However, the

physical significance of toroidal moments has recently been
questioned [44].

It was suggested that toroidal moments can be observed
in (magnetic) crystalline environments [39–41] when these
moments become symmetry-allowed, similar to the electric
and magnetic multipole densities discussed above [80]. How-
ever, unlike the rotation group Ri×θ , each of the (magnetic)
crystallographic point groups G possesses only a finite set
{�α} of IRs so that under symmetry reduction Ri×θ �→ G, the
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FIG. 1. Typical examples for spinful band dispersions Eσ (k) associated with the five categories of polarized matter. The bands for the
parapolar and antimagnetopolar categories are at least twofold spin-degenerate in the entire Brillouin zone. The upper (lower) row corresponds
to n � 1 (n = 0), where n is defined in Table IV. The expressions in the lower left of the panels use the simplified notation of Table IV to
represent the indicators for the presence of multipolar order. Different colors represent opposite spin orientations. In the multipolar case, the
spin-split bands have more complicated spin textures such that it is generally not possible to assign a spin index to these bands.

toroidal moments are mapped onto the same set {�α} as the
electric and magnetic moments [45]. According to Table II,
each family of electromagnetic multipoles with even (odd) �

has a matching family of toroidal moments with odd (even) �,
but the same signature ss′. These pairs of families thus have
the same transformational behavior under SIS and TIS and
they couple to the same indicators (Table IV). Therefore, un-
der the smaller groups G, toroidal moments represent the same
observable physics as electric and magnetic moments. Below,
we illustrate this point for crystal structures that are members
of the lonsdaleite and diamond families. Toroidal moments are
fundamentally distinct from electromagnetic multipoles only
under the rotation group Ri×θ , but not under finite subgroups
of Ri×θ .

Similar to electric and magnetic multipole densities m, for
each crystallographic group G we can identify the lowest-
order electrotoroidal (�(et,λ)

min ) and magnetotoroidal (�(mt,λ)
min )

moments that are permitted by symmetry. Generally there
is no simple relation between, on the one hand, �

(e,λ)
min and

�
(m,λ)
min , and, on the other hand, �

(et,λ̄)
min and �

(mt,λ̄)
min , where λ̄ = u

(λ̄ = g) for λ = g (λ = u). For example, the point group D6h

of lonsdaleite permits an electric quadrupole density (� = 2),
whereas the lowest electrotoroidal multipole permitted by
D6h has � = 7. Conversely, the lowest order of a magnetic
multipole density permitted by the group D6h(C6v ) has � = 6
whereas the same group permits a magnetotoroidal multipole
with � = 1. This is similar to the fact discussed above that,
under crystallographic point groups G, the order � of a mul-
tipole density m need not equal the polynomial degree of

the tensor operators KG
α associated with m in the invariant

expansion (6).

I. Macroscopic multipole densities and localized multipoles

According to Neumann’s principle, the pattern of
macroscopic multipole densities m permitted in a crystal
structure is determined by the crystallographic point group G
defining the crystal class of the crystal structure [7,8,52]. For
crystal structures transforming according to a symmorphic
space groups S, the point group G is the finite subgroup of
S consisting of the elements of S that leave one point in
space fixed. Nonsymmorphic space groups S also contain
group elements that combine point group symmetries g
with nonprimitive translations. Here the elements g are also
elements of the point group G, although these symmetry
operations are not, by themselves, elements of S. The latter
case makes crystallographic point groups defining crystal
classes qualitatively distinct from point group symmetries of
finite systems like molecules.

The macroscopic multipole densities m can be realized
microscopically by localized multipoles M that are arranged
periodically consistent with the space group S. The length
scale of the localized multipoles M is generally a fraction
of the lattice constant. The permitted patterns of multipoles
M are determined by the site symmetries characterizing the
Wyckoff positions of the atoms forming a crystal structure.
The site symmetries are subgroups of the crystallographic
point group G; this is the reason why the order of the mul-
tipoles M may be smaller (or larger) than the order of the

TABLE VI. Invariants associated with multipolar order in the diamond family. Here m(e,�) and m(m,�) denote the order-� electric and
magnetic multipole densities considered in Sec. IV, and n is the non-negative integer defined in Table IV.

ss′ n = 0 n = 1 n > 1

++ m(e,2)
x ( − 2k2

x + k2
y + k2

z ) + cp a m(e,4)(k2
x k2

y + cp)

−+ m(e,1)
x (σykz − σzky ) + cp a m(e,3)[σxkx (k2

y − k2
z ) + cp]

+− m(m,1)
x σx + cp m(m,3)(σxkykz + cp)

−− m(m,2)
x kx + cp b m(m,2)

x kx (k2
y − k2

z ) + cp m(m,4)kxkykz(k2
y − k2

z )(k2
z − k2

x )(k2
x − k2

y )

aRealized in strained or quantum-confined diamond.
bRealized in strained or quantum-confined diamond antiferromagnets.
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resulting multipole density m. Generally, there is no sim-
ple relation between the order of local multipoles M and
the order of the resulting macroscopic multipole density m.
The site symmetries are tabulated in Refs. [37,38], see also
Refs. [81,82].

For example, the site symmetry of the atoms in the lons-
daleite structure discussed below is the group C3v that permits
a local electric dipole moment, but also an electric octupole
moment [45]. The latter is realized by the sp3 hybrid orbitals
with which elements like carbon form lonsdaleite. A TB pic-
ture is well-suited to discuss the local electronic structure of
the atoms as a function of their positions in a crystal structure,
see Ref. [83] for a more detailed analysis. The concept of site
symmetries and the localized multipoles permitted by these
site symmetries is independent of the ambiguous definition of
a unit cell for a crystal structure [3].

For magnetic structures, it is well-known that local mag-
netic dipole moments on the atoms affect their site symmetries
[84]. These constraints determine the magnetic space groups
of these structures and thus, in turn, also the magnetic point
group G. We extend this scheme by also considering lo-
cal magnetic multipoles of higher order beyond � = 1 [36].
Throughout we consider macroscopic electric and magnetic
multipole densities on the same footing. Likewise, we con-
sider local electric and magnetic multipoles on the same
footing. The local multipoles M attached to atomic sites
in a crystal provide an instructive physical picture for the
microscopic origin of the macroscopic multipole densities
m. Also, magnetic multipoles M attached to atomic sites
provide a convenient means to incorporate magnetic order into
TB models. For conceptual clarity, we limit our discussion
of examples in Secs. III and IV to configurations with local
multipoles M of only one order �, even though computational
studies of real materials typically observe a greater variety of
such multipoles [85].

III. LONSDALEITE FAMILY

As an illustration for how to apply the general theory
developed in Sec. II, we analyze electric and magnetic order
in variants of hexagonal lonsdaleite listed in Table III. In
Sec. III A, we consider the electric quadrupolarization that
is already present in pristine lonsdaleite and therefore exists
alongside all other polarizations that reduce the high sym-
metry of the lonsdaleite crystal structure. We then discuss
electropolarizations in Secs. III B (electric octupolarization)
and III C (electric dipolarization). Magnetopolarizations are
covered in Secs. III E (magnetic octupolarization) and III G
(magnetization), while results for antimagnetopolarizations
are presented in Secs. III D (magnetic hexadecapolarization)
and III F (magnetic quadrupolarization). Section III H is de-
voted to an elucidation of close connections between electric
and magnetic orders.

To simplify the presentation, we always ignore TIS when
analyzing electric order. As explained in Sec. II C, we identify
IRs of magnetic point groups by referring to the respective
nonmagnetic subgroups as tabulated by Koster et al. [45];
and we indicate the homomorphisms relating the magnetic
groups with their nonmagnetic subgroups via an arrow “→ .”
Within each subsection, we follow the same outline. We start

by discussing the crystal symmetry and stating the compat-
ibility relations for the relevant multipole density. We then
identify the terms in the Bloch-electron Hamiltonian linear in
the considered multipole density having lowest order in k and
discuss associated physical ramifications. Then we link the
local site symmetry with its allowed local multipoles to the
bulk multipole density. We also identify the toroidal moment
density that manifests itself via the same invariants as the
discussed electric or magnetic multipole density.

A. Electric quadrupolarization in pristine lonsdaleite

The hexagonal nonsymmorphic lonsdaleite structure is
shown in Fig. 2(c). The space group of lonsdaleite is D4

6h
(No. 194, P63/mmc). Ignoring TIS, the crystallographic point
group of lonsdaleite is D6h = D6 × Ci, i.e., lonsdaleite is
parapolar. The lowest nonvanishing electric multipole density
allowed by D6h is an electric quadrupolarization (� = 2) with
compatibility relation [45]

Ri �→ D6h : D+
2 �→ �+

1 + �+
5 + �+

6 . (10)

Specifically, it is the component m = 0 of the IR D+
2 of Ri

that transforms according to �+
1 of D6h when the symmetry

is reduced from Ri to D6h. Thus, written in Cartesian coordi-
nates, the traceless electric quadrupole density in lonsdaleite
has nonzero components [34,49]

m(e,2) ≡ m(e,2)
xx = m(e,2)

yy = − 1
2 m

(e,2)
zz . (11)

Here m(e,2) is the scalar of the electric quadrupole density
under D6h. Accordingly, the harmonic polynomial in the com-
ponents of k for � = 2 and m = 0

K (e,2)
1 = k2

x + k2
y − 2 k2

z (12)

yields the invariant

H (e,2) = a(e,2)m(e,2)K (e,2)
1

= a(e,2)m(e,2)
(
k2

x + k2
y − 2 k2

z

)
, (13)

that represents an effective-mass anisotropy in the energy
dispersion Eσ (k) of band electrons in lonsdaleite [86].
The indicator I (e,2)

1 = a(e,2) K (e,2)
1 thus signals the electric

quadrupole density in lonsdaleite [87].
The site symmetry of the atoms forming the lonsdaleite

structure is the group C3v [37] that permits a local electric
dipole moment oriented along the main axis of lonsdaleite
[45]. The group C3v also permits an electric octupole mo-
ment that is naturally realized by the sp3 hybrid orbitals
with which elements like carbon form lonsdaleite [Fig. 2(g)],
analogous to the electric octupole moment of tetrahedrally
bonded molecules such as CH4 [88]. It is the microscopic
octupole that creates the bulk quadrupolarization. The electric
quadrupolarization (11) in pristine lonsdaleite and the asso-
ciated invariant (13) are also present in all other members
of the lonsdaleite family discussed in the remainder of this
section. In that sense, the presence of the electric quadrupo-
larization (11) represents a key feature of the lonsdaleite
family.
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FIG. 2. Multipole densities in the lonsdaleite family. Top row [(a)–(d)]: pristine lonsdaleite (c) and variants of the lonsdaleite crystal
structure including wurtzite (d). In (c), the four atoms in a unit cell are highlighted in blue. (g) The local electric octupole moments M0 on
the identical atoms in pristine lonsdaleite give rise to an electric quadrupolarization (� = 2). Remaining panels in the central row [(e), (f), and
(h)]: For the structures (a), (b), and (d) consisting of two distinct types of atoms, panels (e), (f), and (h) show the deviation �M of the local
octupole moments compared with the moments M0 when all atoms are identical (g). These local moments �M give rise to (e) an electric
quadrupolarization (� = 2), (f) an octupolarization (� = 3), and (h) a dipolarization (� = 1). Bottom row [(i), (j), (k), and (l)]: local magnetic
dipole moments give rise to (i) a hexadecapolarization (� = 4), (j) an octupolarization (� = 3), (k) a quadrupolarization (� = 2), and (l) a
magnetization (� = 1). (i)–(l) show the local magnetic dipole moments with different shades of the same color because all sites are equivalent
by symmetry (i.e., they have the same Wyckoff letter) so that the local moments are likewise symmetry-equivalent. The same situation arises
for the electric octupole moments (g) of the nonmagnetic pristine lonsdaleite structure (c).

The lowest electrotoroidal moment permitted in pristine
lonsdaleite has � = 7. It manifests itself via the same invariant
(13) as the electric quadrupole density.

B. Electric octupolarization in lonsdaleite

Pristine lonsdaleite has four identical atoms per unit
cell [Fig. 2(c)], and its lowest-order multipole density is a
quadrupolarization (Sec. III A). Two distinct types of atoms
arranged as in Fig. 2(b) reduce the space-group symmetry
to D1

3h (No. 187, P6̄m2) and the point-group symmetry is
reduced to D3h. The group D3h breaks SIS so that this structure
is electropolar. The lowest-order electric multipole density
supported by the crystal structure in Fig. 2(b) is an electric
octupole density (� = 3) that yields the compatibility relation
[45]

Ri �→ D3h : D−
3 �→ �1 + �2 + �4 + �5 + �6. (14)

The corresponding invariants in the Hamiltonian read (to low-
est order in k)

H (e,3) = a(e,3)m(e,3) kz
[
σxkxky + 1

2σy
(
k2

x − k2
y

)]
+ b(e,3)m(e,3) σz ky

(
3k2

x − k2
y

)
. (15)

These terms represent a spin-orbit coupling.
The site symmetry of the atoms is, once again, C3v [37].

However, the two distinct atoms in Fig. 2(b) have different
Wyckoff positions (with two atoms of each type per unit cell),
and they may carry different electric octupole moments. We
decompose these moments M ≡ M0 + �M into one part
M0 that is equal by symmetry for all atoms as in lonsdaleite.
These moments thus have the same observable effect as the
local moments in pristine lonsdaleite [Fig. 2(g)], i.e., they give
rise to the invariant (13). It is the remaining part �M oriented
oppositely that is shown in Fig. 2(f) and that gives rise to the
new invariants (15). This can be worked out quantitatively in
a simple sp3 TB model [89].
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TABLE VII. Irreducible representations (IRs) and their lowest-
order representative basis functions of an electric dipole (signature
−+) and magnetic dipole (signature +−) oriented along the main
axis of a hexagonal crystalline environment. The IRs are labeled
according to Koster et al. [45].

Ri×θ → Ri D−+
1 → D−

1

D6h × Cθ → D6h �−
2 + �−

5
σxky − σykx σykz,−σxkz;

σzky, −σzkx

C6v × Cθ → C6v �1 �5

Ri×θ → Ri D+−
1 → D+

1

D6h × Cθ → D6h �+
2 + �+

5
σz σx, σy

D6h(C6h ) → C6h �+
1 �+

5 + �+
6

The lowest electrotoroidal moment permitted in this struc-
ture has � = 4.

C. Electric dipolarization in lonsdaleite—wurtzite

If two of the four identical atoms in the lonsdaleite unit
cell become distinct as shown in Fig. 2(d), we obtain the
wurtzite structure that is realized by several III-V and II-VI
semiconductors including ZnS, CdSe, GaN, and AlN. The
space group becomes C4

6v (No. 186, P63mc), and the point
group of wurtzite is C6v . These groups break SIS so that
wurtzite is electropolar. More specifically, the compatibility
relation [45]

Ri �→ C6v : D−
1 �→ �1 + �5 (16)

indicates that wurtzite naturally permits an electric dipole
density (� = 1, an electric dipolarization). The associated in-
variant in the Hamiltonian to lowest order in k,

H (e,1) = a(e,1)m(e,1)(σxky − σykx ), (17)

represents a spin-orbit coupling commonly known as Rashba
term [28].

A more complete analysis of the electric dipole density in
wurtzite is given in Table VII. Ignoring TIS, the dipole density
transforms according to D−

1 of Ri. A hexagonal environment
(point group D6h) yields the compatibility relation [45]

Ri �→ D6h : D−
1 �→ �−

2 + �−
5 , (18)

so that, as to be expected, a dipole density is forbidden in lons-
daleite. The lowest-order tensor operator transforming like �−

2
is

K (e,1)
2− = σxky − σykx, (19)

while two pairs of operators transform like �−
5

K (e,1)
5− : σykz,−σxkz; σzky,−σzkx. (20)

The expectation value of these operators must thus vanish
in lonsdaleite. When the symmetry is further reduced to C6v

(wurtzite), we get the compatibility relations [45]

D6h �→ C6v :

{
�−

2 �→ �1, �−
5 �→ �5

K (e,1)
2− �→ K (e,1)

1 , K (e,1)
5− �→ K (e,1)

5 ,
(21)

so that the tensor operator (19) becomes allowed and yields
the Rashba term (17).

Just as in Sec. III B, the distinct atoms in wurtzite have
different Wyckoff positions, but they all have the site sym-
metry C3v [37]. The local electric moments on the atoms are
illustrated in Fig. 2(h). The lowest electrotoroidal moment
permitted in wurtzite has � = 6.

D. Magnetic hexadecapolarization in lonsdaleite

If the four equivalent atoms in the lonsdaleite unit cell
carry magnetic dipole moments as in Fig. 2(i), the system
becomes antimagnetopolar. More specifically, the magnetic
space group becomes P6′

3/mm′c (No. 194.266) and the mag-
netic point group becomes D6h(D3h) → D3h that supports in
lowest order a magnetic hexadecapole density (� = 4) for
which the compatibility relation reads

Ri �→ D3h : D−
4 �→ �1 + �2 + �3 + 2�5 + �6. (22)

The corresponding invariant in the Hamiltonian reads (to low-
est order in k)

H (m,4) = a(m,4)m(m,4) kx
(
k2

x − 3k2
y

)
. (23)

The atoms with magnetic dipole moment aligned along the
lonsdaleite main axis have the site symmetry C3v (C3). The
same site symmetry is also realized in the magnetized versions
of lonsdaleite discussed in the remainder of this section. In an
sp3 TB model [89], the magnetic dipoles can be implemented
via a local Zeeman term.

E. Magnetic octupolarization in lonsdaleite

If the four equivalent atoms in the lonsdaleite unit cell carry
magnetic dipole moments as in Fig. 2(j), the system becomes
magnetopolar. More specifically, the magnetic space group
becomes P6′

3/m′m′c (No. 194.268) and the magnetic point
group becomes D6h(D3d ) → D3d that supports in lowest order
a magnetic octupole density (� = 3) for which the compatibil-
ity relation reads

Ri �→ D3d : D+
3 �→ �+

1 + 2�+
2 + 2�+

3 . (24)

The corresponding invariant in the Hamiltonian reads (to low-
est order in k)

H (m,3)
1 = a(m,3)m(m,3) σzkxkz

(
k2

x − 3k2
y

)
. (25)

Such a spin-splitting term induced by exchange coupling
and proportional to an even power of components of k has
recently been associated with altermagnetism [78,79]. This
term aligns the magnetic moments of the Bloch electrons
(anti)parallel to the local magnetic moments on the individ-
ual atoms [Fig. 2(j)]. The combined effect of nonrelativistic
exchange coupling and relativistic spin-orbit coupling gives
rise to additional invariants

H (m,3)
2 = b(m,3)m(m,3) (σxky − σykx )kz

+ c(m,3)m(m,3)
[

1
2σx

(
k2

y − k2
x

) + σykxky
]
, (26)

which are also proportional to m(m,3) and an even power
of components of k. These terms are typically smaller in
magnitude than the nonrelativistic term (25) and tend to align
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TABLE VIII. Irreducible representations (IRs) and their lowest-order representative basis functions of a magnetic quadrupole and polar-
toroidal vector (signatures −−) in a hexagonal crystalline environment. The IRs are labeled according to Koster et al. [45]. For C2v , however,
the main axes x, y, z have been permuted cyclically. Basis functions shown in square brackets do not have the required transformation behavior
under TIS but are included for comparison.

Ri×θ → Ri D−−
2 → D−

2 D−−
1 → D−

1

D6h × Cθ → D6h �−
1 + �−

5 + �−
6 �−

2 + �−
5

(k2
x − 3k2

y ) (k2
y − 3k2

x ) kxkykz kx, ky (kx − iky )
2
kz, (kx + iky )

2
kz kz kx, ky

D6h(D6) → D6 �1 �5 �6 �2 �5

(k2
x − 3k2

y )(k2
y − 3k2

x )kxkykz kx, ky (kx − iky )
2
kz, (kx + iky )

2
kz kz kx, ky

D2h(C2v ) → C2v �3 �1 + �2 �3 + �4 �4 �1 + �2

kx ky kz kx; [k2
y ; k2

z ] ky kx kykz kz kz kx ky

the magnetic moments of the Bloch electrons perpendicular to
the local magnetic moments on the individual atoms.

A momentum-dependent spin splitting of the form σzkxky

has recently been found in MnF2 [90], where it was called
“AFM-induced spin splitting.” See also Ref. [77]. MnF2

has a tetragonal rutile structure. Its magnetic point group
is D4h(D2h) = D4(D2) × Ci [91], making the system magne-
topolar. Similar to the hexagonal magnetic structure discussed
here, the tetragonal point group D4h(D2h) of MnF2 has �

(m)
min =

3, i.e., the lowest allowed magnetic multipole density is an
octupole [18]. While Refs. [77,90] focused on magnetic space
groups to discuss the AFM-induced spin splitting, magnetic
point groups are sufficient to discuss this effect [8,52,91].
Among the candidate materials proposed to exhibit altermag-
netism [79], CrSb has the same space group and thus also
the same point group D6h(D3d ) as the magnetically ordered
structure depicted in Fig. 2(j) and, therefore should exhibit all
of the properties discussed above.

F. Magnetic quadrupolarization in lonsdaleite

A magnetic quadrupole density in lonsdaleite is analyzed
in Table VIII. When going from the rotation group Ri×θ → Ri

to D6h × Cθ → D6h, the compatibility relation for a magnetic
quadrupole D−−

2 → D−
2 reads

Ri �→ D6h : D−
2 �→ �−

1 + �−
5 + �−

6 , (27)

so that the quadrupole remains forbidden. The lowest-
order tensor operators transforming according to the
IRs �−

1 , �−
5 , and �−

6 and consistent with the signa-
ture −− of a magnetic quadrupole density are listed in
Table VIII.

If the four equivalent atoms in the unit cell of lonsdaleite
possess oppositely oriented local magnetic moments pointing
parallel to the lonsdaleite main axis [Fig. 2(k)], the sys-
tem acquires a magnetic quadrupole density that yields the
magnetic space group P63/m′m′c′ (No. 194.271), and the
point group symmetry is reduced from D6h × Cθ = D6 × Ci×θ

to D6h(D6) = D6 × Ciθ . The system is thus antimagnetopo-
lar. More specifically, it is the m = 0 component of the
quadrupole density that becomes nonzero and transforms ac-
cording to �1 of D6h(D6). The compatibility relations and
lowest-order tensor operators for these IRs are listed in Ta-
ble VIII. Under D6h(D6), magnetic order is then signaled by a

nonzero expectation value of

I (m,2)
1‖ ∝ K (m,2)

1‖ = (
k2

x − 3k2
y

)(
k2

y − 3k2
x

)
kxkykz. (28)

If, instead, the four atoms in the unit cell possess oppositely
oriented local magnetic moments pointing perpendicular to
the lonsdaleite main axis (see Fig. 3), the system acquires
a magnetic quadrupole density that yields the orthorhom-
bic space group Cmc′m (No. 63.460), and the point-group
symmetry is reduced from D6h × Cθ to D2h(C2v ). The lat-
ter group possesses only one-dimensional IRs so that the
two-dimensional IRs �−

5 and �−
6 of D6h × Cθ split into one-

dimensional IRs of D2h(C2v ). More specifically, we have

D6h × Cθ �→ D2h(C2v ) : �−
5 �→ �1 + �2, (29)

which includes the identity representation �1. The lowest-
order tensor operators transforming according to these IRs are
listed in Table VIII. Quadrupolar magnetic order is signaled
in this case by a nonzero expectation value of

I (m,2)
1⊥ ∝ K (m,2)

1⊥ = kx. (30)

Table VIII also includes the compatibility relations for a
magnetotoroidal dipole (� = 1) that has the same signature
−− as the magnetic quadrupole density. For the magnetic or-
der depicted in Fig. 2(k) when the symmetry group is D6h(D6),

FIG. 3. Magnetic lonsdaleite with oppositely oriented local mag-
netic moments pointing perpendicular to the lonsdaleite main axis,
compare Fig 2(k). The local moments give rise to a magnetic
quadrupolarization (� = 2).
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a magnetotoroidal dipole transforms according to the IRs �2

and �5 of D6h(D6) so that it remains forbidden. If we instead
have the magnetic order depicted in Fig. 3 and the symme-
try group is D2h(C2v ), a magnetotoroidal dipole transforms
according to the IRs �1, �2, and �4. The presence of mag-
netotoroidal order is thus signaled by a nonzero expectation
value of the same operator (30) that also signals the presence
of quadrupolar magnetic order.

G. Magnetization in lonsdaleite

A magnetic dipole density (magnetization) representing
ferromagnetism in lonsdaleite is analyzed in Table VII. Under
the point group D6h of nonmagnetic lonsdaleite, the dipole
density transforms according to the IRs �+

2 and �+
5 . Local

magnetic moments on the four atoms in the unit cell pointing
parallel to the main axis of lonsdaleite [Fig. 2(l)] yield the
magnetic space group P63/mm′c′ (No. 194.270), and the point
group becomes D6h(C6h) = D6(C6) × Ci. The system is thus
magnetopolar. As to be expected, the spin operator (h̄/2)σz

transforms according to �+
1 , and a nonzero expectation value

of σz signals the presence of ferromagnetic order. A magneti-
zation pointing perpendicular to the main axis of lonsdaleite
can be discussed similarly.

H. Correspondence between electric and magnetic order

Figure 2 shows that, for each �, the macroscopic multipole
densities are realized by the same spatial pattern of electric
(central row) and magnetic (bottom row) atomic multipole
moments. The close connection between electric and mag-
netic order is also reflected by the crystallographic point
groups characterizing the different structures (Table III). For
odd �, the point group characterizing the magnetopolar case is
obtained from the group characterizing the electropolar case
by replacing space inversion i by time inversion θ . On the
other hand, the space group symmetries of the structures con-
sidered in Fig. 2 are quite different; all magnetic structures in
the bottom row of Fig. 2 have nonsymmorphic space groups,
whereas pristine lonsdaleite is the only nonsymmorphic space
group in the central row.

The only exception to the correspondence between electric
and magnetic order occurs for � = 4, when antimagnetopolar
order with � = 4 can be realized as shown in Fig. 2(i) (all mag-
netic multipole densities with � � 3 vanish for that structure),
whereas the analogous electrically ordered structure shown in
Figs. 2(a) and 2(e) (space group D3

3d , No. 164, point group
D3d = D3 × Ci) possesses not only an electric hexadecapolar-
ization but also a quadrupolarization as in pristine lonsdaleite
[Figs. 2(c) and 2(g)]. This is the reason why panels (a) and
(e) have been separated in Fig. 2. In fact, only cubic crystal
structures do not permit an electric quadrupolarization [8].

IV. DIAMOND FAMILY

The general theory developed in Sec. II is further eluci-
dated by applying it to electric and magnetic order in the
variants of diamond listed in Table III. Section IV A focuses
on the electric hexadecapolarization that is compatible with
the diamond structure and therefore exists in all its variations.
The properties of electric octupolarization, quadrupolariza-

tion and dipolarization are discussed in Secs. IV B, IV D and
IV E, respectively. As the concept of quasivectors turns out
to be useful for understanding quadrupolarizations in dia-
mond, Sec. IV C has been inserted to provide relevant details.
Magnetopolarizations in diamond are considered in Secs IV G
and IV I, with antimagnetopolarizations covered in Secs IV F
and IV H. The multipolarization in Ga1−xMnxAs and related
(III,Mn)-V compounds is discussed in Sec. IV J. Connections
between electric and magnetic orders are explored in the final
subsection IV K.

We follow the same procedure as in Sec. III for an-
alyzing electric order, i.e., TIS is ignored. Again, IRs of
magnetic point groups are found by referring to their rel-
evant nonmagnetic subgroup, and we continue to indicate
the homomorphisms relating the magnetic groups with their
nonmagnetic subgroups by “→.” We also adhere to the same
general outline of each subsection as described in the pream-
ble of Sec. III.

A. Electric hexadecapolarization in pristine diamond

The cubic nonsymmorphic diamond structure is shown
in Fig. 4(a). Ignoring TIS, the space group of diamond is
O7

h (No. 227, Fd 3̄m) and the crystallographic point group is
Oh = O × Ci, i.e., diamond is parapolar. The lowest nonvan-
ishing electric multipole density allowed by Oh is an electric
hexadecapole density (� = 4) with compatibility relation [45]

Ri �→ Oh : D+
4 �→ �+

1 + �+
3 + �+

4 + �+
5 . (31)

In lowest order of the wave vector k, the scalar operator
associated with the hexadecapole density is the term

H (e,4) = a(e,4)m(e,4)
(
k2

x k2
y + k2

y k2
z + k2

z k2
x

)
(32)

that represents the warping of the energy dispersion Eσ (k) of
band electrons in the cubic diamond structure [92,93].

The site symmetry of the atoms forming the diamond struc-
ture is the group Td [37] that permits a local electric octupole
moment [45]. Similar to lonsdaleite (Sec. III A), the octupole
moment is naturally realized by the sp3 hybrid orbitals with
which elements like C, Si, and Ge form the diamond structure
[Fig. 4(c)]. Therefore the invariant (32) exists already in a
simple sp3 TB model. Using the notation of Refs. [94,95], in
lowest order of the TB matrix elements Vxy and Vsp, we have
a(e,4)m(e,4) ∝ V 2

xy V 2
sp.

The lowest electrotoroidal moment permitted in diamond
has � = 9.

B. Electric octupolarization in diamond—zincblende

The unit cell of pristine diamond contains two identical
atoms [Fig. 4(a)]. If these two atoms are distinct, we obtain the
zincblende structure [Fig. 4(b)] that is realized by several III-
V semiconductors including GaAs and InSb. The space group
of zincblende is T 2

d (No. 216, F 4̄3m), and the crystallographic
point group is Td . Unlike Oh = Td × Ci, the group Td breaks
SIS so that zincblende is electropolar. More specifically, the
compatibility relation [45]

Ri �→ Td : D−
3 �→ �1 + �5 + �4 (33)

indicates that zincblende naturally permits an electric oc-
tupole density (� = 3). The corresponding invariant in the
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l = 4 l = 3

l = 2 l = 1

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Multipole densities in the diamond family. Crystal struc-
ture of (a) pristine diamond and (b) zincblende. In (a), the two atoms
in a unit cell are highlighted in blue. Local octupole moments give
rise to (c) a hexadecapolarization (� = 4) and (d) an octupolarization
(� = 3). Local dipole moments give rise to (e) a quadrupolarization
(� = 2) and (f) a dipolarization (� = 1).

Hamiltonian (to lowest order in k) is

H (e,3) = a(e,3)m(e,3)
[
σxkx

(
k2

y − k2
z

) + cp
]
, (34)

where “cp” denotes cyclic permutation of the preceding term.
The invariant H (e,3) represents a spin-orbit coupling com-
monly known as Dresselhaus term [33].

A more complete analysis of the electric octupole density
in zincblende is given in Table IX. Ignoring TIS, the octupole
density transforms according to D−

3 of Ri. A cubic environ-
ment (point group Oh) yields the compatibility relation [45]

Ri �→ Oh : D−
3 �→ �−

2 + �−
4 + �−

5 , (35)

so that, as to be expected, an octupole density is forbidden in
diamond. The lowest-order tensor operator with signature −+
and transforming like �−

2 is

K (e,3)
2− = σxkx

(
k2

y − k2
z

) + cp. (36)

Examples of tensor operators transforming like �−
4 and �−

5
are listed in Table IX. The expectation value of these operators
must thus vanish in diamond. When the symmetry is further
reduced to Td (zincblende), we get the compatibility relation
[45]

Oh �→ Td : �−
2 �→ �1, �−

4 �→ �5, �−
5 �→ �4, (37)

so that the tensor operator (36) becomes allowed and yields
the Dresselhaus term (34).

The site symmetry of the atoms is, once again, Td [37].
However, similar to wurtzite, the two distinct atoms in
Fig. 4(b) have different Wyckoff positions, and they may carry
different electric octupole moments. Again, we decompose
these moments M ≡ M0 + �M into one part M0 that
is equal by symmetry for all atoms as in diamond. These
moments thus have the same observable effect as the local
moments in pristine diamond [Fig. 4(c)], i.e., they give rise
to the invariant (32). It is the remaining part �M oriented
oppositely that is shown in Fig. 4(d) and that gives rise to the
Dresselhaus term (34).

The lowest electrotoroidal moment permitted in zincblende
has � = 6.

The standard sp3 TB model for zincblende [94,95] pro-
vides an explicit model for Dresselhaus spin-orbit coupling
(34) and its relation to the octupolarization in zincblende. The
TB model accounts for the different atomic species constitut-
ing zincblende structures with different on-site energies for
anions and cations; we denote their difference with �E ac

j ,
j = s, p. Also, we get different overlap matrix elements Vspσ

TABLE IX. Irreducible representations (IRs) and their lowest-order representative basis functions of an electric (signature −+) and a
magnetic (signature +−) octupole in a cubic crystalline environment. The IRs are labeled according to Koster et al. [45]. Basis functions listed
for the IRs of Oh are also basis functions for the respective IRs of Td . “cp” denotes the cyclic permutation of the preceding term.

Ri×θ → Ri D−+
3 → D−

3

Oh × Cθ → Oh �−
2 + �−

4 + �−
5

σxkx

(
k2

y − k2
z

) + cp σykz − σzky, σzkx − σxkz, σxky − σykx σykz + σzky, σzkx + σxkz, σxky + σykx

Td × Cθ → Td �1 �5 �4

Ri×θ → Ri D+−
3 → D+

3

Oh × Cθ → Oh �+
2 + �+

4 + �+
5

σxkykz + cp σx, σy, σz σx

(
k2

y − k2
z

)
, σy

(
k2

z − k2
x

)
, σz

(
k2

x − k2
y

)
;

Oh(Th ) → Th �+
1 �+

4 �+
5
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TABLE X. IRs of vectors and quasivectors under the group Oh [45]. We list the lowest-degree polynomials in wave vector k and spin σ

that are even and odd under TIS and that transform irreducibly according to these IRs.

axial vectors �+
4 σx, σy, σz; kykz

(
k2

y − k2
z

)
, kzkx

(
k2

z − k2
x

)
, kxky

(
k2

x − k2
y

)
axial quasivectors �+

5 kykz, kzkx, kxky; σx

(
k2

y − k2
z

)
, σy

(
k2

z − k2
x

)
, σz

(
k2

x − k2
y

)
;

kx (σyky − σzkz ), ky(σzkz − σxkx ), kz(σxkx − σyky )
polar vectors �−

4 kx, ky, kz; σykz − σzky, σzkx − σxkz, σxky − σykx

polar quasivectors �−
5 σykz + σzky, σzkx + σxkz, σxky + σykx; kx

(
k2

y − k2
z

)
, ky

(
k2

z − k2
x

)
, kz

(
k2

x − k2
y

)

between, on the one hand, the anion s and cation p orbitals
and, on the other hand, the cation s and anion p orbitals. We
denote the difference between these overlap matrix elements
by �V ac

spσ . This quantity represents the scalar component (IR
�1) of an octupolar charge transfer between anions and cations
in zincblende. (Larger TB models may include multiple over-
lap matrix elements that permit such an interpretation.) In
a perturbative expansion of the sp3 TB model about k = 0,
Dresselhaus spin splitting is linearly proportional to �V ac

spσ ,
whereas it is only quadratically proportional to �E ac

i . This
is consistent with the k · p theory for Dresselhaus spin-orbit
coupling, where it is well-known that a minimal model for
Dresselhaus spin-orbit coupling in the lowest conduction band
(which has s-like symmetry) must include the top-most va-
lence band (consisting of p-bonding states in TB language)
as well as the lowest excited conduction band (consisting of
p-antibonding states) [93,96].

The Dresselhaus term (34) couples the orbital motion
of the Bloch electrons to the spin degree of freedom,
consistent with the analysis in Table IV that applies to
spinful models. In spinless models of common zincblende
semiconductors, the topmost valence band originating from
p-bonding atomic orbitals is threefold degenerate at k = 0.
Here, the electric octupolarization in zincblende breaking SIS
manifests itself via terms in the perturbative expansion of the
band structure that include odd powers of the wave vector k
[31].

C. Quasivectors under point group Oh

Before discussing electric quadrupole densities in dia-
mond, we introduce the concept of quasivectors in systems
with point group Oh. The point group Oh has four three-
dimensional IRs denoted �±

4 and �±
5 in Koster’s notation [45].

The function triples like the components kx, ky, kz of the wave
vector k that behave like a polar vector under all symmetry el-
ements of Oh are ascribed the IR �−

4 of Oh. On the other hand,
function triples such as kx(k2

y − k2
z ), ky(k2

z − k2
x ), kz(k2

x − k2
y )

transform according to the IR �−
5 of Oh. The latter functions

behave like polar vectors under half of the symmetry elements
of Oh. However, they change sign under proper ±π/2 ro-
tations about axes 〈100〉 and proper π rotations about axes
〈110〉, while they behave like axial vectors (not changing sign)
under improper ±π/2 rotations about axes 〈100〉 and im-
proper π rotations about axes 〈110〉. We call sets of functions
transforming according to �−

5 of Oh polar quasivectors.
Similarly, the function triples like kykz(k2

y − k2
z ), kzkx(k2

z −
k2

x ), kxky(k2
x − k2

y ) behaving like axial vectors under all sym-
metry elements of Oh are ascribed the IR �+

4 of Oh. On the
other hand, function triples such as kykz, kzkx, kxky transform-

ing according to the IR �+
5 of Oh behave like axial vectors

under half of the symmetry elements of Oh. However, they
change sign under proper ±π/2 rotations about axes 〈100〉
and proper π rotations about axes 〈110〉, while they behave
like polar vectors (changing sign) under improper ±π/2 ro-
tations about axes 〈100〉 and improper π rotations about axes
〈110〉. We call sets of functions transforming according to �+

5
of Oh axial quasivectors.

The IRs for vectors and quasivectors under the point group
Oh are summarized in Table X. We illustrate these IRs with
representative basis functions transforming according to these
IRs. The table gives the lowest-degree polynomials in wave
vector k and spin σ that are even and odd under TIS. By
definition, in a cubic environment (point group Oh) none of
these vectors are observable. They become observable when
the crystal symmetry is reduced.

D. Electric quadrupolarization in diamond

Next we discuss an electric quadrupole density in diamond.
The analysis is summarized in Table XI. The cubic group Oh

yields the compatibility relation [45]

Ri �→ Oh : D+
2 �→ �+

3 + �+
5 , (38)

i.e., the five components of the quadrupole decompose into
an axial quasivector (�+

5 ) and two components transforming
according to �+

3 . As to be expected, an electric quadrupole is
forbidden for Oh.

As in pristine lonsdaleite (Sec. III A), we consider the
case that the nonzero component of the quadrupole density
is m = 0. If the main axis of the quadrupole is parallel to the
crystallographic [001] axis, the point group becomes D4h and
we get the compatibility relations

Oh �→ D4h :

{
�+

3 �→ �+
1 + �+

3

�+
5 �→ �+

4 + �+
5

. (39)

In this case, we obtain the same invariant as in lonsdaleite,

H (e,2) = a(e,2)m(e,2)
z K (e,2)

1 (40a)

= a(e,2)m(e,2)
z

(
k2

x + k2
y − 2 k2

z

)
, (40b)

that represents an effective-mass anisotropy in the energy
dispersion Eσ (k) of band electrons in diamond. The axial
quasivector transforming according to �+

5 of Oh remains for-
bidden.

We compare with the case that the main axis of the
quadrupole is parallel to the crystallographic [mmn] axis,
when the point group symmetry becomes C2h and we get the
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TABLE XI. Irreducible representations (IRs) and their lowest-order representative basis functions of an electric quadrupole and axial-
toroidal vector (signatures ++) in a cubic crystalline environment. The IRs are labeled according to Koster et al. [45].

Ri×θ → Ri D++
2 → D+

2 D++
1 → D+

1

Oh × Cθ → Oh �+
3 + �+

5 �+
4(

2k2
z − k2

x − k2
y

)
,
√

3
(

k2
x − k2

y

)
kykz, kzkx, kxky kykz

(
k2

y − k2
z

)
, kzkx

(
k2

z − k2
x

)
, kxky

(
k2

x − k2
y

)
[001]: D4h �+

1 + �+
3 �+

4 + �+
5 �+

2 + �+
5

k2
x + k2

y ; k2
z k2

x − k2
y kxky kykz, kzkx kxky

(
k2

x − k2
y

)
kykz

(
k2

y − k2
z

)
, kzkx

(
k2

z − k2
x

)
[mmn]: C2h �+

1 + �+
2 2 �+

1 + �+
2 �+

1 + 2 �+
2

k2
x ; k2

y ; k2
z ; kzkx kxky; kykz k2

x ; k2
y ; k2

z ; kzkx kxky; kykz k2
x ; k2

y ; k2
z ; kzkx kxky; kykz

compatibility relations

Oh �→ C2h :

{
�+

3 �→ �+
1 + �+

2

�+
5 �→ 2�+

1 + �+
2

. (41)

Here the IR �1 appears three times so that the quadrupole
density has three independent components, two of which rep-
resent the axial quasivector (�+

5 ) in the decomposition (38) of
the quadrupole density.

Table XI also includes the compatibility relations for
an electrotoroidal dipole (� = 1) that has the same signa-
ture ++ as the electric quadrupole density. In the language
of Sec. IV C, the electrotoroidal dipole is an axial vec-
tor, whereas the electric quadrupole density includes a part
transforming like an axial quasivector [Eq. (38)]. When the
symmetry is reduced from Oh to D4h, the electrotoroidal
dipole remains forbidden. On the other hand, the reduced
symmetry C2h implies that not only the axial quasivector (�+

5
of Oh) becomes allowed for C2h [Eq. (41)], but also an axial
vector (�+

4 of Oh) becomes observable

Oh �→ C2h : �+
4 �→ �+

1 + 2 �+
2 . (42)

It becomes clear from Table XI that the reason for the ob-
servability of both quantities under C2h lies in the fact that
axial vectors and axial quasivectors are only distinct quantities
under the high symmetry of the point group Oh. However, they
represent the same observable physics when the symmetry is
reduced to a group like C2h that makes both of these quantities
measurable. Both quantities manifest themselves via terms in
the energy dispersion of band electrons proportional to the
invariants kzkx and kzkx(k2

z − k2
x ).

1. Strain

An electric quadrupole density becomes allowed in di-
amond when the symmetry is reduced by means of strain
[76] or quantum confinement [31]. Similar to an electric
quadrupole density, in Cartesian coordinates strain is charac-
terized via a symmetric rank-2 tensor ε [97]. The trace of ε

represents the effect of hydrostatic pressure. Ignoring hydro-
static pressure, the tensor ε is traceless. The effect of strain
[52] is then equivalent to inducing an electric quadrupole
density. A nonzero component εi j implies that the respective
component of the electric quadrupole density becomes ob-
servable, too.

The strain due to uniaxial stress applied in [001] direc-
tion reduces the space group of diamond to the tetragonal
group D19

4h (No. 141, I41/amd) with point group D4h. The site

symmetry of the atoms becomes D2d that supports an electric
quadrupole moment [Fig. 5(a)].

E. Electric dipolarization in zincblende

Similar to wurtzite, an electric dipole density becomes
allowed if the symmetry of diamond is reduced from Oh to
one of the polar subgroups of Oh including C4v , C3v , and C2v .
This is summarized in Table XII. In these cases, the dipole
density manifests itself via the same Rashba term (17) as in
wurtzite. Starting from a bulk zincblende structure, the polar
point groups C3v and C2v can be obtained experimentally by
applying uniaxial strain in the crystallographic direction [111]
(C3v) or [110] (C2v), which is the familiar piezoelectric effect
[8] that exists for zincblende structures (but not for diamond).
It has been noted previously [98,99] that for systems with
point groups C3v and C2v , the Dresselhaus term takes the form
of a Rashba term linear in the wave vector k. Indeed, this is
due to the fact that the system becomes polar and possesses an
electric dipole density.

F. Magnetic hexadecapolarization in diamond

In analogy with the electric hexadecapole density char-
acterizing pristine diamond (Sec. IV A) and the octupole
density characterizing the zincblende structure (Sec. IV B),
we can also discuss magnetic multipole densities that can
be modeled using atomic octupoles on the two sublattices of
diamond as the elementary building blocks for the multipolar
order [36]. When going from the rotation group Ri×θ → Ri

(a) (b) (c)

FIG. 5. Quadrupole densities in tetragonally distorted diamond.
(a) The distorted electric octupole moments due to the sp3 hybrid
orbitals give rise to local electric quadrupole moments which, in turn,
give rise to an electric quadrupole density. Alternating patterns of
magnetic dipole moments oriented (b) parallel and (c) perpendicular
to the tetragonal axis give rise to magnetic quadrupole densities.

155201-17



R. WINKLER AND U. ZÜLICKE PHYSICAL REVIEW B 107, 155201 (2023)

TABLE XII. Irreducible representations (IRs) and their lowest-
order representative basis functions of an electric dipole (signature
−+) and magnetic dipole (signature +−) in a cubic crystalline
environment. The IRs are labeled according to Koster et al. [45].

Ri×θ → Ri D−+
1 → D−

1

Oh × Cθ → Oh �−
4

σykz − σzky, σzkx − σxkz, σxky − σykx

Td × Cθ → Td �5

σykz − σzky, σzkx − σxkz, σxky − σykx

[001] : C4v �1 + �5

σxky − σykx σykz − σzky, σzkx − σxkz

[111] : C3v �1 + �3

σxky − σykx σykz − σzky, σzkx − σxkz

[110] : C2v �1 + �2 + �4

σxky; σykx σykz; σzky σxkz; σzkx

Ri×θ → Ri D+−
1 → D+

1

Oh × Cθ → Oh �+
4

σx, σy, σz

[001] : D4h(C4h ) → C4h �+
1 + �+

3 + �+
4

σz σx, σy

to Oh × Cθ → Oh, the compatibility relation for a magnetic
hexadecapole D−−

4 → D−
4 reads

Ri �→ Oh : D−
4 �→ �−

1 + �−
3 + �−

4 + �−
5 , (43)

hence the hexadecapole remains forbidden. If local magnetic
octupoles on the two sublattices of diamond are oriented as in
Fig. 4(c), they reduce the symmetry of diamond to the space
group Fd ′3̄′m′ (No. 227.132), and the point group becomes

Oh(O) = O × Ciθ → O, (44)

i.e., the system becomes antimagnetopolar. More specifically,
we get the compatibility relations

Oh �→ O : �−
1 �→ �1, �−

3 �→ �3, �−
4 �→ �4, �−

5 �→ �5.

(45)
Under Oh(O), hexadecapolar magnetic order is signaled by a
nonzero expectation value of the indicator

I (m,4)
1 ∝ K (m,4)

1 = kxkykz
(
k2

y − k2
z

)(
k2

z − k2
x

)(
k2

x − k2
y

)
. (46)

Like the Dresselhaus term (34), I (m,4)
1 exhibits cubic symme-

try.
Incidentally, the group Oh(O) also permits a magnetic

monopole density (� = 0)

Ri �→ Oh �→ O : D−
0 �→ �−

1 �→ �1 (47)

that gives rise to the same observable physics as the hexade-
capole density. In Ref. [14], the indicator (46) was associated
with a magnetic monopolarization.

The site symmetry of the magnetic sites in Fig. 4(c) is
Td (T ) that supports a magnetic octupole moment. Similar
to the invariant (13) in lonsdaleite, Eq. (46) can already be
evaluated in a simple sp3 TB model for diamond [94,95].
Local magnetic octupole moments can be implemented as
a spin Zeeman term for the four sp3 orbitals on each site,
assuming that the exchange field complementing each sp3

orbital is oriented along the respective orbital. A perturbative

expansion of the resulting TB model includes a term ∝ K (m,4)
1

from Eq. (46).
A magnetic hexadecapolarization has previously been dis-

cussed for a particular materials system [100].

G. Magnetic octupolarization in diamond

If the orientation of the atomic magnetic octupoles on
one of the diamond sublattices is reversed as in Fig. 4(d),
these octupoles give rise to a macroscopic magnetic oc-
tupole density whose symmetry properties are summarized in
Table IX. When going from the rotation group Ri×θ → Ri

to Oh × Cθ → Oh, the compatibility relation for a magnetic
octupole D+−

3 → D+
3 reads

Ri �→ Oh : D+
3 �→ �+

2 + �+
4 + �+

5 , (48)

hence the octupole remains forbidden. The lowest-order ten-
sor operators transforming according to the IRs �+

2 , �+
4 , and

�+
5 of Oh and consistent with the signature +− of a magnetic

octupole density are listed in Table IX.
The magnetic octupole density illustrated in Fig. 4(d) re-

duces the symmetry of diamond to the space group Fd 3̄m′
(No. 227.131), and the point group becomes

Oh(Th) = O(T ) × Ci → Th = T × Ci, (49)

i.e., the system becomes magnetopolar. More specifically, we
get the compatibility relations

Oh �→ Th : �+
2 �→ �+

1 , �+
4 �→ �+

4 , �+
5 �→ �+

5 . (50)

Therefore, under Oh(Th) octupolar magnetic order is signaled
by a nonzero expectation value of

I (m,3)
1 ∝ K (m,3)

1 = σxkykz + σykzkx + σzkxky. (51)

Unlike Eq. (25) in lonsdaleite, but similar to the Dresselhaus
term (34), this term preserves the cubic symmetry and can
thus be viewed as a generalized form of altermagnetism [79]
without a global spin-quantization axis.

The site symmetry of the local magnetic moments in
Fig. 4(d) is again Td (T ). The magnetic octupolarization can
be implemented in an sp3 TB model as described in Sec. IV F
for the magnetic hexadecapolarization, but by giving opposite
signs to the local octupole moments on the two sublattices.

H. Magnetic quadrupolarization in diamond

A magnetic quadrupole density is illustrated in Fig. 4(e)
[101]. Recently, such a quadrupole density has been analyzed
in Ref. [66]. Here we present a more detailed discussion that
is summarized in Table XIII. When going from the rotation
group Ri×θ → Ri to Oh × Cθ → Oh, the compatibility relation
for a magnetic quadrupole D−−

2 → D−
2 reads

Ri �→ Oh : D−
2 �→ �−

3 + �−
5 , (52)

i.e., the quadrupole remains forbidden. The lowest-order ten-
sor operators transforming according to the IRs �−

3 and
�−

5 and consistent with the signature −− of a magnetic
quadrupole density are listed in Table XIII. In Ref. [66], the
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TABLE XIII. Irreducible representations (IRs) and their lowest-order representative basis functions of a magnetic quadrupole and polar-
toroidal vector (signatures −−) in a cubic crystalline environment. The IRs are labeled according to Koster et al. [45]. For D2d , however,
Koster’s coordinate system has been rotated by π/4 about the main axis of D2d , which changes the representative basis functions for the IRs
�2, �3, and �4 of D2d . For C2v , the main axes x, y, z have been permuted cyclically. Basis functions shown in square brackets do not have the
required transformation behavior under TIS, but are included for comparison.

Ri×θ → Ri D−−
2 → D−

2 D−−
1 → D−

1

Oh × Cθ → Oh �−
3 + �−

5 �−
4

(2k2
z − k2

x − k2
y )kxkykz, kx

(
k2

y − k2
z

)
, ky

(
k2

z − k2
x

)
, kz

(
k2

x − k2
y

)
kx, ky, kz√

3(k2
x − k2

y )kxkykz

D4h(D2d ) → D2d �2 + �3 �1 + �5 �4 + �5

kxkykz

(
k2

x − k2
y

)
kxkykz kz

(
k2

x − k2
y

)
; kx (k2

y − k2
z ), ky(k2

z − k2
x ); kz; kx, ky[

k2
z ; k2

x + k2
y

]
kx, ky

[
k2

x − k2
y

]
D4h × Cθ → D4h �−

1 + �−
3 �−

4 + �−
5 �−

2 + �−
5(

k2
x − k2

y

)
kxkykz kxkykz kz

(
k2

x − k2
y

)
kx

(
k2

y − k2
z

)
, ky

(
k2

z − k2
x

)
; kz kx, ky

kx, ky

D2h(C2v ) → C2v �3 �3 �4 �1 + �2 �4 �1 + �2

kxkykz kxkykz kz kx ;
[
k2

y ; k2
z

]
ky kz kx ky

indicator associated with �−
5

I(m,2)
5− ∝ K(m,2)

5− =

⎛
⎜⎝

kx
(
k2

y − k2
z

)
ky

(
k2

z − k2
x

)
kz

(
k2

x − k2
y

)
⎞
⎟⎠ (53)

was called Néel operator, and it was argued that a nonzero
expectation value of this quantity signals the presence of AFM
order in the magnetic diamond structure shown in Fig. 4(e).
The concept of indicators introduced in Eq. (7) extends this
idea to different types of electric and magnetic multipolar
order in crystal structures.

The diamond structure with locally alternating magnetic
dipoles [Fig. 4(e)] reduces the space group symmetry to
I4′

1/a′m′d (No. 141.566), and the magnetic point group be-
comes D4h(D2d ) = D4(D2) × Ciθ → D2d so that the system is
antimagnetopolar. More specifically, we get the compatibility
relations

Oh �→ D2d :

{
�−

3 �→ �3 + �3

�−
5 �→ �1 + �5.

(54)

Therefore, under D4h(D2d ), quadrupolar magnetic order is
signaled by a nonzero expectation value of

D4h(D2d ) : I (m,2)
1 ∝ K (m,2)

1 = kz
(
k2

x − k2
y

)
. (55)

As discussed in Ref. [66], the locally alternating magnetic
dipoles [Fig. 4(e)] can be implemented in an sp3 TB model
[94,95] as a local exchange field that is oriented oppositely
on the two sublattices of diamond. A perturbative expansion
of the TB model to lowest order in k then yields a term
proportional to the right-hand side of Eq. (55).

1. Magnetic quadrupolarization in quantum-confined diamond

As discussed in Sec. IV D, an electric quadrupole density
that may be realized via uniaxial strain or quantum confine-
ment can reduce the symmetry of diamond from Oh to D4h.
Reference [66] studied a magnetic quadrupole density for this
scenario, and we want to review the case using the language

developed in the present work. We assume that the uniaxial
strain is oriented in the crystallographic [001] direction, which
is symmetry-wise equivalent to a quantum well grown on a
(001) surface. When going from the rotation group Ri×θ → Ri

to D4h × Cθ → D4h, the compatibility relation for a magnetic
quadrupole D−−

2 → D−
2 reads

Ri �→ D4h : D−
2 �→ �−

1 + �−
3 + �−

4 + �−
5 . (56)

If the alternating magnetic moments on the two diamond
sublattices point parallel to the [001] direction [Fig. 5(b)], the
magnetic point group is reduced from D4h × Cθ to once again
D4h(D2d ) that was already discussed above. If the moments
point parallel to the [100] direction [Fig. 5(c)], the symmetry
group becomes D2h(C2v ) → C2v . The compatibility relations
are

D4h �→ C2v :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�−
1 �→ �3

�−
3 �→ �3

�−
4 �→ �4

�−
5 �→ �1 + �2

, (57)

with representative basis functions listed in Table XIII. Thus
under D2h(C2v ), quadrupolar magnetic order becomes once
again allowed, and its presence is signaled by a nonzero ex-
pectation value of [66]

D2h(C2v ) : I (m,2)
1 ∝ K (m,2)

1 = kx. (58)

Table XIII also includes the compatibility relations for a
magnetotoroidal dipole (� = 1) that has the same signature
−− as the magnetic quadrupole density. In the language of
Sec. IV C, under Oh × Cθ → Oh the magnetotoroidal dipole
is a polar vector (IR �−

4 ), whereas the magnetic quadrupole
density includes a part transforming like a polar quasivec-
tor [IR �−

5 , Eq. (52)]. When the symmetry is reduced from
Oh × Cθ to D4h(D2d ), the polar quasivector becomes allowed,
but the polar vector remains forbidden. On the other hand,
the reduced symmetry D2h(C2v ) implies that not only a polar
quasivector (�−

5 of Oh) becomes allowed [Eq. (57)], but also
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a polar vector (�−
4 of Oh) becomes observable

Oh �→ C2v : �−
4 �→ �4 + �1 + �2. (59)

It becomes clear from Table XIII that the reason for the
observability of both vectors under D2h(C2v ) lies in the fact
that polar vectors and polar quasivectors are only distinct
quantities under high-symmetry point groups like Oh × Cθ

and D4h(D2d ). However, they represent the same observ-
able physics when the symmetry is reduced to a group like
D2h(C2v ) that makes both of these quantities measurable. Un-
der D2h(C2v ), both quantities manifest themselves via terms
in the energy dispersion of band electrons proportional to the
invariant kx [Eq. (58)].

I. Magnetization in diamond

A magnetic dipole density representing ferromagnetic or-
der in diamond is analyzed in Table XII. Under the point group
Oh of nonmagnetic diamond, the dipole density transforms
according to the IR �+

4 . A magnetization pointing parallel
to the crystallographic direction [001] [Fig. 4(f)] reduces the
symmetry to D4h(C4h) → C4h. As to be expected, the spin
operator σz transforms according to �+

1 of C4h and a nonzero
expectation value of σz signals the presence of ferromagnetic
order.

J. Multipolarization in Ga1−xMnxAs

Ferromagnetic Ga1−xMnxAs and related (III,Mn)-V com-
pounds [102] are examples for multipolar materials. Above
the Curie temperature, Ga1−xMnxAs has a zincblende struc-
ture (Sec. IV B). Below the critical temperature, it has the
magnetic space group I 4̄m′2′ (No. 119.319) and point group
D2d (S4). It inherits the electric octupolarization (� = 3) of the
parent zincblende structure that manifests itself via the Dres-
selhaus term (34), i.e., this material is electropolar. Mn gives
rise to a magnetopolarization parameterized by a Zeeman-like
exchange term (Table XII). But Ga1−xMnxAs also supports
an antimagnetopolarization (� = 2) parameterized by a term
as in Eq. (55) [66]. In a TB model [94,95], this term can be
traced back to the fact that, unlike the ferromagnetic struc-
ture in Fig. 4(f), the two sublattices of the diamond structure
are distinct in Ga1−xMnxAs. Similarly, ferrimagnets are often
multipolar.

K. Correspondence between electric and magnetic order

Similar to lonsdaleite, electric and magnetic order in vari-
ants of diamond follows a close correspondence. Figures 4(c)
and 4(d) represent hexadecapolar and octupolar order due to
local octupole moments for both the electric and the magnetic
case. As summarized in Table III, for odd �, the point group
characterizing the magnetopolar case is obtained from the
group characterizing the electropolar case by replacing space
inversion i by time inversion θ .

V. CONCLUSIONS AND OUTLOOK

Using symmetry, we have developed a general theory of
electric, magnetic, and toroidal polarizations in crystalline

solids. We have identified four families of multipole densities
representing even-� and odd-� electric and magnetic mul-
tipoles (Table II). Beyond the standard distinction between
electric and magnetic multipoles, each of these four families
bring about qualitatively different physics as they behave dif-
ferently under space inversion i and time inversion θ . The
four families of multipole densities give rise to five qualita-
tively distinct categories of polarized matter (Table II). Even-�
electric multipole densities may exist in all categories of po-
larized matter; they are the only family of multipole densities
permitted in parapolar media. Electropolar, magnetopolar, and
antimagnetopolar media permit each exactly one other family
of multipole densities, while multipolar media permit all four
families of multipole densities. Each category is characterized
by distinct features in the band structure of Bloch electrons
(Fig. 1).

Our group-theoretical analysis does not reference electro-
magnetism to define multipolar order. In this way, it avoids
the difficulties underlying an electromagnetic definition of
multipole densities as the multipole moment of an arbitrarily
chosen unit cell. Group theory is used, in particular, to derive
the invariants (6) that incorporate the effect of electric and
magnetic multipolar order into the Hamiltonian for the dy-
namics of Bloch electrons. Nonetheless, in quantum-confined
geometries, the invariants (6) reproduce the electromagnetic
hallmarks of electric and magnetic multipole densities includ-
ing, e.g., equilibrium currents representing a magnetization
(� = 1) or magnetic quadrupolarization (� = 2), as demon-
strated in a recent study of the magnetoelectric effect in
quasi-2D systems [66].

Our analysis reveals that the familiar Rashba SO coupling
(17) represents the electric dipolarization in electropolar ma-
terials such as wurtzite. Rashba SO coupling has been the
starting point for countless fundamental studies and appli-
cations that have greatly stimulated the field of spintronics
[103,104]. Beyond that, our work establishes a systematic
correspondence between electric and magnetic multipolar or-
der and carrier dynamics (Table IV and Fig. 1) that provides
a general framework for further fundamental studies and a
wide range of applications of multipolar order in complex
materials.

For example, antiferromagnetic order is often character-
ized as a static spin density wave S(q) with a finite wave
vector q [105,106]. Similarly, antiferroelectric order can be
viewed as an electric dipolarization density wave P(q) with
q �= 0. The electric and magnetic multipole densities with
� � 1 discussed here represent macroscopic homogeneous
quantities corresponding to q = 0, like any field and material
tensors characterized by Neumann’s principle [8]. Beyond
spin density waves S(q) and dipolarization density waves
P(q) (� = 1), we may envision electric and magnetic mul-
tipole density waves m(q) with � > 1 and q �= 0. As it is
the case for spin density waves S(q) [105], static waves
m(q) may, but need not, be commensurate with the under-
lying crystal structure. Electric and magnetic order can be
characterized by magnetic point groups if the order is com-
mensurate with the underlying crystal structure. Polarization
waves m(q) for � > 1 can also represent a generalization of
magnons in ferromagnets [106] and ferrons in ferroelectrica
[107].
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TABLE XIV. Maximal translationengleiche subgroups of the
space group D4

6h of lonsdaleite and O7
h of diamond [37], their crystal

classes G, and the lowest orders �
(e,g)
min (�(e,u)

min ) of even (odd) electric
multipole densities these space groups support [45].

Space group G �
(e,g)
min �

(e,u)
min

D4
6h 194 P63/mmc D6h = D6 × Ci 2 lonsdaleite

D4
3h 190 P6̄2c D3h 2 3

D1
3h 187 P6̄m2 D3h 2 3

C4
6v 186 P63mc C6v 2 1 wurtzite

D6
6 182 P6322 D6 2 7 (chiral)

C2
6h 176 P63/m C6h = C6 × Ci 2

D3
3d 164 P3̄m1 D3d = D3 × Ci 2

D2
3d 163 P3̄1c D3d = D3 × Ci 2

D17
2h 63 Cmcm D2h = D2 × Ci 2

O7
h 227 Fd 3̄m Oh = O × Ci 4 diamond

T 2
d 216 F 4̄3m Td 4 3 zincblende

O4 210 F4132 O 4 9 (chiral)

T 4
h 203 Fd 3̄ Th 4 3

D19
4h 141 I41/amd D4h = D4 × Ci 2

D5
3d 166 R3̄m D3d = D3 × Ci 2

We have illustrated our general theory by considering mul-
tipolar order in crystal structures derived from lonsdaleite
(Sec. III) and diamond (Sec. IV). Electric and magnetic multi-
pole densities of different order � yield crystallographic point
groups as summarized in Table III. Generally, these multipole

densities reduce the crystal symmetry of pristine lonsdaleite
and diamond. To discuss the same physics from a different
perspective, one can start from the space group symmetry
of the pristine material and consider its different subgroups.
Table XIV lists the maximal translationengleiche subgroups
of the space group of pristine lonsdaleite (D4

6h, No. 194) and
diamond (O7

h, No. 227) [37]. For each of these subgroups,
we list the associated crystal class G and the lowest orders
�

(e,g)
min (�(e,u)

min ) of even (odd) electric multipole densities [45]
permitted by these groups. Beyond the space groups already
discussed in Secs. III and IV, this list includes also the space
groups D6

6 (No. 182, P6322) and O4 (No. 210, F4132) that
belong to the chiral crystal classes D6 and O, respectively.
Chiral systems do not distinguish between polar vectors like
wave vector k and axial vectors like spin σ [108]. Thus it
follows immediately that odd-� electric multipole densities in
chiral systems manifest themselves via Dirac terms ∝ σ · k
(that may decompose into separate terms ∝ σ jk j if the system
is not cubic).

The group-theoretical tools underlying our analysis can
be integrated into crystallographic and materials databases to
facilitate materials research. A systematic study of all 122
magnetic crystal classes will be published elsewhere.
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[63] The compatibility relations relating two crystallographic point
groups G and U are not uniquely defined. They depend on the
relative orientation of the coordinate systems used to define
the symmetry operations in G and U .

[64] These considerations can be extended to include, e.g., the pos-
sibility that a magnetic phase transition may be accompanied
by a structural phase transition. If a nonmagnetic structure
undergoes a phase transition to a magnetic phase, by definition
a magnetic multipole becomes allowed. The phase transition
may likewise affect the electric order. For example, it is well-
known that iron is cubic above the Curie temperature and
therefore has an electric hexadecapolarization (� = 4), but
it develops a tetragonal distortion in the ferromagnetic state
[106] that allows an electric quadrupolarization (� = 2).

[65] J. M. Luttinger, Quantum theory of cyclotron resonances
in semiconductors: General theory, Phys. Rev. 102, 1030
(1956).

[66] R. Winkler and U. Zülicke, Collinear orbital antiferromag-
netic order and magnetoelectricity in quasi-two-dimensional
itinerant-electron paramagnets, ferromagnets, and antiferro-
magnets, Phys. Rev. Res. 2, 043060 (2020).

[67] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, UK, 2005).

[68] T. Kjeldaas and W. Kohn, Theory of the diamagnetism of
Bloch electrons, Phys. Rev. 105, 806 (1957).

[69] L. M. Roth, B. Lax, and S. Zwerdling, Theory of opti-
cal magneto-absorption effects in semiconductors, Phys. Rev.
114, 90 (1959).

[70] R. Resta, M. Posternak, and A. Baldereschi, Towards a Quan-
tum Theory of Polarization in Ferroelectrics: The case of
KNbO3, Phys. Rev. Lett. 70, 1010 (1993).

[71] D. Ceresoli, T. Thonhauser, D. Vanderbilt, and R. Resta,
Orbital magnetization in crystalline solids: Multi-band insu-
lators, Chern insulators, and metals, Phys. Rev. B 74, 024408
(2006).

[72] J. Shi, G. Vignale, D. Xiao, and Q. Niu, Quantum Theory
of Orbital Magnetization and Its Generalization to Interacting
Systems, Phys. Rev. Lett. 99, 197202 (2007).

[73] N. O. Lipari and A. Baldereschi, Angular Momentum The-
ory and Localized States in Solids. Investigation of Shallow
Acceptor States in Semiconductors, Phys. Rev. Lett. 25, 1660
(1970).

[74] H.-R. Trebin, U. Rössler, and R. Ranvaud, Quantum reso-
nances in the valence bands of zinc-blende semiconductors.
I. Theoretical aspects, Phys. Rev. B 20, 686 (1979).

[75] See, e.g., L. Bellaiche and D. Vanderbilt, Virtual crystal
approximation revisited: Application to dielectric and piezo-
electric properties of perovskites, Phys. Rev. B 61, 7877
(2000), and references therein.

[76] K. Suzuki and J. C. Hensel, Quantum resonances in the va-
lence bands of germanium. I. Theoretical considerations, Phys.
Rev. B 9, 4184 (1974).

[77] L.-D. Yuan, Z. Wang, J.-W. Luo, and A. Zunger, Predic-
tion of low-Z collinear and noncollinear antiferromagnetic
compounds having momentum-dependent spin splitting even
without spin-orbit coupling, Phys. Rev. Mater. 5, 014409
(2021).

[78] L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond Conventional
Ferromagnetism and Antiferromagnetism: A Phase with Non-
relativistic Spin and Crystal Rotation Symmetry, Phys. Rev. X
12, 031042 (2022).

[79] L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging Research
Landscape of Altermagnetism, Phys. Rev. X 12, 040501
(2022).

[80] This discussion also applies to magnetic monopoles and ax-
ions transforming according to D−−

0 of Ri×θ . These quantities
are forbidden by Ri×θ in vacuum but are symmetry-allowed by
32 of the 122 magnetic crystallographic point groups.

[81] H. T. Stokes and D. M. Hatch, FINDSYM: Program for
identifying the space-group symmetry of a crystal, J. Appl.
Crystallogr. 38, 237 (2005).

[82] R. A. Evarestov and V. P. Smirnov, Site Symmetry in Crystals,
2nd ed. (Springer, Berlin, 1997).

[83] E. A. Fajardo and R. Winkler, Effective dynamics of
two-dimensional Bloch electrons in external fields
derived from symmetry, Phys. Rev. B 100, 125301
(2019).

[84] G. Burns and A. M. Glazer, Space Groups for Solid State
Scientists, 3rd ed. (Academic, Amsterdam, 2013).

[85] N. A. Spaldin, M. Fechner, E. Bousquet, A. Balatsky,
and L. Nordström, Monopole-based formalism for the di-
agonal magnetoelectric response, Phys. Rev. B 88, 094429
(2013).

[86] E. I. Rashba, Symmetry of energy bands in crystals of wurtzite
type: I. symmetry of bands disregarding spin-orbit interaction,
Sov. Phys. Solid State 1, 368 (1959).

[87] Beyond the invariant (13), the Hamiltonian for Bloch electrons
in lonsdaleite also includes a spherically symmetric invariant
that transforms according to D+

0 of Ri so that it transforms
according to �1 of any subgroup of Ri

H (e,0) = a(e,0)m(e,0)
(
k2

x + k2
y + k2

z

)
.

Thus, instead of H (e,0) and H (e,2), we could also choose for D6h

the linearly independent invariants

H (e,2)
xy = b(e,2)

xy

(
k2

x + k2
y

)
, H (e,2)

z = b(e,2)
z k2

z ,

with

b(e,2)
xy = a(e,0)m(e,0) + a(e,2)m(e,2)b(e,2)

z

= a(e,0)m(e,0) − 2a(e,2)m(e,2).

However, both k2
x + k2

y and k2
z already have nonvanishing ex-

pectation values under Ri, whereas the expectation value of
K (e,2)

1 vanishes under Ri. Therefore I (e,2)
1 ∝ K (e,2)

1 constitutes
the indicator for the electric quadrupole density in lonsdaleite.

[88] J. J. Sinai, Octopole moment of methane, J. Chem. Phys. 40,
3596 (1964).

[89] A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow,
Semiempirical tight-binding band structures of wurtzite semi-
conductors: AlN, CdS, CdSe, ZnS, and ZnO, Phys. Rev. B 28,
935 (1983).

[90] L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A. Zunger,
Giant momentum-dependent spin splitting in centrosym-
metric low-Z antiferromagnets, Phys. Rev. B 102, 014422
(2020).

[91] M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill, New York, 1964).

155201-23

https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRevResearch.2.043060
https://doi.org/10.1103/PhysRev.105.806
https://doi.org/10.1103/PhysRev.114.90
https://doi.org/10.1103/PhysRevLett.70.1010
https://doi.org/10.1103/PhysRevB.74.024408
https://doi.org/10.1103/PhysRevLett.99.197202
https://doi.org/10.1103/PhysRevLett.25.1660
https://doi.org/10.1103/PhysRevB.20.686
https://doi.org/10.1103/PhysRevB.61.7877
https://doi.org/10.1103/PhysRevB.9.4184
https://doi.org/10.1103/PhysRevMaterials.5.014409
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1107/S0021889804031528
https://doi.org/10.1103/PhysRevB.100.125301
https://doi.org/10.1103/PhysRevB.88.094429
https://doi.org/10.1063/1.1725058
https://doi.org/10.1103/PhysRevB.28.935
https://doi.org/10.1103/PhysRevB.102.014422


R. WINKLER AND U. ZÜLICKE PHYSICAL REVIEW B 107, 155201 (2023)

[92] E. O. Kane, Band structure of indium antimonide, J. Phys.
Chem. Solids 1, 249 (1957).

[93] U. Rössler, Nonparabolicity and warping in the con-
duction band of GaAs, Solid State Commun. 49, 943
(1984).

[94] D. J. Chadi and M. L. Cohen, Tight-binding calculations of
the valence bands of diamond and zincblende crystals, Phys.
Status Solidi B 68, 405 (1975).

[95] D. J. Chadi, Spin-orbit splitting in crystalline and compo-
sitionally disordered semiconductors, Phys. Rev. B 16, 790
(1977).

[96] M. Cardona, N. E. Christensen, and G. Fasol,
Relativistic band structure and spin-orbit splitting of
zinc-blende-type semiconductors, Phys. Rev. B 38, 1806
(1988).

[97] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed.
(Pergamon, Oxford, 1987).

[98] M. I. D’yakonov and V. Y. Kachorovskiı̆, Spin relaxation of
two-dimensional electrons in noncentrosymmetric semicon-
ductors, Sov. Phys. Semicond. 20, 110 (1986).

[99] X. Cartoixà, D. Z.-Y. Ting, and Y.-C. Chang, Suppression of
the D’yakonov-Perel’ spin-relaxation mechanism for all spin
components in [111] zincblende quantum wells, Phys. Rev. B
71, 045313 (2005).

[100] H. Watanabe and Y. Yanase, Magnetic hexadecapole order and
magnetopiezoelectric metal state in Ba1−xKxMn2As2, Phys.
Rev. B 96, 064432 (2017).

[101] The configuration shown in Fig. 4(e) is the classic
diamond-lattice antiferromagnet [47]. Another example
of magnetic quadrupolar order is discussed in
Ref. [109].

[102] T. Dietl and H. Ohno, Dilute ferromagnetic semiconductors:
Physics and spintronic structures, Rev. Mod. Phys. 86, 187
(2014).

[103] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A.
Duine, New perspectives for Rashba spin-orbit coupling, Nat.
Mater. 14, 871 (2015).

[104] H. Djani, A. C. Garcia-Castro, W.-Y. Tong, P. Barone, E.
Bousquet, S. Picozzi, and P. Ghosez, Rationalizing and en-
gineering Rashba spin-splitting in ferroelectric oxides, npj
Quantum Mater. 4, 51 (2019).

[105] C. Herring, in Exchange Interaction among Itinerant Electrons,
edited by G. T. Rado and H. Suhl, Magnetism (Academic, New
York, 1966), Vol. IV.

[106] R. M. White, Quantum Theory of Magnetism, 3rd ed.
(Springer, Berlin, 2007).

[107] G. E. W. Bauer, P. Tang, R. Iguchi, and K. Uchida, Magnonics
vs. ferronics, J. Magn. Magn. Mater. 541, 168468 (2022).

[108] L. D. Barron, Molecular Light Scattering and Optical Activity,
2nd ed. (Cambridge University Press, Cambridge, UK, 2004).

[109] S. Hayami, H. Kusunose, and Y. Motome, Emergent odd-
parity multipoles and magnetoelectric effects on a diamond
structure: Implication for the 5d transition metal oxides
AOsO4 (A = K, Rb, and Cs), Phys. Rev. B 97, 024414 (2018).

155201-24

https://doi.org/10.1016/0022-3697(57)90013-6
https://doi.org/10.1016/0038-1098(84)90299-0
https://doi.org/10.1002/pssb.2220680140
https://doi.org/10.1103/PhysRevB.16.790
https://doi.org/10.1103/PhysRevB.38.1806
https://doi.org/10.1103/PhysRevB.71.045313
https://doi.org/10.1103/PhysRevB.96.064432
https://doi.org/10.1103/RevModPhys.86.187
https://doi.org/10.1038/nmat4360
https://doi.org/10.1038/s41535-019-0190-z
https://doi.org/10.1016/j.jmmm.2021.168468
https://doi.org/10.1103/PhysRevB.97.024414

