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Rank-2 toric code (R2TC), a prototypical archetype of the discrete rank-2 symmetric gauge theory, has proper-
ties that differ from those of the standard toric code. Specifically, it features a blending of UV and IR in its ground
state, restricted mobility of its quasiparticles, and variations in the braiding statistics of its quasiparticles based
on their position. In this paper, we investigate various aspects of ZN rank-2 gauge theory in (2 + 1)-dimensional
spacetime. Firstly, we demonstrate that U (1) rank-2 gauge theory can arise from U (1) × U (1) rank-1 gauge
theory after condensing the gauge charges in a specific way. This construction scheme of U (1) rank-2 gauge
theory carries over to the ZN case simply by Higgsing U (1) to ZN , after which the resulting rank-2 gauge theory
can be tuned to the R2TC. The holonomy operators of R2TC are readily identified using this scheme and are
given clear physical interpretation as the pair creation/annihilation of various monopoles and dipoles. Explicit
tensor network construction of the ground states of R2TC is given as two copies of the ground states of Kitaev’s
toric code that are “sewn together” according to the condensation scheme. In addition, through a similar anyon
condensation protocol, we present a double semion version of rank-2 toric code whose flux excitations exhibit
restricted mobility and semionic statistics. Finally, we identify the generalized discrete symmetries of the R2TC,
which are much more complex than typical 1-form symmetries. They include conventional and unconventional
1-form symmetries, such as framed 1-form symmetries and what we call sublattice 1-form symmetries. Using
these, we interpret the R2TC’s unique properties (UV/IR mixing, position-dependent braiding, etc.) from the
modern perspective of generalized spontaneous symmetry breaking and ’t Hooft anomalies.

DOI: 10.1103/PhysRevB.107.155151

I. INTRODUCTION

Long-range entangled phases of quantum matter are
commonly described by fractionalized quasiparticles and
emergent gauge fields, which provide an effective description
capturing the phase’s universal properties [1]. Indeed, canon-
ical examples include fractional quantum Hall liquids [2] and
quantum spin liquids [3]. Unsurprisingly, long-range entan-
gled quantum matter with increasingly exotic properties is
described by increasingly rich generalizations of conventional
gauge theory. A particular example is Abelian gauge theo-
ries whose gauge fields are symmetric tensor fields instead
of vector fields. These higher-rank gauge theories [4] have
attracted substantial interest recently in the study of fracton
phases [5–9] and topological order [8–13].

One of the simplest archetype of discrete gauge theories
can be obtained from Higgsing the U (1) theory into Z2 by
condensing charge-2 gauge charges. Following this protocol,
we can obtain the rank-2 Z2 gauge theory starting from a
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rank-2 U (1) gauge theory and Higgsing U (1) down to Z2

[8,9]. In the zero-correlation length limit, the resultant gauge
theory can be interpreted as an exactly solvable Hamiltonian,
so-called rank-2 toric code (R2TC) [10–12,14].

The R2TC features several interesting properties. One of
them is the sensitive dependence of the ground-state degener-
acy (GSD) on the system size Lx × Ly against N , the Hilbert
space dimension of the local spin state |s〉 (s = 0, · · · , N −
1). The GSD varying from N3 to N6 was first discovered in
Ref. [10] and was soon clarified as a rigorous formula [11]

GSD = N3gcd(Lx, N )gcd(Ly, N )gcd(Lx, Ly, N ), (1.1)

where gcd stands for the greatest common divisor among the
two or three integers. The fact that the GSD, a macroscopic
property, depends sensitively on the number of unit cells, a
microscopic property, is a manifestation of what is known as
UV/IR mixing [11,13,15,16]. The braiding process between
a pair of quasiparticles showed interesting position depen-
dence that is not seen in Kitaev’s toric code, and requires a
new form of field theory called the dipolar BF theory (dBF)
[12] for comprehensive understanding. A different interpre-
tation of the dipolar braiding in terms of multicomponent
mutual Chern-Simons theory was given in Ref. [11]. Lastly,
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quasiparticle excitations in the model showed restricted mo-
bility such as the ability to hop only in multiples of N lattice
sites in certain directions [8,9]. We note that many of these
features were already apparent in the plaquette model of Wen
[17], and more recently several models sharing similar fea-
tures were proposed [13,18,19].

The restricted mobility exhibited by quasiparticle excita-
tions in R2TC is clearly shared in a more rigorous way in
fracton models such as the X-cube model [20]. A standard
way of constructing these fracton models is to use the network
construction scheme first proposed in Refs. [21,22]. In it,
one starts with layers of 2D toric codes with fully mobile
quasiparticle excitations, and produces a fractonic model with
immobile excitations by imposing constraints among the lay-
ers. It is a natural question then if a similar scheme does exist
to construct R2TC—a model based on rank-2 gauge theory—
from the R1TC, which is rooted in conventional rank-1 gauge
theory. This paper answers this question in the affirmative.

To accomplish this, we get to exploit the idea of coupling
two gauge theories together through constraint, in a process
often called the anyon condensation. Several past works have
exploited the condensation idea to produce the X-cube model
from layers of 2D toric codes [21,22] (hereafter referred to
as rank-1 toric code, or R1TC for short), or to produce rank-2
gauge theories from rank-1 theories [23,24]. Our condensation
scheme shares the similar spirit as these works, but differs
greatly in details of how we implement the constraint. In
particular, we make a clear comparison between the conden-
sation scheme of Ref. [24] and our own in Sec. II B in an
effort to emphasize the consequences of various condensation
schemes. In the past, R2TC was obtained by Higgsing the
symmetric rank-2 gauge field [8,10] but the origin of this
higher-rank gauge field was left obscure. We show here that it
emerges naturally in the course of constraining the two copies
of rank-1 gauge fields in a certain way.

Furthermore, the GSD of Eq. (1.1) is closely related to the
existence of (up to) six independent Wilson line operators in
the model, which have been identified previously in the spin
operator [10] and the field theory language [11], respectively.
Still lacking was a clear physical picture accompanying these
Wilson operators, such as the creation/annihilation of elec-
tric and magnetic quasiparticle pairs in the case of R1TC.
It turns out that the condensation scheme provides a helpful
guide in constructing the full set of holonomies [25] needed
to fully account for the GSD, which are also amenable to
physically appealing interpretations. In addition to the wind-
ing of charges, winding of dipoles plays an important role in
accounting for the degeneracy of the R2TC ground states.

As an added benefit of the condensation picture, we
find useful applications in explicitly constructing the first-
quantized ground-state wave function of R2TC in tensor
network (TN) form, as two copies of R1TC ground states
sewn together through some constraining tensor that directly
reflects the constraint. As another example we construct the
rank-2 generalization of a model with semionic flux statistics
[26] by coupling two copies of the pristine double semion
model through anyon condensation.

As a final topic of the paper, we explore the generalized
symmetries of the R2TC. Modern generalizations of sym-
metry [27–33] have opened up an exciting frontier for the

discovery of new phases of quantum matter [34–40] and in
the conceptual organization of both known and new quantum
phases [31]. For instance, these generalizations have allowed
topological order to be understood in a symmetry framework
[31,36,41–43]. It is therefore natural to wonder if the interest-
ing properties of the R2TC can be understood in this unifying,
modern point of view of topological quantum matter. Here,
we construct all of the symmetry operators for the R2TC for
general N . In the ground-state sub-Hilbert space, the symme-
tries we identify are all 1-form symmetries. However, they
are not all conventional 1-form symmetries: some rely on a
framing structure of the lattice (framed 1-form symmetries
[44]) and others on a sublattice structure of the lattice (sublat-
tice 1-form symmetries). Furthermore, these symmetries have
a rich mixed ’t Hooft anomaly structure. We show that the
R2TC ground state spontaneously breaks all of these 1-form
symmetries. This allows us to interpret the unconventional
properties of the R2TC (position-dependent braiding, UV/IR
mixing, etc.) all in terms of these symmetries.

Organization of the paper is as follows. In Sec. II we out-
line the condensation scheme that leads one from two copies
of rank-1 lattice gauge theory to the rank-2 lattice gauge
theory and ultimately to the R2TC. In Sec. III we discuss
two applications of the condensation idea in the construction
of the ground state of rank-2 toric code out of those of the
rank-1 toric code, and the construction of “twisted” rank-2
gauge theory resulting in a model with semionic flux statistics.
In Sec. IV we carefully go through the procedure by which
all the holonomies in the R2TC can be derived. Physical
interpretation of the holonomies thus constructed is given. In
Sec. V, after first reviewing the generalized symmetries of the
R1TC, we discuss the R2TC from the point of view of general-
ized symmetries. Additional themes such as instanton effects
in rank-1 gauge theories in 2+1D (Sec. II C), field-theoretic
understanding of the holonomy, and the position-dependent
braiding (Secs. IV D and IV E) are discussed. The summary
and outlook follows in Sec. VI.

II. CONDENSATION SCHEME

We show how rank-2 gauge theories can emerge from
two copies of rank-1 gauge theory through the condensation
of certain components of the gauge fields. We outline this
procedure first from the perspective of U(1) gauge theory,
followed by that of ZN gauge fields. Discussion of instanton
suppression in the rank-2 gauge theory is given as well.

A. Condensation of rank-2 U(1) lattice gauge fields

Consider two interpenetrating square lattices denoted �1

(dashed lines) and �2 (solid lines) as in Fig. 1. Each square
lattice has gauge degrees of freedom (Aμ

a , Eμ
a ) residing at

the μ = x, y-oriented links of the respective square sublattice
labeled by a = 1, 2, satisfying the canonical commutation
[Aμ

a , Eμ′
a′ ] = iδaa′δμμ′ . The two square lattices are superposed

in such a way that horizontal bonds in �1 and vertical bonds
in �2 intersect at one set of sites belonging to Vhv, while
vertical bonds of �1 and horizontal bonds of �2 cross at sites
belonging to Vvh. In Fig. 1, sites belonging to Vvh and Vhv

are designated by dark squares and circles, respectively. The
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FIG. 1. Illustration of two possible condensation processes lead-
ing to the appearance of new (a) magnetic and (b) electric flux
operators given by Eq. (2.3) and Eq. (2.8), respectively. There are
two interpenetrating sublattices �1, �2 shown by dashed and solid
lines, respectively. The dark squares (circles) represent Vvh (Vhv)
sites. The coordinate �vi refers to the Vvh sites. The pink and blue
arrows represent rank-1 gauge field patterns from the sublattice �1

and �2, respectively, that combine to give new flux patterns in the
rank-2 gauge theory.

coordinate �vi = xix̂ + yiŷ, or sometimes just i, is used to label
the Vvh sites. (Note that what we call sites are the links in
the individual sublattice.) To reduce the notational clutter, we
will also use i to label the vertex position �r1,i = �vi − ŷ/2 of
the �1 lattice and the vertex position �r2,i = �vi − x̂/2 of the
�2 lattice as well. According to this notation scheme, the y-
oriented fields (Ay

1,i, Ey
1,i ) and the x-oriented fields (Ax

2,i, Ex
2,i )

both reside on the same site �vi = xix̂ + yiŷ. The sites in Vhv

and the fields defined on them are then assigned appropriate
coordinates in reference to those given to Vvh sites.

Each square lattice �1,�2 hosts its own gauge-invariant
quantities (a = 1, 2),

Ga(�ra,i ) = (∇ · Ea)i, Ba(�ra,i) = (∇ × Aa)i, (2.1)

which are the lattice divergence and lattice curl. Suppose that
we impose the constraint Ex

1,i+ŷ = Ey
2,i+x̂ at half the links, e.g.,

on the Vhv sites (dark circles in Fig. 1). In other words, we
write the combined Hilbert spaces of the two lattice gauge the-
ories as |�〉 = |ψ1〉 ⊗ |ψ2〉 where |ψa〉 belongs to the Hilbert
space of �a, and insist that only the subset of Hilbert spaces
obeying the following constraint survives:(

Ex
1,i+ŷ − Ey

2,i+x̂

)|�〉 = 0. (2.2)

To be clear, i refers to all the Vhv sites. Such constraint neces-
sarily precludes operators that do not commute with it, such
as (∇ × Aa)i, while (∇ · Ea)i is still allowed. In their place,
a new operator that commutes with the constraint can be con-
structed by noting that [Ex

1,i+ŷ − Ey
2,i+x̂, Ax

1,i+ŷ + Ay
2,i+x̂] = 0.

We find

Bi = �x(∇ × A1)i − �y(∇ × A2)i (2.3)

indeed involves only the combination Ax
1 + Ay

2 at all the Vhv

sites where the constraint Eq. (2.3) is imposed, and therefore
commutes with it [45]. The meaning of discrete derivatives �x

and �y is clear from Fig. 1.

Due to the constraint, one must identify Ex
1,i+ŷ = Ey

2,i+x̂ as
one gauge field and accordingly introduce a new label(

Ex
2,i, Ey

1,i, Ex
1,i+ŷ = Ey

2,i+x̂

) → (
Exx

i , Eyy
i , Exy

i

)
. (2.4)

A similar relabeling(
Ax

2,i, Ay
1,i, Ax

1,i+ŷ + Ay
2,i+x̂

) → (
Axx

i , Ayy
i , Axy

i

)
(2.5)

yields symmetric rank-2 gauge fields (Aa
i , Ea

i ) (a =
xx, xy, yy) obeying the canonical relation [Aa

i , Eb
j ] = iδi jδab

[46].
There are two electric charges (ex

i , ey
i ) and one vector

charge mi in the projected Hilbert space obeying Eq. (2.2)
given by

ex
i = Exx

i+x̂ − Exx
i + Exy

i − Exy
i−ŷ,

ey
i = Exy

i − Exy
i−x̂ + Eyy

i+ŷ − Eyy
i ,

mi = Axx
i+ŷ + Axx

i−ŷ − 2Axx
i + Ayy

i+x̂ + Ayy
i−x̂

− 2Ayy
i − Axy

i + Axy
i−x̂ + Axy

i−ŷ − Axy
i−x̂−ŷ. (2.6)

Here mi is simply the rewriting of Bi in Eq. (2.3). The symmet-
ric rank-2 gauge fields as well as the new mutually commuting
generators formed by them emerge naturally from the conden-
sation process just outlined. Upon Higgsing, the three charge
operators in Eq. (2.6) become the three commuting spin op-
erators of R2TC [10]. Among the tensor gauge fields, xx and
yy components reside at the Vvh sites where no condensation
has taken place, and the xy component resides at the Vhv sites
where condensation reduces the degrees of freedom from two
to one.

The constraint expressed in Eq. (2.2) is by no means the
unique one. Instead of condensing E , one can condense the A
fields through the constraint(

Ax
1,i+ŷ − Ay

2,i+x̂

)|�〉 = 0, (2.7)

at the Vhv sites. In this case, (∇ · Ea)i is no longer an allowed
operator but a new quantity

Gi = �x(∇ · E2)i + �y(∇ · E1)i (2.8)

emerges as a viable operator in the constrained Hilbert space;
see Fig. 1(b). After relabeling(

Ax
2,i, Ay

1,i, Ax
1,i+ŷ = Ay

2,i+x̂

) → (
Axx

i , Ayy
i , Axy

i

)
,(

Ex
2,i, Ey

1,i, Ex
1,i+ŷ + Ey

2,i+x̂

) → (
Exx

i , Eyy
i , Exy

i

)
, (2.9)

one arrives at two magnetic charges (mx
i , my

i ) and one electric
charge ei defined by

mx
i = Ayy

i+x̂ − Ayy
i − Axy

i + Axy
i−ŷ,

my
i = Axy

i − Axy
i−x̂ − Axx

i+ŷ + Axx
i ,

ei = Eyy
i+ŷ + Eyy

i−ŷ − 2Eyy
i + Exx

i+x̂ + Exx
i−x̂ − 2Exx

i

+ Exy
i − Exy

i−x̂ − Exy
i−ŷ + Exy

i−x̂−ŷ, (2.10)

where ei is a mere rewriting of Gi in Eq. (2.8). Higgsing
them leads to R2TC with a scalar electric charge and vector
magnetic charges.

It is worth noting that the choice of how to condense
two copies of rank-1 gauge fields, either through Eq. (2.4)
or (2.9), results in rank-2 gauge fields with distinct gauge
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symmetries. One leads to the vector charge theory, while the
other results in the scalar charge theory [5]. These two theories
are dual to each other [10,11]. In the ensuing discussion, we
will adopt the version of R2TC that has scalar-electric and
vector-magnetic charges unless otherwise specified.

B. Condensation of stabilizers and holonomies

The previous subsection showed which operators survive
under the projection (condensation) of two rank-1 lattice
gauge theories to the constrained Hilbert space. The operators
that become the stabilizers in the R2TC emerged naturally.
In this subsection we elaborate how the condensation idea
plays out for the various spin operators and stabilizers. To
be specific, we first construct the stabilizers and holonomies
in the preprojected Hilbert space consisting of two copies of
R1TCs. Then we examine which of these operators survive,
or become modified, under the projection. Stabilizers of the
R2TC are recovered once again in this way. Although at first
sight this discussion seems redundant in light of the aforemen-
tioned projection scheme outlined in the context of U(1) gauge
fields, there is a nice benefit to the present discussion in that it
paves the way for the efficient identification and construction
of holonomy operators of R2TC in Sec. IV. The insight gained
in this subsection will also be pivotal in the construction of TN
wave functions in Sec. III A.

As before we consider two interpenetrating square lattices
�1 and �2, and place ZN spins on the links. There are gener-
alized Pauli operators satisfying ZX = ωXZ (ω = e2π i/N ) at
the links of each sublattice, which follow from the Higgsing
formula [10],

X = e2π iA, Z = e2π iE/N . (2.11)

We place R1TC on each of the sublattices �1 and �2, with
the star [aa(�ra,i )] and the plaquette [ba(�ra,i)] operators defined,
respectively, by (a = 1, 2)

aa,i = Za,x(�ra,i )Za,x(�ra,i − x̂)−1Za,y(�ra,i )Za,y(�ra,i − ŷ)−1,

ba,i = Xa,x(�ra,i )Xa,x(�ra,i + ŷ)−1Xa,y(�ra,i )
−1Xa,y(�ra,i + x̂).

(2.12)

Here, the subscript i indicate the vertex of square lattice �ra,i,
and the extra subscripts x, y in the X, Z operators indicate the
direction of the bond on which the operators are defined.

States in each R1TC are denoted as |ψ〉1 and |ψ〉2, respec-
tively. The eigenstates of X operator are X |n〉 = ωn|n〉. The
constraint, Eq. (2.7), implies Ax

1,i+ŷ|ψ〉 = Ay
2,i+x̂|ψ〉 or, after

Higgsing,

X1,x(�r1,i + ŷ)|ψ〉 = X2,y(�r2,i + x̂)|ψ〉. (2.13)

In other words, only the following product of states in the
preprojection Hilbert space survives the projection,

|n〉1 ⊗ |n〉2
P−→ |n〉. (2.14)

Besides, Eq. (2.9) states that Ex
1,i+ŷ + Ey

2,i+x̂ must be identified
with Exy

i as well, which in the ZN language means

Z1,x(�r1,i + ŷ)Z2,y(�r2,i + x̂)|ψ〉 = Z (�vi )|ψ〉.

This constraint can be expressed in the Z-basis Z|m〉 = ωm|m〉
as the projection

|m1〉1 ⊗ |m2〉2
P−→ |m1 + m2〉. (2.15)

In both Eqs. (2.14) and (2.15) the mapping acts only at the Vhv

sites where the gauge field constraint has been imposed.
Regarding the preprojection state |�〉 that remains after

the projection, denoted as P|�〉 = |ψ〉, one can think of the
operator projection as follows:

P[O|�〉] = O′[P|�〉] = O′|ψ〉. (2.16)

Here |�〉 and O refer to the preprojected state and the oper-
ator, respectively, while |ψ〉 and O′ are their postprojection
counterparts. Based on the above consideration, one can iden-
tify the operator mapping

X1,x (�r1,i + ŷ)
P−→ X0(�vi),

X2,y(�r2,i + x̂)
P−→ X0(�vi),

Z1,x(�r1,i + ŷ)Z2,y(�r2,i + x̂)
P−→ Z0(�vi ),

Z1,x (�r1,i + ŷ)
P−→ 0,

Z2,y(�r2,i + x̂)
P−→ 0, (2.17)

where the new subscript 0 indicates the condensed sites Vhv.
Note that these arguments regarding the projection of opera-
tors are applicable solely to the Hilbert space that survives the
projection.

Operators at the Vvh sites are not affected by the projection
and are simply relabeled as

X1,y(�r1,i )
P−→ X2(�vi ), X2,x (�r2,i )

P−→ X1(�vi),

Z1,y(�r1,i )
P−→ Z2(�vi), Z2,x(�r2,i )

P−→ Z1(�vi ). (2.18)

The postprojected X, Z operators are defined with respect
to the site �ri, and carry three internal indices 0, 1, 2. The
preprojection plaquette operators b1(�r1,i ) and b2(�r2,i ), with
supports on �1 and �2 respectively, survive the projection P
and become, after some relabeling,

b1,i
P−→ bx

i =X2(�vi )
−1X2(�vi + x̂)X0(�vi )

−1X0(�vi − ŷ),

b2,i
P−→ b

y
i =X1(�vi )X1(�vi + ŷ)−1X0(�vi )X0(�vi − x̂)−1. (2.19)

Despite the relabeling, they are the same stabilizers from the
two underlying R1TCs.

On the other hand, the preprojection star operators a1,i

and a2,i from �1 and �2 become zero under the projection
as they contain only Z1,x or Z2,y, but not both. To survive
the projection, Z1,x(�r1,i + ŷ) and Z2,y(�r2,i + x̂) must appear
simultaneously, as in the following operator

ai = a1,ia
−1
1,i−x̂a2,ia

−1
2,i−ŷ, (2.20)

which becomes, under the projection ai
P−→ ai,

ai = Z0(�vi )Z0(�vi − x̂)−1Z0(�vi − ŷ)−1Z0(�vi − x̂ − ŷ)

⊗ Z2(�vi − ŷ)Z2(�vi )
−2Z2(�vi + ŷ)

⊗ Z1(�vi − x̂)Z1(�vi )
−2Z1(�vi + x̂). (2.21)
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FIG. 2. The emergent operator X̃x (�ri ) (left panel) is defined at x
bond (blue oval) with respect to �ri, and X̃y(�ri ) (right panel) at the y
bond.

The three postprojection stabilizers ai, bx
i , and b

y
i are mutually

commuting, and are none other than the stabilizers of the
R2TC Hamiltonian.

So far the discussion seems limited to the recovery of
stabilizers that make up the R2TC. Importantly, though, there
is an additional stabilizer one can identify in the prepro-
jected Hilbert space that is not given as a mere product of
ai, b1,i, b2,i. It is given by

b3,i = X̃x(�vi )X̃y(�vi + x̂)X̃x(�vi + ŷ)−1X̃y(�vi)
−1. (2.22)

The emergent operators X̃x, X̃y are defined by

X̃x(�vi ) = (X1,x(�r1,i + ŷ))yi−y0−1(X2,x(�r2,i + x̂))xi−x0

X̃y(�vi ) = (X1,y(�r1,i + ŷ))yi−y0 (X2,y(�r2,i + x̂))xi−x0−1, (2.23)

and illustrated in Fig. 2. The arbitrary constants x0 and y0 are
kept here to simplify certain algebraic relations among the
holonomies, and do not serve other purpose. Other stabilizers
b1,i, b2,i, ai have the matching lattice gauge theory expressions
given in Eq. (2.10). As for b3,i, the corresponding gauge field
expression is the lattice curl

m′
i = (A′)x

i − (A′)x
i+ŷ − (A′)y

i + (A′)y
i+x̂, (2.24)

where

(A′)x
i = (xi − x0)Axx

i+x̂ + (yi − y0 − 1)Axy
i ,

(A′)y
i = (yi − y0)Ayy

i+ŷ + (xi − x0 − 1)Axy
i . (2.25)

Despite the apparent complexity of the definition of b3,i,
the virtue of this choice is that it allows us to express the
product of b3,i as a product of boundary operators and thereby
leads naturally to the new holonomies, as discussed thor-
oughly in Sec. IV. In fact, there is another choice, namely
b3,i = X1,x (�r1,i + ŷ)X2,y(�r2,i + x̂)−1, which is composed of op-
erators from both sublattices and commutes with ai, b1,i, b2,i.
Such a choice amounts to the condensation scheme adopted in
Ref. [24]. This choice, however, does not allow the transfor-
mation of the bulk product to the boundary product, hence no
new holonomy operators can be generated.

The new field m′
i commutes with mx

i , my
i , ei and may

seem to constitute the fourth charge in the rank-2 theory,

but one can show that, after projection, b3,i becomes b3,i
P−→

(bx
i+ŷ)yi−y0 (by

i+x̂ )xi−x0 —a composite of existing stabilizers. The
main use of identifying the stabilizer b3,i is that, through it,
we come to identify the two emergent-X̃ operators as given
in Eq. (2.23). Naively, two copies of R1TC will generate only
four holonomies, made of products of X1,i or X2,i along hori-
zontal and vertical directions of the torus. The existence of the

emergent operators allows the construction of two additional
holonomies, as products of X̃x along the x- and of X̃y along
the y direction of the torus, and in total account for the six
holonomies generating the GSD of R2TC, Eq. (1.1).

C. Higher-order instanton and confinement
in the rank-2 U(1) gauge theory

While this paper focuses mainly on the ZN gauge theory
on a lattice, it is instructive to touch upon the physics of U(1)
rank-2 compact gauge theory in the continuum for compari-
son. The Maxwell theory for the gauge fields of Eq. (2.6) is
given by the effective Lagrangian,

L = [(Exx )2 + (Eyy)2 + 2(Exy)2] − 1

2g
B2, (2.26)

with a quadratic dispersion ω ∼ k2 due to the fact that B
is given by second spatial derivatives, B = ∂2

y Axx + ∂2
x Axx −

∂x∂yAxy. For a compact gauge theory with gapless fluctuations,
the key question is whether the theory becomes confined due
to the proliferation of instantons. To delineate the instanton
event, we consider the pure gauge theory in the charge-neutral
sector ex = ey = 0 in Eq. (2.6) that allows the solution

Exx = ∂2
y h, Eyy = ∂2

x h, Exy = −∂x∂yh. (2.27)

The h field can be viewed as the height operator that is
canonically conjugate with the flux [B(�r), h(�r′)] = iδ(�r − �r′)
so that the instanton operator ei2πh creates a 2π flux [47].
Such an instanton event, once proliferated, can potentially
lead to a confined phase. The low-energy effective theory of
the height field can be obtained by integrating out the gaussian
fluctuation of B,

Lh = −g(∂t h)2 + (∇2h)2. (2.28)

The quantum theory of h is defined in 2 + 1D space-time with
a quadratic dispersion reminiscent of the Rokhsar-Kivelson
point in 2D compact gauge theory, suggesting that the in-
stanton operator has a power-law decay correlation whose
operator dimension depends on g. The relevance of 2π flux
tunneling event and the proliferation of topological defects
depends on the parameters of the theory.

On the other hand, there exists another kind of higher-
order instanton events that are more relevant. For instance the
instanton operator ei∂xh creating a flux-dipole—a pair of 2π

and −2π fluxes spatially separated along the x link—has the
correlator [48]

e−(∂xh(0)∂xh(�r)) r→∞−−−→ Const. (2.29)

These higher-order instanton terms creating flux-dipole tun-
neling events display long-range order and thus can prolif-
erate. As a result, the theory would be confined due to the
proliferation of instanton dipoles. This unique feature is due
to the fact that the dipole flux is conserved in our higher-rank
gauge theory and thus the 2π flux tunneling event must appear
in a quadrupolar process, i.e., creating a pair of opposite
flux-dipoles from the vacuum and separating them apart. The
correlation function in Eq. (2.29) implies the interaction be-
tween flux-dipoles are short-ranged so they will proliferate
and gap out the low-energy modes.
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D. Conservation laws

Before the explicit construction of holonomies, it is useful
to identity the full content of conserved charges in the theory.
Physically, it is the winding of one of these conserved charges
around the noncontractible loop of the torus that defines the
holonomy. The discussion is most conveniently carried out in
the continuum language.

The three expressions in Eq. (2.10) can be cast in the
continuum as

mx = ∂xAyy − ∂yAxy,

my = ∂xAxy − ∂yAxx,

e = ∂2
x Exx + ∂2

y Eyy + ∂x∂yExy. (2.30)

The three charge densities obey the continuity equations as
derived recently [12],

∂t m
x + ∂xJxx

m + ∂yJxy
m = 0,

∂t m
y + ∂xJxy

m − ∂yJyy
m = 0,

∂t e + ∂2
x Jxx

e + ∂x∂yJxy
e + ∂2

y Jyy
e = 0, (2.31)

where Jab
m and Jab

e (a, b = x, y) are symmetric rank-2 current
densities for the magnetic and electric charges, respec-
tively [51]. By assuming vanishing currents at the boundary,
one can show that all three monopole charges are conserved:

∂t

∫
edV = ∂t

∫
mxdV = ∂t

∫
mydV = 0. (2.32)

In addition, we have three dipole conservation laws

∂t

∫
xedV = −

∫
d2r x

[
∂2

x Jxx
e + ∂x∂yJxy

e + ∂2
y Jyy

e

] = 0,

∂t

∫
yedV = −

∫
d2r y

[
∂2

x Jxx
e + ∂x∂yJxy

e + ∂2
y Jyy

e

] = 0,

∂t

∫
(xmy + ymx )dV = −

∫
d2r

[
x∂xJxy

m − y∂yJxy
m

] = 0.

(2.33)

Altogether we have the conservation of three monopoles
and three dipoles. We will now construct the six magnetic and
six electric holonomies associated with the x and y winding
around the torus of the six conserved quantities.

III. APPLICATIONS OF THE CONDENSATION SCHEME

Two useful applications of the condensation idea are con-
sidered. One is the explicit construction of the tensor network
wave function for the ground state of R2TC. The second is
the construction of the rank-2 version of the double-semion
model.

A. Tensor network representation of ZN R2TC wave functions

In this section, we show that ZN R2TC wave function
can be obtained by stacking two copies of ZN R1TC wave
function followed by a certain isometric operation that reflects
the gauge-field constraint of the previous section. To this end,
we begin with the tensor network (TN) representation of the
R1TC ground-state wave function [52–54] that is composed

of two types of tensors g and T as below:

(3.1)

where

gm
i j = δi, jδ j,m,

Tlurd = δr+u,l+d . (3.2)

The delta function in the second line is implemented mod
N . The physical index m represents the qudit state in the Z
basis, i.e., Z|m〉 = ωm|m〉, and all subscripts denote the virtual
indices of dimension N . One can easily show that g and T
tensors satisfy the following relations:

[Zn]mm′gm′
i j = [Zn′

]ii′ [Z
n−n′

] j j′g
m
i′ j′ , (3.3)

[X n]mm′gm′
i j = [X −n]ii′ [X

−n] j j′g
m
i′ j′ , (3.4)

[Zn]ll ′ [Z
−n]uu′[Z−n]rr′[Zn]dd ′Tl ′u′r′d ′ = Tlurd , (3.5)

and

[X nl ]ll ′[X
nu ]uu′[X nr ]rr′[X nd ]dd ′Tl ′u′r′d ′ = Tlurd , (3.6)

if (nr − nl + nu − nd ) mod N = 0. Graphical representations
of the above equations are the following:

(3.7)

Note that the T tensor generates the string-net configu-
rations corresponding to the domain wall configurations of
the N-state Potts model on the square lattice. For example,
Z2 R1TC wave function is depicted as a superposition of
closed-loop configurations, i.e., the domain wall of the Ising
model. Using the above relations, one can easily verify that the
TN wave function |ψ〉, obtained by contracting all the virtual
indices, is the ground state of the ZN R1TC Hamiltonian, i.e.,
ai|ψ〉 = |ψ〉 and bi|ψ〉 = |ψ〉, or graphically as below,

(3.8)

Now, we consider the square lattice (�1) and its dual (�2)
together, and accommodate the ZN R1TC wave function on
each lattice, i.e., |R1TC〉�1 ⊗ |R1TC〉�2 . Then, there are two
types of vertices in the system: Vhv (vh) at which horizon-
tal (vertical) bonds in �1 and vertical (horizontal) bonds in �2
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cross each other. Generally, two unentangled qudits live on the
vertex Vhv ⊕ Vvh. Now we impose the following isometry on
the two qudits labeled by quantum numbers (m1, m2) residing
on the Vvh vertices:

Pm
m1m2

= δm,m1+m2 , (3.9)

where the delta function is implemented mod N , and
Pm

m1m2
Pm′

m1m2
= δmm′ . The two-qudit state is mapped to a single-

qudit state through isometry and, furthermore, the resulting
TN exactly represents the ground state of ZN R2TC. The
TN wave function thus constructed is written in the Z-basis,
Z|m〉 = ωm|m〉, and the constraint Eq. (2.15) is faithfully re-
flected through the isometry tensor Pm

m1m2
= δm,m1+m2 .

The TN representation for the R2TC ground state is illus-
trated below:

(3.10)

where the square lattice (dual lattice) in solid (dotted) line
denotes �1 (2), and the gray square stands for the T tensor
given in Eq. (3.2). The isometry P satisfies the relations,

[Zn]mm′Pm′
m1m2

= [Zn]m1m′
1
[Zn]m2m′

2
Pm

m′
1m′

2
,

[X n]mm′Pm′
m1m2

= [X −n′
]m1m′

1
[X n′−n]m2m′

2
Pm

m′
1m′

2
, (3.11)

or graphically

(3.12)

Using Eqs. (3.7) and (3.12), it is straightforward to derive the
following relation:

[X n]mm′Pm′
m1m2

gm1
ud gm2

lr

= Pm
m1m′

2
gm1

ud [X −n]ll ′ [X
−n]rr′gm2

l ′r′ , [Zn]mm′Pm′
m1m2

gm1
ud gm2

lr

= Pm
m1m2

gm1
u′d gm2

l ′r [Zn]uu′[Zn]ll ′ = Pm
m1m2

gm1
u′d gm2

lr′ [Zn]uu′ [Zn]rr′

= Pm
m1m2

gm1
ud ′g

m2
lr′ [Zn]dd ′[Zn]rr′ = Pm

m1m2
gm1

ud ′g
m2
l ′r [Zn]dd ′[Zn]ll ′ ,

(3.13)

or graphically

(3.14)

Now, using Eqs. (3.7) and (3.14), we show that the above
TN wave function, |ψ〉, is the ground state of the ZN R2TC

Hamiltonian, i.e., bx
i |ψ〉 = |ψ〉, by

i |ψ〉 = |ψ〉 as below

(3.15)

and ai|ψ〉 = |ψ〉 in the following way:

(3.16)
This completes the proof that the TN ground-state wave

function of R2TC is given as two copies of those of R1TC
with an additional isometry. To summarize, the ground-state
wave function of the R1TC is constructed using the well-
known tensors given in Eq. (3.2). Two copies of such TN wave
functions are introduced one for each of the two interpenetrat-
ing square lattices. Then the isometry operation Pm

m1m2
given in

Eq. (3.9) acts on half of the overlapping sites (the Vvh sites) to
reduce the two qudits (m1, m2) to a single qudit m = m1 + m2.

There are a large number of ground states given by the
GSD formula, Eq. (1.1), and our TN construction captures
only one of them. By employing a similar approach to that
used in Eq. (3.15) and (3.16), one can verify that the TN
ground state is an eigenstate of holonomies W1, W2, W3, W4,
W̃5, and W̃6, which will be derived in the next section, and that
all eigenvalues are equal to 1. The rest of the states can be
generated by applying holonomy operators to the existing TN
wave function.

B. Twisted rank-2 gauge theory from anyon condensation

In this section, we utilize the coupled layer construction
protocol to build a twisted rank-2 gauge theory in 2D with
dipole conservation, whose gauge flux turns out to have
semionic statistics. The strategy is to combine two intersecting
Z2 twisted gauge theories from string-net models [26] and
implement anyon condensation to impose restricted mobility
for quasiparticle excitations. To avoid technical complexities,
the discussion in this section is limited to N = 2.

To construct the “semionic” version of Z2 gauge theory
from commuting projectors, we will need to start from triva-
lent 2D lattices such as the Fisher lattice shown in Fig. 3. A
small diamond shape is added at each vertex of the square
lattice so that every vertex is connected to three links with Z2

qubits living on them. Now we begin with the conventional
double semion model that manifests a twisted Z2 gauge theory
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FIG. 3. (a) The double semion model on the Fisher lattice. The
flux operator

∏
i∈Y Zi is defined on the vertex with three Z operators

on the adjoining links. The charge operators
∏

X are defined on
the diamond and the octagon. (b) The string operator in the double
semion model (see text for details). (c) Intersecting bilayers of the
Fisher lattice, illustrated as one solid and one dashed lines. The
circles are the intersection between x link from the first layer and
the y link from the second layer where we put a strong coupling
term −JzZ1Z2. (d) The charge operator after perturbation contains
the product of four octagon operators.

[26] on the Fisher lattice with the Hamiltonian,

H = −
∑

Y

∏
i∈Y

Zi −
∑

O

F0

∏
i∈O

Xi −
∑

D

F1

∏
i∈D

Xi,

F0 =
∏
i∈VO

Si, F1 =
∏
i∈VD

Si, Si =
(

1 0
0 i

)
. (3.17)

Here Y is any set of three coplanar links entering a vertex,
O is the octagon, and D is the diamond on the Fisher lattice.
VO (VD) refers to the eight (four) links pointing outward from
an octagon (diamond), and are indicated by S in Fig. 3(a).
In the Z basis, the first term in H imposes a condition that
the parity of the gauge flux entering any vertex be even. The
remaining two terms in H provide dynamics to the gauge field
while preserving this parity at each vertex. Specifically, they
effectively bind the charge, given by

∏
X , to the gauge flux as

measured by F0 and F1.
This charge-flux binding has important consequences for

the braiding statistics, as creating a flux excitation would
simultaneously generate half Z2 charge. The string operator
L that creates a pair of flux is

Lm =
∏

a∈red

Xa

∏
a∈blue

Sa

∏
a∈green

(−1)Ga ,

Ga = 1

4
(1 − Za), (3.18)

where the X operator along the red links in Fig. 3(b) flips
the spins along the string, analogous to the flux operator in
the toric code. The red string has a product of X operators
while the operators on blue (green) lines living on either side
of the string embellish it with an additional sign structure
that endows the semionic statistics between the flux, as well
as ensuring that Lm commutes with the Hamiltonian except
near the endpoints of the line. Two Lm operators anticommute
with each other when they intersect. The extra sign structure
embellished a half-charge with the flux, and, as a result, the
flux excitation carries a half gauge charge and thus displays
semion statistics.

Now we take two intersecting layers of the Fisher lattice
with the x link from the first layer intersecting the y link from
the second layer and vice versa, as shown in Fig. 3(c). Links
that form the diamonds do not overlap between the layers.
We then strongly couple the qubits from distinct layers on the
circled intersections in Fig. 3 through the interaction

− JzZ
1
i Z2

i (3.19)

with Jz � 1. In this strong coupling limit, the vertex operators
on Y junctions and the charge operators

∏
X on diamonds

are unaffected. However, charge operators around octagons do
not commute with the Jz term, and instead, a product of four
such terms appearing at the third order in perturbation theory
does. In Fig. 3(d), we illustrated the new charge operator
after perturbation, composed of the product of four octagon
operators from Jz = 0. The resulting Hamiltonian takes a form
very similar to the R2TC, except that the diamond plaquette
terms and the quadrupolar octagon terms are supplemented
with a product of S operators over outward-pointing edges.
It can be checked that all the terms in the new Hamiltonian
commute with one another.

What is the excitation structure of this semionic version of
R2TC? The charge excitations share a similar character as the
scalar charge theory in Eq. (2.10). The novelty comes from
the vector flux excitation. For example, consider a 1D particle
moving in the x direction, which creates a flux mx. Suppose
that the line on which this 1D excitation moves intersects
that of another flux mx moving in the y direction, which can
only hop on the even-numbered sites. The string operators
associated with the two 1D particles anticommute. This an-
ticommutation of string operators is related to the fact that
two such flux excitations can undergo a full braiding, so their
mutual statistics is well defined. In this case, the two types of
flux have mutual statistics θ = π , which contrasts with trivial
mutual statistics θ = 0 in the original R2TC model.

One can also find the TN representation for the rank-2
double semion (DS) wave function in a similar manner. The
ground state of the rank-1 DS model in Eq. (3.17) is a loop
gas state with a particular sign structure,

|�DS〉 =
∑

�

(−)N� |�〉, (3.20)

where N� denotes the number of loops of which the length is
4n + 2 in the configuration �. To obtain the TN representation
of |�DS〉 [55], one needs to place the g and T̄ tensors on the
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edges and vertices of the Fisher lattice, respectively, where

T̄i jk =
{

i if (i + j + k) mod 2 = 0

0 otherwise.
(3.21)

Next, two TN states should be placed on the original and
its dual lattices, as depicted in Fig. 3(c), and two qubits
on the edges indicated by the gray circle should be pro-
jected in a similar way as in the R2TC case. This procedure
results in the TN representation of the rank-2 DS wave
function.

IV. HOLONOMY CONSTRUCTION

A. Preprojection holonomies

There are six preprojection holonomies consisting of the
product of X operators. The first four holonomies are taken
directly from those of two independent R1TC’s,

W pp
1 (yi ) =

Lx∏
xi=1

X1,x (�r1,i ), W pp
2 (xi ) =

Ly∏
yi=1

X1,y(�r1,i ),

W pp
3 (yi ) =

Lx∏
xi=1

X2,x (�r2,i ), W pp
4 (xi ) =

Ly∏
yi=1

X2,y(�r2,i ) (4.1)

for a torus of size Lx × Ly. Here, �r1,i = �vi − ŷ/2, and �r2,i =
�vi − x̂/2, where �vi = (xi, yi ). All of them commute with the
preprojection stabilizers ai, b1,i, b2,i and b3,i introduced in
Sec. II B. The two additional holonomies are constructed from
the emergent operators X̃x and X̃y,

W pp
5 (yi ) =

lcm(Lx,N )∏
xi=1

X̃x(�vi ),

W pp
6 (xi ) =

lcm(Ly,N )∏
yi=1

X̃y(�ri ). (4.2)

Note that in these two cases the product over xi (yi ) goes
around the torus multiple times, i.e., by

cx = lcm(Lx, N )/Lx = N/gcd(Lx, N ),

cy = lcm(Ly, N )/Ly = N/gcd(Ly, N ), (4.3)

to ensure that the holonomy action on a ground state returns
another ground state with no residual excitations [11]. As a
consequence we have[

W pp
5

]gcd(Lx,N ) = [
W pp

6

]gcd(Ly,N ) = 1

while for other holonomies it is (W )N = 1. The six
holonomies are seemingly coordinate dependent, but this de-
pendence goes away when their actions on the ground state
are examined. We omit the proof, which is purely technical,
since the result is well anticipated.

The holonomies we constructed can be motivated in a
different way. One can show that the product of b1,i or b2,i

over all sites inside a rectangle S = [x1, x2] × [y1, y2] is equal
to the product of X ’s or X −1’s along its four boundaries as
all terms in the interior cancel out. These boundary operators
precisely take the form of W pp

1 through W pp
4 . In a similar

fashion, product of b3,i over a closed area leads to the can-
cellation of all terms in the interior, leaving only the product
of emergent-X operators along the boundary. These boundary
operators motivate the W pp

5 ,W pp
6 holonomies.

Notably, the holonomies W pp
5 and W pp

6 are not obtain-
able through linear combinations of the remaining four
holonomies, W pp

1 , W pp
2 , W pp

3 , and W pp
4 . Consequently, there

exist six holonomies that are independent of one another.
Collectively we refer to the six logical operators in Eqs. (4.1)
and (4.2) as X holonomies.

The six Z holonomies are constructed by following a simi-
lar reasoning. One can show that the product of ai in Eq. (2.20)
inside a closed region reduces to the boundary product, which
motivates the two Z holonomies,

W̃ pp
5 (xi ) =

Ly∏
yi=1

Z2,x(�r2,i + x̂)Z2,x (�r2,i )
−1,

W̃ pp
6 (yi ) =

Lx∏
xi=1

Z1,y(�r1,i + ŷ)Z1,y(�r1,i )
−1. (4.4)

Hereafter we drop the explicit coordinate dependence from
the holonomy operators. Taking the product of (ai )yi−y′

0 on
a closed region and extracting the boundary terms gives two
other Z holonomies,

W̃ pp
1 =

lcm(Ly,N )∏
yi=1

Z̃1,x (�vi ), W̃ pp
2 =

Lx∏
xi=1

Z̃1,y(�vi ). (4.5)

Finally, the product of (ai )xi−x′
0 gives

W̃ pp
3 =

Ly∏
yi=1

Z̃2,x (�vi ), W̃ pp
4 =

lcm(Lx,N )∏
xi=1

Z̃2,y(�vi ), (4.6)

Various emergent-Z operators appearing in the holonomies
are

Z̃1,x(�vi ) = Z1,x(�r1,i )Z2,y(�r2,i + x̂ − ŷ)

⊗ (Z2,x(�r2,i )Z2,x(�r2,i + x̂)−1)yi−y′
0−2,

Z̃1,y(�vi ) = Z1,y(�r1,i )(Z1,y(�r1,i )Z1,y(�r1,i + ŷ)−1)yi−y′
0−1,

Z̃2,x(�vi ) = Z2,x(�r2,i )(Z2,x(�r2,i )Z2,x(�r2,i + x̂)−1)xi−x′
0−1,

Z̃2,y(�vi ) = Z2,y(�r2,i )Z1,x(�r1,i − x̂ + ŷ)

⊗ (Z1,y(�r1,i )Z1,y(�r1,i + ŷ)−1)xi−x′
0−2. (4.7)

Note that W̃1 and W̃4 involve the product of the emergent
operators over the circumference of the torus cy and cx times,
respectively. Arbitrary constants x′

0, y′
0 are introduced for gen-

erality and for simplifying certain aspect of the holonomy
algebra.

Invoking ZX = ωXZ , one can verify the following Heisen-
berg algebra among the X and Z holonomies:[

W̃ pp
1 ,W pp

1

] = ωcy ,
[
W̃ pp

2 ,W pp
2

] = ω,[
W̃ pp

3 ,W pp
3

] = ω,
[
W̃ pp

4 ,W pp
4

] = ωcx ,[
W̃ pp

5 ,W pp
5

] = ωcx ,
[
W̃ pp

6 ,W pp
6

] = ωcy . (4.8)
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The commutator here means [A, B] = ABA−1B−1. In addition,
the following set of holonomies show nontrivial commutation:[

W̃ pp
1 ,W pp

5

] = ωcxcy[y′
0−y0− 1

2 (N−gcd(Ly,N ))],[
W̃ pp

2 ,W pp
6

] = ωcy[y′
0−y0+ 1

2 (N−gcd(Ly,N ))],[
W̃ pp

3 ,W pp
5

] = ωcx[x′
0−x0+ 1

2 (N−gcd(Lx,N ))],[
W̃ pp

4 ,W pp
6

] = ωcxcy[x′
0−x0− 1

2 (N−gcd(Lx,N ))]. (4.9)

However, the following choice removes the nontrivial phase
factors among them [56],

y′
0 = y0 + 1

2

(
N − gcd(Ly, N )

)
,

x′
0 = x0 + 1

2

(
N − gcd(Lx, N )

)
, (4.10)

and the nontrivial Heisenberg algebra is spanned entirely by
Eq. (4.8). The holonomies of the R2TC are then obtained by
projection of the preprojection holonomies constructed here.

B. Postprojection holonomies

As one can see from the projection schemes, Eqs. (2.17)
and (2.18), the X operators remain intact through the projec-
tion except some relabeling. The preprojection X holonomies
of Eqs. (4.1) and (4.2) become, after relabeling,

W1 =
Lx∏

xi=1

X0(�vi ), W2 =
Ly∏

yi=1

X2(�vi ),

W3 =
Lx∏

xi=1

X1(�vi ), W4 =
Ly∏

yi=1

X0(�vi ),

W5 =
lcm(Lx,N )∏

xi=1

(
X1(�vi + x̂)

)xi−x0
(
X0(�vi )

)yi−y0−1
,

W6 =
lcm(Ly,N )∏

yi=1

(
X2(�vi + ŷ)

)yi−y0
(
X0(�vi )

)xi−x0−1
, (4.11)

after the projection. At first it seems the number of dis-
tinct holonomy actions is N4gcd(Lx, N )gcd(Ly, N ) since W1

through W4 has (W )N = 1 but

(W5)gcd(Lx,N ) = (W6)gcd(Ly,N ) = 1,

at odds with the GSD formula in Eq. (1.1). A delicate con-
sideration is required to see that the number of independent
actions among W1 and W4, which are both products of X0’s, is
not N2 but Ngcd(Lx, Ly, N ).

One begins with labeling the holonomy (W1)n1 (W4)n4 by
(n1, n4) and invoking the identity [57]

(W1)Ly |GS〉 = (W4)Lx |GS〉. (4.12)

This implies the equivalence relation (n1, n4) ∼ (n1 +
Ly, n2 − Lx ) among the holonomies. We need to carefully
figure out how the points (n1, n4) become equivalent by
Eq. (4.12) when the ZN nature is considered at the same time.

Invoking the two winding numbers cx, cy defined in
Eq. (4.3),

(W1)cyLy |GS〉 = (W4)cyLx |GS〉 = |GS〉,
(W1)cxLy |GS〉 = (W4)cxLx |GS〉 = |GS〉. (4.13)

Applying the Euclidean argument for identifying the gcd of
two integers, we conclude

(W1)Ny |GS〉 = (W4)Nx |GS〉 = |GS〉 (4.14)

where

Nx ≡ gcd(cyLx, N ), Ny ≡gcd(cxLy, N ). (4.15)

From Eqs. (4.12) and (4.15) we deduce the equivalence rela-
tion

n1 ∼ n1 + Ly ∼ n1 + Ny,

n2 ∼ n2 + Lx ∼ n2 + Nx. (4.16)

Invoking the Euclidean argument again, the number of in-
equivalent integers n1 for fixed n4 becomes gcd(Ly, Ny), and
the number of inequivalent (n1, n4) equals Nxgcd(Ly, Ny). It
can be simplified further to

Nxgcd(Ly, Ny) = gcd(Lxcy, N )gcd(Ly, N )

= Ngcd(Lx, Ly, N ), (4.17)

by employing several number-theoretic identities

gcd(a, gcd(b, c)) = gcd(gcd(a, b), c) = gcd(a, b, c),

mgcd(a, b) = gcd(ma, mb). (4.18)

The number of independent holonomy actions among W1 and
W4 is Ngcd(Lx, Ly, N ). The GSD formula in Eq. (1.1) breaks
down to

N2 · (Ngcd(Lx, Ly, N )) · gcd(Lx, N ) · gcd(Ly, N ). (4.19)

Here, the first N2 are coming from W2 and W3,
Ngcd(Lx, Ly, N ) from W1 and W4, and gcd(Lx, N ) · gcd(Ly, N )
from W5 and W6, respectively.

As for the Z holonomies, projection of the preprojection Z
holonomies of Eqs. (4.4)–(4.6) leads to

W̃1 =
lcm(Ly,N )∏

yi=1

Z0(�vi − ŷ)(Z1(�vi )Z1(�vi + x̂)−1)yi−y0 ,

W̃2 =
Lx∏

xi=1

Z2(�vi)(Z2(�v)Z2(�vi + ŷ)−1)yi−y0 ,

W̃3 =
Ly∏

yi=1

Z1(�vi )(Z1(�vi )Z1(�vi + x̂)−1)xi−x0 ,

W̃4 =
lcm(Lx,N )∏

xi=1

Z0(�vi − x̂)(Z2(�vi)Z2(�vi + ŷ)−1)xi−x0 ,

W̃5 =
Ly∏

yi=1

Z1(�vi + x̂)Z1(�vi )
−1,

W̃6 =
Lx∏

xi=1

Z2(�vi + ŷ)Z2(�vi)
−1. (4.20)
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FIG. 4. Pictorial representation of the holonomies. (First row) Six X holonomies as creation/annihilation of e dipole-antidipole pairs
oriented either horizontally or vertically (W1 through W4), and of e monopole-antimonopole pairs (W5 and W6). (second row) Six Z holonomies
as creation/annihilation of mx or my monopole-antimonopole pairs (W̃1 through W̃4), and of m dipole-antidipole pairs (W̃5 and W̃6 Monopole
winding processes are accompanied by the motion of auxiliary dipoles to preserve the total dipole moment, but they are omitted from the
figure for the sake of clarity.

One can check the following nontrivial commutators among
the postprojection holonomies:

[W̃1,W1] = ωcy , [W̃4,W4] = ωcx ,

[W̃2,W2] = ω, [W̃3,W3] = ω,

[W̃5,W5] = ωcx , [W̃6,W6] = ωcy . (4.21)

The commutator here means [A, B] = ABA−1B−1. There exist
four more nontrivial commutations relations,

[W̃1,W5] = ωcxcy[y′
0−y0− 1

2 (N−gcd(Ly,N ))],

[W̃2,W6] = ωcy[y′
0−y0+ 1

2 (N−gcd(Ly,N ))],

[W̃3,W5] = ωcx[x′
0−x0+ 1

2 (N−gcd(Lx,N ))],

[W̃4,W6] = ωcxcy[x′
0−x0− 1

2 (N−gcd(Lx,N ))], (4.22)

which is nothing but the projection of Eq. (4.9). Hence, apply-
ing the condition in Eq. (4.10) removes this nontrivial phase
factors as well.

One can read off the GSD from the Heisenberg al-
gebra of the holonomies. For instance W1 acting on a
ground state changes the eigenvalues of W̃1 by ωcy , gen-
erating in total N/cy = gcd(Ly, N ) distinct ground states.
Naively applying the reasoning to the first two pairs
of commutators (1 and 4) gives the GSD equal to
(N/cx )(N/cy) = gcd(Lx, N )gcd(Ly, N ), the next two pairs
(2 and 3) yields N2, and the final two pairs (5
and 6) yields another gcd(Lx, N )gcd(Ly, N ). In total,
this gives the GSD count N2[gcd(Lx, N )gcd(Ly, N )]2 that
is less than the correct GSD formula, Eq. (1.1), by
gcd(Lx, N )gcd(Ly, N )/Ngcd(Lx, Ly, N ). In other words, the
holonomies constructed above underspans the space of
ground states.

The deficiency comes from the fact that W̃4 given in
Eq. (4.20) is not the most minimal choice of the holonomy.

The correct holonomy expression can be found by referring to
Ref. [11],

W̃ min
4 =

nxLx∏
xi=1

Z0(�vi − x̂)(Z2(�vi )Z2(�vi + ŷ)−1)xi−x0 ,

⊗
nyLy∏
yi=1

Z0(�vi − ŷ)(Z1(�vi )Z1(�vi + x̂)−1)yi−y0 , (4.23)

where the integers nx, ny are given by

nx = gcd(Lx, N )

gcd(Lx, Ly, N )
, ny = lcm(Lx, gcd(Ly, N )) + kN

Ly
.

(4.24)

Here k is a minimal integer that makes ny an integer [11]. With
the new definition of W̃4 → W̃ min

4 we obtain a new commuta-
tor [

W̃ min
4 ,W4

] = ωnx . (4.25)

The GSD coming from this sector equals N/nx =
Ngcd(Lx, Ly, N )/gcd(Lx, N ) and indeed, we recover the
full GSD simply from the Heisenberg algebra, with the
modified W̃4. Replacing W̃4 by W̃ min

4 gives us an orthogonal
set of six X holonomies {W1, · · · ,W6} and six Z holonomies
{W̃1, · · · ,W̃6} that fully span the ground states of R2TC.

In making physical interpretations of the W̃4 holonomy,
though, we will continue to adopt the simpler (albeit slightly
incorrect) representation as the horizontal winding of my

quasiparticle as shown in Fig. 4. The interpretation of W̃ min
4

involves a mix of the horizontal winding of my and the vertical
winding of mx, as can be seen from its definition in Eq. (4.23).

With the explicit construction of the holonomies, we can
check the quantum numbers of the TN ground-state wave
function we have constructed in Sec. III A. Following the
similar procedure as in Eqs. (3.15) and (3.16), one can verify
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that our TN wave function |ψ〉 on the torus is the simultaneous
eigenstate of the four X holonomies W1 through W4, as well
as two Z holonomies W̃5 and W̃6, with eigenvalue +1. The
remaining six holonomies, W̃1 through W̃4 and W5,W6, then
act to shift the ground state into orthogonal ground states. One
can also construct a TN wave function for the eigenstate of
all six of the X holonomies W1 through W6, but it requires a
“double layer structure” of TN that goes beyond the present
construction and will be presented elsewhere [58].

C. Physical interpretation of the holonomies

It is well known that the X and Z holonomies in the R1TC
has a concise physical picture as the creation and subsequent
annihilation of a pair of ee or mm (bar denotes the antiparticle)
anyons after one anyon is wound around one of the noncon-
tractible paths of the torus. A total of four holonomies form
two conjugate pairs and span the N2 degenerate ground states.
To account for the GSD of R2TC, which reaches the maxi-
mum value of N6, one requires a total of twelve holonomies
breaking up into two groups. Six of them bear obvious physi-
cal interpretations as the winding of mx, my, e particles around
either of the two circumferences of the torus. We provide the
physical interpretations of the remaining six holonomies.

Each action of X holonomies corresponds to the winding
of the three electric quantities that are conserved. Figure 4
illustrates these processes. The physical action of W1 (W2)
among the X holonomies in Eq. (4.11) is to create a y-oriented
e dipole and its antidipole, then to move one of the dipoles
along the horizontal (vertical) noncontractible path of the
torus. For W3 (W4), it is x-oriented e dipole winding horizon-
tally (vertically). The W5 (W6), on the other hand, moves the
e monopole horizontally (vertically). Note that an auxiliary
dipole is attached to the e monopole during its adiabatic mo-
tion, to ensure the total dipole moment conservation in the
process, and disappears at the end of completing the loop. We
omit the auxiliary dipoles from Fig. 4 for simplicity.

Each action of X holonomies corresponds to the winding
of the three magnetic quantities that are conserved. The ac-
tion of the first four Z holonomies in Eq. (4.20) is to create
a monopole and antimonopole pair of either mx or my and
wind them. Specifically, W̃1,W̃2 (W̃3,W̃4) wind mx (my) along
the y- and x-oriented noncontractible loops. To enforce the
total dipole moment ymx + xmy = 0, some auxiliary dipoles
are attached during the vertical motion of mx as well as the
horizontal motion of my [12]. The last two Z holonomies, W̃5

and W̃6, correspond to the winding of m dipole along the y and
x noncontractible loops of the torus. The list of holonomies
and their physical interpretations are summarized in Table I.

D. Field-theoretic derivation of the holonomies

The holonomy construction thus far proceeded from a
known microscopic Hamiltonian, i.e., R2TC model whose
quasiparticle excitations are well explored. Historically, the
holonomies engendered by the Wilson line operators manifest
the global flux sectors to which the ground state on a torus
belongs. Building on this line of thinking, we show how to
obtain the Wilson operators pertinent to the R2TC from the
underlying rank-2 gauge theory.

TABLE I. (Left) Pair of holonomies (logical operators) with
nontrivial commutation relations. (Middle) nature of e excitations
and the direction of winding associated with a given holonomy W .
(Right) nature of m excitations and the direction of winding associ-
ated with a given holonomy W̃ . h = horizontal, v = vertical.

(W1,W̃1) (e dipole, h) (mx monopole, v)
(W2,W̃2) (e dipole, v) (my monopole, h)
(W3,W̃3) (e dipole, h) (my monopole, v)
(W4,W̃4) (e dipole, v) (mx monopole, h)
(W5,W̃5) (e monopole, h) (my dipole, v)
(W6,W̃6) (e monopole, v) (mx dipole, h)

For higher-rank gauge theories, the Wilson operators cre-
ating immobile quasiparticle excitations turn out to be richer
and more diverse than in the conventional ZN gauge theory
for the following reasons: (1) Due to the restricted mobil-
ity of the quasiparticles, some of the Wilson lines need to
be straight and geometrically oriented in a specific direction
[59,60]. (2) There might exist other Wilson operators defined
on a noncontractable manifold, such as membrane, cage, or
fractal, that are responsible for the holonomies of higher-rank
gauge theories [60–62]. (3) Different Wilson operators that
are parallel to each other may not render the same value, as
opposed to the conventional ZN gauge theory whose Wilson
line operators are invariant under translation. For higher-rank
gauge theory, the dipole and quadruple moments transform
nontrivially under translation, and so does the global flux sec-
tor. Consequently, two parallel flux lines might return different
values.

Recall that in the usual 2D ZN gauge theory, the magnetic
flux is given by m = ∂xAy − ∂yAx and the total flux on the half
cylinder A with boundaries at x = x0 and x = xn is character-
ized by parallel Wilson line operators∫

mdV =
∮

Ay(xn, y)dy −
∮

Ay(x0, y)dy = 0,

with the integral
∮

going around the full circumference of the
cylinder. The net flux condition (

∫
mdV = 0) implies that the

two parallel Wilson lines render the same value. Since the two
Wilson lines are spatially separated while the Hamiltonian is
local, each

∮
Ay(x, y)dy must commute with all local terms in

the Hamiltonian and can be treated as a global flux operator
that characterizes the holonomy. One obtains another Wilson
line operator along the y direction from the charge sector, i.e.,∮

Ey(x, y)dy. These two comprise all possible Wilson lines
along the y loop.

Now we apply this protocol to R2TC. Begin with the def-
inition of three monopole charges given in Eq. (2.10) in the
continuum limit,

mx = ∂xAyy − ∂yAxy,

my = ∂xAxy − ∂yAxx,

e = ∂2
x Exx + ∂2

y Eyy + ∂x∂yExy. (4.26)

As noted in Sec. II D, the magnetic charges mx, my demon-
strate a number of conservation laws∫

mxdV =
∫

mydV =
∫

(xmy + ymx )dV = 0. (4.27)
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The first two yield∫
mxdV =

∮
Ayy(xn, y)dy −

∮
Ayy(x0, y)dy = 0,∫

mydV =
∮

Axy(xn, y)dy −
∮

Axy(x0, y)dy = 0. (4.28)

Following the aforementioned argument, one can define two
Wilson line operators,

W2(x) =
∮

Ayy(x, y)dy,

W4(x) =
∮

Axy(x, y)dy. (4.29)

Due to the flux conservation law, Eq. (4.28), they are both
uniform along the x coordinate, ∂xW2(x) = ∂xW4(x) = 0. The
subscripts 2, 4 are intended to match the definitions of post-
projection Wilson operators in Eq. (4.11) [63].

In addition, we have∫
A

(ymx + xmy)dV = 0 =
∮

yAyy(xn, y)dy

−
∮

yAyy(x0, y)dy +
∮ xn

x0

(∫
Axy(x, y)dy

)
dx

=
∮

yAyy(xn, y)dy −
∮

yAyy(x0, y)dy + (xn − x0)W4.

(4.30)

In arriving at the last equality we used the fact that the Wilson
line operator W4 = ∮

Axy(x, y)dy is uniform in x. We arrive at
another Wilson line operator,

W6(x) =
∮

yAyy(x, y)dy + xW4, ∂xW6(x) = 0, (4.31)

which matches the definition of W6 in Eq. (4.11) after Higgs-
ing.

As the theory is rotationally symmetric, the other set of
Wilson line operators follows as integrals along the x loop,

W1 =
∮

Axy(x, y)dx, W3 =
∮

Axx(x, y)dx,

W5 =
∮

xAxx(x, y)dx + yW1, (4.32)

with matching definitions in Eq. (4.11) after Higgsing. Their
coordinate independence follows readily.

The previous holonomies W1 through W6 were derived on
the basis of conservation laws of the magnetic charges. Al-
ternatively, the holonomies can be derived from the electric
charge conservation,

e = ∂2
x Exx + ∂2

y Eyy + ∂x∂yExy,∫
e dV =

∫
xe dV =

∫
ye dV = 0, (4.33)

and hence∫
A

e dV =
∮

∂xExx(x0, y)dy −
∮

∂xExx(xn, y)dy = 0.

(4.34)

This yields the first holonomy

W̃5(x) =
∫

∂xExx(x, y)dy, ∂xW̃5(x) = 0. (4.35)

From the other two conservation laws we find∫
ye dV =

∫
(y∂yExy + y∂xExx )(xn, y)dy

−
∫

(y∂yExy + y∂xExx )(x0, y)dy,∫
A

xe dV =
∮

Exx(x0, y)dy −
∫

Exx(xn, y)dy

+ (xn − x0)W̃5. (4.36)

We arrive at two additional Wilson line operators

W̃1 = −
∮

(y∂yExy + y∂xExx )dy

=
∮

(Exy − y∂xExx )dy,

W̃3 = −
∮

Exxdy + xW̃5. (4.37)

The other three Wilson line operators are obtained from rota-
tional symmetry,

W̃2 = −
∮

Eyydx + yW̃6,

W̃4 =
∮

(Exy − x∂yEyy)dy,

W̃6 =
∮

∂yEyydx. (4.38)

Coordinate independence of all Wilson operators can be ver-
ified easily. After Higgsing, W̃1 through W̃6 match the six
Z holonomies of Eq. (4.20). Physical interpretation of the
holonomy operators has been given in Table I.

For completeness we briefly mention that in a theory with
vector-electric and scalar-magnetic charges such that

ex = ∂xExx + ∂yExy,

ey = ∂xExy + ∂yEyy,

m = ∂2
x Ayy + ∂2

y Axx − ∂x∂yAxy, (4.39)

we can construct the relevant holonomies based on a different
set of conservation laws∫

exdV =
∫

eydV =
∫

(yex − xey)dV = 0,∫
mdV =

∫
xmdV =

∫
ymdV = 0. (4.40)

As the derivation in this subsection clearly shows, the
construction of holonomies are firmly rooted in the conser-
vation laws such as Eqs. (4.27) and (4.33). The existence
of dipole-like conservations in addition to the usual charge
conservations for mx, my, e monopoles plays a crucial role in
constructing the full set of holonomies for the rank-2 gauge
theory as well as its Higgs descendant, which is the R2TC.
We suspect that a similar scheme can be exploited for the
holonomy construction in other rank-2 gauge theories.
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FIG. 5. (a) Braiding charge e around the flux m in the con-
ventional ZN gauge theory. The trajectory of the braiding loop
corresponds to the total flux inside the enclosed area. (b) Braiding
charge e around the flux mx or my in R2TC. The trajectory of the
braiding loop corresponds to the total dipolar flux inside the enclosed
area.

E. Understanding the position-dependent braiding

The seemingly puzzling feature of R2TC was the position-
dependent statistical phase obtained when one quasiparticle
is braided around another [10–12]. While various elaborate
arguments for why this should be so has been given already
[10–12], it turns out the field-theoretic holonomies just con-
structed can provide a simple picture for it.

To do so, we first review how the adiabatic braiding process
relates to the statistical phase. We begin with the prominent
ZN gauge theory example where the charge e and flux m have
nontrivial statistics. Creating a pair of m flux excitations is
implemented at the two endpoints of an open string ei

∫ x
0 Exdx.

To braid the charge around the flux, we create a pair of charge
(e) and anticharge (e) connected by an open string, wind the
e particle around m and annihilate it with the anticharge as
shown in Fig. 5. The trajectory of the e particle is associated
with the Aharonov-Bohm (AB) phase exp(i

∮ �A · d�r), which
corresponds to the total flux

∫
mdV (m = ∇ × A) inside the

area enclosed by the loop. As a result, the braiding of charge
excitation creates a flux loop that measures the total flux inside
so their braiding phase is just the AB phase.

Now let us go back to the R2TC theory with vector-
magnetic and scalar-electric charges as in Eq. (2.6). The flux
[64] mx or my excitations are created by open-string operators
such as

W̃ open
1 ∼ exp

[
i
∫ ym

0 (Exy − y∂xExx )dy
]

or

W̃ open
3 ∼ exp

[
i
∫ ym

0 (x∂xExx − Exx )dy
]
,

respectively. They are none other than open-ended versions
of the holonomies constructed in Sec. IV D and have physical
interpretations of creating a mxmx or a mymy pair separated
along the vertical direction as shown in Fig. 5.

To braid the m flux, we create a pair of charge e and an-
ticharge ē connected by an open string shown as the horizontal
blue segment in Fig. 5(b), wind the e particle around mx or
my as shown by two horizontal dashed lines in Fig. 5(b),
and annihilate it with the anticharge. The trajectory of the e

particle is associated with the phase factor

W5 ∼ ei
∫

[(xAxx+yAxy )(x,y1 )−(xAxx+yAxy )(x,y2 )]dx.

As one can see from Table I, W5 is associated with the hori-
zontal winding of e particle.

For simplicity, we choose the braiding trajectory consisting
of two parallel lines along the x direction above and below
the m flux, i.e., at y = y1 and y = y2, y1 < ym < y2, and ym

indicating the y coordinate of the m flux. We can further
simplify the braiding operator as

ei
∫

[(xAxx+yAxy )(x,y1 )−(xAxx+yAxy )(x,y2 )]dx

= ei
∫

[(xAxx+yAxy )(x,y1 )−(xAxx+yAxy )(x,y2 )]dx

× ei
∫ y2

y1
[(yAyy+xAxy )(x1,y)−(yAyy+xAxy )(x2,y)]dy

= ei
∫

(ymx+xmy )dV . (4.41)

In the second line we inserted some y-oriented integrals that
cancel each other due to the periodic boundary condition
and x2 = x1 + Lx [65]. Now one can understand the braiding
operation as the line integral of the vector field

(xAxx + yAxy, xAxy + yAyy). (4.42)

The third line in Eq. (4.41) follows from Stokes’ theorem
and the definition of mx, my in Eq. (4.26). It shows that the
braiding operation measure not the flux, but the “dipolar flux”
that depends on the x position of my and the y position of
mx that the e particle braids around. The statistical phase
becomes accordingly position dependent. Dipolar braiding
among other quasiparticles can be understood in similar ways.
The derivation of dipolar braiding statistics in terms of field-
theoretic Wilson lines given here has some overlap with earlier
consideration [10,12] of the dipolar braiding, but here we give
a more clarified picture of how this seemingly peculiar braid-
ing statistics arises rather naturally in rank-2 gauge theories.
It also suggests that the dipolar braiding phase is not unique to
R2TC, but may be a general feature of rank-2 gauge theories
and its Higgsed descendants.

To put it in broader perspective, we comment that a
position-dependent braiding process is also present elsewhere.
Indeed, while typically not emphasized, even in Wen’s Z2

Plaquette 2D model [17] where there is a single type of
stabilizer and, according to the terminology used here, one
quasiparticle species whose self-statistics depends on its ini-
tial position. Another 2D topologically ordered example, one
more complicated than Wen’s plaquette model yet simpler
than the R2TC, is the model considered by Delfino et al.
in Ref. [18]. In these 2D topologically ordered examples, a
general reason for position-dependent braiding is that lattice
translations induce nontrivial automorphisms on the anyon
lattice [66]. Consequentially the anyon types are labeled by
their position, which causes their braiding to become position
dependent [11]. In 3D, position-dependent braiding has been
discovered in fracton models [60,67]. In particular, for 3D
twisted fracton theory, the flux excitations denoted as lineons,
with restricted mobility along 1D lines, only exhibit nontrivial
braiding statistics between the lineons on adjacent planes.
That says that if we shift the braiding trajectory of the lineon
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between the layers, the resultant Berry phase from statistical
angles can change.

V. GENERALIZED SYMMETRIES

The holonomies constructed in Sec. IV are a piece of
a more general structure present in the R2TC: its general-
ized symmetries. The generalized symmetries of some rank-2
gauge theories have been discussed previously in the literature
[13,15,44,68]. Given the rich properties of the R2TC, the ex-
actly solvable point of scalar charge rank-2 ZN gauge theory,
it is interesting to wonder what its generalized symmetries are.
In this section, we will identify its symmetries and discuss
them in the context of spontaneous symmetry breaking and ’t
Hooft anomalies. We will consider the general N case. This
requires defining a branching and framing structure of the
lattice, which we review in the Appendix.

A. Reviewing the 1-form symmetries of the R1TC

Let us first review the generalized symmetries in the ZN

R1TC on a spatial square lattice. The (2 + 1)D ZN R1TC
Hamiltonian can be written as

H = −
∑

c0

Ac0 −
∑

c2

Bc2 ,

Ac0 = 1

N

N∑
j=1

(
ac0

) j
, Bc2 = 1

N

N∑
j=1

(
bc2

) j
, (5.1)

where ac0 and bc2 are the star and plaquette operators

ac0 =
∏

c1∈δc0

Zc1 , bc2 =
∏

c1∈∂c2

Xc1 . (5.2)

We denote the square lattice’s sites as c0, its edges as c1,
and its plaquettes as c2. In the definitions of ac0 and bc2 ,
δc0 denotes the coboundary of c0—an oriented sum of edges
whose boundary includes c0—and ∂ p denotes the oriented
boundary of c2. The precise definitions of δ and ∂ are given by
Eqs. (A3) and (A2), respectively. Graphical representations of
ac0 and bc2 are shown in Fig. 6(a), from which it is clear that
they commute for all c0 and c2. We note that these expressions
for ac0 and bc2 are equivalent to Eq. (2.12).

There are two independent operators that commute with
the R1TC Hamiltonian Eq. (5.1), each corresponding to a
symmetry. First consider the unitary

U (γ ) =
∏
c1∈γ

Xc1 , (5.3)

where γ is an oriented closed loop made of the lattice’s edges
(e.g., γ1 and γ2 in Fig. 7) and Xc1 satisfies X−c1 = X †

c1
. U (γ )

trivially commutes with bc2 for all γ and c2. Furthermore,
U (γ ) commutes with ac0 since for each site c0, γ is made up
of an even number of elements of δc0 with relative orientations
such that all phases e i 2π/N cancel. Therefore, [U (γ ), H] = 0
for all loops γ . Next, consider the unitary

Ũ (γ̂ ) =
∏
ĉ1∈γ̂

Z∗ ĉ1 , (5.4)

where γ̂ is now an oriented closed loop made of the dual
lattice’s edges (e.g., γ̂1 and γ̂2 in Fig. 7), ĉ1 is a dual lattice

(a)

(b)

FIG. 6. Graphical representations of (a) the ac0 and bc2 operators
in the R1TC Hamiltonian Eq. (5.1) and (b) the a, by, and bx operators
in the R2TC Hamiltonian Eq. (5.12). The disks are color coded to
represent Xi and Zi operators, according to the legend. Furthermore,
disks with a † represent the Hermitian conjugate of the corresponding
operator.

edge, and ∗ ĉ1 is the edge of the direct lattice that crosses ĉ1

[up to a differing sign, see Eq. (A5)]. Ũ (γ̂ ) trivially commutes
with ac0 for all γ̂ and c0. Furthermore, Ũ (γ̂ ) commutes with
bc2 since for each plaquette c2, γ̂ is made up of an even
number of elements of ∂c2 with relative orientations such that
all phases e i 2π/N cancel. Therefore, [Ũ (γ̂ ), H] = 0 for all
loops γ̂ .

Since U and Ũ commute with H , and since they transform
the qubits nontrivially, they correspond to symmetries. Indeed,

FIG. 7. The symmetry operators U (γ ) and Ũ (γ̂ ) of the R1TC act
on closed loops of the direct and dual lattice. Examples of U (γ ) [see
Eq. (5.3)] acting on loops of the direct lattice γ1 and γ2 are shown
in green while examples of Ũ (γ̂ ) [see Eq. (5.4)] acting on loops
of the dual lattice γ̂1 and γ̂2 are in red. γ1 and γ̂1 are contractible
loops while assuming periodic boundary conditions, γ2 and γ̂2 are
noncontractible.
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they generate the transformations

U (γ ) Zc1 U †(γ ) = ω#(c1,γ ) Zc1 , (5.5)

Ũ (γ̂ ) Xc1 Ũ †(γ̂ ) = ω−#(c1,γ̂ ) Xc1 , (5.6)

where ω = e i 2π/N and, for instance, #(c1, γ ) is the
signed intersection number of c1 and γ . Because
[U (γ )]N = [Ũ (γ̂ )]N = 1, they are the generators of a
ZN × ZN symmetry. However, this is not quite an ordinary
global symmetry since U and Ũ act on closed loops instead of
the entire lattice. Instead, they correspond to nontopological
ZN 1-form symmetries. Physically, this symmetry reflects the
lack of dynamics of e and m anyons in the R1TC is absent
throughout the rest of the deconfined phase of ZN gauge
theory.

In the ground-state sub-Hilbert space, the operators ac0 and
bc2 obey the constraints 〈ac0〉gs = 1 and 〈bc2〉gs = 1, where
〈 〉gs denotes the expectation value with respect to the ground
states. Consequentially, when γ and γ̂ are contractible loops,
〈U (γ )〉gs = 1 and 〈Ũ (γ̂ )〉gs = 1, which follows from

U (γ = ∂M ) =
∏

c2∈M

bc2 , (5.7)

Ũ (γ̂ = ∂M̂ ) =
∏

ĉ2∈M̂

a†
∗ ĉ2

. (5.8)

In fact, U (γ ) and Ũ (γ̂ ) are so-called topological operators
in the ground-state sub-Hilbert space, since their vacuum ex-
pectation values depend only on the topology—the homology
class—of γ and γ̂ , respectively. In other words, in the ground-
state sub-Hilbert space, the symmetry operators are nontrivial
only when γ and γ̂ are noncontractible loops. Furthermore,
one can choose γ and γ̂ such that U and Ũ are the R1TC
“holonomies” discussed in Sec. IV A.

In the ground-state sub-Hilbert space, Xc1 and Zc1 are not
allowed operators since they excite e and m anyons, respec-
tively, violating the 〈ac1〉 = 1 and 〈bc2〉 = 1 constraints. The
allowed operators are, instead, U (γ ) and Ũ (γ̂ ). The afore-
mentioned generalized ZN × ZN symmetry transformations,
Eqs. (5.5) and (5.6), in the ground-state sub-Hilbert space are
replaced with

U (γ ) Ũ (γ̂ )U †(γ ) = ω#(γ̂ ,γ ) Ũ (γ̂ ), (5.9)

Ũ (γ̂ )U (γ ) Ũ †(γ̂ ) = ω−#(γ ,γ̂ ) U (γ ). (5.10)

These now correspond to ZN 1-form—Z(1)
N —symmetries

since their symmetry operators are topological operators sup-
ported on codimension 1 closed subspaces and their charged
operators are supported on one-dimensional closed subspaces.
In fact, this Z(1)

N × Z(1)
N symmetry is also a symmetry [69]

of the topological quantum field theory description of the
R1TC ground states [70]. Unlike the nontopological ZN × ZN

1-form symmetry of Eqs. (5.5) and (5.6), the Z(1)
N × Z(1)

N
symmetry exists as an emergent symmetry in the ground-state
sub-Hilbert space throughout the entire deconfined phase of
ZN gauge theory [71,72].

Just like ordinary global symmetries, 1-form symmetries
can spontaneously break [28,73]. The order parameter of a
1-form symmetry spontaneous breaking is the vacuum expec-
tation value of its charged operator supported on a contractible

loop. Recall that 〈U (γ )〉gs = 1 and 〈Ũ (γ̂ )〉gs = 1 when γ and
γ̂ are contractible loops. Since Ũ is charged under the Z(1)

N
symmetry generated by U [see Eq. (5.9)] and vice versa, the
R1TC ground states spontaneously break the Z(1)

N × Z(1)
N sym-

metry. This reproduces the well known property that there is a
ground-state degeneracy depending on the topology—the first
cohomology—of the spatial lattice. In fact, the Z(1)

N × Z(1)
N

symmetry is anomalous, meaning both Z(1)
N symmetries can-

not be simultaneously gauged. The ground-state degeneracy
(GSD) arising when this anomalous Z(1)

N × Z(1)
N symmetry is

spontaneously broken is GSD = N2 for the square lattice with
periodic boundary conditions.

A manifestation of this mixed ’t Hooft anomaly is that the
symmetry operators obey the Heisenberg algebra [74]

Ũ (γ̂ )U †(γ ) = (e i 2π/N )#(γ̂ ,γ ) U †(γ )Ũ (γ̂ ), (5.11)

and therefore U and Ũ form a projective representation
of Z(1)

N × Z(1)
N . The mixed ’t Hooft anomaly ensures that

the ground state cannot be a trivial product state (see e.g.,
Refs. [38,75,76]), and instead the R1TC must be in either
a gapless or an SSB phase. Therefore, the mixed ’t Hooft
anomaly protects the spontaneous symmetry breaking pattern
and, therefore, the ZN topological order. Furthermore, the
mixed ’t Hooft anomaly is also present at higher energies,
affecting the nontopological ZN 1-form symmetries. Its man-
ifestation Eq. (5.11) gives rise to nontrivial mutual statistics
between e and m anyons [42].

B. Symmetries of the R2TC

Having summarized the symmetries in the R1TC, let us
now consider the R2TC. It is convenient to choose a slightly
different, but physically equivalent, square lattice where the
(X1, Z1) and (X2, Z2) ZN spins reside on horizontal links while
the (X0, Z0) ZN spins reside on vertical links. In fact, this is
the lattice �2 in Fig. 1. The ZN R2TC Hamiltonian is then
given by

H = −
∑
c(h)

1

Ac(h)
1

−
∑

c0

Bx
c0

−
∑

c2

By
c2
,

Bx
c0

= 1

N

N∑
j=1

(
bx

c0

) j
, By

c2
= 1

N

N∑
j=1

(
by

c2

) j
,

Ac(h)
1

= 1

N

N∑
j=1

(
ac(h)

1

) j
, (5.12)

where c(h)
1 denotes a horizontal link, c0 a lattice site, and c2 a

plaquette. Figure 6(b) shows graphical representations of the
operators a, bx, and by, which are also defined in Eqs. (2.21)
and (2.19), respectively. From Fig. 6(b), it is clear these oper-
ators are mutually commuting, and therefore the ground state
satisfies a = 1, bx = 1, and by = 1.

The R2TC Hamiltonian operators a, bx, and by have a rich
and complicated structure. Consequently, the theory can have
many interesting generalized symmetries. We will construct
its symmetries in Sec. V B 1, which will include mostly tech-
nical details. Afterwards, in Sec. V B 2, we will discuss these
symmetry operators, analyzing how the R2TC’s interesting
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FIG. 8. The R2TC symmetry operators U1(γ ) and U2(γ̂ ), defined
by Eqs. (5.15) and (5.16) respectively, act on closed loops of the
direct and dual lattice. Here we show graphical representation of an
example of U1(γ ) acting on a loop of the direct lattice γ (drawn in
green) and of U2(γ̂ ) acting on a loop of the dual lattice γ̂ (drawn in
red).

properties can be interpreted from a symmetry point of view
and comparing the symmetry operators to conventional 1-
form symmetries.

1. Construction of symmetry operators

Let us first identify the symmetries, which are generated by
operators built out of only X0, X1, and X2. To do so, we define
the lattice vector fields X1 and X2, which are related to X0, X1,
and X2 by

Xi
1,c0

= (
X x

1,c0
, X y

0,c0

)
, (5.13)

Xi
2,ĉ0

= (
X y

0,| ∗ ĉ0|+x̂, X x
2,| ∗ ĉ0|+ŷ

)
. (5.14)

Notice that while X1 is specified by the links of the direct
lattice, X2 is instead specified by the links of the dual lattice.
As elaborated on in the Appendix, the position of | ∗ ĉ0| is
related to a direct lattice site c0 by c0 = | ∗ ĉ0| − x̂/2 − ŷ/2,
where | ∗ ĉ0| is just the absolute value of ∗ ĉ0. Using X1 and
X2, we construct the unitary operators

U1(γ ) =
∏
c1∈γ

X1,c1 , (5.15)

U2(γ̂ ) =
∏
ĉ1∈γ̂

X2,ĉ1 , (5.16)

where γ and γ̂ are oriented loops on the direct and dual
lattice, respectively (see Fig. 8). U1 and U2 trivially commute
with Bx

c0
and B

y
c2 in the R2TC Hamiltonian Eq. (5.12). U1

and U2 also commute with Ac(h)
1

, which can be confirmed
directly or simply by comparing the graphical representa-
tions shown in Figs. 6(b) and 8. Therefore, for all γ and γ̂ ,
[U1(γ ), H] = [U2(γ̂ ), H] = 0, and U1 and U2 correspond to
symmetry operators.

When γ and γ̂ are contractible, the symmetry operators U1

and U2 can be written as

U1(γ = ∂M ) =
∏

c2∈M

by
c2
, (5.17)

U2(γ̂ = ∂M̂ ) =
∏

ĉ2∈M̂

bx
| ∗ ĉ2|. (5.18)

Consequentially, in the ground-state subspace where bx,y = 1,
U1 and U2 are topological operators, depending only on the
homology class of γ and γ̂ . Since U N

1 = U N
2 = 1, we there-

fore find that these symmetry operators generate an emergent
Z(1)

N × Z(1)
N symmetry in the IR. We note that when γ is a

loop of links in the x direction (y direction), U1 becomes the
“holonomy” W3 (W4) from Eq. (4.11). Similarly, when γ̂ is a
loop of dual links in the x direction (y direction), U2 becomes
the holonomy W1 (W2) from Eq. (4.11).

There is one more symmetry operator, which can be con-
structed from the X operators. Let us define the operator
X3, which acts only on the horizontal links c(h)

1 . X3 is inter-
preted as a lattice vector field whose x component acts on
the horizontal links of c(h)

1 but whose y component acts on
the vertical links of the dual lattice ∗ ĉ(v)

1 = c(h)
1 . However,

the horizontal links form their own square lattice Vvh whose
sites v ≡ (vx, vy) are squares in Fig. 1. We will formulate this
symmetry on the Vvh lattice where it turns out to be most
naturally defined. However, this can also be formulated on the
direct lattice if the framing structure is utilized, which makes
the following symmetry a so-called framed symmetry [44]. X3

is related to X1 and X2 by

Xi
3,v = (

X1,c(h)
1

, X2,c(h)
1

)
, (5.19)

where the Vvh site v on the left hand side is the center of the
edge c(h)

1 on the right-hand side.
Using X3, we can construct a unitary, which commutes

with the R2TC Hamiltonian. To do so, we first reconsider
the Vvh square lattice as a Bravais lattice with a basis. The
conventional unit cell is an N × N square surrounding N2

lattice sites, each of which belong to their own sublattice. We
introduce the index s ∈ {1, 2, · · · , N2 − 1, N2}, which labels
each sublattice. Let us denote a generic oriented closed loop
of the Vvh lattice as �, and specify loops made of only length
N segments connecting sites of the sublattice s as �(s). With
this set up, we now consider the unitary operator

U3(�(s) ) =
∏

v∈�(s)

(X3,r )(vx−r(s)
x )+(vy−r(s)

y ), (5.20)

where v is a Vvh lattice site [77] and r (s) is the basis vector (in
the crystallography sense) of sublattice s. Figure 9 shows an
example U3(�(s) ) for N = 3.

The operator U3 trivially commutes with Bx
c0

and B
y
c2 in

the R2TC Hamiltonian Eq. (5.12). Furthermore, U3(�(s) ) also
commutes with Ac(h)

1
for all �(s), which can be confirmed

by direct computation or simply from inspecting the graph-
ical representations shown in Figs. 6(b) and 9. Therefore,
[U3(�(s) ), H] = 0 for all �(s), and U3 indeed corresponds to
a symmetry operator. When �(s) is contractible, the symmetry
operator U3 can be written as

U3(�(s) = ∂M ) =
∏

c0∈M

(
bx

c0

)(c0 )y
∏

c2∈M

(
by

c2

)(c2 )x
. (5.21)

Here, (c0)y is the distance of c0 from �(s) in the −y direction.
Similarly, (c2)x is the distance of c2 from �(s) in the −x
direction. Since bx

c0
= b

y
c2 = 1 in the ground-state subspace,

U3(�(s) ) is a topological operator and corresponds to a 1-form
symmetry in the IR. However, this is not an ordinary 1-form

155151-17



OH, PACE, HAN, YOU, AND LEE PHYSICAL REVIEW B 107, 155151 (2023)

FIG. 9. The R2TC symmetry operator U3(�(s) ) defined by
Eq. (5.20) acts on closed loops �(s) of the Vvh lattice. Here we show
a graphical representation of U3(�(s) ) acting on a particular loop �(s)

drawn in blue with N = 3. The Vvh lattice sites belonging to the s
sublattice are denoted by gray squares, and we sometimes include
the operators (X1)3 and (X2)3 despite them being the identity.

symmetry since �(s) is not allowed to be any loop on the Vvh

lattice. As a result U3(�(s) ) is not a fully topological operator
on the Vvh lattice, but is on the s sublattice. Therefore, we refer
to U3(�(s) ) as a sublattice 1-form symmetry.

The precise nature of this sublattice 1-form symmetry de-
pends on both the topology and geometry of the lattice in
a sensitive way. Without periodic boundary conditions, this
is a sublattice ZN 1-form symmetry. With periodic boundary
conditions, the previous N × N conventional unit cell shrinks
to a gcd(Lx, N ) × gcd(Ly, N ) unit cell (but �(s) is still made
of only length N segments). Consequently, �(s) must wrap
around system N/ gcd(Li, N ) times in the i direction in order
to close. Therefore, on a torus, U3 is a Z(1)

gcd(Lx,N ) × Z(1)
gcd(Ly,N )

sublattice 1-form symmetry, where the noncontractible �(s)

of the Z(1)
gcd(Li,N ) sublattice symmetry is understood wind-

ing only in the i direction. We note that the Z(1)
gcd(Lx,N ) and

Z(1)
gcd(Ly,N ) symmetry operators are related to the W5 and W6

“holonomies,” respectively, from Eq. (4.11).
We now move on to discuss the symmetry operators con-

structed from only Z0, Z1, and Z2. We will find that there are
three symmetry operators, two of which correspond two sub-
lattice 1-form symmetries and one is a conventional 1-form
symmetry.

To construct the first symmetry operator, we must recon-
sider unit cell of the lattice as a N × 1 unit cell with a basis
labeled by s ∈ {1, · · · , N}. A loop of the dual lattice made of
only length N segments in the horizontal direction connecting
the sites of sublattice s is denoted as γ̂ (s). We then introduce
the lattice vector field Z1 acting on the links of the dual lattice,
ĉ1. It is related to the Z0, Z1, and Z2 operators by

Z1,ĉ1 = (
Z0,∗ ĉ1

(
Z†

2,∗ ĉ1+x̂/2+ŷ/2Z2,∗ ĉ1+x̂/2−ŷ/2
)x−x(s)

Z1,∗ ĉ1

)
(5.22)

where x is the x coordinate of the dual lattice site in the x
direction of ĉ1 and x(s) is the x coordinate of the basis vector
for sublattice s. With this defined, we can then consider the

FIG. 10. The R2TC symmetry operator Ũ1(γ̂ (s) ) defined by
Eq. (5.23) acts on closed loops γ̂ (s) of the dual lattice. Here we show
a graphical representation of Ũ1(γ̂ (s) ) acting on a particular loop γ̂ (s)

drawn in red with N = 3. The dual lattice sites belonging to the s
sublattice are denoted by gray squares, and we sometimes include
the operator (Z2)3 despite it being the identity.

unitary

Ũ1(γ̂ (s) ) =
∏

ĉ1∈γ̂ (s)

Z1,ĉ1 , (5.23)

an example of which is shown in Fig. 10 for N = 3. It is
straightforward to check that for all γ̂ (s), Ũ1 commutes with
a, bx, and by, and therefore [Ũ1, H] = 0.

The second symmetry operator is rather similar to the first
one. Now we instead consider a 1 × N units cell with a basis
again labeled by s ∈ {1, · · · , N}. A loop of the direct lattice
made of only length N segments in the vertical direction
connecting the sites of sublattice s is denoted as γ (s). We then
introduce the lattice vector field Z2 acting on the links of the
direct lattice, c1. It is related to the Z0, Z1, and Z2 operators by

Z2,c1 = (
Z1,c1 , Z†

0,c1

(
Z†

2,c1−x̂/2+ŷ/2Z2,c1+x̂/2+ŷ/2
)y−y(s))

(5.24)

where y is the y coordinate of the lattice site in the y direction
of c1 and y(s) is the y coordinate of the basis vector for sub-
lattice s. With this defined, we can then consider the unitary

Ũ2(γ (s) ) =
∏

c1∈γ (s)

Z2,c1 , (5.25)

an example of which is shown in Fig. 11 for N = 3. It is
straightforward to check that for all γ (s), Ũ2 commutes with
a, bx, and by, and therefore [Ũ2, H] = 0.

Both unitary operators Ũ1(γ̂ (s) ) and Ũ1(γ̂ (s) ) correspond to
symmetry operators. When acting on contractible loops, they
can be written as

Ũ1(γ̂ (s) = ∂M̂ ) =
∏

c(h)
1 ∈M̂

(
ac(h)

1

)(c(h)
1 )x

, (5.26)

Ũ2(γ (s) = ∂M ) =
∏

c(h)
1 ∈M

(
ac(h)

1

)(c(h)
1 )y

, (5.27)
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FIG. 11. The R2TC symmetry operator Ũ2(γ (s) ) defined by
Eq. (5.25) acts on closed loops γ (s) of the direct lattice. Here we show
a graphical representation of Ũ2(γ (s) ) acting on a particular loop γ (s)

drawn in green with N = 3. The direct lattice sites belonging to the
s sublattice are denoted by gray squares.

where (c(h)
1 )x is the distance of c(h)

1 from γ̂ (s) in the −x
direction and (c(h)

1 )y is the distance of c(h)
1 from γ (s) in the

−y direction. Evidently, both the symmetries generated by
Ũ1 and Ũ2 are sublattice 1-form symmetries, defined on their
respective sublattices. Like for the sublattice 1-form symme-
try U3, the details of the symmetry are sensitive to both the
geometry and topology of the lattice. Indeed, with periodic
boundary conditions the N × 1 (1 × N ) unit cell defined for
the Ũ1 (Ũ2) symmetry operator becomes a gcd(Lx, N ) × 1
(1 × gcd(Ly, N )) unit cell [γ (s) and γ̂ (s) are still made of
length N segments in the y and x directions, respectively].
Note that when Ũ1 (Ũ2) is supported on a noncontractible loop
in the y (x) direction, it is related to W̃3 (W̃2) in Eq. (4.20).
Similarly, when Ũ1 (Ũ2) is supported on a noncontractible
loop in the x (y) direction, it becomes W̃4 (W̃1) in Eq. (4.20)

Let us now construct the final symmetry operator. We de-
fine the operator Z3, which acts only on the vertical links c(v)

1
of the lattice. Z3 is interpreted as a lattice vector field whose
x component acts on the plaquette c2 but whose y component
acts on the horizontal links of the dual lattice ĉ(h)

1 = ∗ c(v)
1 . It

turns out it is most natural to formulate this symmetry operator
on the previously mentioned Vvh lattice. We will denote the
sites of the dual Vvh as v̂ and note that they are shown in Fig. 1
as discs. Z3 is related to Z0, Z1, and Z2 by

Z3,v̂ = (Z0,v̂Z†
0,v̂+x̂Z†

2,v̂+x̂/2+ŷ/2Z2,v̂+x̂/2−ŷ/2,

× Z†
2,v̂−x̂/2+ŷ/2Z2,v̂+x̂/2+ŷ/2). (5.28)

With Z3 defined, we can then consider the unitary operator

Ũ3(�̂) =
∏
v̂∈�̂

Z3,v̂ (5.29)

where �̂ is an oriented closed loop on the dual Vvh lattice (see
Fig. 12 for an example).

It is straight forward to check that Ũ3 commutes with the
Hamiltonian for all �̂ and therefore corresponds to a symme-
try operator. When Ũ3 is supported on a contractible loop, it

FIG. 12. The R2TC symmetry operator Ũ3(�̂) defined by
Eq. (5.29) acts on closed loops � of the dual Vvh lattice. Here we
show a graphical representation of Ũ3(�) acting on a particular loop
�̂ drawn in orange.

can be written as

Ũ3(�̂ = ∂M ) =
∏

c(h)
1 ∈M

ac(h)
1

. (5.30)

Since ac(h)
1

= 1 in the ground-state subspace, Ũ3 is a topo-

logical operator. Therefore, in the IR, Ũ3 is the symmetry
operator of a Z(1)

N symmetry. In fact, when supported on a
noncontractible loop winding around the system in the x (y)
direction, Ũ3 becomes W̃6 (W̃5) from Eq. (4.20).

2. Analysis and discussion of R2TC symmetries

Having identified the generalized symmetries of the R2TC,
let us now use them to interpret the model’s interesting
properties from a symmetry point of view. Recall that the
six symmetry operators are supported on loops and com-
mute with the R2TC Hamiltonian for all respective loops.
Their expectation values with respect to excited states de-
pend on more than just the topology of the loops, so in this
sense these microscopic (UV) symmetries are nontopologi-
cal 1-form symmetries. Their existence reflects the lack of
dynamics for e and �m anyons. Throughout the rest of the
deconfined phase of ZN rank-2 gauge theory, away from the
R2TC point, these nontopological 1-form symmetries are ex-
plicitly broken.

The symmetry operators of the R2TC are much richer and
more complex than those in the R1TC, which were reviewed
in Sec. V A. As demonstrated in Fig. 7, the R1TC symmetry
operators are nicely defined on 1-cycles of the direct and
dual lattice (so, they admit a straightforward description us-
ing cellular homology). Furthermore, for a given symmetry
operator, each edge of the 1-cycle was acted on by the same X
or Z operator (up to taking the Hermitian conjugate, which
arises from the 1-cycles orientation and lattice’s branching
structure). The R2TC symmetry operators, examples of which
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are shown in Figs. 8–12, go beyond all of these convenient
simplicities. For example, they include the following features,
absent from the R1TC’s symmetries:

(1) The symmetry operators Ũ1(γ̂ (s) ), Ũ2(γ (s) ), and Ũ3(�̂)
act on both the spins on the loops γ̂ (s), γ (s), and �̂, respec-
tively, and the spins near the loops.

(2) For all symmetry operators, the operators acting
on/near the loop’s edges depend on whether the loop is par-
allel to the x or y direction. For example, as shown in Fig. 8,
U1(γ ) has X0 act on edges when γ is parallel to the y direction
but has X1 act on edges when γ is parallel to the x direction.

(3) The operators acting on the spins for symmetry oper-
ators U3(�(s) ), Ũ1(γ̂ (s) ), and Ũ2(γ (s) ), depend on the position
of those spins.

(4) The symmetry operators U3 and Ũ3 act on loops of the
direct/dual Vvh lattice instead of the direct/dual (�2) lattice.
In terms of the �2 lattice, these operators act on loops defined
on both the direct/dual lattice and therefore require additional
framing structure, which makes them framed 1-form symme-
tries [44].

(5) The symmetry operator Ũ3(�̂) has operators, which
only act on the corners of the loop �̂ while absent from other
parts of the loop (i.e., Z0 in Fig. 12). From the �2 lattice
point of view, these corners coincides with where the fram-
ing structure connects the direct and dual lattices’ loops to
create �̂.

Unlike the expectation values with respect to excited states
mentioned previously, the vacuum expectation values of the
symmetry operators depend only on the topology of these
loops. Thus, in the ground-state sub-Hilbert space—the IR—
of the R2TC, all six of the generalized symmetries are 1-form
symmetries. Three of these (U1, U2, and Ũ3) were conven-
tional 1-form symmetries. However, the other three (U3, Ũ1,
and Ũ2) were not conventional 1-form symmetries since their
symmetry operators relied on an underlying sublattice struc-
ture. These nonconventional 1-form symmetries were called
sublattice 1-form symmetries in the previous section to em-
phasize this additional structure.

The lattice symmetries generally mix these sublattices and
act nontrivially on sublattice 1-form symmetries. Therefore,
the total symmetry group of the R2TC is (1-form sym-
metries)�(lattice symmetries). This interplay between the
sublattice 1-form and spatial symmetries can also be no-
ticed by the R2TC’s symmetry-enriched topological order,
where position-dependent excitations [11] reflect the exis-
tence of sublattice 1-form symmetries. From a generalized
symmetry point of view, this interplay is reflected by the
total symmetry group being described by a 2-group, a type
of monoidal category (see Refs. [78,79]). It would be in-
teresting to investigate ’t Hooft anomalies of such 2-group
symmetries, where mixed anomalies between lattice transla-
tions and sublattice 1-form symmetries would lead to LSM
theorems.

Throughout the rest of the deconfined phase of ZN rank-2
gauge theory, away from the R2TC point, we expect that
all of these generalized symmetries are exact emergent IR
symmetries [72]. This means that despite being emergent
symmetries, explicitly broken in the microscopic Hamilto-
nian, they constrain the IR in the thermodynamic limit as if
they were exact microscopic symmetries.

Since all of the R2TC’s generalized symmetries are 1-form
symmetries, they are sensitive to the topology of the spatial
lattice. The sublattice 1-form symmetries, however, also de-
pend on the geometry of the lattice. Indeed, as we discussed
in the previous section, with periodic boundary conditions the
size of their underlying sublattices depends on the system size.
Furthermore, the sublattices in U3’s, Ũ1’s, and Ũ2’s respective
definitions are unique to the square lattice, so the R2TC on
a different lattice would generally have different sublattice 1-
form symmetries. Therefore, the sublattice 1-form symmetries
give rise to UV/IR mixing in the R2TC [11]. The emergent IR
symmetries depending on the UV lattice is a general diagnosis
for UV/IR mixing and, in fact, may be a unified mechanism
for UV/IR mixing in all topological and fracton phases.

The R2TC’s symmetry operators satisfy the algebra

U1(γ ) Ũ1(γ̂ (s1 ) ) = ω#(γ ,γ̂ (s1 ) ) Ũ1(γ̂ (s1 ) )U1(γ ), (5.31)

U2(γ̂ ) Ũ2(γ (s2 ) ) = ω#(γ̂ ,γ (s2 ) ) Ũ2(γ (s2 ) )U2(γ̂ ), (5.32)

U3(�(s3 ) ) Ũ3(�̂) = ω#(�(s3 ),�̂) Ũ3(�̂)U3(�(s3 ) ), (5.33)

where ω ≡ e i 2π/N and #(, ) is the signed intersection number.
We thus see that the Ui (Ũi ) symmetry operator transforms
nontrivially under the Ũi (Ui) symmetry transformation—
Ui (Ũi ) is a charged operator of the Ũi (Ui ) symmetry.
Recall from the previous section that when supported on con-
tractible loops, 〈Ui〉gs = 〈Ũi〉gs = 1. The fact that 〈Ui〉gs = 1
(〈Ũi〉gs = 1) for contractible loops means that the Ũi (Ui )
symmetry charges are condensed in the R2TC ground state,
and the Ũi (Ui ) symmetry is spontaneously broken. Therefore,
the R2TC ground state spontaneously breaks all six of the
1-form symmetries.

Discrete symmetries spontaneously breaking always gives
rise to a ground-state degeneracy. The GSD is computed
by finding the smallest faithful representation of the sponta-
neously broken symmetry operators. This exact calculation
was done in Sec. IV B, where the holonomies Wi and W̃i

are the generators of the spontaneously broken symmetries,
and yields the correct GSD Eq. (1.1). Therefore, the GSD
is system size dependent because some of the spontaneously
broken symmetries are sublattice 1-form symmetries that en-
code geometrical information of the lattice.

The algebra Eqs. (5.31)–(5.33) also reveals that the R2TC
realizes these generalized symmetries in a projective repre-
sentation. This prevents the 1-form symmetries from being
gauged, and is thus a manifestation of an ’t Hooft anomaly
[80]. In particular, there is a mixed ’t Hooft anomaly between
the Ui and Ũi symmetries. Like in the R1TC discussed in
Sec. V A, mixed ’t Hooft anomalies for 1-form symmetries
realized through projective representations are physically re-
flected through the nontrivial braiding statistics of anyons.
Since some of the R2TC’s anomalous symmetries are sublat-
tice 1-form symmetries, the braiding statistics will generally
depend on the sublattice the anyon resides on. However,
this is precisely the position dependent-braiding discussed in
Sec. IV E.
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VI. SUMMARY AND OUTLOOK

We have applied the idea of coupled-layer construction,
previously invented to understand the emergence of fracton
models out of toric codes in three dimensions [21,22], to shed
light on the appearance of symmetric rank-2 gauge fields in
two dimensions and from there the rank-2 toric code through
Higgsing. Condensation of gauge fields can take place in
either one of the two conjugate gauge fields A and E , and
leads to theories with either vector-electric or vector-magnetic
charges that are ultimately dual to each other.

Construction of holonomy (Wilson line) operators for the
rank-2 toric code follows rather naturally in this approach, as
one can start by identifying the holonomy operators in the
Hilbert space before the condensation took place. We thus
arrive at the picture of holonomies as the creation/annihilation
of magnetic and electric charge-anticharge pairs, and of their
dipole-antidipole pairs. The dependence of the ground-state
degeneracy on the system size (the UV/IR mixing) can be
thoroughly understood from analysis of the Wilson loop oper-
ators thus obtained. We further suggest an easy-to-implement,
heuristic derivation of the holonomies based on the rank-2
gauge theory. This may well have applications in the holon-
omy construction of other, rank-2 gauge theories and the
corresponding stabilizer models.

Furthermore the exact tensor network expression of the
ground state of the rank-2 toric code is derived starting from
two copies of the rank-1 toric code’s ground-state wave func-
tions, by sewing them together with an isometry operation
that faithfully reflects the condensation of the gauge fields.
This, too, may have application in the construction of other
rank-2 based stabilizer ground-state wave functions. For one
thing, analyzing entanglement entropy becomes easy with
the tensor network wave function at hand. Additionally, the
tensor network projection of R2TC provides a clear picture
of how coupled toric code layers engender higher-rank gauge
theory in terms of anyon condensation. This also sheds light
on exploring phase transitions between conventional gauge
theory and R2TC, where one can replace the tensor projection
procedure with an additional parameter in the tensor element.
We will explore these issues in a future study [58].

The anyon condensation idea can lead to a number of
powerful applications. As an example we showed how the
Levin-Gu semionic topological model [26] can undergo a
similar condensation procedure to result in a model. The no-
tion of generalized symmetry is a powerful description of the
topological order in the toric code, and we have discussed how
the notion applies to the rank-2 toric code. We believe the
“generalization” of the generalized symmetry idea to other
rank-2 based models can find interesting applications in the
future. Furthermore, it would be interesting to investigate if
general rank-N symmetric tensor gauge theories, with N > 2,
can be constructed from many copies of rank-1 theories in a
particular condensed phase.
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APPENDIX: REVIEW OF DISCRETE DIFFERENTIAL
GEOMETRY FOR d-DIMENSIONAL CUBIC LATTICES

In this Appendix, we review relevant parts of discrete dif-
ferential geometry (in a nonrigorous fashion) used in Sec. V of
the main text. Consider a cubic lattice in d-dimensional space
with periodic boundary conditions, denoted by Md . While a
Bravais lattice is a collection of lattice sites x ∈ Zd , it is useful
to view it as also formed by higher-dimensional objects, like
links, plaquettes, cubes, etc. We call a p-dimensional object a
p-cell, with 0 � p � d . So, a 0-cell is a lattice site, a 1-cell is
a link, a 2-cell is a plaquette, etc. This does not add additional
structures to the lattice, but instead is just a useful way of or-
ganizing the lattice sites. Indeed, denoting a p-cell associated
with site x as cp(x)μ1μ2···μp , where μ1 < μ2 < · · · < μp and
μi ∈ {1, 2, · · · , d}, a p-cell of the cubic lattice is the set of 2p

lattice sites [81]

cp(x)μ1μ2···μp = {x} ∪ {x + μ̂i | 1 � i � p}
× ∪{x + μ̂i + μ̂ j | 1 � i < j � p}
× ∪ · · · ∪ {x + μ̂1 + . . . + μ̂p}, (A1)

where μ̂i is the unit vector in the μi direction. It
is often convenient to drop the requirement that the
indices are canonically ordered (i.e., that they satisfy
μ1 < μ2 < · · · < μp < ν) and instead let cp(x)μ1μ2···μp obey
the relation cp(x)···μ1μ2··· = −cp(x)···μ2μ1···. The p-cells of the
d-dimensional cubic lattice are equivalently viewed as the
0-cells of some other lattice in d dimensions, as demonstrated
for d = 2 and 3 in Fig. 13.

Introducing the concept of p-cells is strictly unnecessary
but very convenient because “sewing” p-cells together gives
a natural way to form p-dimensional subspaces of the lattice.
Furthermore these subspaces can also be given an orientation
by defining an orientation structure to the lattice. A nice local
scheme for the lattice orientation is a branching structure,
where the orientation on each 1-cell is chosen such that a
collection of 1-cells cannot form an oriented closed loop. A
canonical orientation on all other p-cells then follows from
the branching structure. We use the branching structure where
each 1-cell c1(x)μ has an arrow pointing in the μ̂ direction
(see Fig. 14). However, it is important to note that the choice
of lattice orientation is a formal convention, and choosing
different branching structures does not affect the physics [83].

A p-cell can be related to (p − 1) cells using the boundary
operator ∂ . The boundary operator acting on a p-cell—∂cp—
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FIG. 13. The p-cells of the d-dimensional cubic lattice are equiv-
alently the 0-cells—the sites—of some other d-dimensional lattice.
Shown here are examples of this equivalent lattice (drawn in pink)
embedded in the conventional unit cell of the cubic lattice (drawn
in black). (First row) In two dimensions, the 1-cells form another
square lattice, rotated by 45 degrees, whose lattice constant is 1/

√
2

times that of the original square lattice. The 2-cells also form an-
other square lattice, which is the original shifted by the vector
(μ̂1 + μ̂2)/2. (Second row) In three dimensions, both the 1-cells
and also the 2-cells form a lattice of corner-sharing octahedra with a
lattice constant that is 1/

√
2 times the cubic lattice’s. When p = 1,

the octagons are centered at the cubic lattice’s 0-cells. When p = 2,
the octagons are centered at the cubic lattices 3-cells. Lastly, the
3-cells form another cubic lattice of the same size, but shifted by
the vector (μ̂1 + μ̂2 + μ̂3)/2.

is the oriented sum of (p − 1)-cells on the boundary of cp. For
the branching structure we use, it is given by

∂cp(x)μ1···μp =
p∑

k=1

(−1)k+1
[
cp−1(x + μ̂k )

μ1···
o
μk ···μp

− cp−1(x)
μ1···

o
μk ···μp

]
, (A2)

where the notation
o
μk indicates that the μk index is omitted.

From its definition, the boundary operator satisfies ∂2cp = 0
for any p-cell. Furthermore, as there are no (−1)-cells, the
boundary operator acting on a 0-cell is defined to be zero.

On the other hand, a p-cell can be related to (p + 1)-cells
using the coboundary operator δ. The coboundary operator
acting on a p-cell—δcp—is an oriented sum of all (p + 1)-
cells whose boundary includes cp. For the branching structure
we use, it is given by

δcp(x)μ1···μp =
∑

ν

cp+1(x)νμ1...μp − cp+1(x − ν̂)νμ1...μp . (A3)

FIG. 14. Example of the branching structure used for a chunk of
the cubic lattice in three-dimensional space.

From its definition, the coboundary operator satisfies δ2cp = 0
for any p-cell. Furthermore, as there are no (d + 1)-cells, the
coboundary operator acting on a d-cell is defined to be zero.

Lastly, the lattice has an associated dual lattice. The dual
lattice has its lattice sites centered at the d-cells of the direct
lattice. For the cubic lattice, one choice of framing that relates
a dual lattice site x̂ to a direct lattice site x is by x̂ = x + 1

2 r̂
with r̂ = ∑

i μ̂i.
Each p-cell cp on the direct lattice is associated with a

(d − p)-cell ĉd−p on the dual lattice. This is implemented
by the dual operator ∗. For this choice of framing, a p-cell
cp(x)μ1···μp (with canonical ordering μ1 < · · · < μp) and a
(d − p)-cell of the dual lattice ĉd−p(x̂)μ1···μd−p (with canonical
ordering μ1 < · · · < μd−p) are related to one another by

∗ cp(x)μ1···μp = εμ1···μpμp+1···μd

× ĉd−p(x̂ − μ̂p+1 − . . . − μ̂d )μp+1···μd ,

(A4)

∗ ĉp(x̂)μ1...μp = εμ1···μpμp+1···μd

× cd−p(x + μ̂1 + . . . + μ̂p)μp+1···μd , (A5)

where summation is not implied on the right-hand side. Here
ε is the Levi-Civita symbol, which takes into account the
lattice’s and dual lattice’s relative orientations. From the def-
inition of ∗, acting ∗ twice on a p-cell of the direct (dual)
lattice yields ∗ ∗ cp = (−1)p(d−p)cp (∗ ∗ ĉp = (−1)p(d−p)ĉp).
Furthermore, from the definitions of the boundary, cobound-
ary, and dual operators, they are related to one another by

δcp = (−1)d (p+1)+1 ∗ ∂ ∗ cp, (A6)

which, equivalently, is ∗ δcp = (−1)p∂ ∗ cp.
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