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The semi-Dirac point of type-II semi-Dirac (SD) materials is a merging of triple Dirac points, distinguishing
from the conventional type-I SD with double-Dirac point merging, and exhibits unique topological property.
Here, we investigate its longitudinal and transverse optical conductivities. By controlling the evolution of the
SD point with a perturbation parameter �, we present large longitudinal optical conductivity at the Van Hove
singularity, not only in linear but also in parabolic directions. Furthermore, we find the nonzero dynamical
Hall conductivity, which is sensitive to the Fermi energy and Dirac mass. Through introducing a momentum-
dependent mass term, e.g., irradiating with circularly polarized light, the dynamical Hall conductivity exhibits
more featured structures, depending on the parameter �, due to opening new channels of interband transitions.
It is found that the frequency-dependent Kerr/Faraday angle can present all features of the dynamical Hall
conductivity at characteristic frequencies. By detecting the Kerr or Faraday spectra, it is helpful to understand
the physics of evolution of the SD to Dirac regime and further to extract the systemic parameters of SD materials
from characteristic frequencies.
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I. INTRODUCTION

Recently, a distinct class of two-dimensional Dirac materi-
als, named as semi-Dirac (SD) materials, has been discovered,
such as TiO2/VO2 and TiO2/V2O3 nanostructures [1–4],
the strained black phosphorus [5], organic conductor [6]
α -(BEDT-TTF)2I3, dielectric photonic systems [7], and
hexagonal lattices in the presence of a magnetic field [8].
SD materials have a unique low-energy dispersion, which is
quadratic in a given direction and linear in the orthogonal
direction. The electronic structure of SD materials is not pro-
tected by symmetry and is usually topological trivial, which
naturally results in zero Chern number. Later, Huang et al.
[2], based on first-principles calculations, found that a SD-
type Chern insulator (quantum anomalous Hall insulator) can
be obtained in the supercrystal TiO2/VO2 heterostructure by
considering the spin-orbit coupling. This topological material
is named as the “type-II” SD model [3], distinguished from
the previous trivial “type-I” SD case.

The emergence of topological SD materials has attracted
great interest in studying their optics properties, since optical
techniques not only serve as a probe of nonconventional be-
havior of these materials but also as a way to extract parameter
values for effective models [9,10]. The dynamic conductivity
is often used to characterize the shape and nature of the band
dispersion [11–14] in a large class of materials, including the
high-temperature cuprate superconductors [15,16], graphene
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[17–21], silicene [22,23], MoS2 [24,25], topological insula-
tors [26], as well as Weyl and Dirac semimetals [27–35]. For
the SD materials, the strong anisotropy of dispersion leads
to the unique optical conductivity. Ziegler and Sinner [36]
have calculated the interband ac conductivity as a function of
photon energy in the clean limit and found large anisotropy
between linear and parabolic directions. The impact of a tun-
able gap parameter �, describing the merging of Dirac cones
in SD materials, has also been shown to result in a giant
optical conductivity at a certain frequency for light along a
particular polarization direction while it is significantly sup-
pressed along the direction orthogonal to the former [37–39].
In addition, optical conductivity also provides signatures of
merging Dirac points [37,40].

Although there are many works on the optical conductivity
in SD materials, all of them focused on “type-I” SD mate-
rials, where only the longitude conductivity appears but the
transversal one vanishes due to trivial topology. For type-II
SD materials, the dc Hall conductivity or the Chen number
have recently been discussed [2,41,42]. The dynamic Hall
conductivity, as well as the related Kerr/Faraday effect, at-
tracts us due to the observability in experiments. Physically,
Hall optical conductivity sets the rotation of the polarization
angle in either the reflected (Kerr rotation) or in the trans-
mitted (Faraday rotation) optical beam [43,44]. They offer
a contact-free manner to measure the electronic transport
properties of materials. Recently, the Kerr angle was reported
to be large in thin-film topological insulators [45], two-
dimensional materials [46], and Weyl semimetals [13,47,48],
and even could serve as an important tool for experimentally
characterizing nodal-loop semimetals [11]. For the Faraday
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FIG. 1. Evolution of the band dispersion of type-II SD materials with gap parameter �: (a), (d), and (g) � < 0, (b), (e), and (h) � = 0,
and (c), (f), and (i) � > 0, for mz = 0. The dispersion along the kx direction with ky = 0 in (d) and (e) and ky = �

v f
in (f), and the dispersion

along the ky direction with kx = 0 in (g)–(i).

effect, it is discovered to serve as an indicator of the breaking
of either time-reversal symmetry or inversion symmetry [12],
even for the thin samples [43], graphene [49], and the surface
of topological insulators [45,50]. Nevertheless, Kerr and Fara-
day effects in SD materials have not been reported primarily
because of a vanishing Hall response.

In this paper, we investigate in particular how topological
SD materials can be characterized by the Kerr/Faraday effect.
We focus on the dynamic Hall conductivity and the polar-
ization rotation of type-II SD materials. It is found that the
longitudinal and transverse conductivities exhibit significant
signatures at characteristic frequencies, which are remarkably
dependent on the systemic parameters and can be probed from
the Kerr/Faraday angles. In Sec. II, we introduce the topo-
logical property and present the formula of interband optical
conductivity based on Kubo formula. In Sec. III. we discuss
the longitudinal and dynamical Hall conductivities and the
Kerr/Faraday effects. Finally, we present our conclusions in
Sec. IV.

II. MODEL AND THEORY

The low-energy electronic structure that features type-II
SD material, represented by TiO2/VO2 multilayer structure
[2], can be modeled by the Hamiltonian [3,22] H (k) = h(k) ·
σ with

h(k) = (hx, hy, hz ),

= (
βk2

x − v f ky + �,αkxky, mz
)
. (1)

Here, σ = (σx, σy, σz ) is the Pauli matrix vector, k =(kx, ky )
is 2D momentum, v f is the Fermi velocity, α (β) is the
systemic parameter depending on specific materials, and mz

describes the mass term. In Eq. (1), we present only one of
the four valleys, as they are related to each other by fourfold
rotations. Diagonalizing Eq. (1) yields the energy-momentum
dispersion relation as

εk,s = s
√

h2
x + h2

y + h2
z , (2)

and the corresponding eigenstates,

ψs(k) = 1√
2εk,s(εk,s + hz )

(
hz + εk,s

hx + ihy

)
, (3)

where s = ± corresponds to the conduction (valence) band.
In the Hamiltonian (1), a perturbation parameter � is intro-

duced to modify the dispersion. In the tight-binding spectrum
on the honeycomb lattice [8,36,37,40], � = t0 − 2t character-
izes the difference between a third-nearest-neighbor hopping
t0 and the other two nearest-neighbor hoppings t . In the
absence of the Dirac mass term, i.e., mz = 0, we plot the dis-
persion in Fig. 1. When � < 0 as shown Fig. 1(a), the electron
and hole states are degenerated at three Dirac points, located
at kY = (0,�/v f ) and kX± = (±√−�/β, 0), and separated
by a gap elsewhere. The low-energy dispersion around each
Dirac point is linear in both directions as shown in Figs. 1(d)
and 1(g) while each two adjacent Dirac points are connected
by a saddle point at higher energy. With the increase of �,
the three Dirac points move towards the origin point, and
at � = 0 they merge into a single semi-Dirac point at k =
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(0, 0) as shown in Fig. 1(b). The resulting dispersion exhibits
semi-Dirac behavior which is quadratic in the kx direction
(“nonrelativistic”) [Fig. 1(e)] and linear in the ky direction
(“relativistic”) [Fig. 1(h)]. Note that for type-I SD material [2],
describing with Hamiltonian hI(k) = (βk2

x + �, v f ky, mz ), a
single semi-Dirac point is the merging of two Dirac points.
For � > 0 in Fig. 1(c), the semi-Dirac point further evolutes
into a Dirac point with the position moving away from the
origin point along the y axis, as illustrated in Figs. 1(f) and
1(i). Such evolution of dispersion with the gap parameter �

provides a platform to exploit the optical properties of SD
materials. Especially, the evolution from the SD dispersion
to the three-Dirac-cone structure is more interesting and in
the following we focus on the transition between � = 0 and
� < 0.

Before calculating the dynamical conductivity, we first un-
derstand the topological properties. The Berry curvature for
the band s = ± is defined by

�s
xy(k) = −s

h(k)

2|h(k)|3 ·
[
∂h(k)

∂kx
× ∂h(k)

∂ky

]
. (4)

With the Hamiltonian (1), we find the nonzero Berry curvature
for type-II SD materials as

�s
xy(k) = −sα

mz
(
2βk2

x + v f ky
)

2ε3
k,s

. (5)

Notice that for type-I SD materials, describing with
hI(k) = (βk2

x + �, v f ky, mz ), the Berry curvature �s
xy(kx ) =

−�s
xy(−kx ) is an odd function of kx, and thus vanished Hall

conductivity due to the trivial topology. Different from type-I
SD material, the type-II SD material has finite Berry curvature
as given in Eq. (5) and is topological relevant.

When a beam light is irradiated, the interaction between
the light and sample can be described within the electric
dipole approximation. Thus, we consider a Hamiltonian H =
h(k) · σ + eE · r, where E is the electric field and r is the
position operator. Based on the Kubo formula in the frame-
work of linear-response theory [14,51], the interband optical
conductivity tensor σi j (ω) is given by

σi j (ω) = e2

ih̄

∑
s,s′

d2k
(2π )2

fk,s − fk,s′

εk,s − εk,s′

Ms,s′
i (k)Ms′,s

j (k)

h̄ω + εk,s − εk,s′ + i0+ .

(6)

Here, fk,s = 1/[1 + e(εk,s−μ f )/kBT ] is the Fermi-Dirac distri-
bution function with the Fermi energy μ f measured from
the charge neutrality point, the Boltzmann constant kB, and
temperature T , and Ms,s′

i (k) = 〈s, k|v̂i|s′, k〉 with the velocity
operator v̂i = ∂H (k)/∂ki is the optical matrix element respon-
sible for vertical transition between valence and conduction
bands.

FIG. 2. Plots of the conductivities σxx (ω) and σyy(ω) for (a) and
(b) different Fermi energies with � = −4, and for (c) and (d) dif-
ferent gap parameters � with uf = 0. The conductivity is in unit
of σ0 = e2/(2π h̄), and the unit of all energies (�, uf ) is meV.
Other parameters are taken as mz = 0 meV, α = 10β meV nm2,
β = 7.5 meV nm2, v f = 65 meV nm, extracted from typical SD
material [38,41]. Noting that the photon energy h̄ω in our paper is set
in the range of h̄ω � 20 meV, since the model of Eq. (1) is valid for
the TiO2/VO2 multilayer structure [2] if the bandwidth εk,+ − εk,−
is no more than 20 meV.

With the eigenstates in Eq. (3) and the velocity operators,
the matrix elements of interband transitions are found as

M+,−
x = 2βkxhx + αkyhy

εk,+
√

h2
x + h2

y/hz

+ i
2βkxhy − αkyhx√

h2
x + h2

y

,

M+,−
y = αkxhy − v f hx

εk,+
√

h2
x + h2

y/hz

− i
αkxhx + v f hy√

h2
x + h2

y

,

(7)

and M−,+
j = (M+,−

j )∗.

III. RESULTS AND DISCUSSION

A. Longitudinal optical conductivity

Based on the above formula, we first calculate the in-
terband longitudinal optical conductivity. Due to the strong
anisotropy of SD materials, the longitudinal interband opti-
cal conductivities along the x and y directions are different,
given by

σ j j (ω) = −e2

h̄

∫
dk

fk,+ − fk,−
8πεk,+

δ(h̄ω − 2εk,+)|M+,−
j |2, (8)

where the Fermi-Dirac distribution function at zero tempera-
ture reduces to a step function fk,s = �(μ f − εk,s).

In the following, we carry out the numerical calculations
according to Eq. (8). In Fig. 2, we plot the longitudinal op-
tical conductivity along linear σyy(ω) and parabolic direction
σxx(ω) for different chemical potentials μ f in Figs. 2(a) and
2(b) and for different gap parameters � in Figs. 2(c) and 2(d).
We consider only the lightly doped system, where the chemi-
cal potential is chosen to be μ f < |�|. In Figs. 2(a) and 2(b),
for the frequency h̄ω < 2μ f , all interband transitions are Pauli
blocked. The interband transitions open at h̄ω = 2μ f , where
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the optical conductivity exhibits a step. One can find that
both the xx component and the yy component of optical con-
ductivity interestingly acquires a u f -independent giant value
or peak at the frequency h̄ω = 2εc, where εc corresponds to
the Van Hove singularity in the energy band of Fig. 1(a).
Its amplitude and position can be determined by the partial
differential equations of ∂εk,+/∂kx,y = 0. We find

εc =
√(

βk2
x,c − v f ky,c + �

)2 + α2k2
x,ck2

y,c + m2
z ,

(9)

located at two momentum positions (kx,c, ky,c) with

kx,c = ± 1

2

(
v f

√
9v2

f β − 8α2� − 3v2
f

√
β
)1/2

αβ1/4
,

ky,c =
3v f β − √

β
√

9v2
f β − 8α2�

2α2
.

(10)

Although there are two arches in the energy band for � < 0
in Fig. 1(a), they share the same energy and so exhibit only
a single conductivity peak in Fig. 2. At the same time, it can
be proved that the positions of the peak for σxx and σyy are
the same. The case here is significantly different from that for
type-I SD material [37], where the large optical conductivity
appears only along the y direction when h̄ω = 2

√
m2

z + �2

and vanishes along the x direction. From Eqs. (9) and (10),
it is easy to understand that the conductivity peak is shifted
towards low frequency with decrease of |�|, and for � = 0
the conductivity peak vanishes, as indicated by the black-solid
line in Figs. 2(c) and 2(d).

The conductivity peak can be explained by the joint density
of states (JDOS), which is directly related to the interband
optical conductivity, providing an intuitive way to understand
the giant conductivity. The expression of JDOS [12] is

J (ω) = gs

∫
d2k

(2π )2
δ(h̄ω − εk,+ + εk,−), (11)

where gs = 2 is the spin degeneracy. There exists an anomaly
(a peak) for JDOS at the energy of h̄ω = 2εc. This anomaly
can be understood by checking the velocity of the electrons,
i.e., vi = ∂εk,±/∂ki. Since the velocity vx,y always vanishes
(i.e., vx,y = 0) at the van Hove singularity point, the electrons
would be accumulated to contribute a maximum JDOS. Natu-
rally, the large JDOS at the van Hove singularity point allows
a maximum electron-hole transition, which explains the gi-
ant conductivity in Fig. 2. Similar giant optical conductivity
was also discovered in three-dimensional topological Dirac
semimetals [52,53], where the electron-hole transition across
the Fermi arc contours lead to the very large optical response.

B. Transverse optical conductivity

It is known that the type-I SD material is topological trivial
and so the Hall conductivity vanishes. However, it is not the
case for type-II SD materials. In this section, we focus on the
dynamical Hall conductivity σxy(ω). With Eq. (6), we obtain
the transverse interband optical conductivity as

σxy(ω) = mz
e2

h̄

∫
dk

α
(
v f ky + 2βk2

x

)
( fk,+ − fk,−)

8π2ε2
k,+/Nxy(ω)

, (12)

FIG. 3. (a) Zero-frequency Hall conductivity σxy(ω = 0) as a
function of the chemical potential uf . The real Re[σxy(ω)] and imag-
inary part Im[σxy(ω)] of transverse dynamic conductivity for (b) and
(c) different uf with � = −4 meV, and for (d) and (e) different �

with uf = 0 meV. We set mz = 1 meV and the other parameters are
the same as in Fig. 2.

with

Nxy(ω) = 1

h̄ω + 2εk,+ + iδ
− 1

h̄ω − 2εk,+ + iδ
. (13)

Since the type-I SD material keeps time and inversion sym-
metries, the corresponding Hall conductivity is always zero
either for zero frequency or finite frequency. In contrast, for
type-II SD material, the zero- and finite-frequency transverse
conductivity appear when the mass term mz is considered.
In Fig. 3(a), we plot the zero-frequency Hall conductivity
σxy(ω = 0) as a function of the Fermi energy μ f . Within
the energy gap μ f < mz, the zero-frequency conductivity is
0.5e2/h, whereas outside the energy gap, the conductivity
decreases as the Fermi energy increases. The quantized con-
ductivity within the gap also can be calculated from the
Berry curvature in Eq. (5), σxy(ω = 0) = e2/h̄

∫
�xydk. In

Figs. 3(c) and 3(e), we plot the imaginary part Im[σxy(ω)]
of the frequency-dependent Hall conductivity as a function of
h̄ω. For small frequency h̄ω < 2mz (or 2uF if uF > mz), the
imaginary part, arising from real optical transitions, always
vanishes. The reason is that the system is Pauli blocked and
no vertical transitions are allowed at this regime. Once a
critical frequency h̄ω = 2mz (or 2uF if uF > mz) is reached,
the imaginary part is turned on, i.e., a step is generated. If
the frequency continues to increase, the imaginary part of
the transverse conductivity decreases, as shown in Fig. 3(c),
which is attributed to the reduction of the density of states.
Considering the Kramers-Kroning relations, one can under-
stand the peak in the real part of the transverse conductivity
[Fig. 3(b)], which locates at the energy of h̄ω = 2mz (or 2uF if
uF > mz) and corresponds to the onset (step) in the imaginary
part. The similar gap-induced peak also is found in the real
part of σzx in tilted topological nodal-line semimetals [14].

In Figs. 3(d) and 3(e), one can find the zero- and finite-
frequency transverse conductivity are independent of � and
so there is no signal at the energy h̄ω = 2εc, corresponding
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to the peak of longitudinal optical conductivity. In or-
der to clarify this, we first check the zero-frequency case.
Around the three valleys, located at kY = (0,�/v f ) and
kX± = (±√−�/β, 0), we can calculate the Chern num-
ber of each valley as CY = 1

2 sgn(�)sgn (mz ) and CX,± =
1
2θ (−�)sgn(mz ), in which θ (x) is the unit step function. The
total Chern number is C = CX + CY with CX = CX,+ + CX,−.
For � > 0, CX,± = 0 and thus only the inverted gap around kY

contributes to the Chern number, i.e., C = CY = sgn(mz )/2.
For � < 0, the inverted gaps around kX± contribute an ad-
ditional Chern number CX = sgn(mz ). At the same time,
as � changes sign, CY = −sgn(mz )/2 reverses its sign as
well. As a consequence, C = sgn(mz )/2 remains unchanged
with � changing sign. Therefore, Chern number or the zero-
frequency Hall conductivity is independent of �. Out of the
same origin, the dynamical Hall conductivities are also in-
dependent of the parameter �, as illustrated in Figs. 3(d)
and 3(e).

The reason of �-independent Hall conductivity is that the
constant energy gap mz around three Dirac points are reversed
with the change of �. If we open different mass gaps at
different Dirac points, the resulting Hall conductivity will in-
terestingly depend on the parameter �. To clarify this, we add
the term γ v f ky · σz, which can be caused by irradiating a beam
of circularly polarized light as in our previous work [42],
to the Hamiltonian of Eq. (1). For γ > 0, the corresponding
energy-momentum dispersion of the type-II SD material reads

E = ±
√

(mz + γ v f ky)2 + (
βk2

x − v f ky + �
)2 + (αkxky)2,

(14)

where mz + γ v f ky plays a momentum-dependent mass term.
Around the three valleys, we find valley-dependent mass gaps,
i.e., mY = 2(mz + γ�)/

√
1 + γ 2 at Dirac point kY , and

mX =
√

2mzα2 + γ
(
kD + α2� − βγ 2v2

f

)
α2/(2mz )

(15)

at Dirac points kX±, which shifts from original kX,± =
(±√−�/β, 0) to new positions,

kX,± =
⎛⎝±

√
kD − α2� − βγ 2v2

f

2βα2
,

kD + α2� − βγ 2v2
f

2v f α2

⎞⎠,

(16)

where kD =
√

(βv2
f γ

2 − �α2)2 − 4mzγ βv2
f α

2.
As shown in Fig. 4, both Re[σxy(ω)] and Im[σxy(ω)] of the

Hall conductivity are sensitively dependent on the parameter
�. Compared with Fig. 3(d), Re[σxy(ω)] in Fig. 4(a) exhibits
more features. When the peak of Re[σxy(ω)] located at h̄ω2 =
mX remains almost unchanged, there appears an extra dip
at the energy h̄ω1 = mY , and a step structure at the energy
h̄ω3 = 2εc which corresponds to the position of peak in the
longitudinal optical conductivity. With the increase of |�|, the
dip shifts toward the low energy while the step shifts toward
the high energy. Since the imaginary part of the conductivity
is related to its real part through a Kramers-Kronig trans-
formation [54], corresponding signatures also can be found

FIG. 4. Re[σxy(ω)] (a) and Im[σxy(ω)] (b) as a function of photon
energy h̄ω for different gap parameters �. Here we set mz = 1 meV,
μ f = 0 meV, and γ = 0.1. The other parameters is the same as
in Fig. 2.

by checking the curve of Im(σxy), as shown in Fig. 4(b). It
is expected that these complex structures in transverse and
longitudinal optical conductivity will lead to remarkable Kerr
and Faraday effects.

C. Kerr and Faraday effects

Above, we have obtained the optical conductivity tensor
of the type-II SD materials. In this section, we will use them
to calculate the polarization rotation (Kerr angle and Fara-
day angle) of an optical beam reflected from or transmitted
into the type-II SD materials, where the finite off-diagonal
component σxy(σxy = −σyx ) of the conductivity will play an
important role. As an optical beam is irradiated on the type-II
SD materials, the related wave vector ki (or the direction) can
be set as

k̂i,t = (sin θi,t cos φ, sin θi,t sin φ,− cos θi,t ),

k̂r = (sin θr cos φ, sin θr sin φ, cos θr ),
(17)

where φ is the azimuth angle of the plane of incidence, and
θi,r,t refer to the incident, reflected, and transmitted angles,
respectively. The electric field vector of the optical beam usu-
ally can be decomposed into the perpendicular p and parallel
s components with respect to the plane of incidence, i.e.,

El = (
Es

l es
l + E p

l ep
l

)
ei(kl r−ωl t ), (18)

with the directions of s and p components defined as

es
l = (sin φ,− cos φ, 0),

ep
l = es

l × k̂l ,
(19)

where l = i, r, t . Now, using the relation of Bl = (nl/c)k̂l ×
El with nl denoting the refractive index of the medium, one
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can obtain

Bl = nl

c

(
Ep

l es
l − Es

l e
p
l

)
ei(kl r−ωl t ). (20)

Note that the fields at the interface of the monolayer with air
(or vacuum) satisfy the following boundary condition:

E||
1 = E||

2 ,

B||
1 − B||

2 = μ0J × ẑ,
(21)

where F1 = Fi + Fr , F2 = Ft with F = E or B. Here, the
possibility of higher harmonic generation is ignored since it
happens for very high-intensity laser beams. By matching the
space- and time-dependent exponents (ki · r − wit ) = (kr ·
r − wrt ) = (kt · r − wt t ) for the material at z = 0, one can
obtain θi = θr , wi = wr = wt , and ni sin θi = nt sin θt corre-
sponding to the Snell’s law. Matching the x and y components
of both the electric and magnetic fields at z = 0, as in Eq. (21),
one can obtain the following equations:

(
Es

i + Es
r

)
sin φ + (

E p
i − E p

r

)
cos θi cos φ = Esp

+ (θt , φ),−(
Es

i + Es
r

)
cos φ + (

E p
i − E p

r

)
cos θi sin φ = Esp

− (θt , φ),

ni
[(

Es
r − Es

i

)
cos θi cos φ + (

E p
i + E p

r
)

sin φ
] − nt

[
E p

t sin φ − Es
t cos θt cos φ

]
cμ0

= σyxEsp
+ (θt , φ) + σyyEsp

− (θt , φ), (22)

ni
[(

Es
r − Es

i

)
cos θi sin φ − (

E p
i + E p

r
)

cos φ
] + nt

[
E p

t cos φ + Es
t cos θt sin φ

]
cμ0

= −σxxEsp
+ (θt , φ) − σxyEsp

− (θt , φ),

where Esp
± (θt , φ) = E p

t cos θt cos φ ± Es
t sin φ.

Simplifying the above equations and only retaining the
electric components Es/p

i and Es/p
t , one can obtain the follow-

ing matrix equation:(
E p

t
Es

t

)
=

(
tpp tps

tsp tss

)(
E p

i
Es

i

)
, (23)

with

tpp = cos θi + χyx[
1 + a2

F

(
σ 2

xy + σxxσyy
)]

cos θi + χyx + χxy cos2 θi
,

tps = aF cos θi[σxy + (σyy − σxx ) cos φ sin φ][
1 + a2

F

(
σ 2

xy + σxxσyy
)]

cos θi + χyx + χxy cos2 θi
,

(24)

tsp = − aF cos θi[σxy + (σxx − σyy) cos φ sin φ][
1 + a2

F

(
σ 2

xy + σxxσyy
)]

cos θi + χyx + χxy cos2 θi
,

tss = cos θi + aF cos2 θi(σxx cos2 φ + σyy sin2 φ)[
1 + a2

F

(
σ 2

xy + σxxσyy
)]

cos θi + χyx + χxy cos2 θi
,

where χmn = αF (σmm cos2 φ + σnn sin2 φ) with αF =
e2/4πcε0 h̄ ≈
1/137 is the fine-structure constant, and the above matrix
elements refer to the transmission coefficients. Here, we only
consider the free-standing case, i.e., the material is suspended
with ni = nt = 1, θi = θt . Similarly, by retaining the electric
components Es/p

i and Es/p
r , one can obtain(

E p
r

Es
r

)
=

(
rpp rps

rsp rss

)(
E p

i
Es

i

)
,

=
(

1 − tpp −tps

tsp tss − 1

)(
E p

i
Es

i

)
,

(25)

where the above matrix elements refer to the reflected coeffi-
cients.

As an optical beam is incident, the rotation in the polar-
ization angle of the reflected and transmitted light can be

expressed by [12,13,44,47]

χ
p
K = −rsp

rpp
and χ s

K = rps

rss
,

χ
p
F = −tsp

tpp
and χ s

F = tps

tss
.

(26)

Plugging the transmitted and reflected coefficients of Eqs. (24)
and (25) into the above equation, χ

p/s
K/F can be rewritten as

χ
p
K = σxy + (σxx − σyy) cos φ sin φ

aF
(
σ 2

xy + σxxσyy
) + cos θi(σxx cos2 φ + σyy sin2 φ)

,

χ s
K = [σxy + (σyy − σxx ) cos φ sin φ] cos θi

aF
(
σ 2

xy + σxxσyy
)

cos θi + σyy cos2 φ + σxx sin2 φ
,

χ
p
F = aF cos θi[σxy + (σxx − σyy) cos φ sin φ]

cos θi + aF (σyy cos2 φ + σxx sin2 φ)
,

χ s
F = aF cos θi[σxy + (σyy − σxx ) cos φ sin φ]

cos θi + aF (σxx cos2 φ + σyy sin2 φ)
.

(27)

Using the above equations, the Kerr and Faraday angles can
be calculated by

�
p/s
K/F = 1

2
arctan

{
2Re

[
χ

p/s
K/F

]
1 − |χ p/s

K/F |2

}
. (28)

In the limiting case of |χ p/s
K/F | << 1, it can be simplified as

�
p/s
K/F ≈ Re[χp/s

K/F]. Substituting Eq. (27) into Eq. (28), we
numerically calculate the polarization rotation angle. In Fig. 5,
we plot the Kerr �

p
K and Faraday angles �

p
F as a function

of the incident light energy h̄ω for the normally incident
light (i.e., θi = 0 and φ = π/2), and the chosen parameters
make mY < mX < 2εc. The sharp peak at low frequencies
occurs at the plasmon frequency that corresponds to vanish-
ing permittivity [55]. Interestingly, both the Kerr angle �

p
K

and Faraday angle �
p
F exhibit all characteristic structures at

the dynamic Hall conductivity. Physically, the characteristic
structures are induced by the new-channel onsets of free carri-
ers in interband transitions. In the energy band, there are three
energy scales: mX in Eq. (15) located at Dirac points kX±,
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FIG. 5. Kerr �
p
K and Faraday �

p
F angles as a function of the light

frequency for different �. Here, we only consider the free-standing
case (i.e., ni = nr = nt = 1) and choose θi = 0, φ = π/2. The other
parameters are the same as in Fig. 2.

mY = 2(mz + γ�)/
√

1 + γ 2 located at Dirac point kY , and
εc at the Van Hove singularity in Fig. 1(a). With the increase
of photon energy h̄ω, new channels of interband transitions
will gradually open in turn. Expect for the peaks induced by
vanishing permittivity, the polarization rotation vanishes at a
small range of frequency h̄ω < h̄ω1 = mY , which is attributed
to the effect of the Pauli blocking (induced by the energy gap).
Once h̄ω arrives at the band edge (i.e., energy mY ), the Dirac
point at kY would act as the channels to turn on the electron-
hole transition, and thus results in the onset of the Kerr angle
at h̄ω1. If the frequency increases up to h̄ω2 = mX , the new
channel would be opened at the Dirac points of kX±. When
large frequency is increased to h̄ω = h̄ω3 (corresponding to
the van Hove singularity point), the large longitudinal optical
conductivity will suppress the Kerr angle and so a dip for �

p
K

at h̄ω3 in Fig. 5(a). As a result, the characteristic structures
of energy band are all reflected in the Kerr angle �

p
K and

Faraday angle �
p
F . One can notice that the behavior of the

Kerr angle �
p
K in Fig. 5(a) is determined by the transverse

conductivity σxy(ω) and the longitudinal component σyy(ω)
while the Faraday angle in Fig. 5(b) behaves similar to the
real part Re[σxy(ω)]. This also can be seen from an expansion
of χ

p
K and χ

p
F with respect to αF .

χ
p
K ≈ σxy

σyy
,

χ
p
F ≈ αF σxy.

(29)

In the above discussions, we only show the case of the p
component. As we have checked, similar phenomena can also
be presented for the s-component Kerr and Faraday angles.

FIG. 6. Kerr �
p
K and Faraday rotation �

p
F as a function of the

polar angle θ with φ = 0 in (a) and (b) and the azimuth angle φ with
θ = 0 in (c) and (d). h̄ω = 3meV and the other parameters are the
same as in Fig. 5(a).

Therefore, these characteristic frequencies offer us opportu-
nities to extract the systemic parameters of SD materials by
detecting the Kerr or Faraday spectra. It is also noticed that the
Kerr angle here reaches magnitudes of 10−1 radian in certain
light frequencies. This is “giant” compared to the usually ob-
served values of 10−6 to 10−4 radians in topological insulators
and other magnetic materials [56]. Of course, the magnitudes
of the Kerr and Faraday angles are dependent on the direction
of incident light. In Fig. 6, we plot the Kerr and Faraday angles
as functions of the polar angle θ and the azimuthal angle φ for
different �. The largest Kerr and Faraday angles occur when
the light is incident vertically (e.g., θ = 0). For a constant θ ,
relatively large Kerr and Faraday angles can be obtained by
choosing the proper azimuth angle φ, e.g., φ closes to the
angle of nπ/4 with n = 1, 3, 5, as shown in Figs. 6(c) and
6(d). This dependence on φ is attributed to the anisotropic
energy band structure of SD materials. From Eq. (27), one
can find that χ

p
K depends on φ through (σxx − σyy) sin 2φ and

(σxx − σyy) sin2 φ. Obviously, for the isotropic case σxx = σyy,
the Kerr/Faraday rotation angle is independent of φ. For the
present SD system, the strong anisotropy leads to signifi-
cant dependence on the azimuthal angle φ in Figs. 6(c) and
6(d). Due to σyy 	 σxx, σxy, χ

p
K in Eq. (27) is determined

by
σxy− 1

2 σyy sin 2φ

σxx
, which changes the sign with φ − π , and

accompanied with small σxx, a discontinuity of the Kerr angle
appears at φ = nπ in Fig. 6(c).

IV. SUMMARY

We have presented a study of longitudinal and transverse
optical responses of type-II SD materials. Different from the
type-I model whose semi-Dirac point is the merging of double
Dirac points, the semi-Dirac point of the type-II model is
formed by the merging of three conventional Dirac points.
By introducing a small perturbation parameter �, the type-II
SD can evolute into a triple Dirac-point structure, which pos-
sesses unique topological property. This causes characteristic
longitudinal and transverse optical conductivities. First, there
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appears a large longitudinal optical conductivity at the Van
Hove singularity, not only in linear but also in parabolic di-
rections, different from the case in type-I SD materials, where
the large optical conductivity only appears in the parabolic
direction. Secondly, we find nonzero dynamical Hall conduc-
tivity, which is sensitive to the Fermi energy and Dirac mass.
Through introducing a momentum-dependent mass term, e.g.,
irradiating with circularly polarized light, the dynamical Hall
conductivity exhibits more featured structures due to open-
ing new channels of interband transitions, depending on the
parameter �. Finally, we derive a general expression for
transmission and reflection coefficients for both s and p po-
larization and obtain the formula for the Kerr and Faraday
angles. It is found that the frequency-dependent Kerr (Fara-
day) angle can present all features of the imaginary (real) part

of dynamical Hall conductivity, including three characteristic
frequencies corresponding to three energy scales (a Van Hove
singularity and two Dirac gaps). Therefore, by detecting the
Kerr or Faraday spectra, it is easy to obtain the characteristic
frequencies which offers us opportunities to extract the sys-
temic parameters of SD materials.
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