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Slave-spin mean field for broken-symmetry states: Néel antiferromagnetism
and its phase separation in multiorbital Hubbard models
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We introduce the generalization of the slave-spin mean-field method to broken-symmetry phases. Through a
variational approach we derive the single-particle energy shift in the mean-field equations which generates the
appropriate self-consistent field responsible for the stabilization of the broken symmetry. With this correction
the different flavors of the slave-spin mean field are actually the same method and they give identical results
to Kotliar-Ruckenstein slave bosons and to the Gutzwiller approximation. We apply our formalism to the Néel
antiferromagnetic state and study it in multiorbital models as a function of the number of orbitals and Hund’s
coupling strength, providing phase diagrams in the interaction-doping plane. We show that the doped antiferro-
magnet in proximity of half filling is typically unstable toward insulator-metal and magnetic-nonmagnetic phase
separation. Hund’s coupling extends the range of this antiferromagnet, and favors its phase separation.
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I. INTRODUCTION

Antiferromagnetism (AF) is one of the hallmarks of strong
electronic correlations. Mott insulators, their most striking
manifestation, are indeed typically antiferromagnetic at half
filling and low temperature. The cuprates provide a prominent
example but many others are found among 3d transition-metal
oxides, like (Ca,Sr)MnO3 [1] and LaCrO3 [2], and pnic-
tides like BaMn2As2 [3], and also among 4d materials like
Ca2RuO4 [4] and SrTcO3 [5], molecular solids like fullerenes
[6], and 2D organic superconductors [7].

Moreover cold-atomic systems, providing the cleanest re-
alization of fermionic models on a lattice, do indeed show
antiferromagnetic ordering [8].

In fact AF naturally arises when considering the pro-
totypical half-filled Hubbard model in the limit of strong
interactions, where it is a Mott insulator [9]. There, the effec-
tive low-energy model is one of well-formed local moments
interacting with short-range couplings. These have typically
a superexchange component favoring opposite spin alignment
on neighboring sites, which can dominate (e.g., in bipartite
lattices with nearest-neighbor hoppings), or can be contrasted
by subdominant (e.g., ferromagnetic) couplings or frustrating
geometries.

When interactions are weak on the other hand the low-
energy excitations are quasiparticles and the paramagnetic
Fermi liquid is unstable toward magnetic ordering if the bare
magnetic susceptibility is peaked, which typically derives
from Fermi-surface nesting [10]. In the single-band Hubbard
model on a bipartite lattice this happens for the AF q-vector
typically at half filling in the absence of next-nearest-neighbor
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hopping. A gap opens at the Fermi level in that case, due to
the doubling of the lattice unit cell, and the system is dubbed
a “Slater” band insulator.

In the two mentioned extreme limits, a static mean-field
treatment (Hartree-Fock at weak interaction and a Weiss mean
field of the emergent Heisenberg model at strong interac-
tions) can be satisfactory for an approximate description of
these ordered phases [11]. At intermediate couplings however,
methods capable of describing the gradual localization of the
electrons are needed to bridge between these two pictures.

Moreover at noninteger fillings charge fluctuations dis-
rupt the Mott-insulating behavior and this causes the simple
Heisenberg low-energy picture to lose its validity. Hence,
the description of the crossover between this metallic phase
and the metal arising at weak coupling from the doping of
the Slater insulator is even more subtle. These crossovers
are outside the reach of the respective (weak-coupling and
strong-coupling) perturbative methods. On the other hand
exact numerical methods typically struggle with the size
of the system they can describe and thus with the repre-
sentativity of their results for the thermodynamic limit. A
streamline of methods can instead be formulated directly in
this limit if the range of correlations is restricted (typically
to just on-site ones). Among these the Gutzwiller approx-
imation [12] (GA) and the slave-boson formulation (which
in the mean-field approximation—SBMF—is equivalent to
the former [13,14]) have reached some success. They have
preceded the more elaborate and now widespread dynamical
mean-field theory (DMFT) [15], which provides a local but
fully frequency-dependent electronic self-energy, of which
the former methods give just a low-frequency approximation.
More recently the slave-spin mean field [16–18] (SSMF), very
similar in spirit to SBMF, has gained attention because of
its agility, especially in multiorbital cases and for realistic
simulations of materials.
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Indeed, among the aforementioned physical examples,
only the cuprates, the 2D organics, and cold atoms in a suit-
ably designed optical lattice are single-band systems when
they become metallic. In fact, most correlated materials are
multiorbital.

In these systems the orbital and spin degrees of freedom
produce a larger variety of local configurations, possibly giv-
ing rise to an equal variety of long-range ordered phases.
Moreover, all integer fillings give rise to Mott insulators at
strong interaction strengths. The focus of this article is on Néel
antiferromagnetism at and near half filling.

The work we report is twofold. First we present the gener-
alization of the slave-spin method introduced in Refs. [16,17]
to broken-symmetry phases (Sec. II). We also discuss pre-
vious attempts to this aim and variants of the method. We
demonstrate that, at zero temperature, the mean fields of the
slave-spin and slave-bosons methods coincide in both mag-
netic and nonmagnetic phases, and thus all coincide with the
Gutwziller approximation. Second, we apply the new method
to the study of the degenerate multiorbital Hubbard model at,
and around, half filling. We study in detail the 2-orbital and
3-orbital cases (Sec. III) as a function of the local interaction
strength U and for different relative strenghts (J/U ) of the
on-site Hund’s coupling J . Our method portrays correctly the
progressive localization of the electrons as a function of U
and the expected formation of high-spin insulating AF states
at strong interactions. We show that a larger Hund’s coupling
favors the formation of large localized moments. Interestingly,
however, in the 3-orbital model a low-spin to high-spin first-
order transition happens as a function of U for J = 0.

A key finding of our study is that the metallic phase ob-
tained by doping the antiferromagnet is often unstable toward
phase separation. The stable mixture which is formed is deter-
mined through Maxwell constructions and can be, depending
on the specific situation, a coexistence of (1) an AF insulator
and a paramagnetic (PM) metal, (2) an AF insulator and an
AF metal, and (3) two metals, one AF and one PM.

In Sec. IV we illustrate the method’s capability to describe
correctly the itinerant-to-localized magnetism crossover in
the different models we explore, and the nontrivial depen-
dence of the correlation strength on doping and interaction
strength.

Finally, in Sec. V, we showcase the potential of the method
in the context of realistic ab initio simulations of materials
through a comparison of density-functional theory (DFT) +
SSMF and DFT + DMFT for the case of BaCr2As2. The
agreement is excellent. The Appendix shows further bench-
marks with DMFT, validating our method.

II. MODEL AND METHOD

In this paper, we consider the multiorbital Hubbard model,
whose Hamiltonian reads

Ĥ − μN̂ =
∑

i j,mm′,σ

tmm′
i j d̂†

imσ d̂ jm′σ +
∑
imσ

(εm − μ)n̂imσ + Ĥint,

(1)

where d̂†
imσ (d̂imσ ) is the creation (annihilation) operator for an

electron at site i, in orbital m, with spin σ , n̂imσ = d̂†
imσ d̂imσ

is the number operator, and N̂ = ∑
imσ n̂imσ . The tmm′

i j are real
and describe the hoppings between orbitals m on site i and
orbital m′ on site j; εm is the on-site energy in orbital m (we
take tmm′

ii = 0) and μ is the chemical potential.
Ĥint is the local, multiorbital interaction Hamiltonian,

which we take customarily in the density-density form (i.e.,
we drop spin-flip and pair-hopping terms):

Ĥint =U
∑
i,m

n̂im↑n̂im↓ + U ′ ∑
i,m �=m′

n̂im↑n̂im′↓

+ (U ′ − J )
∑

i,m<m′,σ

n̂imσ n̂im′σ . (2)

Here U and U ′ are the Coulomb repulsion on the same orbital
and on different ones, respectively, and J is the local ex-
change, i.e., Hund’s coupling. We assume [19] U ′ = U − 2J
throughout the paper.

A. Slave spins and broken-symmetry phases

The model is solved in the slave-spin mean field [16,17]
(see [20] for a pedagogical introduction; this method is some-
times termed Z2-SSMF to distinguish it from its variant
U(1)-SSMF [18], based on the symmetry group of the rep-
resentation).

SSMF has up to now been applied only to phases without a
spontaneous broken symmetry. Only sparse attempts at cluster
generalizations (that is, beyond the simplest local mean field,
including short-range correlations) have been found able to
address charge- [17] or spin-ordered [21] phases [22].

It is instead important to investigate broken-symmetry
phases in the purely local-correlation framework for several
reasons: first, in order to disentangle the effect of local vs
short-range correlations; second, to have an unambiguous
method, free from the issue of the multiple sizes and shapes of
the clusters, which have to be explored to reach an unbiased
result; third, and most importantly, because the computational
power can be used to tackle multiorbital and thus realistic
systems (possibly in conjunction with electronic structure cal-
culations).

An analysis of the reason why SSMF seemed unable to
access symmetry breaking was performed in Ref. [23]. It
was found that the on-site energy shifts due to correlations,
acting in this framework as a Weiss-like effective field, were
unable to sustain self-consistently the spontaneous symmetry
breaking allowed a priori by the method. An external field
was added there, to artificially explore the energy landscapes
and search for minima with broken symmetry [23,24].

Here we show instead, using a variational derivation of the
Z2-SSMF mean-field equations, that these were incomplete,
since a term providing precisely a local field was missing in
the original formulation based on simple mean-field decou-
pling of the Hamiltonian.

Incidentally this term, for real-valued self-consistent
Hamiltonians, coincides with the one present in the U(1) vari-
ant, rendering the two mean fields essentially identical [25].

We furthermore show that, including the proper energy
shift derived here, the SSMF method yields exactly the same
results as SBMF everywhere we could check (both for broken-
and unbroken-symmetry phases). This means that most
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probably SSMF, SBMF, and GA are strictly equivalent meth-
ods for the ground state, i.e., at equilibrium for T = 0.

B. Slave-spin representation

In the slave-spin representation, to every local electronic
one-particle state (created by d̂†

imσ ) are associated, in a dual,
larger Hilbert space, both a fermionic state (created by f̂ †

imσ )
and a spin-1/2 variable, of z component Sz

imσ . They both carry
the same indices of the original d fermion, and the slave
spin has no special relation—and should not be confused—
with the physical spin. An occupied local state |1〉d in the
original space is then associated, in the dual Hilbert space,
to the product of the occupied state for the corresponding
f fermion and to the “up” state of the associated “slave”
spin |1〉 f | ↑〉s. Likewise an empty d state |0〉d is associated
to the empty fermionic state and “down” state of the slave
spin |0〉 f | ↓〉s. These “physical” states satisfy the operatorial
relation

f̂ †
imσ f̂imσ = Ŝz

imσ + 1
2 , (3)

which can be used to distinguish them from the remaining
combinations |1〉 f | ↓〉s and |0〉 f | ↑〉s which have no physical
counterpart.

This is apparently a complication, but it turns out that
approximations performed on the larger space can be less
severe than if applied directly to the original system.

The operators of the original space are mapped on op-
erators having the same action on the physical states of
the larger space, while their action on the unphysical states
can be chosen freely, in principle. In practice this freedom
is used to gauge approximated treatments, e.g., to repro-
duce known limits and possibly yield the most physical
results.

Hence the number operator n̂imσ = d̂†
imσ d̂imσ can be equiva-

lently mapped in the number operator for the pseudofermions
n̂ f

imσ = f̂ †
imσ f̂imσ or in Ŝz

imσ + 1
2 , which, because of Eq. (3),

gives the same result by construction on the physical states.
The off-diagonal destruction (creation) operator d̂ (†)

imσ can be
expressed by f̂ (†)

imσ Ô(†)
imσ . The general form of the Ôimσ operator

[17] is Ôimσ = Ŝ−
imσ + cimσ Ŝ+

imσ , where cimσ is an arbitrary
gauge embodying the aforementioned freedom. Throughout
this paper, we choose cimσ to be a given function of the average
values of a generic fermionic operator F̂imσ (which we will
specify later). The interaction Hamiltonian, which includes
only density-density terms, can be written in terms of the Ŝz

operators only. We will refer it as Ĥint[Ŝz].

C. Variational approach to the slave-spin Hamiltonian

We here derive a mean-field approximation at T = 0 us-
ing the variational principle and an ansatz on the ground
state |�tot〉, for which we posit a factorized form (i) between
the fermion and slave-spin part, and (ii) between each site
in the slave-spin lattice. Point (i) reads |�tot〉 = |� f 〉|�s〉
and the evaluation of the average value of the Hamiltonian
in Eq. (1), rewritten in the slave-spin representation, then

gives

〈Ĥ − μN̂〉�tot =
∑

i j,mm′,σ

tmm′
i j 〈 f̂ †

imσ f̂ jm′σ 〉 f 〈Ô†
imσ Ô jm′σ 〉s

+
∑
imσ

(εm − μ)〈�s|�s〉
〈
n̂ f

imσ

〉
f
+ 〈Ĥint[Ŝ

z]〉.

(4)

By notation, the subscripts f and s indicate that the average
is performed with respect to the fermionic and the spin wave
function, respectively, because the operators act either on |� f 〉
or |�s〉.

We then introduce the energy functional to be minimized:

E[|� f 〉, |�s〉, {λimσ }, E f , Es] = 〈Ĥ − μN̂〉�tot

+
∑
imσ

λimσ

(〈
Ŝz

imσ

〉
s + 1

2
− 〈

n̂ f
imσ

〉
f

)

− E f [〈� f |� f 〉 − 1] − Es[〈�s|�s〉 − 1], (5)

where the λimσ are Lagrange multipliers enforcing (on aver-
age, due to the factorization of |�tot〉) the slave-spin constraint
of Eq. (3); the last two terms guarantee the normalization
of the wave functions, via the Lagrange multipliers E f and
Es. In Eq. (5), E is a functional of the variational parameters
|� f 〉, |�s〉, the {λimσ }, E f and Es; in its minimum, where the
constraints are satisfied, it coincides with Eq. (4), i.e., the total
energy of the system, in its (approximated) ground state. Pro-
ceeding with the minimization at this point would lead to two
separate problems on a lattice, one of noninteracting fermions
and one of interacting spins (both locally and nonlocally, since
the hopping terms give rise to intersite interactions for the
slave spins).

In order to deal with more manageable calculations a fur-
ther approximation is needed. The simplest one [26] is (ii),
i.e., to factorize the slave-spin state as the product of single
states, namely |�s〉 = ∏

i |φi
s〉, which is formally equivalent

to a single-site (Weiss) mean-field approximation. It has to be
noted, however, that such a single-site problem is still a many-
body one, due to the on-site interactions between the slave
spins. As a consequence of this mean field, 〈Ô†

imσ Ô jm′σ 〉s =
〈Ô†

imσ 〉s〈Ô jm′σ 〉s for j �= i.
We now minimize the energy functional: by deriving with

respect to λimσ we recover the average of the constraint
Eq. (3),

〈 f̂ †
imσ f̂imσ 〉 = 〈

Ŝz
imσ

〉 + 1
2 , (6)

and by deriving with respect to E f and the Es we obviously
find the normalization conditions. By deriving with respect to
〈� f | and 〈�s|, we are left with the following two eigenvalue
problems.

From δE
δ〈�s| = 0 we get Ĥs|�s〉 = Es|�s〉, with

Ĥs =
∑

i

Ĥ i
s =

∑
imσ

(himσ Ô†
imσ + H.c.)

+
∑
imσ

λimσ Ŝz
imσ + Ĥint[Ŝ

z], (7)

which is in fact simply the sum of the site-dependent, but
independent from one-another, eigenvalue problems Ĥ i

s |φi
s〉 =
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Ei
s |φi

s〉, where Es = ∑
i E i

s . Here we have defined himσ =∑
jm′ tmm′

i j 〈Ô jm′σ 〉s〈 f̂ †
imσ f̂ jm′σ 〉 f .

From δE
δ〈� f | = 0 we obtain Ĥf |� f 〉 = E f |� f 〉, with

Ĥf =
∑

i j,mm′,σ

tmm′
i j 〈Ô†

imσ 〉s〈Ô jm′σ 〉s f̂ †
imσ f̂ jm′σ

+
∑
imσ

(
himσ 〈Ŝ−

imσ 〉s
∂cimσ

∂〈F̂imσ 〉 f
F̂imσ + H.c.

)

+
∑
imσ

(εimσ − μ − λimσ )n̂ f
imσ . (8)

The terms coming from the functional derivatives of the
norms 〈�s|�s〉 and 〈� f |� f 〉 appearing in Eq. (4) are simply
absorbed into the numerical values of E f and Es.

Up to this point, we have derived the variational equa-
tions under the only assumption that the gauge cimσ is a
function of the average value of an operator. It is crucial to
remark here that this posit alone makes our total Hamilto-
nian in the enlarged Hilbert space a self-consistent one, even
before any approximation is performed. When applying the
variational principle by taking the functional derivative of the
energy, besides the terms coming from the dependence of the
total integral on the wave functions used in the bra and the ket,
an extra term appears [the second line in Eq. (8)] which comes
from the dependence of the Hamiltonian itself on these wave
functions.

Now we determine the gauge explicitly, and we do
this by requiring that the known noninteracting limit
[where all the hoppings in Eq. (8) are unrenormalized,
i.e., 〈Ô†

imσ 〉s〈Ô jm′σ 〉s = 1] is correctly recovered in our ap-
proximate treatment, when Hint = 0. In this limit the spin
Hamiltonian in Eq. (7) is diagonalizable analytically (see, e.g.,
the Appendix of [17] for the derivation) since the operators
with different orbitals and spin indices decouple. The value for
each gauge ensuring this depends only on the corresponding
fermionic density (i.e., F̂imσ = n̂ f

imσ ) and is

cimσ = 1√〈
n̂ f

imσ

〉
f

(
1 − 〈

n̂ f
imσ

〉
f

) − 1. (9)

Consequentially, the gauge derivative in Eq. (8) is
∂cimσ /∂〈n̂ f

imσ 〉 f = 2ηimσ (cimσ + 1) where we have defined

ηimσ = 2〈n̂ f
imσ 〉 f −1

4〈n̂ f
imσ 〉 f (1−〈n̂ f

imσ 〉 f )
.

The fermionic Hamiltonian thus is

Ĥf =
∑

i j,mm′,σ

tmm′
i j 〈Ô†

imσ 〉s〈Ô jm′σ 〉s f̂ †
imσ f̂ jm′σ

+
∑
imσ

(
εimσ − μ − λimσ + λ0

imσ

)
n̂ f

imσ , (10)

where

λ0
imσ = 2(himσ 〈Ŝ−

imσ 〉s + c.c.)ηimσ (cimσ + 1). (11)

Moreover, in the phases studied in this work one finds a
real self-consistent spin Hamiltonian, i.e., himσ ∈ R, and real
eigenvectors. This gives 〈Ŝ−

imσ 〉s = 〈Ŝ+
imσ 〉s ∈ R and 〈Ô†

imσ 〉s =
〈Ôimσ 〉s = (cimσ + 1)〈Ŝ−

imσ 〉s ∈ R, leading to the more

compact expression:

λ0
imσ = 4himσ 〈Ôimσ 〉sηimσ . (12)

Incidentally, in the noninteracting limit 〈Ôimσ 〉s = 1, this ex-
pression coincides with that of the Lagrange multiplier λimσ =
4himσ ηimσ , which can also be calculated in a closed form in
this limit [17]. Thus λimσ and λ0

imσ cancel in Eq. (10), which
is also necessary to obtain the correct chemical potential in
this limit. Notice however that the only position we made is
the dependence of the gauge Eq. (9) on the occupancy [27].

All in all we obtain two Hamiltonian secular problems,
with Hamiltonians Eq. (7) and Eq. (10), where the couplings
in each one depend on the solutions of the other, and which
coincide with the known formalism of Z2-SSMF, with the
exception of the value of λ0

imσ . Equation (11) was indeed
absent in previous works and λ0

imσ was fixed to the numerical
value of λimσ determined at U = J = 0, in order to guarantee
this limit. It was however kept fixed at all other values of U
and J (see, e.g., the discussion in Appendix A of Ref. [28]).
On the contrary, within the present variational approach, the
value of λ0

imσ descends from the functional minimization and
is thus valid for the fully interacting Hamiltonian at any U and
J . Operatively, the equations are solved by iterations, and the
values of cimσ and λ0

imσ are thus updated at each step.
We remark also that Eq. (12) coincides with the analogous

energy shift in the U(1)-SSMF [18,29], marked there as μ̃α .
The equations of the two mean fields are thus identical (see
also Ref. [30]) and so are obviously expected to be the final
results.

D. Broken-symmetry phases

The outlined method is general enough to study both uni-
form and symmetry-broken normal Fermi-liquid phases. As
in any mean-field theory the allowed symmetry breaking is
to be chosen a priori, and the actual ground state of the
system is determined eventually by comparing the energy of
the respective stable solutions with different symmetry.

When allowing for translational symmetry breaking we
define a new, larger unit cell of the lattice (usually referred
to as supercell), encompassing the representative sites made
unequal by the broken symmetry, and the translation of which
tiles the lattice completely. The single-site slave-spin wave
functions will be allowed to differ from site to site within the
supercell; i.e., a separate single-site slave-spin problem will
be solved for each of the representative sites. Translational
invariance will instead be assumed from supercell to supercell.

Equations (7) and (10) still hold (as long as no on-site
hybridization between the orbitals is present), now with the
understanding that the spatial indices run over the supercells,
and the orbital index is now accompanied by another index (ν,
in the following) labeling the atoms within the supercell.

III. RESULTS ON NÉEL ANTIFERROMAGNETIC PHASES

We here focus on Néel antiferromagnetic phases, where a
net magnetic polarization is realized on each site, in a stag-
gered fashion from site to site. We thus consider a generic
bipartite lattice, whose sublattices we name A and B; i.e., we
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consider a unit cell with two sites, one belonging to each
sublattice.

To diagonalize the noninteracting fermionic Hamiltonian
we define the Fourier transform of the creation and destruction
operators for each inequivalent site ν = A, B, namely f̂ †

kνmσ
=

1√
N

∑
i

eik·Ri f̂ †
iνmσ , with N to indicate the number of unit cells

of the lattice and Ri to denote the position of the ith unit cell
(the relative positions of the inequivalent sites within the unit
cell are immaterial at this stage, as they can be reabsorbed
in the definition of the f̂ †

kνmσ
’s). The wave vector k spans the

“magnetic” Brillouin zone (MBZ) which is half the size of the
original, “nonmagnetic” one (NMBZ). Consequently f̂ †

iνmσ =
1√
N

∑
k∈MBZ

e−ik·Ri f̂ †
kνmσ

.

Then, Eq. (10) gives

Ĥf =
∑

kmm′σ

√
ZA

mσ ZB
m′σ εmm′

k ( f̂ †
kAmσ

f̂kBm′σ + H.c.)

+
∑
kmσ

(
εm − μ − λ̃A

mσ +
√

ZA
mσ ZA

m′σ γ mm′
k

)
f̂ †
kAmσ

f̂kAmσ

+
∑
kmσ

(
εm − μ − λ̃B

mσ +
√

ZB
mσ ZB

m′σ γ mm′
k

)
f̂ †
kBmσ

f̂kBmσ ,

(13)

where we have introduced the quasiparticle weights
Zν

mσ = |〈Ô†
iνmσ 〉s|2, which act as renormalization factors for

the hoppings, and λ̃ν
mσ = λνmσ − λ0

νmσ . In Eq. (13), εmm′
k =∑

i
tAmBm′
i j e−ik·(Ri−R j ) while γ mm′

k = ∑
i

tAmAm′
i j e−ik·(Ri−R j ) =∑

i
tBmBm′
i j e−ik·(Ri−R j ) (note that the term i = j is included

here) and its expression does not depend on j due to the
translational invariance of the sublattices.

Since the considered unit cell is able to host different
types of symmetry breaking (e.g., a 2-site unit cell allows
both Néel antiferromagnetism and two-site ferrimagnetism),
the symmetry of the broken state can be enforced. Indeed
in the Néel phase all nearest-neighbor sites have the same
magnetization, albeit in opposite directions. In the present
framework this implies that the single-site slave-spin wave
function for the A and B site, |φA

s 〉 and |φB
s 〉, will be identical

under the exchange of their σ =↑ part with the σ =↓ part, and
the same will hold for the couplings entering their single-site
self-consistent Hamiltonian HA

s and HB
s . This means that we

can solve only one single-site slave-spin problem, calculate
the average values entering Hf (i.e., 〈Ôimσ 〉s and 〈Ŝz

imσ 〉s for
both σ =↑ and σ =↓) for the A site and use them exchanged
for the B site.

We now specialize the above formalism to a more specific
model (for an application to a full-fledged realistic Hamilto-
nian, see Sec. V).

We here study the multiorbital Hubbard model with M
nonhybridizing degenerate orbitals (tmm′

i j = 0 for all m �= m′,
εm = 0). We restrict the hopping to nearest neighbors, i.e.,
tmm
i j = t for i n.n. j, and zero otherwise. This entails that the

only nonzero hopping is from one sublattice to the other, and
thus γ mm′

k = 0. Also εmm′
k �= 0 only for m = m′.

In this case the fermionic Hamiltonian (13) decouples in
orbital space and the quasiparticle bands are given by

�±
k = λ̃A + λ̃B

2
± 1

2

√
(λ̃A − λ̃B)2 + ZAZBε2

k, (14)

which are 2M times (for orbital and spin) degenerate (we have
thus dropped the orbital and spin indices to lighten the nota-
tion). � = |λ̃A − λ̃B| is the gap opened in this band structure
by the AF order.

In the absence of the AF order (λ̃A = λ̃B and ZA = ZB) one
finds a unique (because the states are distinct in the NMBZ)
spin- and orbital-degenerate renormalized band of which εk is
the dispersion in the noninteracting case (Z = 1, λ̃ = 0).

All the k dependence of the problem enters through εk

and this allows us to define a density of states (DOS) D(ε) =
1

2N
∑

k∈NMBZ δ(ε − εk ) (where 2N is the total number of sites
in the lattice). Both these quantities are determined by the
geometry of the lattice. We here choose to study a customary
and particularly simple case of the Bethe lattice, which bares
a semicircular DOS D(ε) = 2

πD

√
1 − ε2/D2 of half-width

D = 2t .

A. One-band Hubbard model: Benchmarks with slave bosons
and DMFT; phase separation

As a first benchmark for our method, in Fig. 1 we present
results for the single-band Hubbard model (M = 1).

We show the on-site magnetization m = nA↑ − nA↓ =
nB↓ − nB↑ as a function of the interaction strength U at half
filling and as a function of doping δ = M − n (where n =
〈N̂〉/V is the total density) at fixed U/D = 1.0. At half filling
an AF insulating (AFI) state is realized as soon as U is finite.
The magnetization [Fig. 1(a)] increases quickly with U and
tends to saturate to a fully polarized state with m = 1 as one
expects on physical bases. This result is analogous to the one
obtained within SBMF by Korbel et al. [31] for a constant
DOS. Upon doping, the AF state becomes metallic (AFM) and
the magnetization decreases until vanishing [Fig. 1(b)]. The
line where this happens as a function of U is reported in red in
the phase diagram [Fig. 1(e)], and signals the density at which
the PM metallic solution develops an infinite susceptibility to
a staggered magnetic field.

Incidentally, all the calculated physical quantities, and thus
the phase diagram, coincide exactly with those calculated
within SBMF (see, e.g., the same frontier as above, calculated
with SBMF and reported as red points in the phase diagram).
Indeed the present phase diagram is extremely similar to the
one reported in the original work by Kotliar and Ruckenstein
in Ref. [13] (albeit calculated there for a constant DOS).

Remarkably, the metallic AF phase is typically unstable in
this model; i.e., it has negative compressibility κ = dn/dμ

in most of the phase diagram. Its shape for a typical case
(U/D = 1.0) is shown in Fig. 1(c). Including the flat plateau
corresponding to the AF insulator and the PM metallic branch,
the n(μ) curve has a sigmoidal shape, which implies the
insurgence of a zone of phase separation in the phase diagram.
This zone is determined by a Maxwell construction, where the
chemical potential μ̃ at which the phases coexist is determined
by finding the vertical line μ = μ̃ which cuts the sigmoid
into two closed equal-surface areas. The two end points of
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(a) (c)

(b)

(e)

(d)

FIG. 1. Single-band Hubbard model on the Bethe lattice. (a) To-
tal staggered magnetization as a function of the interaction strength
at half filling for the AF insulator. (b) Magnetization as a function
of density in the doped metallic phase, for the representative case
of U/D = 1.0. (c) Density vs chemical potential at U/D = 1.0,
showing that in this model the AF metal is unstable (part of the curve
with negative slope, i.e., negative compressibility). The dashed line
marks the equal-area Maxwell construction, and connects the two
stable solutions composing the phase-separated mixture associated
with this first-order transition. The end points of the dashed line
(blue triangles) indicate the coexisting phases (AFI at half filling and
PM) of the mixture. The blue dot-dashed line shows the constrained
paramagnetic solution obtained without allowing for the symmetry
breaking. (d) Corresponding bow-shaped free energy E − μN show-
ing a crossing of the stable branches, which identifies the chemical
potential of the first-order transition. (e) Phase diagram. The red line
marks the vanishing point of the magnetization (solid line: SSMF;
points: SBMF), i.e., a diverging susceptibility of the paramagnetic
metal to a staggered magnetic field. The dashed line is the spinodal
where the compressibility κ = dn/dμ diverges. The light-gray zone
indicates phase separation between the paramagnetic metal and the
antiferromagnetic insulator.

the μ = μ̃ line single out the two stable solutions that mix
in the separated phase. The sigmoid in n(μ) corresponds to
a bow shape of the free energy E − μN (where E = 〈Ĥ〉
and N = 〈N̂〉) of Eq. (4), since n(μ) = −1/V ∂ (E − μN )/∂μ,
and the chemical potential μ̃ of the phase separated mixture
corresponds to the point where the stable branches cross [32],

FIG. 2. Rationale behind the instability of the AF metal. Upon
(hole) doping the chemical potential enters the lower band while the
gap shrinks, possibly resulting in a higher value of μ at lower density.

as shown in Fig. 1(d). The average density imposed by the
number of electrons physically present in the system con-
strains the proportions of the two components of the separated
phase.

Since the two end points of the μ = μ̃ line are respectively
on the PM metallic and on the AF insulating branches in
all the cases we have analyzed in the single-band Hubbard
model we can conclude that the system separates into these
two phases and that the AF-PM transition is always first order.
In the phase diagram the two end points are marked by blue
triangles and the corresponding zone of phase separation is
grayed.

The two spinodal points where the compressibility is in-
finite and changes sign—which mark the limits of the strictly
unstable part of the homogeneous solution—are always inside
the actual zone of phase separation. Between the spinodal
and the end points of the Maxwell construction one finds
metastable branches of the homogeneous solution (like the
overheated of undercooled branches in the familiar example
of the first-order liquid-gas transition). These points do not
have to always coincide with the border of the AF metal as in
Fig. 1(c); other behaviors of n(μ) are encountered in this and
other models, which shape different and more complex phase
diagrams. Indeed at intermediate to large U/D in the single-
band model the n(μ) curve acquires rather a form similar
to Fig. 4(b), with a positive compressibility at large doping,
and thus the corresponding spinodal in the phase diagram
(dashed line) departs from the one marking the vanishing
magnetization.

The counterintuitive behavior of the chemical potential
increasing with decreasing total population can be rational-
ized as follows (see Fig. 2; we here focus without loss of
generality on hole doping). In the insulating AF phase at half
filling, the chemical potential μ lies within the gap. Upon hole
doping μ enters the lower band. Meanwhile the gap starts
closing, owing to a decreasing magnetization. There is thus
a competition between these two effects, which can result in a

155149-6



SLAVE-SPIN MEAN FIELD FOR BROKEN-SYMMETRY … PHYSICAL REVIEW B 107, 155149 (2023)

FIG. 3. Two-orbital Hubbard model. On-site magnetization (top-right panel) for the AF insulator at half filling and phase diagrams for
three choices of Hund’s coupling relative strength: J = 0; J = 0.1U ; J = 0.25U . The light-gray areas represent the phase separation zones;
the red dots indicate a second-order transition; the dashed line is the spinodal, where the compressibility diverges.

chemical potential lying at a higher value for a lower density.
The mechanism is robust, whereas the outcome depends quan-
titatively on the DOS and on the detailed doping dependence
of the correlation-driven renormalization of bands’ position
and width. This has to be analyzed case by case.

Previously published works performed with SBMF and its
rotationally invariant extension also highlight the tendency of
the AF state in the single-band Hubbard model toward phase
separation and charge instabilities [33–35]. Moreover studies
of this model within the more accurate DMFT framework
validate further this physical picture. Indeed in Refs. [36,37]
phase separation is found in the single-band Hubbard model
for a hypercubic lattice, while for the Bethe lattice Ref. [38]
reports only a strong increase of the compressibility, which
however remains finite. We have repeated this calculation and
we instead find a negative compressibility in the same zone
(see the Appendix). This discrepancy is probably a question
of numerical accuracy in a zone of the phase diagram where
DMFT solutions are very hard to converge. In any case, albeit
its quantitative impact has to be carefully assessed in each

case, the tendency toward the phase separation instability is
confirmed.

In this article we want to assess this tendency in the mul-
tiorbital case, and measure the impact of Hund’s coupling on
it.

B. Phase diagrams in the two- and three-band models:
Dependence on the Hund’s coupling J

Let us now consider the two-orbital case (M = 2), for three
values of Hund’s coupling strength: J = 0, J/U = 0.1, and
J/U = 0.25. The magnetization of the AF insulating state at
half filling is reported in Fig. 3 (top right). As a function
of U the magnetization increases, reaching saturation now
obviously at m 
 2.0. The results for the two-orbital Hubbard
model have the same general behavior as the ones obtained
by Hasegawa [39] within the slave-boson framework for the
simple cubic lattice. The effect of the Hund’s coupling is
to increase the magnetization, as one might expect, since it
favors the high-spin configurations. The magnetization curve
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(a) (b) (c)

FIG. 4. Prototypical dependencies of the density (top panels) and corresponding free energy (bottom panels) as function of the chemical
potential. Red and blue dots represent the antiferromagnetic and the paramagnetic phase, respectively. The blue dot-dashed line shows the
constrained paramagnetic solution obtained without allowing for the symmetry breaking. Panel (a) gives a second-order transition between
an AF metal and a PM metal (representative of J = 0, U/D � 1.9; J = 0.1U , 0.60 � U/D � 1.15 in the 2-orbital model and J = 0, for all
U � 4.0; J = 0.1U, U/D � 1.5 in the 3-orbital model). Panel (b) gives rise to a zone of phase separation between AF insulator and AF metal
at low doping, and a second-order transition at larger doping between an AF metal and a PM metal (representative of J = 0, 1.9 � U/D � 2.5;
J = 0.1U , U/D � 1.15 in the two-orbital model and J = 0.1U , U/D � 1.5 in the three-orbital Hubbard model). If the sigmoid is much more
pronounced the lower end point of the Maxwell construction can end up on the PM branch (representative of large U/D in the 1-orbital model
and in the multiorbital cases at J/U = 0.25, J = 0, U/D � 2.5 in the 2-orbital model and J = 0, U/D � 4.0 in the 3-orbital model). As in
Fig. 1 the coexisting phases are marked by blue triangles. Panel (c) gives two successive zones of phase separation (AFI-AFM; green diamonds)
and (AFM-PM; blue triangles) with a zone of stable AFM in between (representative of J = 0.25U and with U/D � 1.66 in the three-orbital
Hubbard model) as long as the upper red dashed line is on the right of the lower red dashed line. When they align, the two zones of phase
separation touch and a coexistence of three phases is realized (a triple point, at U/D 1.66); for U/D � 1.66 a unique Maxwell construction
and phase separation zone (AFI-PM) remain.

resembles the behavior of the single-band case, rapidly reach-
ing its saturation values with increasing U . In the absence
of Hund’s coupling, the saturation is reached in a somewhat
slower fashion.

The phase diagrams as a function of doping are indeed also
dependent on the value of Hund’s coupling. Our results for the
three above-mentioned choices of J/U are reported in Fig. 3.

One main result is robust across all variations of models
and Hund’s coupling relative strength: the AF metal disap-
pears into a PM metal at a certain doping away from half
filling. This doping value depends on U in a very similar
fashion in all cases: it starts from zero at U = 0, it reaches
a maximum when U is a few times the bandwidth, before
decreasing again for very high interaction strengths. However,
the system does so in several different ways, which can all
be characterized by the n(μ) dependence as we do in the
following (see in Fig. 4 for several examples, representative
of the cases we analyzed), and which ultimately determine the
order of the transition and the phases that one can observe.

For instance in the J = 0 case at low U/D � 1.9 the com-
pressibility is positive [see n(μ) curve in Fig. 4(a)] and thus
the AF metal is stable all the way to the doping where m van-
ishes. The AF-PM transition is thus of the second order. For

U/D � 1.9 the n(μ) starts flexing into a sigmoidal form [as
in the example Fig. 4(b)], as testified by the plotted spinodal
point (dashed line in the phase diagram), and thus a phase
separation occurs. Initially the Maxwell construction encom-
passes a small range of doping, so that for 1.9 � U/D � 2.4
the inhomogeneous state at low doping is a mixture of AF
insulating and AF metallic phases. At larger doping the AF
metal is stable until it becomes continuously a paramagnet.
For U/D � 2.4 instead the sigmoid in n(μ) is so pronounced
that the Maxwell construction connects directly the AF in-
sulator and the PM metal, and the phase separation happens
between these two phases.

The latter situation is never realized for the J/U = 0.1,
where the AF-PM transition is always second order [besides
a very small zone at U/D � 0.5 where n(μ) is of the type of
Fig. 1(c)], because with J the AF zone expands more than the
phase separation one.

Instead for larger J/U = 0.25 the phase separation zone
catches up, becomes very wide in doping, and englobes en-
tirely the AF metal. Indeed the n(μ) curve takes again a
roughly straightened behavior with negative slope exemplified
in Fig. 1(c), and the phase diagram becomes very similar to the
one-band case.
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FIG. 5. Three-orbital Hubbard model. On-site magnetization (top-right panel) for the AF insulator at half filling and phase diagrams for
three choices of Hund’s coupling relative strength: J = 0; J = 0.1U ; J = 0.25U . The light-gray zones represent the phase separation zones;
the red dots indicate a second-order transition; the dashed line is the spinodal, where the compressibility diverges; the solid black line indicates
the region in the phase diagram equivalent to the triple point.

On the methodological level, in all the cases we have
checked, SSMF and SBMF results are identical, confirming
also in the multiorbital case that the two methods are equiva-
lent (and equivalent to the GA) at T = 0, as we pointed out in
the one-band model.

More physically, the line of vanishing magnetization for
J/U = 0.25 in Fig. 3 (bottom right) can be directly com-
pared with the DMFT data shown in Fig. 3 of the work
from Hoshino and Werner [40], and show a good agreement,
albeit the extent of the AFM phase is somewhat overestimated
in our case. This can be ascribed to both finite-T effects in
DMFT and to the more approximated nature of the SSMF
compared to DMFT, which is likely to matter particularly at
low magnetization (thus near the frontier) where dynamical
fluctuations are more important. Furthermore, in degenerate
models like the present one, the latter are likely to be enhanced
with respect to more realistic models with, e.g., crystal-field
splitting. Also SSMF are known to perform better when the
number of orbitals gets larger [20]. These considerations are

coherent with the result on the realistic 5-orbital benchmark
case of BaCr2As2 we report in Sec. V; the agreement with
DMFT is excellent.

Let us finally address the three-orbital (M = 3) case.
The magnetization at half filling as a function of U/D is

plotted in Fig. 5 (top-right panel). While at intermediate-to-
large J the physics is essentially the same as in the two-orbital
model, a remarkable feature emerges in the J = 0 case: a low-
spin to high-spin transition at U ≈ 4.0D. Indeed a coexistence
zone in U is visible in the plot, where two stable solutions are
found (connected by an unstable branch signaled by empty
symbols). This might seem surprising, in the absence of the
drive from Hund’s coupling toward high-spin states. However
the competition between the low- and the high-spin state has
a natural rationale: while the high-spin phase maximizes the
non-local AF exchange, the low-spin phase has a larger kinetic
energy gain, due to the orbital fluctuations [28,41,42].

This feature shows up in the phase diagram Fig. 5 (top-left
panel), which is very similar to the two-orbital case (albeit
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shifted toward larger values of U ). One difference is the
fact that here the spinodal starts at larger U (corresponding
to the end of the coexistence zone at half filling) compared
to the beginning of the phase-separated zone, which instead
connects smoothly with the discontinuous jump between the
two solutions at half filling.

Analogously, the phase diagram for J/U = 0.1, Fig. 5
(bottom-left panel), is very similar qualitatively to the two-
orbital case. The main difference is quantitative: the AF metal
extends to much larger dopings at the same value of J/U .

Also the phase diagram for J/U = 0.25 (Fig. 5, bottom-
right panel) is very similar to the two-orbital one, in its main
features, mainly a strong increase in the doping range where
the phase separation is realized.

However its physics is actually richer. For small interaction
strengths we find a phase separation between the antifer-
romagnetic insulator and the paramagnetic metal, as in the
one- and two-orbital models. For greater values of U , how-
ever, the n(μ) curve has the shape of a double sigmoid, as
shown in Fig. 4(c). Correspondingly the free energy has a
double-bow shape and two crossing points, and hence two
distinct Maxwell constructions are in order. The system then
exhibits two distinct zones of phase separation if, as in the
case reported in the figure, the construction at smaller density
singles out a value of μ smaller than the construction at
higher density (i.e., as long as the lower dashed line in the
figure is on the left of the upper dashed line). The first phase
separation zone, marked with the green diamonds in the phase
diagram, is between the AF insulator at half filling and an AF
metal; the second one is between an AF and a paramagnetic
metal.

This happens for values of U/D � 1.66. Approaching this
interaction strength from above, the two crossing points come
closer to one another, until they meet. Then the two Maxwell
constructions merge into one, and a triple point in the U -μ
plane is realized, where the paramagnet, the antiferromag-
netic metal, and the half-filled antiferromagnetic insulator all
coexist. In the phase diagram in the U -doping plane this is
represented with a solid black line.

Again the vanishing magnetization line for the J/U = 0.25
three-orbital model can be compared to the DMFT results of
Hoshino and Werner [43] and the agreement is quite good,
as in the two-orbital case, and actually slightly better. A
somewhat overestimated width in doping of the AF-metal
zone is obtained within SSMF. As already mentioned this
overestimate is probably a shortcoming of SSMF, due to the
simplified treatment of dynamical fluctuations compared to
DMFT, which is likely even more relevant in degenerate or-
bitals. This aspect improves substantially with the number of
orbitals in the system, as the 5-orbital example of BaCr2As2

reported in Sec. V, for which the agreement between SSMF
and DMFT is excellent, testifies.

The fact that a large Hund’s coupling can favor the phase
separation instability can be rationalized within the same
mechanism suggested in Sec. III A and sketched in Fig. 2,
since at larger J the magnetization is enhanced and so is
the gap. The competition between the collapsing gap and
the band population can more easily lean toward an inverted
dependence of the chemical potential on the density, and thus
toward a charge instability.

FIG. 6. Quasiparticle weight Z as a function of U/D at half filling
for all the models analyzed in this work (left panel), and as a function
of doping for several values of U/D for the two-orbital model at
J/U = 0.1. The kink in doping signals where the AF and PM metals
connect and typically marks the lowest Z reached for each value of
U/D. A larger number of orbitals and smaller value of J/U allow for
more fluctuations between the local configurations and typically lead
to more correlated states (e.g., the 3-orbital model at half filling and
J = 0).

IV. ELECTRONIC CORRELATIONS AND ITINERANT
VERSUS LOCALIZED MAGNETISM

The SSMF captures band renormalization, which can be
sizable also in magnetic phases. However strongly polarized
phases typically tend to minimize quantum fluctuations, thus
reducing correlations. Indeed it is known [31] that in the
AF phase of the one-band Hubbard model the quasiparti-
cle weight Z is typically rather close to unity not only for
small U/D, where correlations are obviously weak, but also
at large U/D, because the magnetization saturates. We have
here characterized the behavior of Z in the M = 2 and M = 3
cases explored in this paper, and found that at half filling—
thanks to the quantum fluctuations allowed by the multiorbital
physics—Z is smaller the larger the number of orbitals, in
absence of Hund’s coupling. In the 3-orbital model in par-
ticular Z is very close to the PM value and nearly reaches
0.5 before undergoing the first-order low-to-high spin tran-
sition described in Sec. III B, where Z markedly increases
back toward unity. This behavior is visible in the Z (U )
curves reported in Fig. 6 (left panel). A finite J , however,
it tends to quench the quantum fluctuations and to bring the
magnetization quickly toward saturation, entailing very small
correlations strengths.

Moreover, the quasiparticle weight is typically the highest
at half filling in the AF phase, due to the peak in magnetiza-
tion (as expected in our particle-hole symmetric models). We
studied its behavior as a function of doping and found that
it typically diminishes monotonically with it, until reaching
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FIG. 7. Kinetic (�Ek = EAF
k − EPM

k ) and potential (�Ep =
EAF

p − EPM
p ) energy differences between AF and PM phase. The total

energy difference �Etot = �Ek + �Ep < 0; hence AF is always the
stable phase. Data are plotted for J = 0 (dots) and J = 0.25U (trian-
gles) in the three-orbital Hubbard model. The dashed line marks the
first-order low-high spin transition of the J = 0 case, as reported in
Fig. 5.

the PM, where it starts increasing again. The typical behavior
for different values of U/D is reported in Fig. 6 (right panel)
for the 2-orbital model at J/U = 0.1. The same curves for the
three-orbital model are similar.

Besides the band renormalization another highly nontrivial
effect of the dynamical correlations is the evolution from
itinerant to localized magnetism. This is hardly visible in the
mean-field solution for the ground state [44], but a comparison
with the PM solution clarifies the mechanism stabilizing the
AF solution. Indeed Taranto et al. report (Fig. 3 in Ref. [45])
the difference in kinetic and potential energies of the two
phases as a function of U/D in the single-band model at half
filling within DMFT. The AF, which is the stable solution at
all interaction strengths, has however a lower potential energy
than the parmagnet at small U/D, which then overcompen-
sates an opposite raise in the kinetic energy and is thus the
stabilizing factor for the AF. Conversely, at large U/D the PM
has a lower potential energy, and it is the kinetic energy that
wins over it and stabilizes the magnetic phase. Our method
perfectly reproduces this behavior in the single-band model
(not shown) and confirms this analysis in all the multiorbital
models (the curves for the M = 2 and M = 3 case sharing
most of the qualitative features; we show only the latter), as
we illustrate in Fig. 7.

Furthermore, it is interesting to point out some model-
dependent features. Indeed the figure reports these energy
differences (�Ek = EAF

k − EPM
k and �Ep = EAF

p − EPM
p ) for

the three-orbital model at zero and finite Hund’s coupling J .
At strong coupling in the J = 0 case (on the right in the figure)
one finds the aforementioned energy balance �Ep > 0 rather
insensitive to changes in U/D, due to the saturated AF and
the Mott-insulating PM showing the same behavior. The Mott
transition in the PM solution, which at zero temperature is
continuous if J = 0 [20,42,46,47] appears as a “kink.” Thus,
interestingly, the expected crossing of �Ek and �Ep when
going toward the weak coupling opposite energetic balance
happens well into the metallic phase. It is also interesting to
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FIG. 8. Comparison between DFT + SSMF and DFT + DMFT
for the G-type AF metallic phase of BaCr2As2. DMFT data from
[50]. In both methods the same parameters are used: J = 0.153U ,
n = 4 for the U scan, and U = 2.8 eV for doping scan (inset).

note that the low/high spin transition we previously found
in this model (corresponding to the dashed line cutting the
heart-shaped feature) happens well within the weak-coupling
regime �Ep < 0 and it is associated to a large potential energy
difference between these two solutions. For the large J/U
case one notices instead (besides the absence of low-high spin
transition indeed, and the already discussed fact that all the
action happens at much lower values of U/D) that, being the
Mott transition in the PM phase of the first-order in this model
[20,46–49], the continuous crossing between the weak- and
strong-coupling regimes is cut away and happens as a sudden
jump at the transition point.

V. AB INITIO DESCRIPTION OF G-TYPE
ANTIFERROMAGNETISM IN BaCr2As2

As a final result we report a test of our method in the
context of realistic ab initio simulations. We choose the case
of BaCr2As2, for which the G-type AF phase was explored in
Ref. [50,51]. We study the magnetization both as a function
of the interaction strength and of doping. Our results are
shown in Fig. 8, where we report the comparison of SSMF
with DMFT, which is excellent. This agreement is particularly
good both because, as already stated, the SSMF is known to
perform better for a larger number of orbitals [20,52], and
probably because of the reduced amount of quantum fluctu-
ations in an ordered phase, compared to the more challenging
case of the paramagnetic correlated metals. Still, the prospect
for the use of the present method in realistic DFT-based
quantitative modeling of correlated magnetic phases is very
promising and further application to the 122 iron supercon-
ductor family are foreseen.

A rough estimate of the different computational effort
required by two methods for this specific example is the
following: a complete iteration in SSMF takes O(seconds)
on 1 processor, while in DMFT it takes O(hours) on O(1k)
processors [53,54].
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VI. CONCLUSIONS

In summary, we have provided a variational derivation
of the Z2-slave-spin mean field and shown that it brings an
additional term containing an effective orbital energy shift
to the known equations, and make them coincide with the
U(1)-SSMF if the self-consistent Hamiltonian is real.

We have shown that this method is capable of modeling
spontaneous symmetry-broken phases, and provides identi-
cal results to Kotliar-Ruckenstein slave-boson mean field and
its multiorbital generalizations, and hence to the Gutzwiller
approximation, for the ground state of the system (thus at
equilibrium at T = 0).

We have then studied the Néel antiferromagnetic phases
in the single-orbital, 2-orbital, and 3-orbital Hubbard model.
In the former we have highlighted a general tendency toward
electronic phase separation between an AF insulator and a PM
metal in the doped phase near half filling.

In the multiorbital cases we have studied the U-doping
phase diagrams as a function of the Hund’s coupling strength
(J = 0, J/U = 0.1, and J/U = 0.25) and shown that the
phase separation can also happen between an AF insulator
and AF metal and between an AF metal and a PM metal. The
AF-PM transition can be first- or second-order depending on
the case at hand. A general trend that we have highlighted
is that large Hund’s coupling widens the AF range in doping
and typically enhances the tendency toward phase separation.
We have provided a general rationale for such a tendency and
its enhancement with increasing J/U : a competition between
the depopulation of the renormalized band structure below the
gap for hole doping (or of the population of the renormalized
band structure above the gap for electron doping) and of the
closing of the gap itself can cause the chemical potential to
lie higher at smaller density in some range of parameters, thus
causing negative compressibility and the related instability.
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APPENDIX: BENCHMARKS WITH DMFT ON MODELS

The accuracy of the method we have presented in this work
is naturally benchmarked relatively to existing slave-particle
mean-field methods, like SBMF (and the equivalent GA). We
have shown that all these methods produce strictly equivalent
results for the ground state. A comparison in sample cases
with the more accurate and well established DMFT is indeed
also in order, to assess the overall reliability of the SSMF
method for broken symmetry cases. We have already cited
Refs. [40,43] for benchmarks in the two-orbital and three-
orbital model cases. For a comparison in the context of ab
initio calculations we have shown the excellent agreement
with the DMFT data of Ref. [50].

Here we show explicitly the comparison with DMFT in the
single-band model. As a solver we use exact diagonalization
[55] at T = 0 with a total Ns = 6 orbitals (5 sites in the bath
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FIG. 9. Staggered magnetization in the one-band Hubbard model
at half filling: SSMF vs DMFT.

and 1 on the impurity). In Fig. 9 we report the staggered
magnetization vs U/D in the one-band Hubbard model at half
filling. The agreement between the result of the two methods
is very good. In fact, the agreement is here much better than
in the paramagnetic phase, most likely because of the reduced
quantum fluctuations in the ordered phase.

We also benchmark against DMFT the finding of negative
compressibility implying the phase separation in the doped
AF metal near half filling, typically for the single-band model.
In Fig. 10 we report our DMFT calculation for the Bethe
lattice at T = 0 and U/D = 2.0. It is easy to see that there
is a range of chemical potential for which the AF insulator (at
density n = 1) coexists with the PM metal at finite doping.
It is very hard to stabilize the unstable branch connecting
these two stable solutions and we succeeded for a range of
densities (by continuously adjusting μ in order to reach a
given density [49]), confirming the negative compressibility
found by SSMF (and found by DMFT in the hypercubic lattice
in Refs. [36,37]).

We finally underline that in the paramagnetic phases the
quantitative agreement with DMFT improves substantially for

µ
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FIG. 10. DMFT in the one-band Hubbard model: AF insulator–
PM metal transition in doping. The range of chemical potential
for which the AFI and PM coexist implies a first-order transition
between them, and an unstable branch with negative compressibility
joining them, which we could converge for a range of doping.

155149-12



SLAVE-SPIN MEAN FIELD FOR BROKEN-SYMMETRY … PHYSICAL REVIEW B 107, 155149 (2023)

systems with a large number of orbitals [20,52]. Indeed real-
istic investigations of iron-based superconductors (typically
modeled with 5-orbital models) are performed routinely with
good results (albeit typically an adjustment of the J/U value

is required) [18,20,56,57]. It is in line with this indication
that the results obtained by SSMF and DMFT for the realistic
5-orbital case of the AF phase in BaCr2As2 and reported in
Fig. 8 agree even better than in the single-band model case.
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