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We theoretically investigate the spectral properties of a quantum impurity (QI) hosting the here proposed
Majorana-Ising-type quasiparticle excitation. It arises from the coupling between a finite topological supercon-
ductor (TSC) based on a chain of magnetic adatoms–superconducting hybrid system and an integer large spin
S flanking the QI. It is noteworthy that the spin S couples to the QI via the Ising-type exchange interaction. As
the Majorana zero modes (MZMs) at the edges of the TSC chain are overlapped, we counterintuitively find a
regime wherein the Ising term modulates the localization of a fractionalized and resonant MZM at the QI site.
Interestingly enough, the fermionic nature of this state is revealed as purely of the electron tunneling type and,
most astonishingly, it has the Andreev conductance completely null in its birth. Therefore, we find that a resonant
edge state appears as a zero mode and discuss it in terms of a poor man’s Majorana [Dvir et al., Nature 614, 445
(2023)].
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I. INTRODUCTION

Majorana fermions are peculiar particles equal to their
own antiparticles described by real solutions of the Dirac
equation [1]. In condensed matter physics, such fermions
rise as quasiparticle excitations usually called Majorana zero
modes (MZMs), which are found attached to the boundaries
of topological superconductors (TSCs) [2–31]. Astonishingly,
since the theoretical Kitaev seminal proposal of p-wave su-
perconductivity [32], MZMs are notably coveted due to their
attribution as building blocks for the highly pursued fault-
tolerant topological quantum computing. Thereafter, in the
last few years, such excitations have received astounding fo-
cus from both communities working with quantum science
and technology.

Interestingly enough, theoretical predictions point out that
the fractional zero-bias peak (ZBP) in transport evaluations
through quantum dots, which is given by the conductance
Gtotal(0) = e2

2h [2–4], could have its origin from both the sys-
tem topological nontrivial regime, where two MZMs emerge
spatially far apart at the edges of a TSC [3,4], as well as
in the corresponding trivial, which could exhibit, for in-
stance, Andreev bound states (ABSs) [33,34]. In this regard,
we highlight Ref. [35], which, by treating the TSC within
the theoretical framework of the Oreg-Lutchyn Hamiltonian
[9], allows a detailed and systematic analysis on the for-
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mation of MZMs versus ABSs issue. In parallel, effective
models [3,33,36], despite their simplifications, are used to
capture, with quite good accuracy, the corresponding low-
energy physics encoded by models such as that in Ref. [9]
and the Kitaev Hamiltonian [32].

Back to the issue of the topological nontrivial regime, not
less important, once an ordinary fermion can be decomposed
into two MZMs, is the amplitude 1/2 in Gtotal(0), the hallmark
of the fractionalization of the quantum of conductance e2

h , thus
giving rise to the concept of fractionalized electronic zero-
frequency spectral weight, which indeed reveals the MZM
half-fermionic nature [4]. This aforementioned fingerprint is
expected to show up in engineered platforms that combine
conventional s-wave superconductivity and spin-texture [see
Refs. [37–39] and Fig. 1(a)]. As aftermath, the p-wave super-
conductivity becomes feasible, thus allowing the experimental
realization of the spinless Kitaev wire, which is indeed, a TSC
in 1D [7,25,27,32,40–43]. For such an accomplishment, we
highlight two practical recipes based on the Oreg-Lutchyn
proposal [9], which have the following ingredients: (i) a semi-
conducting nanowire, with strong spin-orbit coupling (SOC)
and under a magnetic field, should be deposited on top of
an s-wave superconductor [6,25,29–31,40,41] or (ii) a lin-
ear chain of magnetic adatoms with exchange interactions
should be hosted by an s-wave superconductor with strong
SOC [12,13,18,37–39,44–49]. In both situations, the s-wave
superconductors with singlet Cooper pairing lead to the so-
called superconducting proximity effect, which is pivotal to
carry forward the superconducting (SC) character into such
manufactured Kitaev wires. Thus, the Zeeman field from
the previous recipes (i) and (ii), together with the magnified
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FIG. 1. (a) Proposed device expected to show a Majorana-Ising-
type quasiparticle (MIQ) excitation γMIQ localized at the quantum
impurity (QI) site. The γMIQ leads to a zero-bias conductance peak
GMIQ(0) = e2

4h due to the QI placed between source and drain leads,

but the total conductance is still Gtotal(0) = e2

2h . This occurs once a
genuine electron tunneling (ET) process is present and there is a
complete lack of local Andreev (LAR) reflection. It can be performed
by considering the QI simultaneously coupled to a spin-polarized tip
with an integer large spin S via an Ising-type exchange interaction J
and with the hopping terms λ1(2) (being λ2 = 0 for this case) to a he-
lical spin-texture chain hosted by an s-wave superconductor. (b) Side
view of (a) wherein the QI-lead coupling � and Ising-type exchange
interaction J for the spin-polarized tip and QI appear highlighted.
(c) Pictorial scheme of (b), which effectively consists of a topological
superconductor (TSC), where εM represents the overlap between the
Majorana zero modes (MZMs) γ1 and γ2 at edges, while the QI
shows the MIQ γMIQ. The spatial distributions of the wave functions
for the MZMs and QI are also illustrated. The factor 1

4 in GMIQ has
correspondence to the 1

4 from the volume for the sphere depicted to
represent the quasiparticle γMIQ, in contrast to the ratio 1

2 for the
typical volume of the MZMs γ1 and γ2. (d) Andreev bound state
(ABS) regime, obtained from the effective model with |λ1| ∼ |λ2|
[33]. (e) These MZMs mimic a delocalized fermionic site f , wherein
εM plays the role of its energy level, while the QI has 2S + 1 levels
ranging from −J (S/2) to +J (S/2). In this scenario, such quantum
dots constitute a Kitaev dimer, i.e., with hopping t and pairing � of
the p-wave Cooper pair split into the QI and f orbitals.

SOC from such quantum materials, establish a synergy that
stabilizes the system spin-texture and, consequently, the triplet
Cooper pairing for the p-wave superconductivity as well.

Particularly in the topological nontrivial regime of such
setups, these Majorana quasiparticle excitations emerge ide-
ally, i.e., as MZMs decoupled from each other and localized
on the boundaries of the TSC. Due to this decoupling from
their environment, MZMs are regarded robust against per-
turbations, once they are topologically protected by the SC
gap. Thus, MZMs become promising candidates for a quan-
tum computing free of the decoherence phenomenon [50,51].
However, perfectly far apart, MZMs are hypothetical objects
since they are reliable solely in infinite-size systems and in
real experiments, the quantum wires are finite. As a result,
these end MZMs within a finite length overlap with each other
and, inevitably, a fermionic mode with a finite energy emerges
instead.

To overcome the aforementioned challenge, in this paper,
we find as a route the fractionalization of ordinary MZMs, in
particular, those found at a quantum impurity (QI) site coupled
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FIG. 2. (a) Total differential conductance Gtotal [Eq. (5)] versus
the source-drain bias-voltage eV in units of the QI-lead coupling
� with isolated MZMs γ1 and γ2(εM = 0) in the absence of a
spin-polarized tip (S = 0). As aftermath, a zero-bias peak (ZBP)
emerges with amplitude Gtotal(0) = e2

2h and characterizes the leaking
of the MZM γ1 from the TSC wire edge [Fig. 1(c)] into the QI as
γA (Fig. 3(a)I and Refs. [3,4]). (b) The ZBP conductance can be
split into finite contributions from the electron tunneling (ET) and
local Andreev reflection (LAR) processes [Eq. (5)], namely, GET(0)
and GLAR(0), respectively. This corresponds to the ideal case of an
infinite TSC wire, wherein these processes compete on equal footing.
(c) In the presence of a tip with S = 3 and exchange coupling at the
sweet spot J = Jh = 1.335� [Fig. 3(b)I] for a finite wire (εM = 1�),
the amplitude Gtotal(0) = e2

2h is still observed and denotes the exis-
tence of a MIQ γMIQ within the QI, but with related differential
conductance GMIQ(0) = e2

4h [Fig. 3(c) and Eqs. (23) and (24)]. (d) In
the regime of (c), GLAR(0) is completely quenched and solely the
term GET(0) contributes to the ZBP.

to one edge of a finite TSC in 1D. To this end, we should
take into account the Ising exchange interaction between an
integer large spin and such a QI. This setup corresponds to
Figs. 1(a) and 1(b), and it contains the ordinary MZMs γ1

and γ2 placed at the edges of a short TSC wire. To better
understand our findings, we propose to view the MZMs as
sketched in Fig. 1(c), where these objects appear symbolized
by calottes (half spheres). We clarify that the employment of
such a pictorial representation for the MZMs aims to explain
diagrammatically the electron fractionalization into them, as
well as the MZM fractionalization itself here observed. These
calottes belong to a delocalized sphere cut in half, with each
part placed at the TSC edges. This cartoon is very useful
and it has the purpose of emulating the nonlocal nature of
the fermionic state composed by these MZMs, which are
found spatially far apart. To the best of our knowledge, the
Majorana zero-frequency spectral weight, in particular, for a
QI coupled to an infinite TSC, is given by the unity when
the leaking of the MZM γ1 into a quantum dot occurs [4].
This unity corresponds to a calotte, which is a half-electron
state that contributes to the conductance GMZM(0) = e2

2h , as
expected [3,4]. Particularly for a finite TSC, we define as
the system sweet spot [see Fig. 3(b)I] a special configuration,
in which a peculiar Ising exchange interaction allows us to
observe a fractionalized MZM quasiparticle excitation γMIQ at

155144-2



FRACTIONALIZATION OF MAJORANA-ISING-TYPE … PHYSICAL REVIEW B 107, 155144 (2023)

FIG. 3. (a) The central panel shows the frequency dependence
of the normalized densities of states (DOS) for the MZMs γA and
γB [Eq. (21)] for the spin-up channel within the QI by assuming
the spin-polarized tip absent and the MZMs γ1 and γ2 overlapped
(εM = 1�) in the TSC. In each DOS, we find a resonant MZM,
which corresponds to a half-fermionic state of the QI depicted as the
green sphere in the upper-right inset. This sphere has inner MZMs
represented by calottes to denote the half-fermion nature of the
MZM. In the nonoverlapped situation, only the calotte γA prevails
[inset (a)I]. It leads to Gtotal(0) = GγA (0) = e2

2h in Fig. 2(a) [Eqs. (23)
and (24)]. For the spin-down channel, which is decoupled from the
TSC, the MZMs γC and γD within the QI stay paired permanently
[inset (a)II]. (b) In the presence of S = 3 and J = 5� for εM = 1�,
the DOS for γA changes drastically, exhibiting a valley at ω = 0
instead of a peak, while for γB the zero mode is not well-defined.
To restore the ZBP Gtotal(0) = e2

2h , we should choose the right J
for a given S, i.e., the sweet spot J = Jh [panel (b)I for the QI
DOS of Eq. (22), imposing DOS(↑)(0) = 1/2]. In the spin-down
channel, the γC and γD DOS are degenerate with a 2S + 1 mul-
tilevel structure [panel (b)II]. (c) The choice J = Jh = 1.335� for
S = 3 completely defines the valley and peak for the DOS γA and
γB, respectively, where in the latter we introduce γB ≡ γMIQ as the
Majorana-Ising quasiparticle, once the peak clearly represents the
unique MZM isolated in the system. It is characterized by a ZBP
given by GMIQ(0) = e2

4h pictorially illustrated by the half calotte in the
lower-right inset for the green sphere representing the QI fermionic
state. However, Gtotal(0) = GγA (0) + GMIQ(0) = e2

2h .

the QI, namely, what we call a Majorana-Ising-type quasipar-
ticle (MIQ) excitation [Figs. 1(a) and 1(c)]. This quasiparticle
excitation can be viewed as the half calotte within the cartoon

representation of the QI state [see also Fig. 1(c)]. Such a
ratio symbolizes an MZM-type excitation in the presence of
finite TSCs, in which, technically speaking, it is identified
by a Majorana zero-frequency spectral weight equals half.
Equivalently, the same amount corresponds to 1

4 of the entire

QI electronic state. In contrast, it leads to GMIQ(0) = e2

4h as it
should. Interestingly enough, solely in one of the Majorana
density of states (DOS) of the QI, the MIQ becomes evident
as a resonant mode localized at ω = 0. Counterintuitively,
the other Majorana DOS of the QI, instead of exhibiting a
resonant state, reveals a Majorana zero-frequency spectral
weight with a valley, but presenting the same magnitude of
the resonant Majorana fermion. In this manner, we can safely
state that this MZM-type quasiparticle excitation, which for
simplicity, we just call MIQ from now on, is then found at
the QI. In this situation, we demonstrate that the emergence
of such a quasiparticle excitation yields a zero-bias local An-
dreev conductance entirely null, with only normal electronic
contribution to the total conductance.

II. THE MODEL

The effective system Hamiltonian that corresponds to the
proposed setup presented in Fig. 1(a) can be expressed as

H =
∑
αkσ

εαkc†
αkσ

cαkσ +
∑

σ

εσ d†
σ dσ + iεMγ1γ2

+
(

�

2πρ0

)1/2 ∑
αkσ

(c†
αkσ

dσ + H.c.) + JszSz

+ λ1(d↑ − d†
↑)γ1+λ2(d↑ + d†

↑)γ2, (1)

where the operator c†
αkσ

(cαkσ ) describes the creation (annihila-
tion) of an electron with momentum k, spin-z σ = ±1, energy
εαk = εk − μα for the metallic lead α = [source, drain] in
terms of the single-particle energy εk and chemical potential
μα, while d†

σ (dσ ) stands for the electrons at the QI site in
which εσ represents their energy levels per spin. To connect
the QI to the metallic leads and a large spin S as well, we
should consider the QI-lead coupling � = 2πv2ρ0, which is
determined by the QI-lead hopping term v and lead DOS ρ0,

in parallel to the Ising-type exchange interaction J [Fig. 1(b)].
This Ising Hamiltonian involves the components sz and Sz of
the QI (s = 1/2) and S, respectively, wherein the latter could
be well-represented, within an experimental framework, by
a spin-polarized tip [Ref. [52] and Figs. 1(a) and 1(b)]. The
emergence of MZMs at the TSC wire edges are accounted
for, γ1 and γ2, with εM as the overlap parameter. Finally, λ1

and λ2 couple the spin-up channel of the QI to γ1 and γ2,
respectively [Figs. 1(a) and 1(c)]. Additionally, for the sake
of simplicity, we consider that the spin-down degree is decou-
pled from the TSC and obeys the single impurity Anderson
model [53]. Thus, we assume that the spin component of the
QI that couples to the Kitaev wire is σ = +1,which is, as
can be viewed in Fig. 1(a), the same spin direction assumed
for the edges of the magnetic chain of adatoms. This means
that the spin flips of the QI electron injected into the TSC
and vice versa are prevented. Therefore, the spin-up degree of
the QI is unique to perceive the TSC. Different spin textures
on the TSC edge where γ1 is found [54], which would allow
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the mixing of the spin degrees of freedom, will be addressed
elsewhere and do not belong to the current analysis. Addition-
ally, as we assume the intrinsic Zeeman splitting ε↓ − ε↑ = VZ

of the magnetic chain as the largest energy scale, the spin
down has no influence in the phenomenon here reported, once
the corresponding electronic occupation is empty. However,
even with the present assumption, we are free to demonstrate
that both these spin components become influenced by S and
the TSC that mimics an effective quantum dot tunnel and
Andreev-coupled to the QI (Fig. 1(e), [55,56]).

To this end, note that the Majorana and Ising terms of
Eq. (1) should be conveniently rewritten to access the system’s
underlying physics: (i) the Ising term turns straightforwardly
into

JszSz = J

2

∑
mσ

σmd†
σ dσ |m〉〈m| (2)

due to the standard expansions sz = 1
2

∑
σ σd†

σ dσ and Sz =∑
m m|m〉〈m|, with m = [−S,−S + 1, ..., S − 1, S] for the QI

and large spin, respectively. This means that each spin channel
in the QI acquires a multilevel structure split into 2S + 1
energies ranging from −J (S/2) to +J (S/2). As a matter of
fact, the TSC alters this feature quite a bit for the channel
σ = +1; and (ii) it is imperative to evoke that the MZMs
are made by the electron ( f †) and hole ( f ) of a regular
Dirac fermion delocalized over the TSC edges, which lead
to γ1 = 1√

2
( f † + f ) and γ2 = i√

2
( f † − f ). In this picture, εM

plays the role of the energy level related to the electronic
occupation f † f and the QI is indeed hybridized with f , as
mentioned earlier, via the hopping t and the superconducting
pairing �. In summary, by considering the parametrization
λ1 = (t + �)/

√
2 and λ2 = i(� − t )/

√
2 [Fig. 1(a)], we sim-

ply find the Kitaev dimer composed by d↑ and f orbital sites
[55,56]:

iεMγ1γ2 + ε↑d†
↑d↑ + λ1(d↑ − d†

↑)γ1 + λ2(d↑ + d†
↑)γ2

= εM

(
f † f − 1

2

)
+ ε↑d†

↑d↑ + (td↑ f † + �d↑ f + H.c.).

(3)

Similarly, the spin-up channel of the QI can be also decom-
posed in MZMs [4], which we label by γA and γB, i.e.,

d↑ = 1√
2

(γA + iγB). (4)

Based on Eq. (4), one can compute the Majorana zero-
frequency spectral weights for γA and γB, respectively. These
quantities reveal that in the poor man’s Majorana regime
(J = 0, � = t and εM = ε↑ = 0) [55,56] for the Kitaev dimer,
that at the QI site, one spectral weight shows a unitary ampli-
tude for a resonant zero mode, while the other is completely
null at zero energy. It means that an isolated MZM is found
at the QI. Analogously, such a feature is also observed in f
[4,32]. This results, according to Eq. (3) given by i

√
2λ1γBγ1,

in two isolated MZMs spatially placed at d↑ and f orbital
sites, namely, γA and γ2, respectively. Although f is already
nonlocal and split over the TSC edges, it should be understood
as an orbital site in the framework of the Kitaev dimer, thus
γ2, within such a context, is placed there. For the trivial case

(εM 
= 0), the two spectral weights for γA and γB attain to
unity, and then two resonant zero-modes emerge at the QI
site. Thus, Eq. (4) is extremely clarifying, once it points out
the possibility of having within the QI, in the presence of
εM and J, the isolation of the here proposed MIQ. Addition-
ally, as one can see, the spin-down channel always shows
the trivial case due to its decoupling from the TSC. For
completeness, we label the MZMs for d↓ by γC and γD. To
conclude, we are aware that the QI could also be coupled to
the s-wave platform of Fig. 1(a) as in Ref. [49] by the term
Hs−QI ∼ −�s(d

†
↑d†

↓ + H.c.) [36,49] in the limit �SC → ∞
(infinite superconducting gap standard approximation), where
�s is the s-wave-QI coupling. Nevertheless, differently, we do
not consider the on-top geometry of Ref. [49] and assumes
intrinsic Zeeman splitting ε↓ − ε↑ = VZ of the magnetic chain
extremely high to rid off the spin-down component. As a
result, we expect that both features suppress Hs−QI and leave
the exploration to elsewhere when VZ is not found magnified.

III. QUANTUM TRANSPORT AND GREEN’S FUNCTIONS

In this section, our goal is the analytical evaluation of the
total conductance through the QI device depicted in Figs. 1(a)
and 1(b). As a matter of fact, solely the spin-up channel
contributes to the conductance, once the spin down is en-
ergetically inaccessible as previously stated. As our goal is
the transport determination around the energy of the MZM,
only the bias energy between source and drain leads |eV| 
�SC → ∞ (infinite superconducting gap standard approxima-
tion) is accounted for in the derivation of our conductance
expression below [see Ref. [57] and Appendix B]. In the case
of a grounded TSC, symmetric QI-lead couplings (�) inde-
pendent of μsource − μdrain = eV, being μsource = −μdrain =
eV/2, where e is the elemental charge and V the correspond-
ing bias voltage, the crossed Andreev reflection is suppressed
and the conductance can be split into [57]

Gtotal = GET + GLAR, (5)

where ET and LAR stand for the electron tunneling and local
Andreev reflection processes, respectively, with

GET(eV) = e2

2h

[
τET
αᾱ (eV/2) + τET

αᾱ (−eV/2)
]
, (6)

wherein α = source, ᾱ = drain and vice versa, together with

GLAR(eV) = e2

2h

[
τLAR
αα (eV/2) + τLAR

αα (−eV/2)
]
, (7)

in which the transmittances τET
αᾱ = (2S + 1)�2|〈〈d↑; d†

↑〉〉ω|2
and τLAR

αα = (2S + 1)�2|〈〈d†
↑; d†

↑〉〉ω|2 are expressed in terms
of the frequency-dependent Green’s functions (GFs) of
type 〈〈Aσ ; Bσ 〉〉ω = ∑

m〈〈Aσ |m〉〈m|; Bσ 〉〉ω (details in Ap-
pendix A), due to the presence of the large spin, in which
the thermal average 〈|m〉〈m|〉 = 1

2S+1 should be taken into
account. Particularly, these GFs are indeed the time Fourier
transform (with kB = h̄ = 1) of

〈〈Aσ ; Bσ 〉〉ω =
∫ ∑

m

〈〈Aσ (t )|m(t )〉〈m(t )|; Bσ (0)〉〉eiω+t dt,

(8)
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where ω+ = ω + iη+, with η+ → 0 and

〈〈Aσ (t )|m(t )〉〈m(t )|; Bσ (0)〉〉
= −iθ (t )Z−1Tr{e−H/T

× [Aσ (t )|m(t )〉〈m(t )|, Bσ (0)]+} (9)

stands for the time-dependent GF following double-brackets
Zubarev notation [58], wherein Tr gives the trace over Eq. (1)
eigenstates, Z is the partition function, and [..., ...]+ is the
anticommutator.

In practice, the GFs should be determined via the standard
equation of motion (EOM) approach [59], which in frequency
domain, can be summarized as follows:

ω+〈〈Aσ ; Bσ 〉〉ω = 〈[Aσ , Bσ ]+〉 + 〈〈[Aσ ,H]; Bσ 〉〉ω. (10)

Additionally, Ref. [57] also ensures that the QI normalized
DOS obeys the decomposition

DOS(↑) = −�Im〈〈d↑; d†
↑〉〉ω = τET

αᾱ + τLAR
αα . (11)

As Eq. (11) is bounded to unity, it describes the electronic
overall transmittance through the QI decomposed into ET
and LAR processes, especially when it attains to its max-
imum value at zero energy, i.e., the DOS(↑)(0) = 1 value
gives the electronic zero-frequency spectral weight. In this
case, the regular fermionic state of the QI is then made equally
by the MZMs γA and γB. Equivalently, it means that the cor-
responding normalized DOS for such quasiparticles localize
Majorana states with the same spectral weights and, as a
result, the QI state is fully built by a pair of resonant MZMs.
It gives rise to the conductance Gtotal(0) = e2

h . Interestingly
enough for DOS(↑)(0) = 1/2, an isolated ordinary MZM is
found at the QI site and the zero-bias conductance is char-
acterized by the hallmark Gtotal(0) = e2

2h [3,4]. Such a case
corresponds to an ideal infinite superconducting wire. How-
ever, there is a regime in which the value DOS(↑)(0) = 1/2
is still present for a finite wire and due to the Ising interaction
between the large spin and the QI, the observation of the
conductance Gtotal(0) = e2

2h is ensured. This emerges from the
excitation that we introduce as the MIQ, in particular, by driv-
ing the system into the sweet spot for the exchange interaction
J , namely, J = Jh. In the latter, the index h stands for the
half-fermion special condition of a MZM, which is produced
by imposing DOS(↑)(0) = 1/2, from where we extract Jh for
a given S [see Fig. 3(b)I].

Therefore, to reveal the aforementioned physics about the
system conductance, we should begin evaluating Eq. (6) for
the ET process. Thus, the GF 〈〈d↑; d†

↑〉〉ω should be found via
the EOM method, which gives

〈〈d↑; d†
↑〉〉ω = 1

2S + 1

∑
m

1

ω+ − ε↑ − Jm
2 + i� − �+m

MFs

,

(12)

where �+m
MFs = K+ + (2t�)2KMFsK̃m represents the self-

energy correction due to the couplings of the QI with the
TSC and the large spin S. This also depends on the following

defined quantities:

KMFs = ω+

ω2 − ε2
M + 2iωη+ − (η+)2

, (13)

K± = ω+(�2 + t2) ± εM (t2 − �2)

ω2 − ε2
M + 2iωη+ − (η+)2

, (14)

and

K̃m = KMFs

ω+ + ε↑ + Jm
2 + i� − K−

. (15)

Concerning the LAR, the conductance of Eq. (7) needs the
evaluation of the anomalous GF 〈〈d†

↑; d†
↑〉〉ω instead. After

performing the EOM approach, it gives rise to

〈〈d†
↑; d†

↑〉〉ω = − 1

2S + 1

∑
m

2t�Km

ω+ + ε↑ + Jm
2 + i� − �−m

MFs

,

(16)

with �−m
MFs = K− + (2t�)2KMFsKm and

Km = KMFs

ω+ − ε↑ − Jm
2 + i� − K+

. (17)

However, if we want to know about the possibility of isolat-
ing MZMs in the QI, the DOS for γA and γB should be found
to examine the emergence of resonant states. To this end, we
invert Eq. (4) for γA and γB, namely, γA = (d†

↑ + d↑)/
√

2 and

γB = i(d†
↑ − d↑)/

√
2, and we calculate the GFs 〈〈γA; γA〉〉ω

and 〈〈γB; γB〉〉ω. Consequently,

〈〈γ j ; γ j〉〉ω = 1
2 [〈〈d↑; d†

↑〉〉ω + 〈〈d†
↑; d↑〉〉ω

+ ε(〈〈d†
↑; d†

↑〉〉ω + 〈〈d↑; d↑〉〉ω )], (18)

where j = (A, B) corresponds to ε = (+1,−1), respectively.
Physically speaking, the sign reversal in ε can lead to dis-
tinct quantum interference phenomena, in particular, between
those encoded by the normal GFs (〈〈d↑; d†

↑〉〉ω and 〈〈d†
↑; d↑〉〉ω)

and the corresponding superconducting (〈〈d†
↑; d†

↑〉〉ω and
〈〈d↑; d↑〉〉ω). To reveal such interference processes, we need
just to find the GFs 〈〈d†

↑; d↑〉〉ω and 〈〈d↑; d↑〉〉ω to close the
evaluation of 〈〈γA; γA〉〉ω and 〈〈γB; γB〉〉ω. By applying the
EOM method, we conclude that

〈〈d†
↑; d↑〉〉ω = 1

2S + 1

∑
m

1

ω+ + ε↑ + Jm
2 + i� − �−m

MFs

(19)

and

〈〈d↑; d↑〉〉ω = − 1

2S + 1

∑
m

2�t K̃m

ω+ − ε↑ − Jm
2 + i� − �+m

MFs

.

(20)

Naturally, we define the normalized DOS for γA and γB such
as

DOS(↑)[γ j] = −�Im〈〈γ j ; γ j〉〉ω. (21)

This formula elucidates that when the quantity
DOS(↑)[γ j](0) = −�Im〈〈γ j ; γ j〉〉ω(0) = 1 is fulfilled, it
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can be recognized as the maximum Majorana quasiparticle
transmittance or its corresponding zero-frequency spectral
weight.

Henceforward, we focus attention on the case ε↑ = 0
(grounded SC). We perceive by inspecting Eqs. (12) and
(19) that Eq. (11) becomes also DOS(↑) = −�Im〈〈d†

↑; d↑〉〉ω.

Additionally, −�Im〈〈d†
↑; d†

↑〉〉ω = −�Im〈〈d↑; d↑〉〉ω. This, in
combination with Eqs. (18) and (21), allows us to establish
that

DOS(↑) = 1
2 (DOS(↑)[γA] + DOS(↑)[γB]). (22)

Consequently, by taking into account this finding together
with Eqs. (5), (6), (7), and (11), we conclude the providential
equality as follows:

Gtotal = GγA + GγB , (23)

where

Gγ j (eV) = e2

4h
[DOS(↑)[γ j](eV/2) + DOS(↑)[γ j](−eV/2)]

(24)

stands for the conductance contribution arising from the
quasiparticle γ j within the QI.

We highlight that Eq. (23) introduces an alternative
perspective concerning the underlying physics of the con-
ductance in Eq. (5): the ET and LAR quantum transport
mechanisms are revealed as the net effect of two Majorana
quasiparticle conductances, namely, the corresponding contri-
butions arising from γA and γB, respectively. In this context,
our main findings hold for the constraint J = Jh fulfilled, thus
characterizing the system sweet spot to produce the MIQ. This
regime consists of the maximum Majorana quasiparticle trans-
mittance DOS(↑)[γ j](0) = 1, surprisingly, fractionalized and
split into DOS(↑)[γA](0) = 1/2 and DOS(↑)[γB](0) = 1/2.
Despite such equipartition, the electronic transmittance is still
given by DOS(↑)(0) = 1/2 [see Fig. 3(b)I] and, according
to Eq. (24), it ensures GγA (0) = e2

4h and GγB (0) = e2

4h . How-
ever, counterintuitively, solely GγB (0) contains a MZM in the
common sense, i.e., a resonant state, while GγA (0) shows a
dip instead, but with the same magnitude of the peak in
γB. This is the reason we call the contribution GγB (0) = e2

4h
by GMIQ(0) with attention to the emergent MIQ. This is the
unique MZM-type resonant state that appears in the system
due to the interplay between the topological superconduc-
tivity and the Ising Hamiltonian. In this case, Eqs. (5) and
(23) ensure that when the MIQ emerges, GγB (0) exhibits a
maximum and GγA (0) shows a minimum, in such a way that
only GET(0) enters into Gtotal(0) = e2

2h . It means that the LAR
process is found entirely suppressed within this regime. The
complete analysis here summarized will be discussed in the
next section.

IV. RESULTS

In the entire numerical analysis of Sec. IV A, we keep
constant ε↑ = 0 (grounded SC), λ1 = 2.12� (� = t) and
perform variations in the parameters εM, S and J . Partially
for Sec. IV B, we assume |λ1| ∼ |λ2| [� 
= 0, t → 0] from
Eq. (1) [Eq. (3)] to analyze the ABSs regime within the

framework of the effective model [33]. We should remember
that μsource − μdrain = eV represents the bias energy between
source and drain leads, with the choice μsource = −μdrain =
eV/2 in our transport calculations.

A. Majorana-Ising-type quasiparticle excitation

In Fig. 2, we present, for the QI of Fig. 1, the total con-
ductance of Eq. (5) as a function of the bias-voltage eV/�.
Particularly, in Fig. 2(a) the ideal case is considered, i.e., the
TSC wire is perfectly infinite (εM = 0) and the large spin is
found turned off (S = 0). This case is well-known, being char-
acterized by the ZBP in the conductance given by Gtotal(0) =
e2

2h [3,4]. Interestingly enough, this ZBP in the conductance
represents the isolated MZM γ1 originally attached to one
edge of the TSC wire, which leaks towards the QI site in the
form of the MZM γA. The MZM leakage from the TSC edge
into the QI is then characterized by the DOS(↑)[γA](0) = 1
and DOS(↑)[γB](0) = 0. We will provide extra details con-
cerning this issue in the discussion of Fig. 3(a)I. On the other
hand, the satellite peaks in Fig. 2(a) are the aftermath of
the splitting arising from the condition i

√
2λ1γBγ1 given by

Eq. (3) for the poor man’s Majorana regime of the system
[55,56]. Additionally, we have made explicit via Eq. (5) that
the ET and LAR processes compose the total conductance.
Thus, such a feature can be viewed in Fig. 2(b), where we
note, in particular, for the ZBP conductance that, the ET and
LAR split equally. Here we propose that it is still achievable to
obtain Gtotal(0) = e2

2h for a finite TSC wire and to also perform
the isolation of a Majorana quasiparticle at the QI site. In our
setup, such an excitation rises, in particular, dressed by the
Ising interaction. To this end, an integer large spin S should
be accounted for and be coupled to the QI with a special value
in the exchange interaction J . Thus, by evaluating J = Jh, the
amplitude Gtotal(0) = e2

2h [Eq. (23)] finally becomes restored.
However, we will verify that such a configuration corresponds
to isolate a peculiar MZM, namely, γB, with a resonant peak
characterized by the spectral weight DOS(↑)[γB](0) = 1/2
[Eq. (21)], while for γA we have the same amplitude, i.e.,
DOS(↑)[γA](0) = 1/2, but with a dip instead.

Now, we consider the presence of a large spin S. Fig-
ures 2(c) and 2(d) show the total conductance in the presence
of S = 3 and Jh = 1.335� [Fig. 3(b)I] for a finite TSC with
εM = �. The ZBP conductance in Fig. 2(c) is Gtotal(0) = e2

2h as
expected, but the decomposition into ET and LAR channels
described in Fig. 2(d) reveals a striking result: solely ET
survives, while LAR is completely suppressed at zero bias.
Below we will verify that the LAR suppression corresponds
to a quasiparticle localization in the DOS for γB, which leads
to DOS(↑)[γB](0) = 1/2. Thus, according to Eq. (24), such a
finite DOS contributes to a conductance GγB (0) = GMIQ(0) =
e2

4h , where we define the MIQ γB ≡ γMIQ.
To understand the emergence of the MIQ, we begin with

the trivial case in Fig. 3(a): The central panel discriminates
the electronic DOS(↑) into the corresponding DOS for γA and
γB [Eq. (21)] with S = 0 and εM = �. This case is regarded
as trivial once we verify that in both DOS, γA and γB resonant
states pinned at zero energy ω = 0 are present. Schematically,
the QI fermionic state can be imagined as a sphere formed
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by two MZMs depicted by two calottes. This is the manner
in which we outline pictorially the two zero-energy resonant
states, the so-called MZMs in the DOS γA and γB. This sketch
can be found in the upper-right inset of Fig. 3(a), in which
each calotte symbolizes the half-fermionic character of the
MZM. Equivalently, a calotte occupies the half volume of the
sphere and as it corresponds to a MZM, it can be surely char-
acterized by DOS(↑)[γ j](0) = 1. As aftermath, according to
Eqs. (22)–(24), these two MZMs lead to the zero-bias con-
ductance peak Gtotal(0) = e2

h . Concerning the satellite peaks
in the DOS(↑)[γB], they occur due to the overlap between
the MZMs γB and γ1. On the other hand, Fig. 3(a)II shows
the spin-down channel, which is the one decoupled from
the TSC. To analyze it on the same footing as the spin-up
channel, we assume artificially ε↓ = 0 and verifies that both
the MZMs γC and γD, which constitute this spin sector of
the QI, are then identified exactly by degenerate resonant
states. The evaluation of the DOS for the spin-down sector just
employs the GFs for the spin-up sector, but it disregards the
superconducting terms. As none of these MZMs overlap with
γ1, a full superposition of the line shapes for these MZMs
manifests in the profiles of the DOS γC and γD. Therefore,
satellite peaks do not emerge. Now, let us go back to discuss
the spin-up channel. We should pay particular attention to the
case εM = 0 depicted in Fig. 3(a)I, which corresponds to the
nonoverlapped situation between γ1 and γ2. This scenario is
the ideal one and it contains the pillars for the conductance
behavior of Fig. 2(a). Note that γB overlaps with γ1, leading
to satellite peaks in DOS(↑)[γB] and DOS(↑)[γB](0) = 0,

while γA is found isolated and localized as a well-defined
resonant zero mode with spectral weight DOS(↑)[γA](0) = 1.
Thereafter, Gtotal(0) = GγA (0) = e2

2h . This case is well-known
in literature [3,4] and points out that the MZM γA contributes
to the conductance as a resonant state in contrast to γB, which
shows a gap in DOS(↑)[γB] around zero bias. This latter
prevents a finite conductance, i.e., GγB (0) = 0. Below, we will
see that by turning on the exchange J for a given S, the
spectral profiles for the DOS(↑)[γA] and DOS(↑)[γB] will
exhibit a multilevel structure. Additionally, these densities
will be responsible, according to Eq. (24), by a nonquantized
Gtotal(0) 
= e2

h in Eq. (23). In the situation of arbitrary J, the
contributions to Gtotal(0) 
= 0 will not arise from well-defined
resonant zero-mode states in DOS(↑)[γA] and DOS(↑)[γB].
The Majorana fermion localization within the QI as a resonant
zero-mode state will only occur for the sweet spot J = Jh.

Figure 3(b) treats the presence of a large spin coupled
to the QI for εM = �. As we can see, the Ising interaction
J = 5� for S = 3 clearly affects the spectral profiles of
DOS(↑)[γA] and DOS(↑)[γB]. Basically, it introduces a
multilevel structure for the satellite peaks and modifies
drastically the MZM localization around the zero-bias.
Surprisingly, the DOS(↑)[γA] presents a valley (dip) at zero
energy and a quasiresonant MZM rises in DOS(↑)[γB]. As a
matter of fact, the latter cannot be considered a well-defined
resonant MZM: its spectral weight is not exactly an integer or
semi-integer number, and the line-shape broadening does not
obey a Lorentzian-like form. The line shapes of such spectral
densities are then distinct, but counterintuitively, their zero-
bias values coincide, i.e., DOS(↑)[γA](0) = DOS(↑)[γB](0).

As the spin-up sector of the QI is the one coupled to the TSC,
the spectral profiles in the DOS(↑)[γA] and DOS(↑)[γB] do
not strictly follow the standard angular momentum theory for
the Zeeman splitting [Eq. (2)]. Usually, this theory ensures
that for an integer S, 2S symmetrically displaced levels around
the corresponding ω = ε↑ = 0 should emerge. Here, indeed
we observe a mirror-symmetric set with S energy bands
below and above the zero bias, respectively, where nearby
peculiar spectral structures rise. We reveal that the profiles
differ significantly in this range, as aftermath of the nontrivial
interplay between the TSC and Ising exchange term. In
Figs. 4(d)–4(f), we will see that the manifestation of this effect
lies within a region comprised by cone-like walls spanned
by ω and εM in the DOS of the system. Within the cone, the
Zeeman splitting becomes unusual and the energy spacing
between the levels is simultaneously governed by J and εM .
In addition, solely the spin-down channel shows standard
Zeeman splitting, once it does not perceive the TSC. This
can be verified in Fig. 3(b)II, where the DOS for γC and γD,

as expected, present the ordinary 2S + 1 multilevel structure
ensured by Eq. (2). We highlight that upon decreasing the
exchange parameter J , the restoration of the conductance
Gtotal(0) = e2

2h can still be allowed. Thus, we should remember
that such a conductance arises from the fulfillment of the
condition DOS(↑)(0) = 1/2. Particularly, in Fig. 3(b)I, we
show exactly the points where this happens by considering
several values of S and εM 
= 0. Particularly, for S = 3, this
sweet spot occurs for J = Jh = 1.335� and its dependence
on εM is revealed as very weak, according to our numerical
calculations (not shown). It means that J = Jh = 1.335 � still
keeps the value DOS(↑)(0) = 1/2 while εM does not exceed
very much � (εM � �). Experimentally speaking, J can be
tuned by changing the tip-QI vertical distance. Thus, for
εM 
= 0, Gtotal(0) drops from e2

h to e2

2h when J = Jh. Hence, at
the sweet spot, if one knows previously the spin S of the tip,
Jh can be extracted from Fig. 3(b)I or vice versa.

In Fig. 3(c), we present the case J = Jh = 1.335� that
leads to our main finding: a localization of a resonant
state at zero energy in DOS(↑)[γB], with spectral weight
DOS(↑)[γB](0) = 1/2. The latter amplitude points out that
the ordinary MZM now is fractionalized and the value
DOS(↑)[γB](0) = 1 is not present anymore. This fractional-
ized MZM, which we call MIQ, then leads to a conductance
GγB (0) = GMIQ(0) = e2

4h as ensured by Eq. (24). The value
DOS(↑)[γB](0) = 1/2 can be pictorially viewed by the half
calotte found in the lower-right inset of Fig. 3(c), which
symbolizes the MZM fractionalization within the QI state.
Nevertheless, to complete the total conductance Gtotal(0) =
e2

2h , the zero-bias value for DOS(↑)[γA](0) should coincide,

i.e., DOS(↑)[γA](0) = 1/2 and, as aftermath, GγA (0) = e2

4h as
well. Here we emphasize that in DOS(↑)[γA](0) a quantum
destructive interference manifests and a resonant state does
not rise at zero bias. Moreover, it is capital to clarify the
underlying mechanism to produce the MIQ: the key idea is
the decrease of J, thus forcing the merge of the 2S side bands
(satellite peaks) of the system towards the zero energy, where
a resonant level is pinned. As a result, this sum of ampli-
tudes for the satellite peaks interferes constructively at zero
energy, giving rise to DOS(↑)(0) = 1/2 for J = Jh. Further,
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FIG. 4. Color maps of Eqs. (11) and (21) for the QI, γA and γB DOS, respectively, spanned by the frequency ω and εM : (a) In the case
S = 0, the ZBP in the DOS(↑) arises from the individual ZBPs found in DOS(↑)[γA] [panel(b)] and DOS(↑)[γB] [panel(c)], due to the MZMs
γA and γB that act as the building blocks of the QI state ε↑ = 0 [Eq. (22)]. They reveal that the system does not contain isolated MZMs and that
the overlapped γ1 and γ2 split the zero-mode energy state leading to the upper and lower arcs in (a) and (c). (d)–(f) reveal the influence of S = 3
and J = 5� on the QI, where we can clearly see a 2S + 1 multilevel structure centered at ω = 0. The upper and lower arcs, distinctly, show
2S levels each. The central region of (e) has a valley-type structure in contrast to that for (f), which points out a quasiresonant MZM. In both
cases, the 2S + 1 multilevel structure is delimited by cone-like walls up to a threshold in εM (not indicated), where above it the DOS(↑)[γA]
and DOS(↑)[γB] exhibit a zero mode with the lines of the walls parallel to each other. For this situation, the TSC plays no role and the MZMs
γA and γB stay paired as in (a)–(c). (g)–(i) hold for the sweet spot J = Jh = 1.335�, where we have the zero-frequency valley and peak
well-resolved in the DOS(↑)[γA] and DOS(↑)[γB], respectively. In the latter, the MIQ rises as aftermath of the partial merge of the 2S + 1
multilevel structure centered at ω = 0 upon decreasing the coupling J . We call attention to the vertical lines, which represent slice cuts of the
cases profoundly explored in Figs. 2 and 3.

our findings do not depend on the sign of J and in case of
a semi-integer large spin, the multilevel structure is even and
a zero energy is absent in the spectrum. In this manner, the
MIQ cannot be excited. Concerning Figs. 3(c)I and 3(c)II, we
verify that for εM � � (or εM → ∞) the DOS for the Majo-
rana fermions are degenerate. For extremely short TSC wires
(εM → ∞), the energy level εM for the orbital f [Eq. (3)] is
highly off resonance of the QI energy ε↑ = 0, thus making
the QI and TSC decouple from each other. Thus, the spin-up
channel behaves as the corresponding spin down, which is the
one permanently decoupled from the TSC. This implies that
the MIQ cannot be seen for very short wires.

Figure 4 summarizes our findings exhibiting color maps
of Eqs. (11) and (21) for the electronic and Majorana

DOS, respectively, and spanned by ω and εM . Figures 4(a)–
4(c) describe the case S = 0, which is characterized by
DOS(↑)(0) = 1 and DOS(↑)[γA](0) = DOS(↑)[γB](0) = 1.
This corresponds to the trivial regime where two MZMs
localize around zero bias and appear at the QI site. Such
a characteristic lies on the ZBPs and appears as horizontal
lines in the representation of Figs. 4(a)– 4(c) for any finite
value of εM . As we can see, the satellite peaks in Fig. 4(a)
arise from Fig. 4(c). By turning on the Ising interaction with
S = 3 and J = 5�, the spectral profiles of the DOS acquire
distinct patterns: the satellite peaks obey approximately the
standard angular momentum theory for the Zeeman splitting,
thus exhibiting 2S split sidebands. In this situation, the lin-
ear dependence on the exchange parameter J is lacking. In
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addition, the central regions of Figs. 4(a)– 4(c) are converted
into the domains delimited by cone-like walls as those found
in Figs. 4(d)–4(f). While these walls persist up to a threshold
in εM (not marked in the figures), a sophisticated interplay
between the TSC and the Ising interaction rules the physics
of the system and allows the possibility of the MIQ existence.
Note that for εM > �, a 2S + 1 multilevel central structure
finally becomes resolved. It is worth mentioning that for εM =
�, the line cuts in Fig. 4 given by the vertical dashed lines
then correspond to the cases discussed in detail in Fig. 3. We
would like to mention that the choice εM = � corresponds to a
strong limit, just to better resolve our findings. However, while
εM stays within the aforementioned cone-like walls, the effect
persists. In Figs. 4(e) and 4(f), we note the rising of the valley
and the quasiresonant MZM spectral structures, respectively,
upon increasing εM . However, much above the threshold in
εM , the linear spacing in J for the Zeeman splitting is restored
and this situation is that delimited by the marked horizontal
dashed lines. Finally, Figs. 4(g)–4(i) show the merge of the
multilevel structure in the sweet spot J = Jh = 1.335�, lead-
ing to the emergence of the MIQ in the Majorana channel γB,

while the valley continues in the channel γA. Therefore, within
the cone-like wall domain, the sector γB of Majorana fermions
for the QI makes explicit a constructive interference process at
zero bias, while the corresponding in γA displays a destructive
behavior. In this regime, the conductance GLAR(0) becomes
fully quenched and just GET(0) contributes to Gtotal(0) = e2

2h
[Fig. 2(d)].

B. Poor man’s Majoranas, parity qubit, and ABS regime

In this section, we clarify that the MIQ excitation can be
classified as a poor man’s Majorana [55,56] and, to demon-
strate such, the analysis of the DOS for the MZMs of Eq. (3)
placed at the Kitaev dimer right edge is performed. To accom-
plish this goal, we employ pertinent GFs from Appendix C.
Additionally, we discuss the possibility of having a MIQ
excitation-based parity qubit for quantum computing purposes
[55] and the ABSs regime within the effective model of Eq.(1)
[33]. To this end, let us focus again on the left edge of the
Kitaev dimer, i.e., the QI. This system part description is
found in the central panel of Fig. 3(a) (εM = �) and its inset,
Fig. 3(a)I (εM = 0), which account for the QI operator d↑,

where the MZMs γA and γB reside [Eq. (4)]. Particularly, these
panels show two resonant and single MZMs, respectively,
while in Fig. 5(a), a resonant MZM appears permanently in
the DOS (−1/π )Im〈〈γ2; γ2〉〉ω (not normalized, once leads
are lacking at this side) for γ2 in both the situations, thus
describing the MZM placed at the TSC right edge. Such
a characteristic is entirely understood within the theoretical
framework for the Kitaev dimer described in Ref. [55]. The
latter points out that systems based on Eq. (3) for QIs tunnel
and are Andreev coupled, which in our case are given by the
d↑ and f orbital sites, and could contain the so-called poor
man’s Majorana. These MZMs, in particular, cannot be con-
sidered topologically protected as true MZMs, and emerge at
the Leijnse and Flensberg sweet spot [55] when the following
set of parameters is obeyed: J = 0, � = t and εM = ε↑ = 0.
This scenario can be observed in Figs. 3(a)I and 5(a)I, which
reveal resonant MZMs, namely, the poor man’s Majorana,

FIG. 5. (a) and (b) show Leijnse and Flensberg [55] and our
sweet spots, respectively, for poor man’s Majoranas. The Andreev
bound state (ABS) regime of Refs. [33,34] appear depicted in (c) and
(d). Additionally, fractionalization of zero modes also occurs in the
latter.

with one placed at the left and the other at the right of the
Kitaev dimer. This statement holds, since the spectral weights
are given by the DOS(↑)[γA](0) = 1 and DOS(↑)[γB](0) = 0
for the QI [Fig. 3(a)I], while we have DOS[γ1](0) = 0 and
DOS[γ2](0) 
= 0 for the Kitaev dimer’s right edge, as depicted
in the inset of Fig. 5(a). For the aforementioned case, the
nonlocal fermion η = (γA − iγ2)/

√
2 can be made via the

linear combination between the resonant MZMs γ2 and γA

localized at the right and left of the dimer, respectively [55].
In this manner, the fermion parity, which is given by the
electronic occupation of η†η, becomes a feasible quantity for
quantum computing [55]. For the resonant MZMs γA and γB

at the left, depicted in the central panel of Fig. 3(a) and the
corresponding Fig. 5(a), i.e., the situation off the Leijnse and
Flensberg sweet spot with εM = �, the fragility of these poor
man’s Majoranas becomes evident. In such a case, the spectral
weights DOS(↑)[γA](0) = 1 and DOS(↑)[γB](0) = 1 occur
simultaneously at the QI. Thus, according to Ref. [55], the
zero-mode dip in the DOS (−1/π )Im〈〈γ1; γ1〉〉ω represents
the spill of the MZM γ1 from the f orbital site over the QI,
being characterized by the DOS(↑)[γB](0) = 1. As aftermath,
these two resonant MZMs inevitably introduce an ambigu-
ous definition for the nonlocal parity qubit, i.e., it could be
η = (γA − iγ2)/

√
2 or η = (γB − iγ2)/

√
2. In this way, the

parity qubit becomes not well-defined and its employment
compromised, as expected, for quantum computing.

With this in mind, we back to our sweet spot in Fig. 3,
where the Ising term Jh, by considering εM = �, siphons
off the DOS(↑)[γA](0) = 1 [Fig. 3(a)] from resonant pro-
file towards one antiresonant with DOS(↑)[γA](0) = 1/2
[Fig. 3(c)], while it keeps the DOS(↑)[γB = γMIQ](0) = 1/2
[Fig. 3(c)] resonant after such a deviation from the value
DOS(↑)[γB](0) = 1 [Fig. 3(a)]. As the MZM given by γMIQ

exhibits resonant character and its partner γA is of antiresonant
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type, it means that the QI does not host exactly one MZM.
It is an indication that a MZM is spilled over the QI from
the f orbital site, where the DOS[γ1](0) = 0 and the resonant
DOS[γ2](0) 
= 0 still persist, as can be seen in Fig. 5(b). Thus,
such features reinforce that the MIQ excitation obeys the
properties of the poor man’s Majorana [55]. Let us remember
that in Figs. 3(a)I and 5(a)I, the left and right resonant MZMs
were linearly combined to build η when εM = 0. However,
an extrapolation to η = (γMIQ − iγ2)/

√
2 for εM 
= 0 instead,

despite being γB = γMIQ resonant and γA not, deserves further
investigation, once Ref. [55] does not cover such a limit. We
leave the advances on this particular parity qubit issue to better
exploration elsewhere, since they do not belong to the scope
of our current research. We call attention to our main findings,
which consist of showing one way of realizing the fractional-
ization of MZMs, in particular, via the Ising coupling to a QI
site.

Still concerning the nature of the fractionalized spectral
weight peak given by DOS(↑)[γMIQ](0) = 1/2, we attribute
its origin to several modes that, added up, result in a half-
integer contribution. Indeed, each mode, as we know, due to
the QI-leads coupling, becomes a band centered at the mode in
the absence of the leads. As the separation between the modes
(centers of these bands) depends directly on the Ising coupling
J, by decreasing to J = Jh (our sweet spot), it favors the par-
tial merge of the 2S + 1 odd number of bands at zero energy,
where there is an accumulation point. This is naturally im-
posed by the choice of an integer S. Consequently, we find the
peak DOS(↑)[γMIQ](0) = 1/2 and the dip DOS(↑)[γA](0) =
1/2, when we fix DOS(↑)(0) = 1/2 in Eq. (22).

In summary, as we demonstrated, the MIQ excitation (the
resonant one) and γA (the corresponding partner antiresonant)
at the system left, together with γ2 at right, are poor man’s
Majoranas, since they obey their properties of partially pro-
tection (not topological) introduced by Ref. [55]. It is worth
mentioning that poor man’s Majoranas were recently verified
in the experiment of Ref. [56] and, in our case, the poor
man’s Majorana observed at the QI show a fractionalized
characteristic, due to the Ising coupling. At the Leijnse and
Flensberg sweet spot [55], the Ising term plays no role and we
still have DOS(↑)(0) = 1/2, but with the DOS(↑)[γB](0) = 0
and a peak in the DOS(↑)[γA](0) = 1, thus reflecting not
fractionalized MZMs. In both sweet spots, it is capital to note
that we have always Gtotal(0) = e2

2h , once we adopt the right
side of Eq. (4) as the basis for the quasiparticle excitations of
the electron at the QI [Eq. (11)]. This basis is convenient to
evaluate the system quantum transport and elucidates if just
one MZM (Leijnse and Flensberg sweet spot) or half of each
from the MZM couple of the quasiparticle excitations at the
QI (our sweet spot), is really contributing to Gtotal(0) = e2

2h .
Figures 5(c) and 5(d) discuss the ABS regime, which

can be captured by imposing |λ1| ∼ |λ2| [� 
= 0, t → 0 ] in
Eq. (1) [Eq. (3)], as pointed out by Ref. [33]. It is worth men-
tioning that such a scenario corresponds to place the MZMs γ1

and γ2 practically at the same TSC edge [see Fig. 1(d)], with
model parameters marked in Fig. 5(c), from where we high-
light � = 1.5� and t = 0.01�. Thus, it leads to a conductance
Gtotal(0) = e2

2h , which is purely from ET, but counterintu-
itively, assisted by Andreev reflection. It means that although

GLAR(eV) → 0 through the QI flanked by the leads [Eqs. (7),
(16), and (20)], the Kitaev dimer, indeed still admits Andreev
reflection, in particular, between the d↑ and f orbitals given
by the terms �d↑ f + H.c. [Eq. (3), [55]], which then build
the quasiparticle electronic state at the QI. As Eqs. (23) and
(24) also determine Gtotal(0) = e2

2h , in Fig. 5(c), we evaluate
then the DOS(↑)[γ j] = −�Im〈〈γ j ; γ j〉〉ω [Eq. (21)], which
strongly depend only on the GFs 〈〈d↑; d†

↑〉〉ω and 〈〈d†
↑; d↑〉〉ω

[Eq.(18)], since 〈〈d↑; d↑〉〉ω = 〈〈d†
↑; d†

↑〉〉ω → 0 [Eqs. (16) and
(20)] in the ABS regime. By looking at Eqs. (A1) and (A2) in
Appendix A, we verify that 〈〈d↑; d†

↑〉〉ω and 〈〈d†
↑; d↑〉〉ω have a

dependence on �〈〈 f †|m〉〈m|; d†
↑〉〉ω and �〈〈 f |m〉〈m|; d↑〉〉ω,

which are modulated by the SC pairing � and GFs associ-
ated to �d↑ f + H.c. for the Andreev process. Such features
establish the Andreev reflection between the QI and f , while
GLAR(eV) → 0 is evaluated at the interface QI leads. Addi-
tionally, we should highlight that similar analysis in observing
the ABSs regime, in particular, within the effective model of
Eq. (1) but without the Ising term, was already performed by
some of us via the analogous Eq. (20) of Ref. [34], and now
we extend it to the current Hamiltonian. As consequences,
Fig. 5(c) also exhibits the DOS siphon off to 1/2 for γA and
γB, which, distinct from Figs. 5(a) and 5(b) with � = t, are
identically resonant. In Fig. 5(d), a pair of ABSs manifests
too. To conclude, Gtotal(0) = e2

2h could be reproduced by both
the poor man’s Majoranas and ABS regimes.

V. CONCLUSIONS

We found that the fractionalization of regular MZMs be-
comes a feasible task once an integer large spin S is exchange
coupled to a QI, in particular, when it acts as the new edge
of a finite TSC in 1D. A counterintuitive regime arises due
to a sweet value for the Ising coupling, which is capable
of localizing a fractionalized MZM. We introduce such an
excitation as the MIQ. As aftermath, we report the emergence
of one MZM with the maximum spectral weight reduced by
half and exhibiting resonant character. In contrast, the other
MZM mode in the QI does not localize around zero energy,
but shows the same spectral weight of the resonant MZM
via an antiresonant profile. Interestingly enough, due to the
localization of the MIQ, half of the quantum conductance is
made essentially by the normal electronic contribution, while
that from the Andreev reflection is totally lacking between
the QI and leads. This behavior differs from that observed
in perfectly infinite TSC wires, in which one MZM localizes
at the QI site with maximum spectral weight given by unit
and with electronic and Andreev conductances equally split at
zero bias. Therefore, our proposal points out a manner to in-
duce, within a more realistic perspective from an experimental
point of view, a quantum state at the edge of a short TSC in
1D. Additionally, our MIQ is demonstrated to be a poor man’s
Majorana [55,56].
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APPENDIX A: GREEN’S FUNCTIONS FOR THE
SYSTEM’S LEFT SIDE

As the GFs in the presence of the large spin obey the nota-
tion 〈〈Aσ ; Bσ 〉〉ω = ∑

m〈〈Aσ |m〉〈m|; Bσ 〉〉ω [58], here we make
explicit the details in the EOM approach to find the elements
of type 〈〈Aσ |m〉〈m|; Bσ 〉〉ω. In what follows, we have(

ω+ − ε↑ − Jm

2
+ i�

)
〈〈d↑|m〉〈m|; d†

↑〉〉ω

= 1

2S + 1
− t〈〈 f |m〉〈m|; d†

↑〉〉ω − �〈〈 f †|m〉〈m|; d†
↑〉〉ω,

(A1)(
ω+ + ε↑ + Jm

2
+ i�

)
〈〈d†

↑|m〉〈m|; d↑〉〉ω

= 1

2S + 1
+ t〈〈 f †|m〉〈m|; d↑〉〉ω + �〈〈 f |m〉〈m|; d↑〉〉ω.

(A2)

The other two terms are given by(
ω+ + ε↑ + Jm

2
+ i�

)
〈〈d†

↑|m〉〈m|; d†
↑〉〉ω

= t〈〈 f †|m〉〈m|; d†
↑〉〉ω + �〈〈 f |m〉〈m|; d†

↑〉〉ω (A3)

and(
ω+ − ε↑ − Jm

2
+ i�

)
〈〈d↑|m〉〈m|; d↑〉〉ω

= −t〈〈 f |m〉〈m|; d↑〉〉ω − �〈〈 f †|m〉〈m|; d↑〉〉ω. (A4)

And, finally, the last two GFs associated with the f site is

〈〈 f |m〉〈m|; d↑〉〉ω = −t

(ω+ − εM )
〈〈d↑|m〉〈m|; d↑〉〉ω

+ �

(ω+ − εM )
〈〈d†

↑|m〉〈m|; d↑〉〉ω (A5)

and

〈〈 f †|m〉〈m|; d↑〉〉ω = t

(ω+ + εM )
〈〈d†

↑|m〉〈m|; d↑〉〉ω

− �

(ω+ + εM )
〈〈d↑|m〉〈m|; d↑〉〉ω. (A6)

With this group of GFs, we can determine the complete de-
scription of the QI.

APPENDIX B: QUANTUM TRANSPORT FORMALISM

Based on the quantum transport Keldysh formalism of
Ref. [57], here we wrap up a summary of steps in de-
riving Eqs. (6), (7), and (11), which assumes the subgap
regime |eV|  �SC → ∞ (infinite superconducting gap stan-
dard approximation) and wide-band limit characterized by an

electron-hole symmetry in the QI-leads coupling, which is
given by � [see the main text below Eq. (1)]. As a result, we
have as the total current Iα at the metallic lead α the following:

Iα = IET
α + ILAR

α + ICAR
α , (B1)

where

IET
α = e

h

∫
dετET

αᾱ (ε)
[

f e
α (ε) − f e

ᾱ (ε)
]
, (B2)

ICAR
α = e

h

∫
dετCAR

αᾱ (ε)
[

f e
α (ε) − f h

ᾱ (ε)
]
, (B3)

and

ILAR
α = e

h

∫
dετLAR

αα (ε)
[

f e
α (ε) − f h

α (ε)
]
, (B4)

where IET
α and ICAR

α refer to the currents for the ET and crossed
Andreev reflection (CAR) between the QI and the lead α, but
with occupation probabilities of an electron f e

ᾱ (ε) and hole
f h
ᾱ (ε) states at lead ᾱ, respectively, where f j

α (ε) stands for
the Fermi distribution at lead α and j = e(h) for the electron
(hole) quasiparticle. For ILAR

α , the hole emission is in the same
terminal α, once it depends on f h

α (ε).
As the total current should conserve, Kirchhoff’s law holds

Iα + Iᾱ + IS = 0. Additionally, the following assumptions are
performed: μsource = −μdrain = eV/2 and the TSC is sup-
posed to be grounded (null chemical potential μSC = 0). The
former implies f e

α (ε) = f h
ᾱ (ε) and, consequently, ICAR

α = 0
from Eq. (B3), while the latter gives IS = 0 and finally Iα =
−Iᾱ . It means that the current only changes signs from ter-
minal α to ᾱ, the conductance Gtotal being lead independent:

Gtotal = dIα
dV

= dIET
α

dV
+ dILAR

α

dV
= GET + GLAR, (B5)

with

dIET
α

dV
= e2

2h

1

T

∫
dετET

αᾱ′ (ε)
{

f e
α (ε)

[
1 − f e

α (ε)
]

+ f e
ᾱ (ε)

[
1 − f e

ᾱ (ε)
]}

(B6)

and

dILAR
α

dV
= e2

2h

1

T

∫
dετLAR

αα (ε)
{

f e
α (ε)

[
1 − f e

α (ε)
]

+ f e
ᾱ (ε)

[
1 − f e

ᾱ (ε)
]}

, (B7)

where we employed the identity f e
α (ε) = f h

ᾱ (ε) again and

∂ f e
α(ᾱ)(ε)

∂V
= ± e

2T
f e
α(ᾱ)(ε)

[
1 − f e

α(ᾱ)(ε)
]
, (B8)

with kB = 1, f e
α (ε) = f (ε − eV/2), f e

ᾱ (ε) = f (ε + eV/2),
and f (x) = 1/(1 + ex/T ).

As 1
T f e

α(ᾱ)(ε)[1 − f e
α(ᾱ)(ε)]) = (− ∂ f e

α(ᾱ) (ε)
∂ε

) → δ(ε ∓
eV/2) when T → 0 K, then we deduce Eqs. (6) and (7). To
conclude, we should remember that the Keldysh formalism of
Ref. [57] also ensures

Iα = e

h

∫
dε(−�Im〈〈d↑; d†

↑〉〉ω )
[

f e
α (ε) − f e

ᾱ (ε)
]
. (B9)

Therefore, by comparing Eqs. (B9) and (B1), together with
Eqs. (B2) and (B4), we finally determine Eq. (11).
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APPENDIX C: GREEN’S FUNCTIONS FOR THE SYSTEM
RIGHT SIDE

Here we show the GFs for the f orbital site and the MZMs
γ1 and γ2 of the Kitaev dimer’s right side [Eq. (3)]. These
quantities are important for Fig. 5 and make explicit the poor
man’s Majorana [55,56] and ABS [33] regimes in our system.
As we know that γ1 = 1√

2
( f † + f ) and γ2 = i√

2
( f † − f ), we

naturally find the GF

〈〈γ j ; γ j〉〉ω = 1
2 [〈〈 f ; f †〉〉ω + 〈〈 f †; f 〉〉ω
+ ε(〈〈 f †; f †〉〉ω + 〈〈 f ; f 〉〉ω )], (C1)

where j = (1, 2) corresponds to ε = (+1,−1), respectively.
By applying Eq. (10) for the EOM approach, we obtain

〈〈 f ; f †〉〉ω = 1

(2S + 1)

∑
m

1

(ω+ − εM − �+M )
, (C2)

〈〈 f †; f 〉〉ω = 1

(2S + 1)

∑
m

1

(ω+ + εM − �−M )
, (C3)

〈〈 f †; f †〉〉ω = 1

(2S + 1)

∑
m

2�tK−M

(ω+ + εM − �−M )
, (C4)

and

〈〈 f ; f 〉〉ω = 1

(2S + 1)

∑
m

2�tK+M

(ω+ − εM − �+M )
, (C5)

with �±M = K±
C + (2�t )2KDK±M being the self-energy due

to the interaction of the f site with the QI, which can be
expressed in terms of the defined quantities

K+M = KD

(ω+ + εM − K−
C )

, (C6)

K−M = KD

(ω+ − εM − K+
C )

, (C7)

KD = (ω + iη+) + i�

(ω + i� + iη+)2 − ε2
↑ − Jm

[
ε↑ + Jm

4

] , (C8)

and

K±
C =

[
(ω + iη+)(t2 + �2) ± ε↑(t2 − �2)

(ω + i� + iη+)2 − ε2
↑ − Jm

[
ε↑ + Jm

4

]
]

+
[

± Jm
2 (t2 − �2) + i�(t2 + �2)

(ω + i� + iη+)2 − ε2
↑ − Jm

[
ε↑ + Jm

4

]
]
. (C9)
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