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In comparison to transport of spin polarization in ferromagnets, transport of electric polarization in ferro-
electrics remains less explored. Taking an excitonic insulator model of electronic ferroelectricity as a prototypical
example, we theoretically investigate the low-energy dynamics and transport of electric polarization by micro-
scopically constructing the Ginzburg-Landau action. We show that, because of the scalar nature of the excitonic
order parameter, only the longitudinal fluctuations are relevant to the transport of electric polarization. We also
formulate the electric-polarization diffusion equation, in which the electric-polarization current is defined purely
electronically without recourse to the lattice degrees of freedom.
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I. INTRODUCTION

Since the demonstrations of spin transport through an insu-
lating ferromagnet [1,2], much attention has been focused on
the spin transport in magnetic insulators [3—5]. Because there
are no conduction electrons in magnetic insulators, the spins
are not transported by individual excitations of electrons, but
instead are carried by collective spin excitations called spin
waves or magnons. These collective excitations are, how-
ever, not limited to magnetically ordered states. In general,
a broken-symmetry state is accompanied by the correspond-
ing collective excitations, and a ferroelectric state is another
archetype of such broken-symmetry states [6—8]. Therefore, it
is natural to expect that a novel transport phenomenon can be
observed in the ferroelectric state.

Recently, in a series of publications [9—12] the transport
of electric polarization in a displacive ferroelectric material
has been discussed extensively. It is then argued that the
electric polarization is carried by collective excitations of the
ferroelectrically ordered state, termed “ferrons.” Then, the
polarization current, or “ferron” current, is defined in terms
of the ion displacement field or the phonon operators, because
the main focus of those papers is on the ferroelectricity of
the displacive type. Conceptually, however, in such a case it
is rather hard to distinguish between the ferron current and
the phonon current, since the phonon excitations are simulta-
neously the electric-polarization excitations in the displacive
ferroelectric materials [13].

In literature, there is another type of ferroelectricity other
than the displacive ferroelectricity, known as the electronic
ferroelectricity [8]. A possible realization of the electronic
ferroelectricity has extensively been investigated in two-
dimensional rare-earth ion oxides R Fe,O4 where R denotes
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rare-earth-metal elements (R = Lu, Y, Yb, etc.) [14-16]. The
electronic ferroelectricity is in general caused by a kind of
orbital ordering, and this type of ordering is primarily distinct
from the phonon degrees of freedom. Therefore, it is possible
in this system to define the “ferron” current purely electroni-
cally, without relying on the phonon operators.

In this paper we focus on the electronic ferroelectricity,
and we investigate the collective excitations and electric-
polarization current in the ordered state. For this purpose, we
consider an excitonic insulator model of electronic ferroelec-
tricity [17]. The excitonic insulator is an electrically insulating
material with spontaneously formed bound pairs of electrons
and holes, which is otherwise a semimetal or narrow-gap
semiconductor [18-20]. When the electron orbital and the
hole orbital have opposite parities and when they hybridize,
the excitonic insulator possesses a spontaneous polarization,
which results in the electronic ferroelectricity [17,21,22].
Specifically, we follow the approach of Ref. [22] and con-
sider the Falicov-Kimball Hamiltonian [23-25] defined on
a cubic lattice. Then, utilizing the functional integral meth-
ods [26], we microscopically construct the Ginzburg-Landau
(GL) action and investigate the resultant collective excitations.
Moreover, we discuss how to define the electric-polarization
current, or ferron current, without recourse to the phonon
degrees of freedom in the case of electronic ferroelectricity.

The plan of this paper is as follows. In Sec. II, we define our
model and present the procedure to microscopically construct
the GL action. In Sec. III, we show analytic expression for
each term of the GL action. In Sec. IV, we analyze the GL
action in the mean-field approximation as well as in the
Gaussian approximation, by using numerical calculations.
In Sec. V, we define the electric polarization in our model,
and we investigate the dynamics and transport of electric
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polarization. Finally, in Sec. VI, we discuss and summarize
our results. We use the units /i = kg = ¢ = 1 throughout this

paper.

II. MODEL

Following Ref. [22], we begin with the spinless Falicov-
Kimball Hamiltonian

H =Ho+ Hq, (1)

where the first term on the right-hand side,
_ i (€ Vo\(dp
Ho=) (). f )(V; EO) ( 7) )
p

describes the quadratic part of the Hamiltonian. Here, d;
creates a d electron with momentum p and energy €,, whereas
f; creates an f electron of momentum p and energy Ey. The
off-diagonal matrix element V), is the hybridization between
d and f electrons, and V' means the complex conjugate of
Vp. The chemical potential is set to zero, and all energies are
measured from the chemical potential. The second term,

U
Hi=—> nnl 3)
k

describes the on-site Coulomb repulsion between the d and
f electrons, where n,((d) = Zp d;derk, n,(cf ) = Zp f; fptk» and
N is the number of lattice sites. Note that, for the excitonic
insulator phase to simultaneously possess the ferroelectric
order, the ferroelectric order parameter must be formed within
the same spin component. Therefore, the up and down spin
components are completely decoupled in our approach, and
we can safely use the spinless model by absorbing the ef-
fect of two spin components into the spin degeneracy factor.
When there exists a finite spin-orbit interaction, although
spin is no longer a good quantum number, the spin in-
dex is replaced by the “pseudospin” index which labels the
Kramers doublet (pseudospin up and down) because of the
time-reversal symmetry [27]. Therefore, the present approach
remains unchanged qualitatively even in the presence of a
sizable spin-orbit interaction.

The Falicov-Kimball model [Eq. (1)] is known to possess
the d-f excitonic insulator phase as a mean-field solution
[28-30]. As shown below, in the presence of the interorbital
hybridization, the excitonic insulator phase simultaneously
possesses the electronic polarization. Applicability of the
electronic ferroelectricity model to mixed-valence compounds
has been discussed [21,22], ranging from SmBg [31] and
TmSeq.45Teg 55 [32] to SmsSey [33]. Although the existence
of the excitonic insulator phase in this model has been chal-
lenged by several authors [25,34-36], we respect the fact in
this work that this is a minimal model system that exhibits the
electronic ferroelectricity [17,21,22]. We therefore start from
this model and pursue the consequence of the emergence of
electronic ferroelectricity. Following this philosophy, we first
change the fermion ordering in H; and rewrite the Hamilto-
nian in the following way,

U
H=H— Xq:B;Bq, )

where we have defined

By = fidpig. ()
p

and we have disregarded terms which can be absorbed in the
chemical potential shift. Note that we ignore phonons here.
However, in the candidate excitonic insulator Ta;NiSes, the
active role of phonons has been pointed out [37], and ignoring
influences of phonons on the excitonic insulator phase in a
real material could be an oversimplification. Note also that, as
we see below, the key ingredients in our model Halmiltonian
(1) are as follows: (i) two orbitals (d and f) with opposite
parities, and (ii) a nonzero hybridization V, between the two
orbitals, both of which are important to stabilize the electronic
ferroelectricity phase. Concerning the latter point, if we take
SmBg as an example, the magnitude of V, is estimated to be
of the order of ten to hundreds of meV [38].

In the following, we use the functional integral representa-
tion of the problem [26] and construct the GL action. We first
define the two-component field ¢ by

dp
= , 6
v=(%) ©
and we represent H as

Ho=Y_ ¥ iho()Vy. )
p
where we introduced the 2 x 2 matrix

oo = (2 ). ®)

Then, the partition function for the present model [Eq. (4)] is
represented as

z— / Dy, e, ©)

where the action S is defined by

1T —~ U
S = fo dt 2,,: Vp O +ho@)Vp — Xq:Bqu ;

(10)
and D[y, ¥ '] in Eq. (9) denotes the functional integral over
¥ and ¥, with an understanding that v and v ' represent the
Grassman variables when used within the functional integral
[39].

Our next step is to use the Hubbard-Stratonovich transfor-
mation to obtain the effective action. To do so, we insert the
identity

1 1/T
1=/D[c,c*]exp —52/0 dreze, | A
q

into Eq. (9), where the normalization factor is understood
to have been absorbed into the integration measure over the
auxiliary field ¢. Then, after a shift transformation,

U
S =A47q+

ﬁBq, (12)
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the partition function can be written as
= f DIA, A¥le 0 ' 47X, 878 / Dy, v'1eS, (13)

where & is given by

T . .
S = / At >yl (13 + ho(PNSpy + i (p. )Wy,
0 oy
N (14)
and the 2 x 2 matrix A is defined by

S A
hl(P,P)=ﬁ<A;/_p Iz)p>_ (15)

The action in Eq. (14) is quadratic with respect to the fermion
field v, and hence the Gaussian integral over i can be per-
formed. This procedure yields the effective action represented
solely by the order-parameter field A,

Z = Z() X /D[A, A*] eXp{—Seff}, (16)

where Z is the partition function in the absence of A. The
effective action S is then given by

/T 1 o 1 .
Seffzf erUA;quLTrZ?(Ghl), (17)
0 q I=1

where G = —(0; +/h\0)_1 is the Green’s function. The effec-
tive action Ser can be expanded in powers of A,

Seir =) 8, (18)

where the index [ in S; represents the power with respect to A.

III. GINZBURG-LANDAU ACTION

In this section, focusing on a region near the phase tran-
sition, we expand the effective action [Eq. (18)] up to the
quartic term with respect to A. In the absence of an external
electric field, the resultant GL action has terms of the second
and fourth orders as follows:

SoL = S + S, (19)

where higher-order terms are disregarded. Note that, because
of the two-band nature of the system under discussion, this
GL action has more terms than a single-band case [26].

In the following calculations, it is convenient to work with
the Matsubara frequency representation, such that we intro-
duce the expansion

Ag(T) =T Y Agiy, e, (20)

where i = +/—1, and w,, = 27Tm is a bosonic Matsubara
frequency with integer m. Besides, the Green’s function G has
the following representation:

~ . _ Gi(p,ie,) Ga(p,iey,)
Glp.ien) = <G3<p, ign)  Gi(p.icy)
1 e, —
=—.(’8” B Ve ) @)
D(p.ie,)\ Yy i€y — €p

where  D(p, ie,) = (i, — A )ie, — A,), & =2nT(n+
1/2) is a fermionic Matsubara frequency with integer n, and

)»i is the dispersion determined by det[)»i ho(p)]1 = 0.
More precisely, Ai have expressions
Ay = 0p £ Ry, 22)
where O, and R, are given by
I +EQ
Op = pT, (23)

2
R, = \/(Sl’ 2E°> IV, (24)

A. Quadratic term

We first calculate the quadratic term of the action, which
has the following representation:

1
= 5 2 (@@AAq + a(@AGA" g +a3(A)AqA ),
q

(25)
where we have introduced a shorthand notation q = (g, iw,,).
Here, the coefficient ¢;(q) (i = 1, 2, and 3) is given by

1 T
a@ =25 +3 2 GP+AGE |, (6
p
T
@@ =+ > G+ DGa(p), 27
p
T
a3(@) = 5 D Gs(p + AGs(P), (28)
p

where we have defined p = (p, ie,).

Now, following the philosophy of the GL expansion, we
focus on small spatial variations as well as slow temporal
variations. In the present formulation, this corresponds to an
expansion for small ¢ and w, where w is a real frequency after
the analytic continuation iw,, — @ + i8 (§ = 0T). Under the
static condition w = 0, expansion with respect to g gives the
bare correlation length,

ai(q,0) — a(0,0) = &/ ¢°, (29)
ax(q, 0) — ax(0,0) = £24°, (30)
a3(q, 0) — a3(0,0) = & ¢°, (31
where & (i = 1, 2, and 3) is given by
,_ 2T [G1(P)I*G4(p) ) Ai
= ;—3 {G(p) > } (32)
T« Gi(P)G2(p)P M,
& = —Z%{Gl(p)vﬁ 7}, (33)
), T GG ()P 2 My
£ = N;—3 {G (P)v, + } (34)
where v, = Vye, and M, = Y-, 9%€,/9p].

Calculation of the dynam1cal term (w0 #0) requires a little
more care than the static term. In this case, it is conve-
nient to use the knowledge of the contour integral. Using the
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correspondence |w,,| <> —iw under the analytic continuation
iw, — w+1i8 (§ = 0T), we obtain [40]

. _ ||

ai(q, iw,) —ai(0,0) = T (35)
. _on]

ar(q, iwy) — ax(0,0) = Fz(q)’ (36)
. _ |0)m|

az(q, iwy,) —az(0,0) = @)’ 37

where I';(¢g) (i = 1, 2, and 3) is given by
1 1 /Oo 1
=5 T de —5—+
Ti(q) 27T J_  cosh? (%)

1
X~ ; ImGR(p + ¢, &)ImGR(p, &),  (38)

1 1 /oo 1
=7 9 —=
Ta(g) 47T J_o  cosh® (55)

1
X~ Zp: ImGE(p + ¢. &)ImGR(p. e),  (39)

1 1 /0" 1
=— || de ———
T3(q)  4nT J_o  cosh® (%)
1
X~ §ImG§<p +4¢.6)ImG(p. ). (40)

In these equations, GR@, g) = a(p, i&n)lie,—e+is 1S the re-
tarded component of the Green’s function.

B. Quartic term

Next, we calculate the quartic term. As mentioned in the
beginning of this section, due to the two-band nature of the
problem, we find that this term involves several contributions
as follows:

&:41 >

N
q1,92,93,04

X {(bl + bZ)Atql A*_q2 A% ACM

+ b3 A’iq] Ag,Ag; Ag, + b4A"‘_ql A’iqz A’i% Aq,

Sch +02+03+04,0

where each coefficient b; (i = 1, 2, ..., 6) is given by

T
bi=2 ij[Gl(p)Jz[GApnz, (42)
T
by =4 > Gi(P)G2(P)G3(P)G4(p). (43)
P
T
by =4+ ; G1(P)[G3(P)PGa(p), (44)
T
by =4 ; G1(P)[G2(P)1*Ga(p), 45)
T
bs =3 ) G, (46)
p
T
be =+ 2 I1G:@)I" (47)
P

In the next section, the GL action obtained above is an-
alyzed using the mean-field approximation as well as the
Gaussian approximation.

IV. MEAN-FIELD SOLUTION AND GAUSSIAN
FLUCTUATIONS

In this section, we first obtain the mean-field solution for
the GL action [Eq. (19)] and then investigate the Gaussian
fluctuations around the mean-field solution. Next, we perform
a model calculation to evaluate GL coefficients. The approach
used in this work, i.e., the mean-field approximation and
the Gaussian fluctuations above the mean-field solution, is a
standard technique to investigate the collective excitations in
the broken-symmetry state (see Chap. 6 of Ref. [41]). Note
that we are not dealing with the critical phenomena. Although
within the Ginzburg temperature region the non-Gaussian
fluctuations neglected in our approach become important to
the critical phenomena, the present approach provides a con-
sistent description of the phase transition outside the Ginzburg
temperature region [42]. Needless to say, in low-dimensional
systems with extraordinary strong fluctuations, the validity of
the mean-field approximation could break down.

A. Construction of the Gaussian action

The ground state of the GL action [Eq. (19)] is spatially
uniform because the gradient energy is positive in our model
calculation as is shown in the next subsection. Under this
condition, we substitute into Eq. (19) the following decom-
position [26]:

Aq = /N/TSq000 + 8Aq, (48)

where A is the mean-field solution determined by the static
saddle-point condition, whereas §Aq are the fluctuations.
Note that when we consider a nearest-neighbor hybridization
between two orbitals with opposite parities, i.e., d and f elec-
trons, V), is purely imaginary and odd in p [43], from which it
follows that Ay becomes purely real [22]. In accordance with
Eq. (48), we decompose the GL action up to the second order
with respect to the fluctuations,

Sar. = So + Scausss (49)

where Sy is the zeroth order in Ay, whereas Sgauss is the
second order.

The first term on the right-hand side of Eq. (49) disregards
the fluctuations of A and leads to the free energy in the mean-
field approximation,

Fvra

So = T (50
where the mean-field free energy takes the form
a b
Fura = N[ 2 A2+ A8, (51)
2 4
where
ao = a1(0) + a2(0) + a3(0), (52)

bo=Y b (53)
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The phase transition into the ferroelectric phase is signified by
the condition ay < 0. Here the amplitude of the condensate
is determined by the static saddle-point condition of Fyga in
Eq. (50), namely,

Jao]
by

The second term on the right-hand side of Eq. (49) is the
Gaussian action for the electronic ferroelectricity phase. Note

that the term linear in §Aq vanishes because of the saddle-
point condition [Eq. (54)]. The Gaussian action has the form

B(q)) ( 8Aq )
A J\sax, )

(35)

AY = (54)

Scauss = Y (845, 8A_q) (1?*((?]))
q

where each matrix element is given by

4b 4b 3b 3b
A@Q) = aliQ) 1+ 2-;- 3+ 4A§, (56)
b b 3b. 6b
B(q) = azéQ) b + by +4 4 + 6bs A2, 7)

and we use a property a;(—q) = a;(q) fori = 1, 2, and 3. The
Gaussian action can be diagonalized by introducing the new
fields aq and Bg:

Ay _ 1 (1 1 aq)
()= )G e

which transforms the Gaussian action into

Scauss = Z(Qf(Q)aZ;aq +Qu(@DBghy). (59
q

where
Q_(q) = A@Q) — B(, (60)
Q4(q) = A@Q) + B(Q). (61)
If we invert Eq. (58), we obtain
oq\ L SAq — 8A*q)
</3Q> B ﬁ(‘mq +OAL,)” ©

from which we see that aq corresponds to the phase mode of
the complex order-parameter fluctuations, whereas Bq corre-
sponds to the amplitude mode [44]. In accordance with the
small w,, expansion in Egs. (35)—(37), the eigenvalue 2.(q)
can be decomposed as follows:

. ||
Qi(q, ion) = As(q) + , (63)
I'+(q)
where A (q) is defined by
Ai(q) = Qi(q’ iwm = 0) (64’)

B. Numerical calculation

In this subsection, we show results of our numerical
evaluation for the GL action. For simplicity we assume
a three-dimensional cubic lattice and consider the nearest-
neighbor contributions to the hopping and the hybridization.

~~ [~ n
0w f—electron
- T ]
a L |
L d—electron |
0 I L L Il Il Il | |
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
/W

FIG. 1. An example of the density of states considered in this
work as a function of energy in the noninteracting case (U = 0) for
€min/W = 0.1, V/W = 0.1, and Ey/W = —0.2, where W is the d-
electron bandwidth.

Then, for the single-particle Hamiltonian H [Eq. (2)], we use

€p = €min + (%) 3— Z cos(p,a) (65)

V=X,0,2
and

V, =iV ) sin(p,a), (66)

V=X,%,2

where a is the lattice spacing, and as mentioned before the hy-
bridization V), is purely imaginary and odd in p [22,43]. In our
numerical calculation, we use a cubic mesh of 50 x 50 x 50
in the Brillouin zone (except for Fig. 1 which requires a
500 x 500 x 500 mesh for a fine spectral resolution), and
we consider 2Np,x + 1 points in the Matsubara sum, where
we take Npax = Emax/T with Eq.x = 10W. Note that, in our
numerical calculation, length is measured in units of the lattice
spacing a, and all energies are measured in units of the d-
electron bandwidth W.
Figure 1 shows the density of states [45],

. (67)

ie,—e+in

1 ~
= ——1 Tr G(p, ie,
p(e) nNm;r (. ien)

calculated for a system without the Coulomb interaction
Hi (G.e., U =0), where €, /W = 0.1, V/W = 0.1, Eg/W =
—0.2, and n/W = 0.001 are used. As stated before, all en-
ergies are measured from the chemical potential. The upper
band at higher energies with a wider bandwidth W is mainly
formed by d electrons. By contrast, the lower band centered
around ¢ = Ej is mainly formed by f electrons, which is
slightly broadened because of the finite hybridization V.
Throughout this work, we assume that the system possesses
a gap of the order of 0.1, as shown in Fig. 1. Note that, in the
spinless two-orbital Falicov-Kimball model under considera-
tion, one lattice site can host two electrons in d and f orbitals.
In this work, we consider a half-filled case as seen in Fig. 1.
In Fig. 2, we show the temperature dependence of the GL
coefficients ay [Eq. (52)] and by [Eq. (53)]. For parameters
€min/W =0.1, V/W =0.1, U/W = 1.0, and Ey/W = —0.2,
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T
~ Z -= U
or £ | [Ew=-002] ,--
. 2
=
3t s B 0
. o
. S
S =05
6 N H

GL coefficients

FIG. 2. GL coefficients a, (solid red line) and b, (dashed blue
line) for e€p,/W =0.1, V/W =0.1, U/W =1.0, and Ey/W =
—0.2. The inset shows the result for Ey/W = —0.02 while keeping
other parameters the same as those in the main panel.

the quadratic coefficient ay changes sign from positive to
negative upon lowering the temperature, signifying a phase
transition at 7./W = 0.14. At the same time, the quartic co-
efficient by is positive in this temperature region, confirming
the second-order phase transition at 7.. However, as shown in
the inset of Fig. 2, when the f-level energy is changed from
Ey/W = —0.2 to Ey/W = —0.02 while keeping other param-
eters unchanged, the quartic coefficient by becomes negative
upon cooling before the quadratic coefficient ay becomes neg-
ative, meaning that the transition is of the first order.

Figure 3(a) shows the T-E; phase diagram for €y,/W =
0.1, V/W =0.1, and U/W = 1.0. This phase diagram is
drawn from the calculation of the GL coefficients ay and
by, by changing the f-level position Ey while keeping the
d-electron band position unchanged. In the phase diagram,
we see that a larger part of the phase transition is of the
second order, but when E touches and crosses the chemical
potential, the transition becomes a first-order one. The inset
of Fig. 3(a) shows the temperature dependence of the bare
correlation length,

£ =&l +& +E7, (68)

for enin/W =0.1, V/W =0.1, Ey/W = —0.2, and U/W =
1.0, where 512, 522, and 532 are defined in Eqgs. (32)—(34). The
sign of £2 is always positive, which means that the gradient
energy is positive and the mean-field solution is indeed a
spatially uniform state, Ag. The smallness of £2 suggests that
the fluctuation effects are important in the vicinity of the phase
transition. In Fig. 3(b), we show the T-V phase diagram for
€min/W = 0.1, Ey/W = —0.2, and U/W = 1.0. We see that
the ordered state is limited within a region of small V values.

In Fig. 4(a), we show the temperature dependence of the
eigenvalue A [Eq. (64)] in the ¢ = 0 limit, i.e., AL(g = 0),
for emin/W =0.1, Ey/W = —-0.2, V/W =0.1, and U/W =
1.0. The minus branch is the phase mode, whereas the
plus branch is the amplitude mode [44]. As discussed in
Refs. [46,47], the phase mode A_ (g = 0) has a nonzero value
for a finite value of the hybridization V, which is, however,
expected to vanish in the limit of V — 0. In the inset of
Fig. 4(a), we plot the temperature dependence of the or-
der parameter Ag [Eq. (54)]. In Fig. 4(b), we calculate the

(a) °15
0.005
0.004
g 0.003
o1 0.002 )
% k) 0.001
5 0
N S 005 01 0015 02
0.05 |- © Q /W i
Cwm
o<
L5
0 L L \: L L L L L
206 -04 02 0 02 04 06 08 1 12
Eo/W
(b) 0.2
0.15 - -
~
0.1 -
005 b ferroelectric |
- phase
0 | | | | | | |
208 06 -04 02 0 0.2 0.4 0.6 0.8

FIG. 3. (a) T-E, phase diagram in the mean-field approxima-
tion for €y, /W = 0.1, V/W = 0.1, and U/W = 1.0. The solid line
represents the second-order transition line, whereas the dashed line
denotes the first-order transition line. Inset: Temperature dependence
of €2 [Eq. (68)] for €nin/W = 0.1, V/W = 0.1, Ey/W = —0.2, and
U/W = 1.0. (b) T-V phase diagram in the mean-field approximation
for €min/W = 0.1, Ey/W = —0.2, and U/W = 1.0.

phase-mode gap A_(q = 0) by varying V values. We see that,
as expected, A_(q = 0) is shrinking upon the decrease of V.
This behavior is best seen in Fig. 4(c), where the A_(g = 0)
value at T/W = 0.14 is plotted as a function of V/W. The
result shows that A_(g = 0) is proportional to V2, and the
phase mode becomes the Goldstone mode in the V. — 0 limit.

V. ELECTRIC POLARIZATION AND POLARIZATION
CURRENT

In this section, we first identify the polarization in our
model by examining the response of the system to an exter-
nal electric field. Then, using the knowledge [48] that the
GL action derived in the previous section has a one-to-one
correspondence to the time-dependent GL theory, we investi-
gate the low-energy dynamics of polarization and polarization
current.

A. Electric polarization

First, let us identify the polarization vector P by examining
the effects of a static electric field E on the GL action. We
consider the Hamiltonian describing the coupling between
electrons and the external electric field,

How = —lel Y D dx(df xdp+ fiixfy), (69
K p
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FIG. 4. (a) Temperature dependence of A 1 (g = 0) for €, /W =
0.1, Eg/W = —0.2,V/W = 0.1,and U/W = 1.0. Inset: Temperature
dependence of the order parameter A, for the same parame-
ters. (b) Temperature dependence of A_(g =0) for €nm/W =
0.1, Ey/W = —-0.2, U/W = 1.0, and several choices of V/W.
(c) A_(g = 0) as a function of V at a fixed temperature of T /W =
0.14. Dots are the calculated results, and the solid line represents a
quadratic fit.

where ¢k is the Fourier transform of the scalar potential
giving E = —V¢. As in Ref. [49], since we are interested in
terms linear in ¢, we assume a single Fourier component of
the scalar field and use the equation

E = —iK¢x. (70)

In the absence of the electric field, there is no term linear
in A in the expansion of Eq. (18), i.e., S; = 0. By contrast, in
the presence of the electric field, there appears a term linear in

both A and ¢, which reads
S1 = Sia + Sy + Sic + Sias (71)

where

T
Sia = —Iel\/;z AGGi(p + Kk Ga(p),  (72)
q.p

T
Sip = —|e|\/; > ALGa(p+K)gkGa(p),  (73)
q.p

g
I

T
= —|e|\/; ; AqGi(p — K)gkG3(p),  (74)

T
S = —|e|\/; Y AqGs(p — K)pxGa(p).  (75)
q.p

and we introduce K = (K, 0) and disregard the dependence of
the Green’s function on the small wave number ¢g. Then, we
use the gradient expansion used in Egs. (32)~(34) above and
introduce the transformations G,(p) = iV,Go(p) and G3(p) =
—if/;,Go(p), where V, = —iV), is a pure real number and

1
D(p, igy)’

with D(p, ie,) being defined below Eq. (21). If we neglect the
temporal fluctuations of A, the action can be represented as
F
S = T a7
where the free energy F) linear in both A and ¢ can be written
as

Go(p, ien) = (76)

F ==Y P E, (78)

and the polarization vector P is obtained, by using Eq. (70),
as

P(rj) = p[A@r)) + A*(r))]. (79)

Here, A(r;) = \LW >, Age”l, and the dipole matrix element
I is given by

n = M’a + "l’bv (80)

and

T ~
o = —lel ;[Gmpnzc()(p)vp(v,, @, (8
= r Go(p)G1(D)G4(p)V, 28, (82
ub——|e|ﬁ; W(P)G1(P)G4(P)V, (v, - )8,  (82)

where € = E /E is the unit vector along E.

From these equations, we see that the polarization vector
P and the dipole matrix element g shrink in the limit of the
vanishing hybridization, V. — 0. Conversely, in the presence
of the hybridization, we obtain a nonzero P in the excitonic
insulator phase. These quantities, P and g, are unambiguously
determined from our model Hamiltonian in the present work,
whereas p was introduced by hand as a phenomenological
parameter in Ref. [22].
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B. Polarization current

Since the relationship between the polarization P and the
order-parameter field A is established in Eq. (79), let us now
discuss the dynamics of the fluctuations of A as well as that
of the polarization P.

In the following, we assume that a weak electric field is
applied along the z axis to align the polarization, i.e., E =
E2. Then, we decompose the polarization into the mean-field
value and fluctuations,

Pi(r) = Py + 6P%(r), (83)

where we used the symbol r to denote the real space position
instead of its lattice form r;. Using Eq. (79), we can relate the
right-hand side of Eq. (83) with the order parameter A. The
first term on the right-hand side, Py = 2u*Ay, is the spatially
uniform polarization with u® being the z component of the
interband dipole matrix element w. The second term, 6 P*(r),
is represented in the wave number space as §F; = u*(§A4 +
SAiq), which, by using Eq. (62), is transformed to

8P = V28, (84)

where B, is the amplitude mode defined by Eq. (62).

From Eq. (84), we see that in order to understand the
dynamics of §P%, we need to examine the dynamics of f,,
or the amplitude mode of the Gaussian fluctuations of A. For
this purpose, we first define the effective Hamiltonian Hgp
[50] that describes the fluctuations of A:

HaL

S static limit = - (85)

where the “static limit” means to neglect the temporal fluctua-
tions of A [41]. The resultant effective Hamiltonian Hg can
be diagonalized in the same manner as Sg. by introducing
two fields, oy and B, the result of which is given by

HGL = -FMFA —+ Z[A_(q)a;aq + A+(q),3;ﬂq]a (86)
q

where A4 (q) is defined by Eq. (64).

Next, we use the idea [48,51] that the dynamic equa-
tion derived from the stationary phase approximation of the
quantum GL action [Eq. (49)] is equivalent to the following
time-dependent GL equations [52]:

d

_ 0 HaL
5% = _F_(q)a—a;; +¢ (g, 1), 87
d, 0 HoL

where T'1(q) = 1/[T['(q) £ 2I';'(¢)] [see Eq. (63)], and
¢+(q, t) is the thermal noise field with zero mean and variance
proportional to the temperature.

Now we discuss the form of the damping coefficient
I'y. If we used the microscopic expression of the damping
coefficient I'; (i = 1, 2, and 3) [Egs. (38)—(40)] for a pure sys-
tem without any imperfections, we would obtain the Landau
damping form I'; ~ ¢ [53-55]. However, as for the transport
phenomena in the long-wavelength low-frequency limit, we
expect that the transport is dominated by the diffusive one in
a real material. Therefore, we assume the following diffusive

form for I'y [53,56]:
T4(q) = I'+(0) + Diq?, (89)

where D plays the role of the bare diffusion coefficients for 8
and « fields, respectively, and we assume I'1 (0) to be nonzero
because there is no physical reason for the conservation of P*
[55].

Then, using Eqgs. (88) and (84), we obtain the dynamic
equation for the polarization §F;:

d 1 i
(5 + D reff)azz; —0, ©0)
+

where Dﬁff =D, A,(0) and 1/'1:iff =TI4+(0)A+(0). Going
back to the real space representation, the above equation can
be transformed into the continuity equation [57]

0 . 1 :
§8Pz(r) + divJp + géP”(r) =0, 91)

where the polarization current is given by
Jp = —DVP(r), 92)

and the polarization fluctuation is described by the g field
[Eq. (84)].

The final result, Eq. (92), shows that we can define the
polarization current purely electronically without recourse to
the lattice degrees of freedom. Note that the polarization dif-
fusion equation derived above for electronic ferroelectricity
has the same form as that for displacive ferroelectricity [11].
Note also that in both cases the polarization current, or ferron
current, carries heat. In the case of displacive ferroelectricity,
heat conduction carried by ferron excitations has recently
been demonstrated [58].

VI. DISCUSSION AND CONCLUSION

In this paper, starting from the excitonic insulator model
of electronic ferroelectricity [17,21,22], Eq. (4), we have ex-
amined the low-energy dynamics and transport of the electric
polarization. To this end, we have employed the functional
integral technique to calculate the GL action [Eq. (49)] as
well as constructed the corresponding time-dependent GL
equations for the order-parameter fluctuations [Eqgs. (87) and
(88)].

The excitonic insulator phase considered in this work is
characterized by a complex scalar order parameter. Indeed,
noticing that the ¢ field in Eq. (12) has a Gaussian distribution
with zero mean, the expectation value of the order parameter
is given by

U .
(Ag) =~ ;u};dmx 93)

where the phase of the order parameter A, corresponds to the
phase difference between the d-electron wave function and
the f-electron wave function. It is important to note here that,
as is clear from Eqgs. (81) and (82), for the excitonic insulator
phase to simultaneously possess the electronic ferroelectricity,
we need to assume the presence of a nonzero hybridization V.

The Ginzburg-Landau approach used in this work is jus-
tified near the transition temperature 7, and if the band gap
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between d and f electrons is comparable to the thermal energy
of T, the polarization of electronic ferroelectricity may be
screened by surface charge accumulation of thermally excited
carries. In Fig. 3(a), this could be the case for the f-level en-
ergy being located around Ey/W ~ —0.2, giving the highest
T. in the ferroelectric dome (recall that the bottom of the d
band, €y, is always fixed at €, /W = 0.1 in our calculation
as in Fig. 1). Conversely, when the f-level energy is located
around Ey/W =~ —0.4, giving much lower T, the thermal
energy of T; is much smaller than the band gap, such that the
effects of thermally excited carries are negligible. Therefore,
strictly speaking, the concept of electronic ferroelectricity in
the present model is well-defined at the lower T: side of the
ferroelectric dome in Fig. 3(a).

One of our motivations in this work is to formulate the
polarization transport in the electronic ferroelectricity without
relying on the phonon degrees of freedom, which is in contrast
to the case of displacive ferroelectricity where the polarization
transport is formulated by using phonon operators [10,12]. In
this regard, we have clarified the following points. First, re-
flecting the abovementioned fact that the ferroelectric phase is
characterized by a scalar order parameter in the present model,
we have found that the electric polarization has only the
longitudinal dynamics. Second, the longitudinal fluctuation of
the polarization density, §P*(r), gives rise to the polarization
diffusion, which is described by Eq. (91). Then, the polariza-
tion current [Eq. (92)] is defined in terms of the electronic
ferroelectricity order parameter given by Eq. (79). Therefore,
in the present system of electronic ferroelectricity, we have

succeeded in describing the transport of polarization in such a
way that it is free from the issue of subtle distinction between
phonon excitations and ferron excitations [10,12]. Because
of its electronic nature, the timescale of ferron excitations in
the electronic ferroelectricity is expected to be much faster
than that in the displacive ferroelectricity. However, precise
analysis of such a difference is left for future studies.

To conclude, starting from the excitonic insulator model of
electronic ferroelectricity, we have theoretically investigated
the low-energy dynamics and transport of electric polariza-
tion. Based on the GL action derived microscopically, we have
revealed that the longitudinal fluctuations are relevant to the
transport of electric polarization, and we have constructed
the polarization diffusion equation. Although experimental
results are unavailable at present, we hope the present result
gives a constructive input to future experiments.
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