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Band structure of a nonparabolic two-dimensional electron gas system
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Using angle-resolved photoelectron spectroscopy (ARPES), we study the band structures of two-dimensional
electron gases (2DEGs) formed at Te-doped surfaces of InAs(110), as a result of band bending. The selected
surface system is very clean and stable; therefore, ARPES spectra may be registered in short times, with minimal
adsorption of residual gases and no photon beam-induced damage. We record a set of data that allows for a
detailed analysis of the 2DEG band shapes, their thermal dependencies, and for an assessment of the many-body
interactions. We find the electron-phonon interaction extremally weak and the electron-electron interactions
hidden in dominant electron-donor interactions. While 2DEG band shapes are observed to be variable in
correlation with the 2DEG density, this is tracked down to the variability of the band-bending potential and
nonparabolicity of the system, and not to the many-body interactions. Thus, many-body renormalization of the
2DEG bands is not required, and the bands are described well by using the one-electron theoretical frame.
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I. INTRODUCTION

Two-dimensional electron gases (2DEGs) at III-V semi-
conductor interfaces are irreplaceable components of elec-
tronic technology today [1–6] and are also highly prospective
for the realization of quantum information [7–17] and spin-
tronic devices [18–20]. Furthermore, they are fascinating
objects from the point of view of fundamental knowledge,
hosting many interesting and often not well-recognized phe-
nomena characteristic of electronic systems with reduced
dimensions [21–26].

2DEG systems are formed with interfaces and surfaces
confining electrons to a thin layer. In semiconductors, the
confining action may also be realized with a single, electri-
cally charged interface and surface (or a device gate) that is
associated with the Thomas-Fermi screening and the band
bending. Such “band-bending 2DEGs” are working in many
devices [2,27,28]. Within our interest are the band-bending
2DEGs at surfaces since their band structures are exposed to
be studied directly, with the use of angle-resolved photoelec-
tron spectroscopy (ARPES).

One of the materials studied most frequently, in the context
of surface 2DEGs, is InAs [29–35]. In this paper, we use
ARPES to investigate 2DEGs formed at the Te-doped surface
of InAs in great detail. We have selected these systems after
extensive searches as being very robust and clean, provid-
ing reliable data, and also enabling 2DEG density control.
Moreover, the systems may be regenerated many times, being
thus suitable for complex experiments, such as temperature-
dependent studies. An interesting circumstance is that, given
the large InAs Bohr radius of ≈34 nm and the prevailing
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density found within 15 nm of the surface, the systems do not
depart far from the ideal two-dimensionality.

II. EXPERIMENT

Experiments are carried out at the URANOS beamline
at the National Synchrotron Radiation Centre SOLARIS in
Krakow. The base pressure in the experimental system is
4 × 10−11 mbar. InAs(110) substrates are obtained by cleav-
ing in UHV a degassed piece of a nominally undoped InAs
(001) wafer, squeezed between two Mo sheets spot welded
on a transferable sample plate. The wafer is n type, with a
residual donor concentration of 3 × 1016 cm−3 (MTI supplier
data). The samples are adsorbed with Te from a quartz-crystal
microbalance-calibrated effusion cell and then annealed in
steps to an increasingly higher temperature, for 30 min, start-
ing from 500 K. The preparation process has been also tracked
with the low-energy electron diffraction (LEED) and x-ray
photoelectron spectroscopy (XPS) techniques.

The cleaved sample surface covered with a ∼1 ML of Te
shows off (1×1) LEED image with a substantial incoherent
background. Upon annealing, the system undergoes complex
transformations, which is seen, from the LEED perspective, in

the following way (Fig. 1): (1 × 1)
600 K−−−→ (3 × 1)

750 K−−−→ (n ×
1)

775 K−−−→ (3 × 1)′
800 K−−−→ (1 × 1)′. With the help of XPS peak

intensities and chemical shifts [Figs. 2(a)–2(c)], we can state
that the initial Te (1 × 1) overlayer transforms sequentially
into surface alloy phases: (3 × 1), (n × 1), (3 × 1)′, having
∼60% surface Te content, and then the Te is lost from the
surface by thermal desorption. This last transition is seen as
the gradual disappearance of fractional order LEED spots,
meaning the decay of the (3 × 1)′ alloy phase, in favor of
the (1 × 1)′ phase. The final (1 × 1)′ phase shows Te content
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FIG. 1. LEED images for the as-cleaved surface and for the
TE-dosed and annealed surface. Labels indicate the Wood’s desig-
nations of the LEED patterns.

FIG. 2. (a) Sequence of XPS spectra showing the surface sys-
tem evolution during Te deposition and annealing. (b) An example
of the XPS spectrum decomposition for the chemical analysis of
the surface. The spectra are decomposed using Voigt line shapes.
Surface and bulk components have to be assumed for each ele-
ment. The number of free parameters is reduced as far as possible,
based on reference spectra for the as-cleaved InAs and the thick
Te film. The following parameters are fixed (numbers given in or-
der: for As; for Te; for In): relative sensitivity factor: 1.00; 1.80;
1.80, spin-orbit splitting: 0.67; 1.49; 0.85 (eV), spin-orbit split
peaks area ratio: 1:60; 1.36; 130, FWHMs: 0.40; 0.77; 0.49 (eV).
(c) Surface XPS elemental concentrations obtained by decomposi-
tion of the spectra in (a). (d) Photoelectron spectrum around the
Fermi level for the as-cleaved sample at 80 K. The valence band
maximum (VBM) position is obtained as an onset of valence pho-
toelectron signal as shown. The VBM is seen 420 meV below the
Fermi level. Given the fundamental gap of InAs at 80 K being
404 meV and the expected Fermi level 12 meV above the con-
duction band minimum (CBM), this result evidences the flat-band
condition.

of the order of 1%. ARPES shows that the surface includes
weak nondispersive bands (at −1 eV and at −1.5 eV, spectra
not shown), nonexistent for the cleaved substrate, indicating
a random distribution of the Te atoms. We conclude that the
final (1 × 1)′ phase is an ordered, unreconstructed surface of
InAs(110) with a random Te donors substituting As within the
top atomic layer.

The freshly cleaved InAs(110) surface shows the flat bands
condition and does not contain 2DEG [see Fig. 2(d)], in
agreement with previous studies [32,35,36]. The 2DEG is
seen readily after Te deposition; however, the signals are
weak, likely due to final-state scattering of photoelectrons on
a not well-ordered surface. The (3 × 1) surface alloy phase is
crystallographically ordered and produces a resonable 2DEG
signal; but, on this surface photoelectrons get umklapp scat-
tered in their final states and the photoelectron streams are
divided into several replicated 2DEG bands. While not used
for the main experiment, this surface was useful for precise
calibration of the k scale for our experiments. For the core
studies presented in this paper, we use the (1 × 1)′ surface
due to the superior 2DEG ARPES signals observed for this
surface and because the 2DEG density, tied to the surface Te
content, can be controlled on this surface in a wide range, by
thermal annealing.

Since band bending of semiconductors is highly sensi-
tive to adsorption of residual gases, to photon beam induced
damage, and so on, care is taken to ensure that the sample
surface state is unchanging during the experiments, both in
short and long terms. The ARPES spectra are recorded on
freshly prepared or refreshed samples. An acquisition time
of a single ARPES 2DEG spectrum is reduced to 2 min, and
typically five spectra in a row are taken for given experimental
parameters. The measurement is accepted as valid only if the
spectra do not differ. During the thermal study, before moving
to the next temperature point, the surface was refreshed by
thermal annealing to 723 K for 30 min. The study, which
lasted around 2 days, contains two cycles over the measured
temperature range and shows good repeatability (see also the
Supplemental Material [37]).

ARPES spectra are recorded with the SCIENTA DA30-L
photoelectron spectrometer, having a maximum angular reso-
lution of 0.1◦. The sample is held and oriented on a PREVAC
five-axis cryogenic manipulator. The temperature obtainable
on a copper sample holder block with LHe cooling is 6 K.

The Fermi level is determined with a Gaussian-Fermi con-
volution fit to the experimental Fermi steps. With smooth
data acquired at cryogenic temperatures, the accuracy of
such a procedure is better than 1 meV. Furthermore, the
thermal sequences are measured with a monochromator stay-
ing in a constant position, also providing long-term photon
energy stability ∼1 meV. Thus, the precise Fermi energy,
found for cryogenic temperatures, is valid also for higher-
temperature spectra. This, however, requires an additional
justification: On semiconductors under photon beams, most
often at cryogenic temperatures, photovoltage effects are
observed, causing the appearance of temperature-dependent
quasi-Fermi levels [38–40]. In order to avoid errors related
to such effects we have investigated the external Fermi level
on a polycrystalline gold reference sample. At 7 K we
have observed a minute Fermi step shift (2.5 meV to lower
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energies) relative to the external Fermi level. Photovoltage
effects decrease with increasing temperature [41]. At 80 K no
measurable photovoltage effect has been seen, so we conclude
that the Fermi level measured at 80 K and above is unaffected.
Also, at 7 K, a minute decrease in the 2DEG density (by
15%), due to carrier freeze-out on surface donors, is observed
(see also Sec. IV C). Therefore, the temperature-dependent re-
sults are interpreted only within the limited temperature range
80–470 K.

Due to radiation and thermal resistances, the sample sur-
face temperature differs from that measured on the copper
sample holder block. From a detailed Fermi step fit at the
minimal obtainable temperature, we have found both the
true sample surface temperature (10–11 K) and the spectral
resolution (8 meV). Having this, we can also estimate the
temperature errors for other temperatures, by scaling thermal
radiation fluxes. Up to room temperature, the error decreases
from 4–5 K to zero, and then it is reversed. At a maximum
measured temperature of 470 K, the true temperature is, in this
way, estimated to be 445 K. As seen, the relative temperature
errors are not large and, if not indicated otherwise, in our
discussion, we use uncorrected temperatures.

III. THEORETICAL CONSIDERATIONS

The band-bending 2DEG problem is modeled with a set
of coupled Poisson and Schrödinger (SP) equations, set in
planar geometry. To solve the problem, the effective mass ap-
proximation and the Thomas-Fermi (TF) method are applied
[42–45].

For ease of calculation, we use an approximate, analytic
form of the Kane kp dispersion relation [45,46]

Ecb(k2) = h̄2

2m0
k2 + Eg

2
(
√

1 + 4P2k2 − 1),

(1)

P2 = 3h̄2

2m0

(
m0

mcb
− 1

)
Eg + �

(3Eg + 2�)Eg
,

where Eg is the band gap parametrized with the Varshni for-
mula [47], the zero energy is set at the band minimum, m0 is
the free-electron mass, � stands for the spin-orbit coupling
(� = 0.381 eV in InAs), and mcb is the band-edge effective
mass of electrons, hereafter referred to as the conduction band
mass (or simply the band mass). For mcb, we should use the
estimate of InAs empty band effective mass, that is, 0.023m0

[48]. However, while the approximated bands described by
Eq. (1) have been used by different authors (and also in our
earlier work) for the InAs crystal [22,45,49], we have noticed
now that their parabolic characteristics around minimum are
not consistent with the mcb (the Kane band, near minimum
follows: h̄2k2/2mcb). This (minor) problem is easily fixable.
Within the region of our interest we have compared Eq. (1)
with the genuine Kane kp InAs conduction band [50]. They
converge almost exactly (to within 0.5 meV) if the mass
mcorr

cb = 0.02685m0 is used in (1), instead of the standard
mcb = 0.023m0. In further analysis, we apply the corrected
mass whenever Eq. (1) is involved, that is, effectively we use
the proper InAs Kane bands.

The local electron density, in the TF approximation, is

ncb = 1

π2

∫ ∞

0

k2 dk

1 + exp {β[Ecb(k) − EF + V (z)]} , (2)

where kB and EF have their conventional meaning, β =
1/kBT , V (z) is the electron potential energy. Holes are of
minor meaning here, and their local density is calculated using
approximate parabolic dispersion relations, sufficient close
to �:

pi = 1

π2

∫ ∞

0

k2 dk

1 + exp
[
β
(

Eg + h̄2

2mi
k2 + EF − V (z)

)] , (3)

where i ∈ {lh, hh} concern light and heavy holes of masses
0.021me and 0.41me, respectively.

The electron neutrality condition in a deep bulk [where
V (z) = 0] is

plh + phh + pd − ncb = 0, (4)

where pd is the spatial density of the ionized donors.
Then the Poisson equation is formulated

d2

dz2
V (z) = e2

ε0εb
[phh(z) + plh(z) + pd (z) − ncb(z)], (5)

where ε0 and εb are the vacuum dielectric constant and InAs
static dielectric constant, and e is the elementary charge. We
require that V (0) is equal to the total band bending (BB) and
that V (z) vanish deep in the bulk pd (z). The set of equa-
tions (1)– (5) is solved to find V (z).

To find 2DEG wave functions and energies, the
Schrödinger equation is written

[Ecb(∇2) + V (z)]ψ = Eψ, (6)

where ψ are wave functions of 2DEG: ψ =
ψ (x, y, z, kx, ky ) =: ψ (r‖, z, K‖). Counterintuitively, while
the kz quantum number is nonexistent, the complete separation
of the problem into in-plane and out-of-plane parts is
impossible (at least within the used description scheme)
because of the nonparabolic kinetic energy operator. By the
complete separation, we understand the situation where the
in-plane and out-of-plane parts involve only in-plane and
out-of-plane variables, respectively.

Therefore, it is written

ψ = ψ (r‖, z, K‖) = ψ‖(r‖, K‖)ψ⊥(z, K‖), (7)

meaning that while the separation of space variables is still
possible, it has to be done for each K‖ individually.

The following general boundary condition is set at the
origin [51]:

d

dz
ψ⊥(0, K‖) = λψ⊥(0, K‖), (8)

and the λ is assumed to be not dependent on K‖. The λ

accounts for the physical properties of the surface and is found
at the end, by fitting the solution to the experimental data [22].

The following basis set is used:

cos[kz + φ(k)], (9)
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where the phase φ is dependent on k,

φ(k) = arccos

[
−sgn(λ)

k√
k2 + λ2

]
.

A dense grid of k values is set: kn = nπ
L , L = 20 000,

and the scalar product for the two “km” and “kn” indexed
vectors is defined as

∫ 2L
0 cos[km + φ(km)]cos[kn + φ(kn)]dz.

This constitutes an orthogonal basis set. Out-of-plane 2DEG
wave functions (eigenfunctions) are represented as

ψ i
⊥(z, K‖) =

√
2

L

∞∑
n=1

an,i(K‖)cos[knz + φ(kn)], (10)

where the index “i” enumerates the 2DEG subbands. In the
practical calculation, the sum is approximated with its first
nmax elements (with the resulting knmax adequate to account
for the spatial frequencies expected in the 2DEG envelope
wave functions). In the present calculation, nmax = 2048 has
been found sufficient with a safe margin. Thus, the problem
becomes reduced to the following matrix-eigenvalue equa-
tion [45,52]:

nmax∑
n=1

Mm,n(K‖)an,i(K‖) = Ei(K‖)am,i(K‖), (11)

where the matrix elements are

Mm,n(K‖) = Ecb
(
K‖2 + k2

n

)
δm,n + 2

L

∫ ∞

0
V (z)cos[km

+ φ(km)]cos[kn + φ(kn)]dz. (12)

The “∞” integral limit is here an approximation for sim-
plifying of the calculations. The scalar product for harmonic
basis functions and the functions themselves are defined on
a finite space, deep enough to have V ≈ 0, at the right end.
Formally, the integration should be done on the same space.
Within our script, V (z) is replaced with the precisely fitted lin-
ear combination of exponential functions, and so the integrals
become analytical expressions. With L set to 20 000 the error
due to replacing the 2L integral limit with ∞ is nonexistent.

The solution of the above matrix-eigenvalue problem
yields the subband energies Ei(K‖) and allows one to con-
struct the wave functions ψ i

⊥(z, K‖), according to Eq. (10).
The K‖ is treated, within this context, as a constant parameter.
In order to find the 2DEG dispersion relations Ei(K‖) the
calculation is repeated for a grid of different K‖ parameters,
covering the required range. Our experimental geometry war-
rants that ky = 0. Thus, the theoretical dispersion relations to
be compared with experimental data are obtained by feeding
the above equations with the K‖2 = kx

2.
In the case of InAs 2DEG, the TF approximate solutions

are very close to genuinely self-consistent solutions (cf. Refs:
[45,52]). For more details regarding the SP calculations, see
Ref. [22].

The above is the one-electron description of the 2DEG. It
may be expanded to account for the many-body effects on the
grounds of the quasiparticle theory. In this aspect, one may
consider the complex self-energy � = �R + i�I .

ARPES measures the spectral function A(k, ω) which de-
pends on the many-body self-energy components �R,I :

A(k, ω) ∝ �I (k, ω)

[h̄ω − ε(k) − �R(k, ω)]2 + [�I (k, ω)2]
. (13)

ε(k) is here the one-electron band. The centroids of
the experimental bands correspond to ε(k) + �R(k, ω). The
measured Lorentzian widths half-width at half-maximum
(HWHM) of the bands are related to �I . For a 2D system, the
situation is particularly simple since the observed �I directly
reflects the scattering of the photohole state [53].

In the case of separable interactions, the �R,I may be repre-
sented as sums of partial self-energies: �

e-ph
R,I , �e-e

R,I , and �e-d
R,I ,

related to electron-electron (e-e), electron-phonon (e-ph), and
electron dopant (e-d ) interactions. In a further discussion, to
interpret our experimental data, we will rely on the known
properties of many-body interactions, that is, that e-ph in-
teractions are decisive in the context of thermal dependence
of �I , and that the e-e and e-d interactions depend on the
donor concentration [54]. Since the e-e and e-d interactions
lead to similar experimental effects [55], we will also seek
the support of the available theoretical papers to estimate the
share of these interactions.

IV. RESULTS AND DISCUSSION

A. Survey studies and valence bands

In Fig. 3(a) we plot several survey spectra for the
InAs(110):Te (1 × 1)′ surface, acquired using different photon
energies in the range 20–30 eV. kx is a wave vector along K�K
path, which is also parallel to (110) crystallographic direction
[cf. Fig. 3(b)]. The 2DEG bands are seen just below the Fermi
level, being the most intense for photon energies 24–26 eV.
Below a −0.7-eV energy, the valence band states are found.

To conduct our experiments, we choose, based on the
2DEG signal intensity, the photon energy of 25 eV. This
results in a very short photoelectron mean-free path (MFP)
within the studied sample (∼1 nm) and also in the extreme
surface sensitivity of ARPES. Due to this and also to valence
electron localization (on closed orbitals), the valence band sig-
nals come from the top 2–3 atomic layers. On the other hand, a
short photoelectron state lifetime results in energy uncertainty,
and somewhat complicated interpretation of ARPES results
in the case of three-dimensional (3D) bands (e.g., valence
bands). We explain this aspect in Fig. 4.

The valence bands of InAs, along the high-symmetry K�K
direction, may be obtained from the experimental data, with
high precision. This is because the symmetries of the InAs
lattice warrant that the K�K is an extremal energy path,
corresponding to a ridge or valley in the dispersion relation
landscape. As shown in Fig. 4(b), with the proper choice of
the photon energy, dispersion along such extremal path is
reflected on ARPES spectrum as a sharp edge, limiting certain
broad features. The geometry of our experiment [Fig. 3(b)] is
chosen to exploit this scheme: the photon energy is scanned
over a wide range [see Fig. 3(b) showing the essential part of
the studied range]. With the photon energies 24–26 eV, the
valence band features appear to be hardly changing, and their
upper limits become sharp. This evidences that the “�kx�kz”
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FIG. 3. (a) ARPES spectra for the Te-doped InAs(110) surface, acquired using several different photon energies (indicated at the bottom
of each spectrum). kx is a wave vector along � X and also along �K [or (110) direction in real space]. Note that this direction and the direction
normal to the surface (z) are crystallographically equivalent. Dotted red lines overlayed on the 25-eV spectrum denote calculated bulk InAs
bands taken from Ref. [56]. (b) Bulk and (110) surface Brillouin zones for the InAs (zinc-blende) lattice with indicated symmetry points, main
crystallographic directions, and the experimental xyz frame.

subspace, shifting along the kz axis with changing photon
energy, includes some extremal path. To verify that we are
probing the desired K�K path, we compare our spectra with
the state-of-the-art calculations of InAs bands along K�K
path from Ref. [56]; see the lines overlayed on the 25-eV spec-
trum in Fig. 3. These bands fit closely to the upper edges of
the observed spectral features, as expected. Advantageously,

the obtained experimental band (the edge) is insensitive to kz
broadening and to moderate sample misalignments.

B. High-resolution 2DEG spectra

A representative 2DEG ARPES data set is presented in
Fig. 5. The characteristic quantum-well band structure is

FIG. 4. (a) 3D electronic band in view of the three-step photoemission model (in the context of the “kz-broadened” ARPES spectra). The
initial state is assumed to be weakly broadened. The final state is strongly broadened as a result of short electron MFP; its uncertainty is denoted
by a wide gray stripe. The photoelectron transition is vertical and connects the initial state with some final state, higher in energy by h̄ω (the
photon energy). This is possible in a certain range �kz, as indicated. The final state (which is actually an intermediate one when considering
the complete photoelectric transition to the vacuum state) is not observed in ARPES; however, the relaxation of kz constraints, caused by its
uncertainty, does; it is �kz that determines the range of states observed with ARPES simultaneously, around a certain kz0 defined formally by
the choice of the photon energy. (b) The “kz projection” to obtain the ARPES spectrum of a 3D band. The experimental geometry warrants
ky = 0. The �kx range is determined by the angular acceptance of the electron spectrometer, specifically by its slit length, lens voltages, etc.
The rectangular red field denotes the part of (kx, kz) space that contributes to the spectrum (in reality, it is not exactly rectangular; it has been
drawn like that for simplicity). The ARPES spectrum is obtained by projecting the relevant part of the dispersion relation E (kx, kz) onto the
plane (E , kx ) as schematically indicated. The blue line is drawn along the extremal energy path (kz = 0), which corresponds to a ridge in the
dispersion relation landscape.
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FIG. 5. High-resolution ARPES data for 2DEG at the
InAs(110):Te surface, at T = 80 K. (a) Energy distribution
curve (EDC) of photoelectrons emitted normal to the surface. The
fitted model and its elemental constituents are shown using lines of
different colors. (b) ARPES image of bands with marked relevant
energy levels, Fermi wave vectors, cuts, etc. (c) Fermi surface.
(d) Enlarged and optimally contrasted detail that exposes the bulk
conduction band feature. The position of the bulk conduction band
minimum (CBM) is shown, calculated based on the residual doping
level of the wafer.

observed. Far from their minima, the 2DEG bands appear
as almost straight lines, resembling the Kane kp bands [50]
observed for bulk conduction bands of narrow-gap III-V semi-
conductors.

The Fermi surfaces [Fig. 5(c)] are circularly symmetric, so
the 2DEG sheet density can be obtained with the Luttinger
area rule, as n2D = ∑

i k2
Fi
/(2π ), where kF i are Fermi wave

vectors measured for the 2DEG bands [see Fig. 5(b)]. Since
we use the lightly doped (nominally undoped) InAs sub-
strate and the untreated surface displays the flat bands, 2DEG
electrons come predominantly from the surface Te donors
introduced during the surface preparation. Therefore, the sheet
2DEG electron density and the surface donor concentration
have to be approximately equal in our systems.

The energy distribution curve (EDC) of photoelectrons
emitted along the normal to the surface is shown in Fig. 5(a).
Peaks 1, 2, and 3 correspond to the minima of the 2DEG
bands. The vague feature 4 may reflect the higher 2DEG
subbands or the bulk conduction band. Shoulder 5 is a shake-
off plasmon feature that has been observed before [57,58].
Analogous satellites at peaks 2 and 3, with their intensities
proportional to the parent peak area, are lost in the data
noise. We do not discuss these secondary features further. The
position of the conduction band minimum (CBM) is marked
12 meV below the Fermi level, determined with Eq. (4) under
the assumption of full donor ionization. The 2DEG peaks have
a dominant Lorentzian character (i.e., wide bases), indicating
that lifetime effects mostly determine their shapes. Due to
the k‖ experimental uncertainty, some moderate asymmetries
are seen in the shapes of 2DEG peaks. With a trial-and-error

procedure, we have developed line shapes based on Voigt
functions that ensure the reliable fitting of our 2DEG peaks
(cf. the Supplemental Material for a description of the line
shapes [37]). The background is subtracted from the experi-
mental data prior to the fitting. The Gaussian FWHMs of all
Voigt peaks are fixed on the experimental energy resolution
(8 meV). The model spectrum is constructed by adding all
components together and multiplying the sum with the Fermi
distribution [cf. Fig. 5(a)]. After the fits converge, the energies
of the band minima, Lorentzian widths, etc., are read from
among the fit parameters.

C. Temperature dependencies in the 2DEG spectra

The ARPES spectra of 2DEG at the Te:InAs(110) (1×1)′
surface measured at a few different temperatures are shown
in Fig. 6. No measurable thermal dependencies are found in
the band shapes. In the temperature range 80–463 K, a small
monotonous increase of 2DEG band energies is observed (in
the Fermi level frame). Upon temperature rise, the degenerate
semiconductor becomes nondegenerate somewhere between
80 and 180 K. This is typical (textbook) behavior of the n-type
InAs semiconductor.

A separate case is the “7-K” spectrum. The 7-K 2DEG
bands are shifted up as compared to the “81-K bands.” This
is an indication of carriers freeze-out on surface donors. The
magnitude of the effect is estimated by comparing the 2DEG
Luttinger area for 7 and 81 K, leading to the result that
only 15% of the carriers are frozen out upon cooling down
the surface to ≈10 K. Since the freeze-out is a thermally
(de)activated process, for much higher temperatures (within
the range 80–470 K) the freeze-out effects can be safely ne-
glected.

D. Electron-phonon interactions

When the temperature changes, the dominant variation of
�I is due to its �

e-ph
I component. The electron-accoustic-

phonon interaction (e-ph) is quantified with the coupling
constant λe-ph. This constant may be evaluated based on the
thermal dependence of the electronic-band energy width. We
have studied the band 2, for which the width changes are the
most clearly seen, at its minimum, where the dE/dk‖ = 0 and
so the k uncertainty is not involved. At the band minimum the
possible complications caused by spin splitting [59] are absent
as well. The result is shown in Fig. 7.

According to the Debye model, above the temperature
�D/3 [60] (�D is the Debye temperature), the ARPES band-
width (in energy) should increase approximately linearly with
temperature, with the slope matching the 2πkBλe-ph [61].
The InAs �D is ≈280 K so the line fit (see Fig. 7) is
justified within the whole measured range 80–470 K. With
the fit we find λe-ph=0.034(2) (this result is corrected for
the estimated temperature error). Now, the band renormal-
ization component �

e-ph
R may be estimated, again with the

help of the Debye model. According to the model the �
e-ph
R

increases approximately linearly from zero at the Fermi level,
reaches some maximal value limited by λe-phkB�D, at the
energy −kB�D, and quickly drops to zero for lower energies
[62,63]. We obtain the �

e-ph
R limit as 0.9 meV so it is evi-
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FIG. 6. ARPES spectra of 2DEG at the Te:InAs(110) (1×1)′ surface illustrating the thermal dependence of the 2DEG electronic structure.
The spectra are labeled with temperatures measured on the sample holder. True surface temperatures may differ insignificantly as compared to
these measured temperatures. Red marks indicate the position of the bulk conduction band minimum calculated using Eq. (4) in Sec. III, under
the assumption of full donor ionization.

dent that the electron-phonon-related band renormalizations
(expected around the Fermi level) are unnoticeable within
our ARPES data. No signatures [64] of electron-longitudinal-
optical-phonon (Fröhlich) interactions have been seen either.

E. Electron-electron and electron-donor interactions

To study many-body interactions beyond the electron-
phonon interactions, we have prepared a set of samples with
2DEG sheet densities in a broad range. The ARPES data
for the set are shown in Fig. 8. With these spectra, we have

FIG. 7. EDC Lorentzian width of band 2 at minimum vs temper-
ature with fitted linear trend, denoted by the solid red line.

measured or evaluated several parameters of the 2DEGs; we
list them in Table I. The e-e interactions are characteristically
reflected in the dependence of the width of the electronic
bands on energy. The width is described with the following
formula: �e-e(= 2�e-e

I ) = 2β[(πkBT )2 + E2], where β is a
constant. The formula is given for 3D systems; however, it
can also be used to estimate the order of magnitude of the
interaction in 2D [65]. We also use an approximate rule for
calculating β, given in the work of Quinn and Ferell [66]:
βQF = r5/2

s /263 (eV−1). The expected magnitudes of the �e-e

using the rs values given in Table I are below 10−5 eV.
e-e interactions may be somewhat increased in 2D sys-

tems compared to 3D systems [21,67], but experimentally
observed Lorentzian widths of the 2DEG bands (Table I) are
still 2–3 orders of magnitude too large to be explained with
these interactions. The widths cannot be explained with the

FIG. 8. ARPES spectra of 2DEG at the InAs(110):Te surface, for
several different densities (or Te surface content) at T = 80 K.
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TABLE I. Measured and evaluated 2DEG properties for a few
samples with different 2DEG densities. Ei are the band minima
energies in the Fermi level frame. �i are Lorentzian energy widths
(FWHM) at the 2DEG band minima. kFi are Fermi wave vectors; see
Fig. 5. The sheet electron density n2D is obtained as the Luttinger
area. The Wigner-Seitz rs density parameter is evaluated on the basis
of n2D. The VBM is obtained as an onset of the valence band signal
in angle-integrated ARPES spectra. BB is the total band bending
obtained with the formula: BB = −VBM − CBM − Eg). The uncer-
tainties are ±2 meV and ±25 meV for the energies Ei and VBM/BB,
respectively.

Sample A B C D

E1 (meV) -308 -202 -121 -74
E2 (meV) -121 -73 -38 -25
E3 (meV) -46 -24 -12
E4 (meV) -11 –
�1 (meV) 30 28 33 32
�2 (meV) 12 12 13 13
�3 (meV) 7 6
kF1 (Å−1) 0.066 0.046 0.032 0.021
kF2 (Å−1) 0.035 0.025 0.017 0.011
kF3 (Å−1) 0.029 0.013 0.008
kF4 (Å−1) 0.008
VBM (meV) -910 -755 -625 -540
BB (meV) 495 340 210 125
n2D (1012/cm2) 9.6 4.7 2.1 0.9
2D rs 0.11 0.15 0.23 0.35

e-ph interactions either since the widths are observed to be
variable, while the �

e-ph
I is constant below the energy −kB�D,

i.e., below −24 meV, in the case of InAs. Thus, we are left
with the e-d interactions as the only possible explanation of
the bandwidths. Looking through the widths for all samples,
we immediately see that they depend mainly on the band
number. This is consistent with the dominant contribution
of e-d interactions; the sequence of potential screening [cf.
Fig. 9(c)] causes the photoholes residing in the higher subband
to be less probable to scatter on potential variations induced
by the ionized donors residing in the top atomic layer, as
compared to the photoholes of the lower subband. This re-
sult (i.e., dominant interactions of the e-d type) is actually
not very surprising, given the abundant evidence, obtained
by measuring extremally high carrier mobilities (implying
weak scattering) in III-V-based 2D systems [27,68–71]. The
mobilities are limited only by the presence and proximity of
dopants and impurities, which also indicates that the dominant
interactions in these systems are of e-d type.

To further analyze the interactions, we present Fig. 9(a).
The figure shows digitized centerlines of electronic bands
observed for samples of different 2DEG densities, together
with a few model lines, which we discuss below. The shapes
of the 2DEG bands change with the 2DEG sheet density. They
appear to be Kane type, so we have fitted the lowest bands
with the Kane shapes, keeping the bulk values of Eg and �,
just to parametrize the band lines. Surprisingly, by allowing
only free mcb, almost perfectly accurate fits are obtained: they
are shown in Fig. 9 with solid black lines. The fitted masses
are shown in Table II. The same masses are obtained with
fitting parabolas close to band minima, so we will use the
term “band mass” for these parameters. The data show an
increase in band mass, with reference to the standard InAs

FIG. 9. (a) Centerlines of 2DEG bands for several differently doped InAs(011):Te surfaces: points. The data marker size corresponds
to the experimental uncertainty. Solid black lines are Kane bands fitted to the experimental band 1’s, and the red lines are parabolas fitted
around the band minima. The solid black lines at bands 2 and 3 are obtained by vertical translations of the band-1 lines. The green dashed lines
on the A panel show the Kane band shapes, corresponding to a 3D InAs conduction band, and also being very close to the band shapes of sample
D. The black dashed lines show the Kawasaki et al. model bands. Solid magenta lines show the SP/TF (Schrödinger-Poisson/Thomas-Fermi)
bands found as the solutions to Eq. (11) (Sec. III). Dashed magenta lines show SP bands 1 and 2 shifted closer to the experimental bands
to better visualize their convergence in shape. The SP/TF band 1’s are forced to fit to the experimental band minimum by choosing the
boundary parameter λ. The λ equal to 0.048 has been found in this way, common for all samples. Note that the magenta lines, added as the top
figure layer, often coincide with the solid black lines and cover them. (b) Dependence of the Kane band mass vs the two-dimensional Wigner-
Seitz rs parameter, well described with the shown exponential decay line, asymptotically corresponding to the mass 0.023m0. (c) Probability
distributions for 2DEG states (at K‖ = 0) calculated within the SP/TF scheme, concerning sample A, normalized to their maxima.
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TABLE II. Fitted Kane kp band masses. The uncertainties are ±
0.0005.

Sample A B C D

kp (Kane) mass (m0 unit) 0.033 0.028 0.025 0.023

band mass, reaching 43% for the most dense 2DEG studied.
When represented as a function of the Wigner-Seitz 2D rs

parameter, the mass shows a monotonic decrease, approach-
ing the asymptotic value [72] of 0.023m0 for rs > 0.4 [see
Fig. 9(b)]. This is equal to the standard band mass of InAs.
The asymptotic band mass is correlated with the vanishing
2DEG density, i.e., with vanishing many-body interactions,
but also with vanishing significance of nonparabolicity of the
bands; thus, both many-body interactions and nonparabol-
icity may, in principle, be the cause of the observed mass
variation. The band shapes do not depend on the band num-
ber (to the experimental accuracy), so all subbands, for a
given sample, are fitted well with the single band shape
(see Fig. 9).

At first let us discuss the predictions, which specifically
relate to changes in band mass, resulting from the e-e interac-
tions. On the basis of our earlier estimations concerning the
�e-e

I we expect them being not very significant. The relevant
theoretical predictions may be also read in Ref. [73], where
the enhancement of the effective mass in 2D electron liquid
is given, based on a few different models. For the relevant
range of rs, a decreasing effective mass (at the Fermi level)
is found with increasing rs, but the total change is less than
0.0005 m0. Studying the quasiparticle self-energy vs k curves
characters, provided in Ref. [73] one finds that the effect
around k = 0, i.e., on the band mass must be less than that.
Thus, our observations cannot be explained with e-e inter-
actions (and in fact, the predicted interactions are far too
weak to cause any effect on the �e-e

R , observable with our
technique).

Concerning e-d interactions, the standard assumption is
that they lead only to rigid shifts of electronic bands [74,75],
so that no band mass renormalization is expected. On the
other hand, there exists an experimental report on the band-
edge mass increase (by 14%) on a heavily doped (up to
8 × 1018/cm3) GaAs [76]. Also, in a recent theoretical paper
[77], with the help of ab initio calculations of the e-d interac-
tions in Si, it has been concluded that, contrary to conventional
wisdom, carrier scattering may depend strongly both on the
type of defect and the carrier energy, which could lead to the
renormalization of the band mass. While we cannot exclude
such effects completely for our 2DEG system, we will show
below that they are not the leading-order ones.

F. One-electron effects on 2DEG band shapes

Beyond the many-body interactions, other mechanisms are
possible to explain variation in band shapes in the 2DEG
systems. One is based on the observation that the electron
wave function spills out beyond the confining barriers, and
thus the electron acquires, to some extent, properties charac-
teristic of the outer medium. A simple rule to estimate the

mass in such circumstances, based on a probability distri-
bution between the quantum well and the outer medium, is
given in Ref. [78] by Schildermans et al. Using this rule,
and taking the InAs(110) work function of 4.9 eV [79], we
determine the exponential decay length of the electron wave
function in vacuum, and then, with the solution shown in
Fig. 9(c), assuming the smooth wave function, we evaluate
the expected mass enhancements for sample A (for which the
effect would be the most pronounced). The enhancements are
�0.002, �0.0003, and �0.0002 (in m0 units) for bands 1,
2, and 3, respectively. Thus, we see that the “spillout” could
contribute marginally to the observed mass of band 1 only (see
also the Supplemental Material for more discussion on this
topic [37]).

Another mechanism has been proposed for the variable
masses observed for nonparabolic electron subbands of ultra-
thin IrO2 films by Kawasaki et al. [24]. They stated that for
2D “i” metallic band, one may associate formally a constant
out-of-plane k-vector components (kzi ), chosen to provide the
proper energy, and that ARPES spectra may be approximated
with the (kzi = const) slices of the 3D dispersion relation.
We have applied this model on our data: the constants kzi

are found by solving equations Ecb(k2
zi

) = Eci, Eci being the
discrete localization energies (for K‖ = 0) in the quantum
well. The localization energies are then obtained from the
experimental data as Eci = −VBM − Eg + Ei, and the model
subbands are evaluated as Ei(kx ) = Ecb(kx

2 + k2
zi

). ky = 0 is
warranted by the experimental geometry. They are shown in
Fig. 9 with black dashed lines. Although these lines follow
approximately the lowest subbands, the model is disqual-
ified due to the large disparities observed for the higher
bands.

Here, we notice that the model assuming that the (kzi =
const) slice of the 3D dispersion relation corresponds to the
2DEG dispersion is not correct for nonparabolic systems
since, for such systems, partial energies cannot be associated
with the Carthesian coordinates in the k space simply. The for-
mally correct description of the 2DEG dispersion is obtained,
e.g., with the Schrödinger-Poisson theory using the Thomas-
Fermi approximation (SP/TF scheme), here with Eq. (11) in
Sec. III. The 2DEG bands evaluated in this way are shown
in Fig. 9(a) with the solid magenta lines. As seen, these
theoretical lines agree reasonably well with the experimental
bands for all subbands. The band-2 energies are typically
slightly too large, which we think is caused by the applied
approximations. This moderate discrepancy is not essential
since, for the given sample, the band shapes only minimally
change with their subband number, so they also have to be
insensitive to corrections in theory, leading to small shifts on
the energy scale. The shapes do not depend strongly on the
band bending and λ, which are the most uncertain parameters
within our SP description. Thus, the band-shape convergences
are the most reliable indication of the correctness of this
model. Going to the details, only the experimental band 1 of
sample A deviates minimally when compared to its SP/TF
model line. Although this could be a signature of spillout
effect or e-d mass renormalization, this is on the verge of
the experimental accuracy and, likely, such small difference
can also be caused by approximations used in the model.
Thus, we conclude that no mass renormalization arising due
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to e-d interactions is needed, and the InAs 2DEG bands
are described with a one-electron SP/TF theory, with accept-
able accuracy. The many-body interactions are revealed only
by the band Lorentzian widths.

Finally, we return to the very close convergence of the
fitted Kane model lines and the ARPES 2DEG bands. We
emphasize here that the ARPES bands have a distinct 2D
character (they show no kz broadening and no dependence
on photon energy), so they correspond directly to the Ei(K‖)
dispersion lines.

We have found that the � parameter, seen on the ARPES
valence band spectra as the energy difference between VBM
and so|k=0, does not change with the 2DEG density (see
Fig. 3, other densities not shown). With regard to Eg, the
situation is not equally clear since Eg is not accessible with
ARPES directly. In fact, band-gap narrowing (BGN) is ex-
pected for dense electron gases in semiconductors [80]. The
BGN for 2DEG may be estimated based on the BGN for
the corresponding 3D system from Ref. [80]. We read the
3D BGN for an equal Wigner-Seitz rs parameter and scale
it up 2–3 times, taking into account results obtained in
Refs. [21,67]. The result for our sample A, for which the
effect is the most pronounced, is 40–60 meV. We have also
studied how far Eg may be reduced without compromising the
Kane function [Eq. (1)] fits. For sample A this is 70 meV.
The Eg reduction is compensated with an insignificant de-
crease in the mcb (by 0.001 m0) while the band shape is
preserved.

Having this we see that the Kane fits shown in Fig. 9
involve the parameters Eg and �, which are the physical real-
ities. The fits are obtained using the kp InAs conduction band
model with adjusted electron effective mass only. Given the
nearly perfect convergence of the fit lines and the experimen-
tal data, we suppose a physical significance of the Kane kp
formalism, within the problem studied. Can it be understood
further? We note here that the 2DEG wave functions occupy
the crystal layer thick on atomic scale (tens up to a hundred
atomic layers), and also the studied surface is unreconstructed,
preserving the in-plane crystal periodicity up to the very sur-
face, while the kp formalism involves, in the first place, the
microscopic crystal potential.

The mathematically complex, theoretical picture of 2DEG
bands [Eqs. (11) and (12)] arises within the SP/TF de-
scription scheme. Within this description, one uses the
plane-wave representation of ψ⊥ [Eq. (10)], so that the out-
of-plane momentum components (kn) are formally present.
Then the 3D nonparabolic (nonseparable) dispersion relation
[Eq. (1)] is involved causing the in-plane and out-of-
plane parts of the problem to be not separated within this
scheme.

On the other hand, for 2D systems, the out-of-plane mo-
mentum component is not a good quantum number, therefore,
for the dispersion relation E (K) (i.e., our observable) one
writes simply: E (K) = E (K‖).

As we have mentioned in Sec. I the systems studied here
do not depart far from the ideal two-dimensionality. Yet, they
are quasi-2D, and they involve the out-of-plane energies. If
the out-of-plane problem is completely separated, one can
obviously write for the subbands i: Ei(K‖) = E (K‖) + Ei,
where the E (K‖) is the solution of the in-plane problem,

FIG. 10. A schematic comparison of the band model shapes dis-
cussed here. Solid black lines correspond to Kane band shape fitted
to the experimental data (based on sample B, band 1). The same band
shape for all three subbands is drawn (it fits all subbands within the
experimental accuracy). Black dashed lines correspond to the slices
of the 3D dispersion relation as proposed by Kawasaki et al. [24]. The
magenta lines are Schrödinger-Poisson line shapes. These shapes
differ insignificantly between different subbands and they are hardly
discernible from the Kane line shapes. Such relations are observed
for all studied samples (Fig. 9)

meaning the identical subband shapes. However, for the case
studied the nonseparability problem appears explicitly in the
the SP/TF description. Therefore, it seems possible that the
2DEG system may inherit this property, despite the fact that
the nonseparable 3D dispersion is not directly applicable for
the system. Thus, it is not expected that, on the dispersion
graphs, the 2DEG subbands will be shifted copies of some
single line shape.

Paradoxically, the experimental InAs 2DEG subbands are
described rather well with copies of a single line shape; see
Fig. 9. Moreover, there are only marginal differences also in
the theoretical SP/TF subband shapes (Figs. 9 and 10). Thus,
the nonseparability problem seems to be present at a certain
level of SP/TF mathematical representation, but not at the
end, in the solutions.

Therefore, we think that, for the 2DEGs studied, there
is possibly a description within the complete separation
frame, in which the out-of-plane part leads to discrete en-
ergies, and adjustment of the in-plane effective mass. The
idea of confinement-dependent band mass in 2D systems
is present in the literature, for example, in the theoretical
paper of Ekenberg [81]. In the paper the formula for a
confinement-dependent parallel band mass in nonparabolic
quantum wells is also given. In Fig. 11 we show calculated
density distributions in real space for the studied 2DEGs.
The distributions evidence large differences of the electrons
confinement for different samples. Unfortunately, the results
given in Ref. [81] involve a dependence of the mass on the
subband number, and therefore it cannot be tailored to our
systems.
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FIG. 11. Depth distributions of 2DEG electrons for the studied
samples (see the labels associated with each curve), calculated within
the Schrödinger-Poisson scheme. The distributions are obtained with
an integration of the K‖-dependent contributions [ψ i

⊥(z, K‖)]2 over
the occupied K‖ space and a summation over all relevant subbands i.
The distributions are shown normalized to their maxima.

On the other hand, a self-consistent Schrödinger-Poisson
analysis of nonparabolic quantum well bands in InGaAs
system (Ref. [82]) leads to results similar to ours, i.e., to sub-
band shapes not differing significantly. So, our result may be
very likely generalized for other nonparabolic systems. More
work is needed, including experimental studies of 2DEGs

on other nonparabolic crystals, to reach a more universal
conclusion here.

V. CONCLUSIONS

There are several messages with which we would like to
conclude this paper. The first is that the simple “const kz”
model is not sufficient for describing nonparabolic 2D elec-
tron systems. This is a general, sample-independent statement,
which is also in line with the widely accepted notion that the
kz momentum is not a good quantum number in the context of
2D and quasi-2D systems.

The second message is that, in contrast to the previous
result, the electron-electron interactions in InAs 2DEGs are
weak and the most significant interactions of the many-body
class are the electron-donor interactions. Still, no many-body
renormalization of electronic bands is observed, and the bands
are described well using the one-electron theoretical frame.
Thus, we have to do with a “clean” model system in which
many-body effects very weakly interfere with nonparabolicity.
No significant spillout effects are present either.

A noticeably nontrivial observation for these model non-
parabolic systems is also that they do not inherit the
nonseparability of the in-plane and out-of-plane energies after
its 3D matrix, i.e., the subbands do not differ in shape. They
are convergent with the Kane kp band shape, obtained based
on the bulk InAs Kane conduction band formula, with only
the band-edge mass adjusted.
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