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Symmetry is usually defined via transformations described by a (higher) group. But a symmetry really corre-
sponds to an algebra of local symmetric operators, which directly constrains the properties of the system. In this
paper, we point out that the algebra of local symmetric operators contains a special class of extended operators—
transparent patch operators, which reveal the selection sectors and hence the corresponding symmetry. The
algebra of those transparent patch operators in n-dimensional space gives rise to a nondegenerate braided fusion
n-category, which happens to describe a topological order in one higher dimension (for finite symmetry). Such
a holographic theory not only describes (higher) symmetries, it also describes anomalous (higher) symmetries,
noninvertible (higher) symmetries (also known as algebraic higher symmetries), and noninvertible gravitational
anomalies. Thus, topological order in one higher dimension, replacing group, provides a unified and systematic
description of the above generalized symmetries. This is referred to as symmetry/topological-order (Symm/TO)
correspondence. Our approach also leads to a derivation of topological holographic principle: boundary uniquely
determines the bulk, or more precisely, the algebra of local boundary operators uniquely determines the bulk
topological order. As an application of the Symm/TO correspondence, we show the equivalence between
Z2 × Z2 symmetry with mixed anomaly and Z4 symmetry, as well as between many other symmetries, in
1-dimensional space.
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I. INTRODUCTION

It is well known that symmetry, higher symmetry
[1–4], gravitational anomaly [5,6], and anomalous (higher)
symmetry [7] can all constrain the properties of quantum
many-body systems or quantum field theory [3,4,8–32].
Recently, motivated by anomaly in-flow [33–37] as well
as the equivalence [38] between noninvertible gravitational
anomalies [38–43] and symmetries, it was proposed that
noninvertible gravitational anomalies, (higher) symmetries,
anomalous symmetries [7], algebraic higher symmetries
[44,45], etc., can be unified by viewing all of them as
shadow of topological order [46,47] in one higher dimension
[38–41,45,48–53]. A comprehensive theory was developed
along this line [44,45,53]. More specifically, the properties of
quantum many-body systems constrained by a noninvertible
gravitational anomaly or a finite (anomalous and/or higher
and/or algebraic) symmetry are the same as the boundary
properties constrained by a bulk topological order in one
higher dimension. Thus, gravitational anomaly and/or
finite symmetry can be fully replaced and is equivalent to
topological order in one higher dimension. Such a point of
view is called the holographic point view of symmetry.

To place the above holographic point view on a firmer
foundation, we note that even though we use transformations
described by groups or higher groups to define symmetries,
in fact, a symmetry is not about transformations. What a
symmetry really does is to select a set of local symmetric
operators which form an algebra. The algebra of all local
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symmetric operators determines the possible quantum phases
and phase transitions, as well as all other properties allowed
by the symmetry. However, the algebra of local symmetric
operators does not contain symmetry transformations and it
is hard to identify the corresponding symmetry group from
such an algebra (but see Refs. [54] and [55] where symmetry
is reconstructed using commutant algebras).

In this paper, we show that the algebra generated by local
symmetric operators includes not only pointlike local oper-
ators, but it also includes extended operators algebraically
generated by local symmetric operators, such as stringlike op-
erators, membranelike operators, etc. We find that a subclass
of the extended operators—transparent patch operators—are
important. These transparent patch operators reveal the sym-
metry selection sectors hidden in the algebra of local symmet-
ric operators, and thus reveal the selection rules and the corre-
sponding symmetry. Thus, isomorphic algebras of transparent
patch operators give rise to equivalent symmetries.1 Those
isomorphic classes of algebra were referred to as categorical
symmetries in Refs. [45] and [53], which, by definition, de-
scribe all known and unknown types of symmetries. However,
the term “categorical symmetry” has also been used to refer
to algebraic higher symmetry (i.e., noninvertible symmetry)
by some authors. So here, we use categorical symmetry to
stress that the term is used in the sense of Refs. [45,53].

We find that, for a finite symmetry in n-dimensional space,
such an algebra of transparent patch operators determines
a braided fusion n-category. If the algebra include all local

1Such equivalent symmetries were call holoequivalent symmetries
in Ref. [45].
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symmetric operators, then the braided fusion n-category will
be nondegenerate. Further more, isomorphic algebras of trans-
parent patch operators give rise to the same nondegenerate
braided fusion n-category. Thus, categorical symmetries
are described by nondegenerate braided fusion n-categories,
which happen to correspond to topological orders in one
higher dimension [44,45]. In other words, we suggest that
group is not a proper description of symmetry, since (higher)
symmetries and anomalous (higher) symmetries described by
different (higher) groups can be equivalent. Finite symme-
tries are really described by nondegenerate braided fusion
n-categories (i.e., topological orders in one higher dimension).

The calculation in this paper is based on operator al-
gebra.2 A similar picture was obtained in Ref. [56] based
on ground state and their excitations. The operator algebra
discussed in this paper may be related to the nets of local ob-
servable algebras in Ref. [57] and topological net of extended
defects in Ref. [58]. See also Ref. [50] for related discussion
on some of the examples discussed in this paper.

The holographic theory of symmetry allows us to iden-
tify equivalent (higher and/or anomalous) symmetries, that
can look quite different. For example, two (higher and/or
anomalous) symmetries can be realized at boundaries of two
symmetry protected topological (SPT) states with those sym-
metries in one higher dimension. If after gauging the respected
symmetries in the SPT states, then we obtain the same topo-
logical order, then the two corresponding symmetries have
the same categorical symmetry and are equivalent. This is
a systematic way to identify equivalent symmetries and their
categorical symmetry.

In Ref. [45] it was conjectured that if two anomaly-free
(invertible or noninvertible) symmetries described by local
fusion higher categories, R and R′, are equivalent (i.e., have
the equivalent monoidal center Z(R) � Z(R′)), then the two
symmetries provide the same constraint on the physical prop-
erties. This leads to the following conjecture: for any pair
of equivalent symmetries, there is a lattice duality map, that
maps a lattice model with one symmetry R to a lattice model
with another symmetry R′. More specifically, the sets of local
symmetric operators selected by the two symmetries, {OR}
and {OR′ }, have an one-to-one correspondence and generate
the same algebra, under such a duality map. The duality map
also maps the lattice Hamiltonians (as sums of local sym-
metric operators) of the two lattice models into each other.
The two lattice models have identical dynamical properties,
e.g., they have identical energy spectrum in symmetric sub
Hilbert space [53]. This can be viewed as the physical mean-
ing of “equivalent symmetry.”

This conjecture is motivated and supported by the studies
of some explicit examples of well known and new duali-
ties. The notion of dual symmetry was introduced in Refs.
[16,17] via gauging. Reference [53] used Kramers–Wannier
duality and its generalization to study the equivalence
and its holographic understanding of one-dimensional (1d)
RepZ2

-symmetry (the Z2 0-symmetry) and VecZ2 -symmetry

2i.e., algebra generated by local symmetric operators (LSOs),
which we will refer to as LSO algebra for short throughout the rest
of the paper.

(the dual Z2 0-symmetry), as well as two-dimensional
(2d) 2RepZ2

-symmetry (the Z2 0-symmetry) and 2VecZ2 -
symmetry (the Z(1)

2 1-symmetry). Reference [45] used a lattice
duality map to study the equivalence and its holographic
understanding of nd nRepG-symmetry (the 0-symmetry de-
scribed by a finite group G) and nVecG-symmetry (the dual
noninvertible (n − 1)-symmetry). Reference [56] studied the
duality maps and holographic equivalence of 1d RepZ2

-
symmetry, VecZ2 -symmetry, and sRepZ2

-symmetry (the 1d

Z f
2 fermionic symmetry). In the above examples, the duality

map can be viewed as gauging process. In Refs. [59,60], a
more general duality map between lattice systems is discussed
via category theory and tensor network.

In this paper, we studied a duality between anomaly-free
symmetry and anomalous symmetry. We obtain new duality
maps between many pairs of equivalent symmetries, such as
1d Z2 × Z2 symmetry with the mixed anomaly and anomaly-
free Z4 symmetry (see Sec. XI for many more examples).

Viewing symmetry as topological order in one higher di-
mension generalizes the fundamental concept of symmetry.
It allows us to describe new type of noninvertible symmetries
(also called algebraic (higher) symmetries) [45,51,61–64] that
are beyond group and higher group, as well as new type of
symmetries that are neither anomalous nor anomaly-free. But
why do we want a more general notion of symmetry?

We know that symmetry can emerge at low energies. So
we hope our notion of symmetry can include all the possible
emergent symmetry. It turns out that the low-energy emergent
symmetries can be the usual higher and/or anomalous sym-
metries. They can also be noninvertible symmetries. They can
even be symmetries that are neither anomalous nor anomaly-
free. Therefore, we need a most general and unified view
of higher and/or anomalous symmetries and beyond, if we
want to use emergent symmetry as a guide to systematically
understand or even classify gapless states of matter.

For example, using this generalized notion of symmetry,
we gain a deeper understanding of quantum critical points.
We find that the symmetry breaking quantum critical point for
a symmetry described by a finite group G in n-dimensional
space is the same as the symmetry breaking quantum crit-
ical point for an algebraic higher symmetry described by
fusion n-category nVecG [45,53]. In fact, both the ordinary
symmetry described by group G and the algebraic higher
symmetry (a noninvertible symmetry) described by fusion n-
category nVecG are present and are not spontaneously broken
at this critical point. The G-symmetry and the algebraic higher
symmetry nVecG may give us a more comprehensive under-
standing of the symmetry breaking quantum critical point.

Symmetry can constrain the properties of a physical sys-
tem. However, when certain excitations in a system have a
large energy gap, below that energy gap, the system can have
emergent symmetry, which can be anomalous and/or non-
invertible [45,53,65]. In this case, we can use the emergent
symmetry to reflect and to characterize the special low-energy
properties of the system below the gap. Here we make a
preparation to go one step further. We intend to propose that
the low-energy properties and the emergent symmetries are
the same thing. In other words, we intend to propose that the
full emergent symmetry may fully characterize the low-energy
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effective theory. We may be able to study and to classify all
possible low-energy effective theories by studying and classi-
fying all possible emergent symmetries.

Such an idea cannot be correct if the above symmetries
are still considered as being described by groups and higher
groups. This is because the symmetries described by groups
and higher groups are quite limited, and they cannot capture
the much richer varieties of possible low-energy effective
theories. However, after we greatly generalize the notion of
symmetry to algebraic higher symmetry, and even further to
topological order in one higher dimensions—which includes
(anomalous and/or higher) symmetries, (invertible and nonin-
vertible) gravitational anomalies, and beyond—then it may be
possible that those generalized symmetries can largely capture
the low-energy properties of quantum many-body systems.
This may be a promising new direction to study low-energy
properties of quantum many-body systems.

The above proposal is supported by the recent study of
1d gapless conformal field theory where a topological skele-
ton was identified for each conformal field theory [66–68].
Such a topological skeleton is a nondegenerate braided fusion
category corresponding to a 2d topological order, where the
involved conformal field theory is one of the gapless bound-
ary.

The low-energy properties of quantum many-body sys-
tems are described by quantum field theories. A systematic
understanding and classification of low-energy properties is
equivalent to a systematic understanding and classification
of quantum field theories. Thus, the holographic view of
symmetry can have an impact on our general understanding
of quantum field theories. Using this holographic point of
view of symmetry, one can also obtain a classification of
topological order and symmetry protected topological orders,
with those generalized symmetry, for bosonic and fermionic
systems, and in any dimensions [44,45].

The holographic point view of symmetry has a close rela-
tion to AdS/CFT duality, where a boundary CFT and a bulk
quantum gravity in AdS space determine each other. In the
holographic point view of symmetry, there is a topological
holographic principle: boundary determines bulk, while bulk
does not determine boundary. In this paper, we give the above
statement a more precise meaning which allows us to derive
the topological holographic principle. We regard boundary
as an algebra of local boundary operators. From the algebra
of local boundary operators, we can obtain the subalgebra
of a special class of extended operators—transparent patch
operators, which in turn encodes a nondegenerate braided
fusion (higher) category. This category describes a topological
order in one higher dimension, which is the bulk. We see that
boundary uniquely determines bulk.

II. NOTATIONS AND TERMINOLOGY

In this paper, we will use n + 1D to represent spacetime
dimensions, and nd to represent spatial dimensions. We will
use mathcal font A,B, C to describe fusion categories, and eu-
script font A,B,C to describe braided fusion categories. We
will use the theorem style Definitionph to provide “physical
definitions,” which serve the purpose of introducing concepts
without delving into mathematical rigor.

Let us also remark on some terminology. In this paper we
use categorical symmetry to mean the combination of sym-
metry and dual symmetry [53]. If a categorical symmetry
is finite, then the categorical symmetry corresponds to a
topological order [69,70] in one higher dimension [44,45].
Such a topological order in one higher dimension has also
been referred to as symmetry topological field theory (sym-
metry TFT) in the field theory literature [71]. In this context,
one describes the topological operators corresponding to the
(finite) symmetries of a quantum field theory in d dimensions
in terms of the topological excitations of a corresponding TFT
in d + 1 dimensions. The symmetry data are encoded in the
global topological properties of this TFT, which may be de-
scribed in the form of some action. However, such an action is
not necessarily unique. So one should keep in mind that “sym-
metry TFT” really refers to the topological data of the theory
which is independent of the fields one uses to describe it. The
topological data encoded by such a TFT may also be captured
by a lattice model exhibiting topologically ordered ground
states. In this limit, the two notions of symmetry TFT and cat-
egorical symmetry coincide. This concept was also explored
under the name of “topological symmetry” in Ref. [72].

Let us note that in physics contexts, one usually interprets
topological field theory as a particular kind of field theory,
i.e., a theory in terms of smoothly varying fields. If we have a
lattice regularization in mind for the field theory, then we must
first take the limit where the lattice spacing vanishes. Under
such an interpretation, topological field theory describes a
topological order near a critical point, where the smoothly
varying field describes the long wavelength fluctuations near
the critical point. Since a topologically ordered phase can
have many different phase boundaries described by different
critical points, it is common that different topological field
theories can describe the same topological order. Moreover,
for continuous or infinite symmetry, categorical symmetry
does not correspond to topological order or symmetry TFT in
one higher dimension. We need some generalization of fusion
categories with an infinite number of objects to describe such
symmetries. Whatever this generalization is, it is clear that the
notion of categorical symmetry for such symmetries is more
general than topological order/TFT in one higher dimension.

In this paper, we conjecture that categorical symme-
try (as the combination of symmetry and dual symmetry)
corresponds to equivalence class of isomorphic algebra of
transparent patch operators. So we will use this as a more
precise definition of categorical symmetry. We conjec-
ture that, in n-dimensional space, categorical symmetry
(as equivalence class of isomorphic algebras of transparent
patch operators) is described by nondegenerate braided fu-
sion n-category. For continuous or infinite symmetry, the
corresponding braided fusion n-category will have infinite
objects/morphisms. We will discuss some simple examples
to support our conjecture.

In this paper, we also interpret quantum field theory as an
algebra of local operators, along with a Hamiltonian. Under
such an interpretation, the algebra of local operators may
have an energy dependence: we may exclude some local
operators that generate high energy excitations. Then, the re-
maining local operators may generate a different algebra. This
low-energy operator algebra gives rise to emergent categori-
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FIG. 1. A 2d lattice bosonic model, whose degrees of freedom
live on the vertices and are labeled by the elements in a set: gi ∈ G.

cal symmetry. We propose that the full low-energy emergent
categorical symmetry may largely characterize gapless liq-
uid states.

Similarly, we also interpret boundary of a topological order
as an algebra of local boundary operators along with a bound-
ary Hamiltonian. Here, the local boundary operators only
create excitations with energy less then the bulk energy gap
which is assumed to be infinite. Under such an interpretation,
we see a close connection between quantum field theory and
boundary of topological order.

We point out that categorical symmetry (as nondegen-
erate braided fusion n-category M) is not algebraic higher
symmetry [44,45] nor fusion category symmetry [51]. The
latter are described by local fusion higher category R. In fact,
the categorical symmetry M is given by the center of R
[44,45],

M = Z(R). (1)

III. BOSONIC QUANTUM SYSTEM AND
ITS ALGEBRA OF LOCAL OPERATORS

A. Total Hilbert space, local operator algebra, and local
Hamiltonian

A lattice bosonic quantum system is defined by four com-
ponents:

(1) A triangulation of space (see Fig. 1).
(2) A total Hilbert space

V =
⊗

i

Vi, (2)

where Vi = span{|g〉 | g ∈ G} is the local Hilbert space on
vertex-i. The basis vectors of Vi are labeled by the elements in
a finite set G.

(3) An algebra of local operators formed by all the local
operators, A = {Oi}. Here local operator is defined as an
operator Oi that acts within the tensor product of a few nearby
local Hilbert spaces, say near a vertex-i.

(4) A local Hamiltonian H = −∑
i Oi which is a sum of

hermitian local operators.

n

m m

n1 2

1 2 ... ...

... ...
ba

FIG. 2. The matrix elements of a stringlike tensor network oper-
ator, Om1,m2,··· ;n1,n2,···, can be given by a contraction of rank-4 tensors
Tn2,m2,a,b, etc. Each tensor is represented by a vertex, where the legs of
the vertex correspond to the indices of the tensor. The connected legs
have the same index and is summed over (which correspond to the
tensor contraction). This is just one representation of tensor network
operator.

B. Transparent patch operators

The algebra of local operators will play a central role
in this paper. This algebra, which is generated by the local
operators, does not only contain local operators but, beyond
0-dimensional space, also contains the products of local op-
erators. These products can generate extended operators that
can be stringlike, membranelike, etc. Thus, the closure of the
algebra of local operators must contain those extended opera-
tors. An algebra of local operators may have many different
extensions. Since we are going to use the algebra of local
operators to describe symmetries, we will consider a particular
extension. We organize those local and extended operators
into point operators, string operators, disk operators, etc., with
a special transparency property. We refer to these operators
generally as transparent patch operators. More precisely,

Definitionph 1. A patch operator is a tensor network
operator (see Fig. 2). It also has the following form:

Opatch =
∑
{ai}

�({ai})
∏

i∈patch

Oai
i , (3)

where “patch” has a topology of n-dimensional disk, n =
0, 1, 2, · · · . A transparent patch (t-patch) operator is a
patch operator that satisfies the following transparency con-
dition (or invisible-bulk condition):

OpatchOLSO = OLSOOpatch, (4)

if the boundaries of the patch, ∂patch is far away from the
LSO OLSO. The above condition is also equivalent to

OpatchOpatch′ = Opatch′Opatch, (5)

if the boundaries of two patches, ∂patch and ∂patch′, are not
linked and are far away from each other.

In the above definition, Oai
i ’s are local operators acting near

vertex-i. For each vertex, there can be several different local
operators (including the trivial identity operator) which are
labeled by ai.

∏
i∈patch Oai

i is a product of those local operators
over all the vertices i in the patch. Different choices of {ai}
give rise different operator pattern.

∑
{ai} �({ai}) is the sum

of all operator pattern with complex weight �({ai}). One
may think Oai

i ’s create different types of particles labeled by
ai at vertex-i. Then Opatch = ∑

{ai} �({ai})
∏

i∈patch Oai
i creates

a quantum liquid state of those particles on the patch. The
quantum liquid state is described by the many-body wave
function �({ai}).
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In the above definition, we also used a notion of far away
which is not rigorously defined. To define such a notion, we
first introduce a notion of small local operators as operators
acting on vertices whose separations are less then a num-
ber Lop. (The separations between two vertices is defined as
the minimal number of links connecting the two vertices.)
In the rest of this paper, the terms “local operator” and “0-
dimensional patch operator” will refer to this kind of small
local operators.

However, the algebra of small local operators contains
big local operators, acting on vertices whose separations are
larger then the number Lop. “n-dimensional patch operator”
for n > 0 refer to those big local operators. The notion of far
away means further than the distance Lop. When we take the
large system size limit: Lsys → ∞, we also assume Lop → ∞
and Lop/Lsys → 0. We will see in this paper that it is this
particular way to take the large system size limit that ensures
the algebra of small local operators to contain large extended
operators. Such an algebra of small local operators and large
extended operators in n-dimensional space have a structure
of nondegenerate braided fusion n-category. This emergent
phenomenon is the key point of this paper.

There is another important motivation to introduce trans-
parent patch operators. The bulk of transparent patch opera-
tors is invisible. Thus, a transparent open string operator can
be viewed as two pointlike particles, one for each string end.
A transparent disk operator can be viewed as a closed string
at the boundary of the disk. In general, a transparent patch
operator gives rise to an extended excitation in one lower
dimension, corresponding to the boundary of the patch. Later
we will see that those pointlike, stringlike, etc., excitations can
fuse and braid, forming a braided fusion category that describe
the operator algebra.

The boundaries of transparent patch operators can be
viewed as charged particles, although the patch operators
are formed by LSO’s that carry no symmetry charge. The
boundaries of transparent patch operators can also be viewed
as fractionalized particles, which may carries fractionalized
degrees of freedom and/or fractionalized quantum numbers.
So the boundaries of transparent patch operators reveal the
selection sectors of a symmetry. Such selection sectors are
hidden in the algebra generated by the LSOs.

C. Patch symmetry and patch charge operators

Symmetry transformation operators and symmetry-charge
creation operators play important roles in our theory about
symmetry (including higher symmetry and algebraic higher
symmetry). Those operators also appear in our setup of local
operator algebra after we include the extended operators.

Definitionph 2. A t-patch operator is said to have an empty
bulk if Oai

i = idi for all i’s far away from the boundary of
the patch. A t-patch operator with an empty bulk is also re-
ferred to as a patch charge operator. A t-patch operator with
nonempty bulk is referred to as a patch symmetry operator
(see Sec. IV B for a concrete example).

We remark that due to the transparency condition Eq. (5),
a charge patch operator always commutes with symmetry
transformation operator (acting on the whole space for 0-
symmetry, or closed submanifold for higher symmetries).

Thus, the patch charge operator always carry zero total charge.
So the patch charge operators are not charged operators,
since charged operators do not commute with symmetry trans-
formations. The patch charge operators defined above are
something like operators that create a pair of charge and
anticharge, which correspond to a charge fluctuations with
vanishing total net charge.

We point out that definition 2 is not that important
physically, since the notations of charge and symmetry trans-
formation are not the notions of algebra of local operators.
They are the notions of a representation of an operator algebra.
For different representations of the same operator algebra, the
same operator in the algebra can some times be patch charge
operator and other times be patch symmetry operator.

In next section, we will discuss a concrete simple example:
a bosonic system in 1-dimensional space with Z2 symmetry,
to illustrate the above abstract definition. We will give the
explicit form of t-patch operators, to show how they reveal
a braided fusion category in the algebra of local operators.
In Appendix A, we will discuss an example of bosonic sys-
tem in 3-dimensional (3d) space without symmetry. We will
illustrate how they give rise to a nondegenerate braided fusion
3-category 3Vec.

D. Algebra of t-patch operators and categorical symmetry

The symmetric Hamiltonian is a sum of local symmetric
operator H = ∑

i Osymm
i . If our measurement equipments do

not break the symmetry, then the measurement results are
correlations of local symmetric operators. We see that a sym-
metry is actually described by the algebra of local symmetric
operators, rather than by the symmetry transformations. Or
more precisely, symmetry is defined by the commutant alge-
bra of local symmetric operators. Here a commutant algebra
of a local operator algebra is formed by all the operators (local
or nonlocal) that commute with all the operators in the local
operator algebra. In particular,

Isomorphic commutant algebras ↔ Equivalent symmetry.

(6)

In this paper, we will view symmetry from this operator alge-
bra point of view:

Definitionph 3. A categorical symmetryis an equiva-
lence class of isomorphic commutant algebra.

We remark that if the operator algebra contains all the local
operators in a lattice model, then the categorical symmetry
is trivial, describing a trivial symmetry (i.e., no symmetry).
If the local operator algebra contain only a subset of local
operators (such as containing only symmetric local operators),
then the categorical symmetry is nontrivial. Also note that
categorical symmetry is different from the usual symmetry
defined via the symmetry transformations. Two symmetries
defined by different symmetry transformations may have iso-
morphic algebra of local symmetric operators. In that case, the
two symmetries correspond to the same categorical symme-
try, and are said to be equivalent.
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IV. A 1d BOSONIC QUANTUM
SYSTEM WITH Z2 SYMMETRY

In this section, we consider the simplest symmetry—Z2

symmetry in one spatial dimension. A bosonic system with
Z2 symmetry is obtained by modifying the algebra of the
local operators. For convenience, let we assume the degrees
of freedom live on vertices, which are labeled by elements in
the Z2 group +1 and −1.

A. Z2 symmetry and its algebra of local symmetric operators

In the standard approach, a symmetry is described by a
symmetry transformation, which has the following form for
our example:

W =
⊗

i∈whole space

Xi, X =
(

0 1
1 0

)
. (7)

Since W 2 = 1 which generates a Z2 group, we call the sym-
metry a Z2 symmetry. We can use the Z2 transformation W to
define an algebra of local operators:

A = {
Osymm

i

∣∣Osymm
i W = W Osymm

i

}
. (8)

The local operator Osymm
i , satisfying Osymm

i W = W Osymm
i , is

called local symmetric operator.
To see the connections between operator algebra and

braided fusion category, we use the t-patch operators in-
troduced in last section to organize the local symmetric
operators:

(1) 0-dimensional t-patch operators: Xi, ZiZi+1, where
Z = (1 0

0 −1).
(2) 1-dimensional t-patch operators—string operators: for

i < j

Zstri j = ZiZ j, Zstr ji ≡ Z†
stri j

, (9)

where the stringi j connects the vertex-i and vertex- j. The
above string operator has an empty bulk and is called as patch
charge operator. We have another string operator, for i < j,

Xstri j = Xi+1Xi+2 · · · Xj, Xstr ji ≡ X †
stri j

. (10)

Note that the boundaries of X -strings actually live on the
links 〈i, i + 1〉 and 〈 j, j + 1〉. We labeled those links by i, j.
This leads to the special choice of the boundary of the string
operator. The second string operator has a non trivial bulk,
which generates our Z2 symmetry.

We remark that, in general, the operators in the string may
not commute and the order of the operator product will be
important in that case. Here we adopted a convention that in
string operator Ostri j , the operators near i appear on the left
side of the operators near j.

In terms of t-patch operators, algebra of local symmetric
operators takes the following form (only important operator
relations are listed)

Zstri j Zstr jk = Zstrik , (11)

Xstri j Xstr jk = Xstrik , (12)

i k

(a)

i kjj j
(b) (c)

FIG. 3. (a) “Fusion” of two string operators. (b) Nontrivial
“braiding” between two string operators. (c) Trivial “braiding” be-
tween two string operators.

Zstri j Xstrkl = −Xstrkl Zstri j (i < k < j < l ), (13)

Zstri j Xstrkl = +Xstrkl Zstri j (else). (14)

Equations (11) and (12) describe the fusion of string operators
[see Fig. 3(a)]. The commutator between the two kinds of
string operators depends on their relative positions. If one
string straddles the boundary of the other string, such as i <

k < j < l as in Fig. 3(b), then commutator has a nontrivial
phase. Otherwise [see Fig. 3(c)], the string operators com-
mute, which ensure the string operators are indeed transparent
patch (t-patch) operators. All such “nonstraddling” orderings
of i, j, k, l are understood to be captured in Eq. (14). In
Sec. IV F, we will discuss the full algebra of extended t-patch
operators in more detail.

B. Patch symmetry transformation

We note that Zi operator transforms as the nontrivial repre-
sentation of Z2 group:

W ZiW
−1 = −Zi. (15)

Thus, we say Zi carries a nontrivial representation, or more
commonly, a nontrivial Z2 charge. The string operator Zstr

is formed by two Z2 charges and carry a trivial total Z2

charge. In fact, by definition, all local symmetric operators
carry trivial Z2 charge (see later discussion).

We have stressed that a symmetry is fully characterized by
its algebra of local symmetric operators. But all those local
symmetric operators carry no symmetry charge. It appears that
a key component of symmetry, the symmetry charge (i.e., the
symmetry representation) is missing in our description.

In fact, the symmetry representation can be recovered. As
pointed out in Ref. [53], there is a better way to describe
symmetry transformations using t-patch operators. We notice
that the only use of the symmetry transformations is to select
local symmetric operators. After that we no longer need the
symmetry transformations. Since local symmetric operators
are local, we do not need the symmetry transformations that
act on the whole space. We only need symmetry transforma-
tions that act on patches to select local symmetric operators.
This motivates us to introduce patch symmetry transformation

Wpatch =
⊗

i∈patch

Xi. (16)

We can use the patch symmetry transformation Wpatch to define
the local symmetric operators:

A = {
Osymm

i

∣∣Osymm
i Wpatch = WpatchOsymm

i ,

× i far away from ∂patch
}
. (17)

So a symmetry can also be defined via the patch symmetry
transformations.
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charged
charged

charged

FIG. 4. Nontrivial “braiding” between two string operators, the
patch symmetry operator (the solid line) and the patch charge op-
erator (the dashed-line), measures the symmetry charge carried by
boundary of patch charge operator, if the patch symmetry operator
generates the symmetry.

For the Z2 symmetry in 1-dimensional space, the patch
symmetry transformations happen to be generated by one
of the string operators with nonempty bulk, Xstr , and this is
why we call them patch symmetry operators. In this example,
we also see that the string operator Zstri j with empty bulk
corresponds to a charge-anticharge pair operator. This is the
why we call t-patch operators with empty bulk as patch charge
operators.

The patch symmetry transformations have an advantage
that they can detect the symmetry charge hidden in the patch
charge operators (which have zero total charge): when the
patch charge operator Zstr straddle the boundary of the patch
symmetry transformation Wpatch, the two operators have a
nontrivial commutation relation:

ZstrWpatch = −WpatchZstr. (18)

This nontrivial commutation relation measures the charge car-
ried by one end of the string operator.

If we view the order of the operator product as the order
in time, and view the string as world line of a particle in
spacetime (see Fig. 4), then the commutation relation Eq. (18)
can be viewed as a braiding of the charged particle around
the boundary of the patch symmetry operator. The boundary
of the patch symmetry operator can be viewed as a “symmetry
twist flux.” The charge is measured by a braiding of symmetry
charge around symmetry twist flux. This is why we refer to
Eqs. (13) and (14) as “braiding” relations in Fig. 3.

C. The algebra of patch charge operators
and its braided fusion category

Let us concentrate on patch charge operators. The proper-
ties of the charges of a symmetry can be systematically and
fully described by a braided fusion category. To connect the
Z2 symmetry charges to fusion category, we view the local
symmetric operators Osymm

i as the morphisms, and the ends of
string operator Zstri j (i.e., the pointlike Z2-charge) as objects ei

and ē j in a fusion category. In other words, we write the string
operator as

Zstri j = Te(i → j). (19)

The notation Te(i → j) is more precise and carries several
meanings. (1) We view Te(i → j) as a world-line of a particle
labeled by e that travels from i to j. Te(i → j) can also be
viewed as a hopping operator of e from i to j. Here, we have
adopted a convention that the arrow indicate the direction of
the hopping. (2) The notation of string operator Te(i → j) also
specify the ordering of operators: the operators near left index
i appears to the left of the operators near the right index j.

Since the local symmetric operators Zstrii′ (the morphisms)
can move the string ends (the Z2-charges):

ei
Osymm→ ei′ , ei′

Osymm→ ei, (20)

the Z2-charges (at the string ends) at different places are
isomorphic ei

∼= ei′ , i.e., they belong to the same type of exci-
tations. More generally, two excitations that can be connected
by local symmetric operators are regarded as the same type of
excitations.

From the above expression of t-patch operators, we can
compute the fusion ring

a ⊗ b =
⊕

c

Nab
c c (21)

of the braided fusion category. Notice that Te(−∞ → i) cre-
ates an e particle at i (and creates another particle at −∞
which we ignore). Creating two e particles, we obtain

Te(−∞ → i)Te(−∞ → i) = id. (22)

In other words, we get a trivial particle 1. This allows us to
obtain the fusion rule

ei ⊗ ei = 1. (23)

The isomorphic relation is an equivalence relation. After quo-
tienting out the equivalence relation, ei

∼= e j , we find that the
fusion category has only two objects: 1, e. The morphism
of the fusion category is given by local symmetric operators
Osymm

i near a vertex-i. Also, with this equivalence relation, we
can interpret Eq. (23) as

e ⊗ e = 1, (24)

which tells us that the e particle is its own antiparticle.
However, the fusion rule Nab

c fails to completely deter-
mines the fusion category, because it is possible for two
different fusion categories to have the same fusion ring. To
complete the description of the fusion category, we also
need to compute the F -symbol, which is defined as the rel-
ative phases of different ways to fuse three particles a, b, c
together, a ⊗ b ⊗ c → (ab) ⊗ c → (ab)c and a ⊗ b ⊗ c →
a ⊗ (bc) → a(bc) (see Fig. 5), if we treat the result of fusion,
as quantum state or as operator:

|(ab)c〉 = F (a, b, c)|a(bc)〉,
O((ab)c) = F (a, b, c)O(a(bc)). (25)

Following Ref. [73], the F -symbol is computed from the
relative phase of the two ways to compute operator products
in Fig 5. It is trivial to check that

Te(1 → 2)Te(0 → 1)Te(2 → 1)Te(3 → 1)

≡ Zstr12 Zstr01 Z†
str12

Z†
str13

= Z†
str13

Zstr01

= Te(3 → 1)T1(1 → 2)Te(0 → 1)T1(2 → 1), (26)

therefore F (e, e, e) = 1. Similarly, we can show that
F (1, 1, 1) = F (e, 1, 1) = F (1, e, 1) = F (1, 1, e) =
F (e, e, 1) = F (e, 1, e) = F (1, e, e) = 1, since the hopping
operators of e and 1 particles all commute. This implies
that the category formed by 1, e and described by data
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0 1 2 3

ba c

a b c
0 1 2 3

ba c

a c

ab

abc abc

bc

bc

FIG. 5. Two ways to fuse three particles a, b, c into abc, as
operator product. The phase difference of the two resulting op-
erators is F (a, b, c). The horizontal lines and the corresponding

45◦ lines correspond to hopping operators. For example 1
b−→ 2 ∼

Tb(1 → 2). The hopping operators with higher location are applied
first. Thus, we have the relation Tc(3 → 1)Tb(2 → 1)Ta(0 → 1) =
F (a, b, c)Ta(0 → 1)Tc(3 → 1)Tb(2 → 1).

Nab
c , F (a, b, c) is a fusion category RepZ2

—the fusion
category of the representations of Z2 group.

In fact, the 1, e particles not only form a fusion category,
they actually form a braided fusion category. To calculate
the braiding properties, we first calculate the self statistics
of e particle using the statistical hopping algebra prescription
introduced in Ref. [74] and depicted in Fig. 6,

Te(0 → 1)Te(1 → 2)Te(3 → 1)

= Zstr01 Zstr12 Z†
str13

= e i θe Z†
str13

Zstr12 Zstr01

= e i θe Te(3 → 1)Te(1 → 2)Te(0 → 1), (27)

0 1 2 3 0 1 2 3

a ba b

a
b b ba a

FIG. 6. The two ways of a, b particle hopping give rise to two
configurations which exchange their positions. When a = b, the
phase difference of the two resulting operators is e i θa , which is the
self statistics of the a particle. Thus, we have a relation Tb(3 →
1)Tb(1 → 2)Ta(0 → 1) = e i θa Ta(0 → 1)Tb(1 → 2)Tb(3 → 1).

0 1 2 3

a b

a b 0 1 2 3

a b

ba

FIG. 7. The two ways of a, b particles hopping give rise to the
same final configuration but via different braiding paths. The phase
difference of two hopping processes is e i θab , which is the mutual
statistics of the a and b particles. Thus, we have a relation Tb(3 →
1)Ta(0 → 2) = e i θab Ta(0 → 2)Tb(3 → 1).

from which we can read off the self-statistical angle e i θe = 1.
This shows that e particles have bosonic self-statistics. We can
also use Fig. 7 to compute mutual statistics of 1, e particles.
We find that 1, e particles are bosons with trivial mutual
statistics. This implies that the category formed by 1, e is a
braided fusion category RepZ2

. It is actually a special braided
fusion category called symmetric fusion category, since all the
mutual statistics are trivial.

According Tannaka duality, the symmetric fusion category
RepZ2

can fully describe the symmetry group G = Z2. So,
instead of using a group G (formed by the transformations),
we can also use a symmetric fusion category of patch charge
operators (i.e., formed by charged objects or the representa-
tions) to fully describe a symmetry.

D. Representation category and symmetry

Above picture also works for generic finite group G: a
symmetry G can also be described by a symmetric fusion
category RepG (formed by the representations of G). This is
the categorical point of view of symmetry, which was used
in Refs. [44,75] and will be used in this paper. The symmetric
fusion category generated by patch charge operators is nothing
but the mathematical framework that describes the properties
of symmetry charges (such as their fusion and braiding).

Definitionph 4. We will call the symmetric fusion category
R formed by patch charge operators as representation cate-
gory [32].

In fact, there is another definition of representation cate-
gory. We may ignore the braiding structure and consider the
fusion category R formed by patch charge operators. Instead
of the braiding structure, we consider a symmetry-breaking
structure, i.e., a faithful functor β : R → Vec (which is also
called fiber functor) that describe the process of ignoring the
symmetry:

Definitionph 5. If a fusion category R has a fiber functor
β, then the pair (R, β ) will be called a local fusion category.
Such a local fusion category can also be viewed as the repre-
sentation category of the symmetry [45].
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In higher dimension, the notion of symmetric fusion higher
category used in Ref. [44] may be hard to define. In this case,
the second Definition 5 is can be used as in Ref. [45].

Thus, we can say that an anomaly-free symmetry in 1-
dimensional space described by a finite group G is fully
described by its representation category, a symmetric fusion
category RepG or a local fusion category (RepG, β ). This
point of view can be generalized to described anomaly-free
symmetries beyond group and higher group. In Ref. [45], it
is proposed that the most general anomaly-free symmetries
in n-dimensional space are fully described by local fusion n-
categories (R, β ). Such a description includes noninvertible
symmetries (i.e., algebraic higher symmetries).

In the above we have used a notion of anomaly-free
symmetry. For symmetry described by group and/or higher
group, an anomaly-free symmetry is defined as a symmetry
that can be gauged. But such a definition does not apply to
noninvertible symmetries, for which we do not how to gauge
them. To solve this problem, Ref. [45] proposed the following
macroscopic definition without using gauging

Definitionph 6. Anomaly-free symmetry is the symmetry
that allows nondegenerate symmetric gapped states for any
closed space manifolds.

A microscopic definition was also proposed
Definitionph 7. Anomaly-free symmetry is the symmetry

that allows symmetric state of form |�〉 = ⊗
i |ψi〉, where

|ψi〉 is a symmetric state on site-i.
We remark that representation categories (i.e., symmetric

fusion n-categories or local fusion n-categories) only fully
describe anomaly-free symmetries, but fail to fully describe
anomalous symmetries. This is because different anomalous
symmetries can have the same representation category. In
fact, an anomalous symmetry G can be described by symme-
try transformations Wg, g ∈ G: WgWh = Wgh that may not be
onsite. The noninvariant local operators that form representa-
tions of of the symmetry group G. Thus,

Proposition 1. all the different anomalous symmetries of
the same group G have the same representation category
RepG.

Later in Sec. VII, we will give a 1d example of emergent
Z2 × Z2 symmetry, whose representation category formed by
the Z2 × Z2 charge is not a local fusion category. This implies
that the emergent Z2 × Z2 symmetry is not an anomaly-free
symmetry, since the representation categories of all anomaly-
free symmetries are local fusion categories. This also implies
that the emergent Z2 × Z2 symmetry is not an anomalous
symmetry (in the usual sense), since the representation cate-
gories of all anomalous symmetries are also described by local
fusion categories. Here we have an example of an emergent
symmetry that is neither anomalous nor anomaly-free.

E. The algebra of patch symmetry operators and its braided
fusion category—Transformation category

In the above, we show that the operator algebra of a class
of string operators, the patch charge operators Zstr, gives rise
to a symmetric fusion category RepZ2

. In this section, we are
going to consider the operator algebra of another class of t-
patch operators Xstr, the patch symmetry operators, and show

that they give rise to a fusion category VecZ2 which happens
to be isomorphic to RepZ2

.
Patch symmetry operators are defined by restricting the

global symmetry to finite patches as discussed in Sec. IV B
(assume i < j)

Wpatchi j
= Xstri j = Xi+1 · · · Xj−1Xj . (28)

Since the bulk of a patch symmetry operator is invisible, it
is completely legitimate to think of the boundary of the 1d
patch symmetry operator as particles. We can define a fusion
operation of those particles, which is called m.3 Analogous to
the discussion in the previous subsection, we may construct a
braided fusion category corresponding to these m particles.

To do so, we can think of these patch symmetry operators
as operators that transport m particles from one point to an-
other on the one-dimensional space

Wpatchi j
= Tm(i → j). (29)

The above can also be viewed as a world-line of m particle
from i to j. In fact, the m particle live on the link, such as
〈i, i + 1〉. In the above, we view such a m particle as located
at i.

We can work out the fusion of the m particles as we did for
the e particles in Sec. IV C. From

Tm(−∞ → i)Tm(−∞ → i) = id (30)

we find the fusion rule m ⊗ m = 1. It tells us that the m
particles are their own antiparticles.

Next, we work out F -symbol from Fig. 5. We find that
F (a, b, c) = 1 for a, b, c = 1, m. This is not surprising be-
cause the patch operators all commute with each other since
they are just products of Pauli X operators and identity op-
erators. Thus, 1, m form a fusion category VecZ2 , which is
isomorphic to RepZ2

.
1, m also have a braiding structure and form a braided

fusion category. Using Fig. 6, we find that m particles have
trivial self-statistics. Using Fig. 7, we find that 1 and m parti-
cles have trivial mutual statistics. This allows us to show that
1, m form a symmetric fusion category VecZ2 .

Definitionph 8. We will call the symmetric fusion category
T formed by patch symmetry operators as transformation
category [32].

Similar to representation category, we believe that the
transformation category in n-dimension space can also be
described by local fusion n-categories. We ignore the braiding
structure and consider the fusion category T formed by patch
symmetry operators. We replace braiding structure with a
faithful functor β : T → Vec [45]. The local fusion category
(T , β ) can also be viewed as the transformation category of
the symmetry.

F. The algebra of all string operators
and its nondegenerate braided fusion category

In this subsection, we are going to consider the operator
algebra of all string operators, i.e., the patch charge operators
Zstr and the patch symmetry operators Xstr. The isomorphic

3The reason for this name will become clear in next subsection.
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class of such a complete operator algebra is called a categor-
ical symmetry.

We have seen that the algebra of Zstr corresponds to a
symmetric fusion category RepZ2

, and the algebra of Xstr

corresponds to a symmetric fusion category VecZ2 . The alge-
bra of Zstr and Xstr corresponds to a braided fusion category
formed by RepZ2

and VecZ2 . Here, we show that such a
braided fusion category describes the topological excitations
in Z2-topological order with topological excitations 1, e, m, f
in 2-dimensional space. We will denote such a braided fusion
category as GauZ2 .

The algebra of Zstr and Xstr also contain their product

Xstri j Zstri j = Tf (i → j). (31)

Tf (i → j) is the world-line of a new particle f . We see that a
f particle at i is the bound state of an e particle at i and an m
particle on the link 〈i, i + 1〉. Tf (i → j) satisfies the following
algebra:

Tf (i → j)Tf ( j → k) = Xi+1 · · · XjZiZ jXj+1 · · · XkZjZk

= Xi+1 · · · XkZiZk = Tf (i → k).

Next, we compute the fusion rules for the f particles:

Tf (−∞ → i)Tf (−∞ → i) = −id. (32)

This implies the fusion rule f ⊗ f = 1, up to an overall phase
factor. This phase factor does not carry any meaning for the
fusion rule.

We can also compute the F symbol for the f particle, using
the prescription in Fig. 5. It is easy to check that all the com-
ponents of F (a, b, c) with a, b, c = 1, f are equal to 1. Let us
compute two cases explicitly, F ( f , f , f ) and F ( f , 1, f ). The
first, F ( f , f , f ), is obtained as follows:

Tf (1 → 2)Tf (0 → 1)Tf (2 → 1)Tf (3 → 1)

≡ Xstr12 Zstr12 Xstr01 Zstr01 Z†
str12

X †
str12

Z†
str13

X †
str13

= Z†
str13

X †
str13

Xstr01 Zstr01

= Tf (3 → 1)T1(1 → 2)Tf (0 → 1)T1(2 → 1), (33)

i.e., F ( f , f , f ) = 1 and the second, F ( f , 1, f ), is obtained
from

T1(1 → 2)Tf (0 → 1)T1(2 → 1)Tf (3 → 1)

≡ Xstr01 Zstr01 Z†
str13

X †
str13

= Z†
str13

X †
str13

Xstr12 Zstr12 Xstr01 Zstr01 Z†
str12

X †
str12

= Tf (3 → 1)Tf (1 → 2)Tf (0 → 1)Tf (2 → 1), (34)

i.e., F ( f , 1, f ) = 1. The product F ( f , f , f )F ( f , 1, f ) = 1 is
gauge invariant; in fact, (the sign of) this product encodes the
Frobenius-Schur indicator of f .

Further, we can calculate the self-statistics of the f particle
using the hopping algebra method used in previous subsec-
tions,

Tf (3 → 1)Tf (1 → 2)Tf (0 → 1)

= (X2X3Z1Z3)†(X2Z1Z2)(X1Z0Z1)

= −(X1Z0Z1)(X2Z1Z2)(X2X3Z1Z3)†

= −Tf (0 → 1)Tf (1 → 2)Tf (3 → 1), (35)

from which we find that f particles have fermionic self-
statistics.

Mutual statistics of e, m, and f particles can be obtained
by the use of the patch operators. For example, when i < k <

j < l , we have

Zstri j Xstrkl = −Xstrkl Zstri j . (36)

Thus, the e and m particles have π mutual statistics. In fact,
the e, m, and f particles all have π mutual statistics respect to
each other.

Since every nontrivial topological excitations (i.e., e, m, f )
can be detected remotely via mutual statistics, the parti-
cles 1, e, m, f form a nondegenerate braided fusion category
GauZ2 . We believe that such a nondegenerate braided fu-
sion category fully characterized the isomorphic class of the
algebras of local symmetric operators. Thus, categorical
symmetry is fully characterized by nondegenerate braided
fusion category. Since the nondegenerate braided fusion cate-
gory describes a topological order in 2-dimensional space, we
can also say that categorical symmetry is fully characterized
by topological order in one higher dimension. This connection
between algebra of local symmetric operators and nondegen-
erate braided fusion category, as well as topological order in
one higher dimension is the key result of this paper.

G. A holographic way to compute categorical symmetry

In the above, we have computed the categorical symme-
try of Z2 symmetry directly from the definition of categorical
symmetry, i.e., from the algebra of local symmetry operators
and their string extensions. We find that the categorical sym-
metry of Z2 symmetry is a topological order in one higher
dimension. In fact, we can compute this topological order in
one higher dimension directly.

We know that a system with Z2 symmetry can be realized
as a boundary of a trivial product state with Z2 symmetry in
one higher dimension. If we gauge the bulk symmetric product
state, then we will obtain a Z2 topological order GauZ2 de-
scribed by Z2 gauge theory. Such a Z2 topological order in one
higher dimension happen to be the categorical symmetry of
Z2 symmetry.

This result can be generalized. An anomaly-free (higher)
symmetry described by (higher) group G can be realized as a
boundary of a trivial product state with G (higher) symmetry
in one higher dimension. If we gauge the bulk symmetric
product state, then we will obtain a topological order GauG

described by G (higher) gauge theory. Such a topological
order in one higher dimension is the categorical symmetry
of the G (higher) symmetry.

We note that in Ref. [76], the authors consider various G-
symmetric 1 + 1D models as realized on the edge of 2 + 1D
G-gauge theory (i.e., G quantum double). This is one particu-
lar instance of the general argument we present in this paper.
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V. A 1d BOSONIC QUANTUM SYSTEM
WITH ANOMALOUS Z2 SYMMETRY

Now we discuss the next simplest example: a bosonic sys-
tem

HaZ2 = −B
L∑

i=1

ZiZi+1 − J1

L∑
i=1

(Xi − Zi−1XiZi+1)

+ J2

L∑
i=1

Zi−1(Xi + Zi−1XiZi+1), (37)

in 1-dimensional space with an anomalous Z2 symmetry
(i.e., a nononsite symmetry). Our discussions here follow
closely the discussions in the last section.

The nononsite Z2 symmetry [53,77–79]) is described by
the symmetry operator

W =
∏

i

Xi

∏
i

si,i+1 =
∏

i

Xi

∏
i

i
−Zi+Zi+1+ZiZi+1−1

2 , (38)

which we represent pictorially as

,

where the operators on top act first. The phase factor si,i+1

is real despite appearances as can be checked by substituting
{+1,−1} for Zi and Zi+1 (i.e., we work in the Z basis). It is
easy to see that it evaluates to +1 when there is no domain
wall between i and i + 1. Moreover, it evaluates to −1 for only
one kind of domain walls, the +1 → −1 kind; it evaluates to
+1 for the −1 → +1 kind.

A. Braided fusion category of patch symmetry
transformation operator

To identify the braided fusion category (i.e., the categor-
ical symmetry) corresponding to this anomalous symmetry,
we will work out the patch symmetry operators corresponding
to the above global symmetry operation. Legitimate patch
symmetry operators must satisfy the transparent and fusion
properties, i.e.,

(1) Wpatchi j
Wpatch jk

= Wpatchik
for i < j < k,

(2) Wpatchi j
Wpatchkl

W †
patchi j

= Wpatchkl
for i < k < l < j.

To ensure these properties are satisfied, we need to choose
appropriate boundary operators for the Wpatchi j

. To that end,
we propose the following definition:

Wpatchi j
= O†

i

j∏
k=i+1

Xk (−ZjOj )
j∏

k=i+1

sk,k+1, (39)

where Oj = (1 − iZj )/
√

2. We may write this operator picto-
rially as

.

It is straightforward to check that this satisfies the properties
mentioned above. Let us label the particles at the boundaries
of this patch operator as s. The patch symmetry operator
Wpatchi j

can also be understood as an operator transporting an
s particle from i to j, i.e.,

Ts(i → j) = Wpatchi j
. (40)

The fusion of s particles turns out to be identical to that of
the e particles discussed above: they are their own antiparticles
so that s ⊗ s = 1. Here 1 is the trivial particle, an end of trivial
string formed by product of identity operators. To see this
fact, we consider the product of two semi-infinite strings as
in Eq. (22),

Ts(−∞ → i)Ts(−∞ → i) = O−∞(−ZiZi+1), (41)

where we use O−∞ to represent a local symmetric operator at
−∞ of the type ZjZ j+1 (see Sec. V B). Note that such a local
symmetric operator represents a trivial particle 1, so we can
ignore it. A graphical representation of this is shown below:

.

The product is identical to a 1-patch operator modulo the
LSOs at −∞ and near i. So we can conclude that this cor-
responds to the fusion s ⊗ s = 1. The complete fusion ring is
given by

s ⊗ s = 1, s ⊗ 1 = s, 1 ⊗ 1 = 1, (42)

or equivalently,

N11
1 = Nss

1 = Ns1
s = N1s

s = 1, others = 0. (43)

Fusion ring Nab
c is only a part of data that describe the

braided fusion category. We need to supply the F -symbol,
F (a, b, c), to promote the fusion ring to a fusion category.
Similar to the e and f particles, we have F (s, 1, s) = 1. How-
ever, the F -symbol F (s, s, s) is different (again, referring to
Fig. 5):

Wpatch jk
Wpatchi j

W †
patch jk

W †
patch jl

= F (s, s, s)W †
patch jl

1patch jk
Wpatchi j

1†
patch jk

. (44)

Working out the algebra (see Appendix B 1) gives
us F (s, s, s) = −1. The guage-invariant product
F (s, s, s)F (s, 1, s) = −1 gives us a nontrivial Frobenius-
Schur indicator, unlike in the cases of e and f discussed in
the previous sections. This distinguishes the fusion category
encoded by the anomalous Z2 patch symmetry operators
from that of the anomaly-free Z2 symmetry without even
considering the braiding structure.
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Similarly, the fusion category data, (Nab
c , F (a, b, c)), is

only a part of data to describe a braided fusion category. To
obtain the full data to describe a braided fusion category, we
need to supply the data that describes mutual and self statis-
tics. The mutual statistics between s and 1 is trivial θs1 = 0.
We can calculate the self statistics of s by calculating the
statistical hopping algebra of the particlelike endpoints of the
patch symmetry operator, as outlined above in Fig. 6. In this
case, we find (see Appendix B 2) e i θs = i , i.e., a statistical
phase of θs = π/2. This shows that the endpoints are semions.
Thus, unlike the anomaly-free Z2 symmetry, the transforma-
tion category of anomalous Z2 symmetry is not a symmetric
fusion category. The transformation category happens to be
nondegenerate, and correspond to the single-semion topolog-
ical order in 2d, which will be denoted as Msingle-semion. Note
that, in general, a transformation category may be degenerate,
in which case it does not correspond to a topological order in
one higher dimension.

B. Braided fusion category of patch charge operator

We can also define patch charge operators for anomalous
Z2 symmetry, which have empty bulk and a pair of Z2 charges
at the endpoints,

Zstringi j
= ZiZ j . (45)

Let us label the particles at the ends of this operator as b.
This operator is identical to the patch charge operator in the
case of anomaly-free Z2 symmetry discussed in the previous
section. All the results discussed there carry forward to this
case. In particular, these patch charge operators produce the
representation category, which is a symmetric fusion cate-
gory RepZ2

. We see that the representation category cannot
distinguish anomalous and anomaly-free symmetries, but the
transformation category can.

C. Braided fusion category of all t-patch operators

To consider all t-patch operators, we must consider fusion
of the semion and the boson. The b particles fuse with s to
give another semion, let us call it s̃. Along with the trivial one,
we thus end up with four particles. We can easily check that s
and b have π mutual statistics,

Zstringi j
Wpatchkl

= −Wpatchkl
Zstringi j

. (46)

Combining this with the fact that s has semionic self-statistics,
we see that s and s̃ ≡ s ⊗ b have trivial mutual statistics.

Putting the transformation category Msingle-semion and the
representation category RepZ2

together, the above set of
anyons and their braiding and fusion data corresponds to
the double-semion topological order Mdouble-semion. Double-
semion is an Abelian topological order which are classified
K-matrix [80,81]. The K-matrix for the double-semion topo-
logical order is given by

KDS =
(−2 0

0 2

)
. (47)

The topological quasiparticles are described by integer vectors
l , and there det(K ) = 16 is them. The trivial particle 1 is
described by 1 ∼ (0, 0)�, semion s ∼ (0, 1)�, semion s̃ ∼

(1, 0)�, and boson b ∼ (1, 1)�. The self statistics of anyon
l is given by θl = π l�K−1

DS l , the mutual statistics between
anyon l1 and l2 is given by θl1l2 = 2π l�

1 K−1
DS l2. The above

K-matrix reproduces the self/mutual statistics of s, s̃, b. Thus,
the categorical symmetry for the anomalous Z2 symmetry
in 1-dimensional space is the double-semion topological order
Mdouble-semion in 2-dimensional space.

D. A holographic way to compute categorical symmetry

We can also compute categorical symmetry of anoma-
lous symmetry directly by computing the corresponding
topological order in one higher dimension. We know that a
system with (certain) anomalous G (higher) symmetry can
be realized as a boundary of a G-symmetry protected topo-
logical (SPT) state in one higher dimension. If we gauge
the G-symmetry in the bulk SPT state, then we will obtain
a topological order described by a twisted G (higher) gauge
theory. Such a topological order in one higher dimension is
the categorical symmetry of the G (higher) symmetry.

Applying this method to 1d anomalous Z2 symmetry, we
find the corresponding categorical symmetry to be the 2d
double-semion topological order. The connection between 1d
anomalous Z2 symmetry and 2d double-semion topological
order was first observed in Ref. [82].

VI. A 1d BOSONIC QUANTUM SYSTEM WITH Z2 × Z2

SYMMETRY WITH A MIXED ANOMALY

In this section, we calculate the categorical symmetry
(i.e., the nondegenerate braided fusion category) for bosonic
Z2 × Z2 symmetry with the mixed anomaly in 1-dimensional
space. Following Ref. [79], (see Appendix C for details) we
have two qubits on each site and two symmetry generators of
Z2 × Z2,

W =
∏

i

Xi, (48)

W̃ =
∏

i

X̃i

∏
i

si,i+1, (49)

where si,i+1 = i
1
2 (Zi+1−Zi )(Z̃i+1+1) is the nononsite phase factor

that encodes the mixed anomaly. Xi, Zi act on one qubit and
X̃i, Z̃i on the other qubit.

A. Braided fusion category of patch operators

The operators W and W̃ above are global symmetry
transformations, which have corresponding t-patch symmetry
operators as discussed in the previous sections:

Wpatchi j
= Õi

⎛⎝ j−1∏
k=i

Xk

⎞⎠Õ†
j , (50)

W̃patchi j
=

j∏
k=i+1

X̃k

j−1∏
k=i

sk,k+1. (51)

To satisfy the transparency condition and the composition
algebra of the t-patch operators (see Fig. 3), Õ j in Eq. (50)
needs to be chosen carefully: Õ j = (1 − i Z̃ j )/

√
2. Pictorially,
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we can represent Wpatchi j
as

and W̃patchi j
as

.

We label the endpoints of these patch operators m and m̃,
respectively. More carefully, we should choose one end of the
string to be m (or m̃) while the other end is its antiparticle m̄
( ¯̃m respectively). The patch charge operators are generated by

Zstringi j
= ZiZ j, (52)

Z̃stringi j
= Z̃iZ̃ j . (53)

Let us name the charge operators at the ends of these as e and
ẽ. We note here that m, m̃ are order 4 whereas e, ẽ are order 2.
We can see this from the fact that W 4

patchi j
= 1 = W̃ 4

patchi j
while

W 2
patchi j

�= 1,W̃ 2
patchi j

�= 1. However, Z2
stringi j

= 1 = Z̃2
stringi j

. The
fusion of m and m̃ gives s (say). The self-statistics of e and
ẽ are trivial, by the same logic as in the anomaly-free Z2

symmetry discussed in Sec. IV C. We can also check that m
and m̃ have trivial self-statistics. However, s particles have
semionic self-statistics, as can be seen from the hopping al-
gebra calculation. This is closely related to the fact that m and
m̃ have π/2 mutual statistics; we find (cf. Fig. 7)

Wpatch02
W̃patch13

= iW̃patch13
Wpatch02

. (54)

Further details may be found in Appendix B 3. We also note
that the m and e particles have π mutual statistics, and so do
m̃ and ẽ.

The particles m, m̃, e, ẽ generate a nondegenerate braided
fusion category that correspond to a 2d Abelian topological
order. By comparing the self/mutual statistics of those topo-
logical excitations, we find that the 2d Abelian topological
order is described by the K-matrix

K =

⎛⎜⎜⎝
0 2 −1 0
2 0 0 0

−1 0 0 2
0 0 2 0

⎞⎟⎟⎠. (55)

This 2d topological order is the categorical symmetry for the
Z2 × Z2 symmetry with the mixed anomaly in 1-dimensional
space. The topological excitations in such an Abelian topo-
logical order are labeled by integer vectors l . The m, m̃, e, ẽ
correspond to the following integer vectors:

e ∼ (1, 0, 0, 0)�, m ∼ (0, 1, 0, 0)�,

ẽ ∼ (0, 0, 1, 0)�, m̃ ∼ (0, 0, 0, 1)�. (56)

The self statistics of particle l and mutual statistics between
particles l1 and l2 can be calculated via

θl = π l�K−1l, θl1,l2 = 2π l�
1 K−1l2, (57)

where

K−1 =

⎛⎜⎜⎜⎜⎜⎝
0 1

2 0 0
1
2 0 0 1

4

0 0 0 1
2

0 1
4

1
2 0

⎞⎟⎟⎟⎟⎟⎠. (58)

The entry 1
4 in K−1 gives rise to the π/2 mutual statistics

between m and m̃.

B. A holographic calculation of categorical symmetry

The above 2d Abelian topological order (i.e., the categor-
ical symmetry) can be obtained via another approach. We
know that the Z2 × Z2 symmetry with the mixed anomaly
is realized by the boundary of a 2d Z2 × Z2 SPT state. If
we gauge the 2d Z2 × Z2 symmetry, then we will turn the
2d Z2 × Z2 SPT state into a 2d topological order. Such a 2d
topological order is the Abelian topological order described
above. Such an Abelian topological order was given by the K-
matrix in Eqs. (64) and (67) in Ref. [83]. For our case, we need
to substitute the values n1 = n2 = 2, and m0 = m3 = 0, m2 =
1, which gives us the K-matrix in Eq. (55). This Abelian
topological order is the categorical symmetry for the 1d
Z2 × Z2 symmetry with the mixed anomaly. The holographic
calculation gives rise to the same result as the operator algebra
calculation.

C. The equivalence between 1d Z2 × Z2 symmetry
with mixed anomaly and 1d Z4 symmetry

Generalizing our Z2 result, we know that the categorical
symmetry of 1d anomaly-free Z4 symmetry is the 2d Z4

topological order (Z4 gauge theory), denoted as GauZ4 and
described by the K-matrix,

KZ4 =
(

0 4
4 0

)
. (59)

The set of topological quasiparticle is described by integer
vectors {(a, b)�|a, b ∈ Z4}, and there also | det KZ4 | = 16 of
them. Their self and mutual statistics can be read off from the
inverse of the 2 × 2 K-matrix, which are the same as those
for the 4 × 4K-matrix in Eq. (55). This allows us to make the
following identification

(0, 1)� ↔ m, (1, 0)� ↔ m̃, (1, 1)� ↔ s,

(2, 0)� ↔ e, (0, 2)� ↔ ẽ.
(60)

For example, note that (0, 1)� and (1, 0)� have trivial self
statistics,

π (0, 1) · K−1 · (0, 1)� = 0, (61)

π (1, 0) · K−1 · (1, 0)� = 0, (62)
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but have π
2 mutual statistics,

2π (0, 1) · K−1 · (1, 0)� = π

2
, (63)

so these must correspond to the m, m̃ particles. Note also that
these are order 4 quasiparticle vectors, i.e., 4 of them will fuse
to a trivial quasiparticle. However, the quasiparticle vectors
(2, 0)� and (0, 2)� correspond to e, ẽ particles because not
only do they have trivial self statistics,

π (0, 2) · K−1 · (0, 2)� = 0, (64)

π (2, 0) · K−1 · (2, 0)� = 0, (65)

but they also have trivial mutual statistics,

2π (0, 2) · K−1 · (2, 0)� = 2π. (66)

Similar calculations show that (0, 2)� and (1, 0)� have π

mutual statistics, and so do (2, 0)� and (0, 1)�.
In fact, 2d Abelian topological orders described by

Eqs. (55) and (59) are actually the same topological order
[84]. It turns out, this K-matrix in Eq. (55) can be transformed
K → W KW � by an integer matrix W with det(W ) = ±1 into
a Z4 K-matrix, direct summed with a trivial block:

W =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 2 0
2 0 0 1

⎞⎟⎟⎠⇒W KW � =

⎛⎜⎜⎝
0 −1 0 0

−1 0 0 0
0 0 0 4
0 0 4 0

⎞⎟⎟⎠.

(67)

To summarize, 1d Z2 × Z2 symmetry with the mixed
anomaly is realized by the boundary of a 2d Z2 × Z2 SPT
state. One-dimensional anomaly-free Z4 symmetry is realized
by the boundary of a 2d trivial Z4 SPT state. The categorical
symmetry of the 1d mixed-anomalous Z2 × Z2 symmetry is
the Z2 × Z2 gauging of the 2d Z2 × Z2 SPT state. The cate-
gorical symmetry of the 1d Z4 symmetry is the Z4 gauging
of the 2d trivial Z4 SPT state. The two symmetries give rise
to the same 2d topological order. Thus, 1d Z2 × Z2 symmetry
with the mixed anomaly and 1d anomaly-free Z4 symmetry
have the same categorical symmetry and are equivalent.

D. A new duality mapping

By comparing with the corresponding table for Z4 in the
additive presentation {0, 1, 2, 3}, we can make the following
(nonunique) one-to-one mapping between these two represen-
tations of Z4:

(0, 0) ↔ 0 (0, 1) ↔ 2, (68)

(1, 0) ↔ 3 (1, 1) ↔ 1. (69)

The above holographic equivalence of 1d mixed-
anomalous Z2 × Z2 symmetry and 1d anomaly-free Z4

symmetry suggests the existence of a new duality mapping,
between a model with Z2 × Z2 nononsite symmetry and
model with Z4 onsite symmetry. Such an exact duality maps
between the Z4 patch symmetry/charge operators and the
patch symmetry/charge operators of the mixed-anomalous
Z2 × Z2 symmetry we have been outlining in this section.
This duality is a Kramers-Wannier-like transformation that

TABLE I. Group “multiplication” table of Z4 ≡ Z2 �e2 Z2. The
entries left blank are redundant since the group is Abelian.

Z2 �e2 Z2 (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0)
(0,1) (0,1) (0,0)
(1,0) (1,0) (1,1) (0,1)
(1,1) (1,1) (1,0) (0,0) (0,1)

transforms one set of Z2 variables from order to disorder (or
site to link) variables, followed by an onsite (local) unitary
transformation. To state the duality mapping, we first rewrite
the group Z4 as a cocycle-twisted product of two Z2 groups,
as described in Appendix N of Ref. [85]. With G = Z4,
and A = Z2 � G, we extend A by H = Z2 with α = id and
e2(h1, h2) = �h1.h2�mod 2.4 The group operation with these
choices can be expressed as

(h1, x1) ∗ (h2, x2) = (h1 + h2, x1 + x2 + e2(h1, h2)), (70)

where the additions are to be understood modulo 2. Using
this, we may write elements of Z4 using two Z2 labels as
g ≡ (h, x) where x ∈ A and h ∈ H . There are four Z4 sym-
metry transformations: one trivial and three nontrivial. Taking
Z4 to be represented as {0, 1, 2, 3}, with the group operation
being addition modulo 4, we have two generators L+1 and L+3

of the symmetry group,

L+1 |g〉 = |g + 1 mod 4〉 ,

L+3 |g〉 = |g + 3 mod 4〉 .
(71)

In the (h, x) representation, what do these generators look
like? We can work this out by looking at the group “multi-
plication” table of Z4 in this representation; see Table I.

Using this mapping, we rewrite Eq. (71) as follows:

L+1 |(h, x)〉 = |(h, x) ∗ (1, 1)〉 ,

L+3 |(h, x)〉 = |(h, x) ∗ (1, 0)〉 .
(72)

Inspecting this case-by-case, one observes that the generator
L+3 is nothing but the operator X1CX1,0, acting on kets |(h, x)〉.
Here h and x are labeled as qubits 1 and 0 respectively, and
CX1,0 denotes the controlled NOT gate with qubit 1 as the
control.

Now we apply a duality transformation on the t-patch
operators of the Z2 × Z2 symmetry with mixed anomaly to
show that we recover the t-patch operators of anomaly-free Z4

symmetry. The reader who is interested in the explicit form of
the duality instead of the steps leading up to it is invited to
skip to the end of this subsection.

On the Z2 × Z2 side, our states are defined by a pair of
Z2 variables on each site i, denoted (gi, g̃i ). The definitions
gi = Zi−1

2 , g̃i = Z̃i−1
2 map the Z-basis {±1} to the additive Z2

basis {0, 1}.
Step 1 of duality transformation D: We transform (gi, g̃i ) to

(g′
i, ḡi−1/2) by defining ḡi− 1

2
= gi − gi−1 mod 2 and g′

i = g̃i.

4The multiplication of elements of H in the definition of e2 is
understood to be done in Z and then mapped back to Z2.
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TABLE II. Patch operators of Z2 × Z2 with mixed anomaly and

their dual Z4 patch operators (O′
i = 1− i Z ′

i√
2

).

Z2 × Z2 with mixed anomaly Anomaly-free Z4

Wpatchi j
= Õi

(∏ j−1
k=i Xk

)
Õ†

j O′
iZ̄i− 1

2
(O′

j )
†Z̄ j− 1

2

W̃patchi j
=∏ j

k=i+1 X̃k
∏ j−1

k=i sk,k+1
∏ j

k=i X ′
kCX

(
g′

k, ḡk− 1
2

)≡ ∏ j
k=i L+3|k

Zstringi j
= ZiZ j

∏ j−1
i X̄k+ 1

2
≡ ∏ j

k=i+1 L+2|k
Z̃stringi j

= Z̃iZ̃ j Z ′
i Z

′
j

The Pauli operators transform as

Xi → X̄i− 1
2
X̄i+ 1

2
, ZiZi+1 → Z̄i+ 1

2
. (73)

The new degrees of freedom may be shown pictorially as

.

For each site i, let us define g′′
i = ḡi− 1

2
. Then we have a two-

qubit Hilbert space labeled as (g′
i, g′′

i ) associated with site i.
Let us choose g′

i as qubit-1 and g′′
i as qubit-2.

Step 2 of duality transformation D: Now we perform a
Hadamard transformation on qubit-2 of each site. The states
transform as

|g′
i〉 ⊗ |g′′

i 〉 → |g′〉 ⊗ (H |g′′〉), (74)

where H is the Hadamard operator. We will instead work in
the Heisenberg picture, where the Hadamard transformation
acts on the operators and interchanges X̄ and Z̄ . Then the
states on which these transformed operators act are labeled
by Z4 elements in the (h, x) representation with hi = g′

i and
xi = g′′

i = ḡi− 1
2

= gi − gi−1 mod 2.
Summarizing the mapping of the basis states,

(gi, g̃i ) → (g′
i = g̃i, g′′

i = gi − gi−1 mod 2), (75)

with (gi, g̃i ) ∈ Z2 × Z̃2 and (g′
i, g′′

i ) ∈ Z2 �e2 Z2
∼= Z4. How-

ever, under the combined effect of steps 1 and 2 of D, we have
the operator maps.

Xi → Z ′′
i Z ′′

i+1, ZiZi+1 → X ′′
i+1. (76)

Using this, one finds that the operator si−1,i becomes
CX (g′

i, g′′
i ). We can also denote this as CX1,0|i with the qubit

labels 1 and 0 as described above. In fact, we can check that
the patch operators in the left column of Table II are trans-
formed to those in the right column, under the transformation
D.

In particular, we find the dual of W̃patchi j
to be the patch

symmetry operator corresponding to the L+3 transformation
discussed above. This operator then generates all the Z4 patch
symmetry operators in the Z2 �e2 Z2 representation. How-
ever, the dual of Wpatchi j

is a t-patch operator with empty bulk
that has order 4. This operator may be identified with one
of the charge patch operators of anomaly-free Z4 symmetry.
This completes the mapping between patch operators on both
sides of our duality D : (Z2 × Z2)ω12 ↔ Z4. This exact dual-
ity mapping allows us to show that the 1d Z2 × Z2 symmetry
with mixed anomaly and anomaly-free Z4 symmetry have

isomorphic local symmetric operator algebra i.e., they have
the same categorical symmetry.

A comment on gauging. The duality we described
above can also be understood as coupling the degrees of
freedom of Z4 symmetric system to a Z2 gauge field. The
Kramers-Wannier-like transformation in the first step of D
essentially amounts to such a gauging procedure. In the case
of Z2 symmetry in 1d, the Kramers-Wannier duality transfor-
mation allows one to relate Z2 order and disorder operators,
where the latter can be obtained from the former by gaug-
ing the local Z2 symmetry and then restricting to the Z2

charge even sector of the Ising gauge theory. Our duality
transformation above involves an onsite unitary (Hadamard)
transformation in addition to this gauging procedure.

VII. A 1d BOSONIC QUANTUM SYSTEM
WITH AN EMERGENT Z2 × Z2 SYMMETRY

WHICH IS “BEYOND ANOMALY”

In this section, we are going to study a case of emergent
symmetry. We find that the emergent symmetry is neither
anomaly-free nor anomalous. It illustrates that categorical
symmetry (i.e., topological order in one higher dimension)
is a better way to view symmetry. We get a simpler, more
uniform, and more systematic picture.

Let us briefly recall the model from Sec. II C of Ref. [53].
This model describes a 1 + 1D bosonic quantum system with
spin-1/2 degrees of freedom on each site and each link. The
Hamiltonian describing the model is

H = −
∑

i

(
BX̃i− 1

2
XiX̃i+ 1

2
+ JZ̃i+ 1

2

)
+ U

∑
i

(
1 − ZiZ̃i+ 1

2
Zi+1

)
. (77)

This Hamiltonian has two onsite (i.e., anomaly-free) Z2 sym-
metries, generated by

W =
∏

k

Xk, W̃ =
∏

k

Z̃k+ 1
2
. (78)

Let us denote the corresponding symmetries as Z2 and Z̃2.
The algebra of local operators is constrained by these sym-
metries. We add an additional constraint on this algebra: the
low-energy constraint. This constraint is imposed by taking
the limit of U → ∞. Low-energy sector of the Hilbert space
must then satisfy

1 − ZiZ̃i+ 1
2
Zi+1 = 0, ∀i. (79)

In operator language, we demand that the allowed local op-
erators commute with the operator appearing in Eq. (79).
The algebra of the allowed local operators will give rise to
emergent low-energy symmetry.

The question is then, how does this additional constraint5

change the algebra of t-patch operators? It turns out that

5The experienced reader may note that this is sometimes collo-
quially referred to as “gauging” in the literature. We are particular
about not calling it by this name since we do not introduce any extra
unphysical, or gauge, degrees of freedom in this discussion. Instead
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this modified algebra involves a nontrivial relationship be-
tween the Z2 and Z̃2 symmetries. To be clear, this is not a
case of mixed anomaly of two Z2 symmetries like the case
discussed in the previous section. Nor is this a case of an
anomaly-free symmetry: the patch symmetry operators form
a nonsymmetric fusion category. This is thus an example of
a symmetry that is, in some sense, beyond the usual notion
of “anomalous symmetry.” The categorical symmetry of the
low-energy sector of this model is not GauZ2×Z2 (i.e., Z2 × Z2

gauge theory coupled to matter), as would be the case for
a anomaly-free global Z2 × Z2 symmetry. Instead it has the
categorical symmetry GauZ2 , same as that of anomaly-free
global Z2 symmetry. Let us now expand on this using the
language we have been developing in the previous sections.

The algebra generated by the LSOs can be organized in
terms of the t-patch operators, which serve as a particular
convenient choice of generators:

(1) 0-dimensional t-patch operators are the local symmet-
ric operators that act within the low-energy sector:

X̃i− 1
2
XiX̃i+ 1

2
, Z̃i+ 1

2
. (80)

(2) 1-dimensional t-patch operators—string operators:

Zstri j =
j−1∏
k=i

Z̃k+ 1
2

= ZiZ j,

Xstri j = X̃i− 1
2

j∏
k=i

XkX̃ j+ 1
2
. (81)

One may note that the new constraint, Eq. (79) has the
effect of restricting the set of allowed t-patch operators. For
example, the two string operators

∏ j−1
k=i Z̃k+ 1

2
and ZiZ j become

identical within the low-energy subspace. Also two string
operators

∏ j
k=i Xk and X̃i+1/2X̃ j+1/2 must appear together.

Without this constraint, the list of t-patch operators would be
a bigger one—one that would encode anomaly-free Z2 × Z2

symmetry.
The algebra of the extended t-patch operators takes the

form

Zstri j Xstrkl = ±Xstrkl Zstri j , (82)

Zstri j Zstr jk = Zstrik , (83)

Xstri j Xstr jk = Xstrik , (84)

where the sign in Eq. (82) is − if i < k < j < l , and +
otherwise. We see here that the algebra of the patch operators
above mirrors that of anomaly-free Z2 symmetry, as discussed
in Sec. IV F. Specifically, note that Eqs. (83) and (84) are
identical to Eqs. (11) and (12), respectively. These represent
the fusion of the endpoints of these t-patch operators. The
mutual statistics of these endpoints are also identical in the
two cases as can be seen by comparing Eq. (82) with Eqs. (13)
and (14).

we are restricting to a subspace of the full Hilbert space to focus on
the effective theory.

Therefore, the exact 1d Z2 × Z2 onsite symmetry in the
model (77) becomes a different Z2 × Z2 symmetry at low
energies. The new Z2 × Z2 symmetry has the categorical
symmetry GauZ2 , while the original Z2 × Z2 onsite sym-
metry has the categorical symmetry GauZ2×Z2 . The new
Z2 × Z2 symmetry has a special property: a gapped state must
spontaneously break one of the Z2 symmetry. A state with
both Z2 symmetry must be gapless. There is no state that can
spontaneously break both the Z2 symmetries.[53,86] Those
properties have some similarities to Z2 × Z2 symmetry with
the mixed anomaly. But the Z2 × Z2 symmetry with the mixed
anomaly has the categorical symmetry GauZ4 . Since the cat-
egorical symmetry GauZ2 for the new Z2 × Z2 symmetry is
different from both the categorical symmetry GauZ2×Z2 for
anomaly-free Z2 × Z2 symmetry and the categorical sym-
metry GauZ4 for Z2 × Z2 symmetry with the mixed anomaly,
the new Z2 × Z2 symmetry is beyond anomaly.

VIII. 2d Z2 SYMMETRY AND ITS DUAL

In the above, we have discussed symmetries and categor-
ical symmetries in 1-dimensional space. In this section, we
will start to consider symmetries in higher dimensions, where
we will encounter higher symmetries.

First, we consider the simplest symmetry—Z2 symmetry,
in 2-dimensional space. For convenience, let we assume the
degrees of freedom on each vertex (labeled by i) are labeled
by elements in the Z2 group.

A. Z2 symmetry transformation and t-patch operators
as local symmetric operators

The Z2 symmetry is described by a symmetry transforma-
tion:

W =
∏

i∈whole space

Xi, W 2 = id. (85)

The Z2 transformation W select a set of local symmetric
operators which form an algebra:

A = {
Osymm

i

∣∣ Osymm
i W = W Osymm

i

}
. (86)

As before, we can use the t-patch operators to organize the
local symmetric operators:

(1) 0-dimensional t-patch operators, Xi, ZiZi+μ, where μ

connects vertex-i to its neighbors.
(2) 1-dimensional t-patch operators—string operators,

Zstri j = ZiZ j, (87)

where the stringi j connects the vertex-i and vertex- j. We see
that the string operator has an empty bulk.

(3) 2-dimensional t-patch operators—disk operators,

Xdisk =
∏

i∈disk

Xi. (88)

The disk operator has a non trivial bulk, which generate our
Z2 symmetry.

In terms of t-patch operators, algebra of local symmetric
operators takes the following form:

Zstri j Zstr jk = Zstrik , (89)
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Xdisk1 Xdisk2 = Xdisk1+2 , (90)

ZstrXdisk = −XdiskZstr, (91)

ZstrXdisk = +XdiskZstr. (92)

Equation (89) describes the fusion of string operators [see
Fig. 12(a)]. Equation (90) describes the fusion of disk oper-
ators [see Fig. 12(b)]. The commutator between the string and
the disk operators depends on their relative positions. If the
string straddle the boundary of the disk as in Fig. 12(c), then
commutator has a nontrivial phase as in Eq. (91). Otherwise
[see Fig. 12(d)], the string and the disk operators commute as
in Eq. (92).

Since the string operators have empty bulk, they corre-
spond to patch charge operators, and the ends of the string
operators correspond to charged particles. The disk operators
have nontrivial bulk, and correspond to patch Z2-symmetry
operators, which generate the Z2 symmetry transformations
and select local symmetric operators.

As before, the patch symmetry transformations can detect
the symmetry charge hidden in the local symmetric operators:
when the string operator Zstr straddle the boundary of the disk
operator Wpatch, the two operators have a nontrivial commuta-
tion relation:

ZstrXdisk = −XdiskZstr. (93)

This nontrivial commutation relation measures the charge car-
ried by one end of the string operator. If we view the order of
the operator product as the order in time, and view the string
as world line of a particle in spacetime (see Fig. 13), then the
commutation relation Eq. (93) can be viewed as a braiding
of the particle around the boundary of the disk operator. The
charge is measured by such a braiding process.

B. Algebra of patch charge operators and braided fusion higher
category of charge objects

The properties of the charges of an anomaly-free sym-
metry in n-dimensional space can be systematically and
fully described by a braided fusion n-category or a local
n-fusion category [45]. Let us first give a brief physical
introduction of fusion n-category (see Fig. 8). A fusion
n-category can be used to describe extended physical ob-
jects in nd space. For example, in 3d space, 2-dimensional
membranes (codimension-1) correspond to the objects in
the fusion 3-category. One-dimensional strings (codimension-
2) correspond 1-morphisms, and 0-dimensional particles
(codimension-3) correspond 2-morphisms. The above are
physical excitations. Instantons or local operators (0-
dimensional in spacetime) correspond 3-morphisms, which
are top morphisms. The physical excitations and local oper-
ators form the fusion n-category.

To connect the Z2 symmetry in 2-dimensional space to
a braided fusion 2-category, we view the local symmetric
operators Osymm

i as the 2-morphisms, and the end of string
operator Zstr (i.e., Z2-charge) as a 1-morphism e in a fusion
2-category. Operator product of string operator can be viewed
as fusion of string ends, which gives rise to the fusion rule of

FIG. 8. (a) A graphic representation of objects (the points), 1-
morphism (the lines connecting points), and 2-morphism (the disk
connecting lines), in a higher category. (b) In 2d spacetime (the
vertical direction is the time direction), two world sheets of stringlike
excitations are separated by two world lines of pointlike excitations.
The two two world lines of pointlike excitations are separated by
an instanton (a local operator). (c) A higher category describes the
structure of extended excitations: in 2d, object ↔ codimension-1 ex-
citation (string); 1-morphism ↔ codimension-2 excitation (particle);
2-morphism ↔ codimension-3 instanton (local operator).

the 1-morphisms ei:

e ⊗ e = 1, 1 ⊗ e = e ⊗ 1 = e. (94)

e’s are the pointlike Z2-charges for Z2 symmetry. Those Z2-
charges can form a 1d quantum liquid state, which correspond
to a string excitation [40]. Let sZ2 be a string excitation that
corresponds to the 1d spontaneous symmetry breaking state
formed by the Z2-charges (which is a state with a nonzero
energy gap). (Note that the Z2-charges have a Z2 conservation
as implies by the Z2 fusion e ⊗ e = 1. So they can form a
nontrivial 1d gapped quantum liquid state—a spontaneous
symmetry breaking state.) We have another string excitation
1str which is formed by Z2 charges along the string in a gapped
symmetric state. Note that a string with no Z2 charge is also a
symmetric gapped state. So 1str may mean null string, a string
that does not have any thing. The string formed by Z2 charges
in gapped symmetric state and the string formed by nothing
are equivalent (i.e., they can deform into each other without
closing the energy gap), and both are denoted as 1str.

In addition to the pointlike excitation e, we have another
pointlike excitation, denoted as bs, which is the domain wall
that connects the string-sZ2 and string-1str. Since, string-1str

is trivial (i.e., can be nothing), bs can also be viewed as a
boundary of string sZ2 . The fusion of e and bs gives us the
third pointlike excitation e ⊗ bs.

The above excitations, plus the Z2 symmetric local opera-
tors form a symmetric fusion 2-category denoted as 2RepZ2

[45]:
(1) The stringlike excitations 1str and sZ2 are objects in

2RepZ2
.

(2) The pointlike excitations 1, e, and bs are 1-morphisms:

1str
bs→ sZ2 , sZ2

bs→ 1str, 1str
e⊗bs→ sZ2 , sZ2

e⊗bs→ 1str,

1str
1→ 1str, 1str

e→ 1str, sZ2

1→ sZ2 . (95)

The 1-morphisms describe how objects are connected—in our
case, how strings are connected by pointlike domain walls.
The pointlike domain walls connecting trivial string 1str to
trivial string 1str are what we usually call pointlike excitations.
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(3) The symmetric operators Osymm are 2-morphisms:

1
Osymm→ 1, e

Osymm→ e, e ⊗ bs
Osymm→ e ⊗ bs,

bs
Osymm→ bs, bs

Osymm→ e ⊗ bs, e ⊗ bs
Osymm→ bs. (96)

The symmetric operators Osymm describe the possible ways
a pointlike excitation can change (i.e., possible “domain
walls” on world lines of pointlike excitations in spacetime).
We note that, e ⊗ bs and bs are connected by 2-morphisms.
Physically, it means that the Z2 charge e can disappear or
appear by itself near bs, by processes induced by symmetric
operators. This is expected bs is connected to a spontaneous
symmetry breaking state. We also note that e is the Z2 charge
which is not connected to the trivial excitation 1 by any 2-
morphisms.
Here we introduce a notion elementary-type [40,45]:

Definitionph 9. Two morphisms (or objects which can be
viewed as 0-morphisms) connected by higher morphisms are
said to have the same elementary-type.

We see that 2RepZ2
has only one elementary-types of ob-

jects, which is the trivial elementary-type, i.e., both string-1str

and string-sZ2 belong to trivial elementary-type. 2RepZ2
has

only three elementary-types of 1-morphisms (particles), 1, e,
and bs

∼= e ⊗ bs. e is an excitation in the usual physics sense
since it connect string-1str to string-1str. e is not connected to
trivial excitation 1 by 2-morphisms, and thus is a nontrivial
elementary excitation.

In the above, we describe the symmetric fusion 2-category
2RepZ2

from the point of view of excitations. We can also
describe the symmetric fusion 2-category 2RepZ2

from the
point of view of patch charge operators, generated by Zstri j .
Note that patch charge operators from a subalgreba of the
algebra of all t-patch operators.

To switch from the excitation point of view to operator
point of view, we replace the excitations by the patch charge
operators, that create the corresponding excitations from Z2

symmetric product state. Here, the Z2 symmetric product state
is given by

|�symm〉 =
⊗

i

|0〉i, |0〉 = | + 1〉 + | − 1〉√
2

, (97)

where the Z2-symmetry action W is given by | + 1〉 ↔ | − 1〉.
This gives rise to a description of symmetric fusion 2-category
2RepZ2

in terms of patch charge operators (i.e., t-patch oper-
ator with empty bulk):

(1) The object 1str in 2RepZ2
corresponds to a disk-

operator (a patch-operator with 2-dimensional patch) with
empty bulk

1̂str(loop) =
∏

i′∈loop=∂disk

idi′ , (98)

where idi is the identity operator. Here loop is a closed string,
corresponding to the boundary of the disk. The algebra of the
operator 1̂str,

1̂str(loop)1̂str(loop) = 1̂str(loop), (99)

is consistent with the fusion of the object,

1str ⊗ 1str = 1str. (100)

The object sZ2 corresponds to a different disk-operator with
empty bulk,

ŝZ2 (loop) =
∏

i′∈loop=∂disk

P+,i′ +
∏

i′∈loop=∂disk

P−,i′ ,

P± = id ± Z

2
. (101)

(Here P± can be any local operators that satisfy P+ �= P− and
W P+ = P−W .) Again, sZ2 is a closed string, corresponding
to the boundary of the disk. We note that string sZ2 corre-
spond to a spontaneous symmetry breaking state that has a
twofold degenerate ground states, ⊗i| + 1〉i and ⊗i| − 1〉i.
The operator

∏
i′∈loop=∂disk P+,i′ creates the state ⊗i| + 1〉i

from |�symm〉, while the operator
∏

i′∈loop=∂disk P−,i′ creates the
state ⊗i| − 1〉i. A particular superposition of the two states∏

i′∈loop=∂disk P+,i′ + ∏
i′∈loop=∂disk P−,i′ is invariant under the

Z2 symmetry transformation W . The operator ŝZ2 (loop) cre-
ates such Z2 symmetric state, and satisfies

ŝZ2 (loop)Xdisk = XdiskŝZ2 (loop) (102)

as long as the string is far away from the boundary of patch
symmetry operator Xdisk.

The operator algebra

ŝZ2 (loop)ŝZ2 (loop′)

=
⎛⎝ ∏

i′∈loop

P+,i′
∏

i′∈loop′
P+,i′ +

∏
i′∈loop

P−,i′
∏

i′∈loop′
P−,i′

⎞⎠
+

⎛⎝ ∏
i′∈loop

P+,i′
∏

i′∈loop′
P−,i′ +

∏
i′∈loop

P−,i′
∏

i′∈loop′
P+,i′

⎞⎠
≡ ŝZ2 (loop′′

1 ) + ŝZ2 (loop′′
2 ) (103)

implies the following fusion rule for the looplike object sZ2 :

sZ2 ⊗ sZ2 = sZ2 ⊕ sZ2 = 2sZ2 , (104)

which is nontrivial. Here, we have assumed that the two
strings, loop and loop′, are not on top of each other, but are
just nearby. Also,

ŝZ2 (loop′′
1 ) ≡

∏
i′∈loop

P+,i′
∏

i′∈loop′
P+,i′ +

∏
i′∈loop

P−,i′
∏

i′∈loop′
P−,i′ ,

ŝZ2 (loop′′
2 ) ≡

∏
i′∈loop

P+,i′
∏

i′∈loop′
P−,i′ +

∏
i′∈loop

P−,i′
∏

i′∈loop′
P+,i′ ,

(105)

and they both create spontaneous symmetry breaking states.
(2) The 1-morphisms 1, e, and bs (or more precisely,

pairs of 1-morphisms) correspond to boundary of open-string
operators:

1̂i1̂ j =
∏

i′∈∂stri j

idi′ = idiid j,

êiê j =
∏

i′∈∂stri j

Zi′ = ZiZ j,

b̂s,i �s b̂s, j =
∏

i′∈stri j

P+,i′ +
∏

i′∈stri j

P−,i′ . (106)
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id

FIG. 9. The structure of a disklike operator with empty bulk in
term of tensor network. The short detached vertical lines represent
identity operators on different sites, which given rise to the empty
bulk of the disklike operator. The nontrivial string operator on the
boundary of the disk may have a Wess-Zumino form, i.e., may be
given by a tensor network on the disk bounded by the string.

They are consistent with Eq. (95), which describes how ob-
jects are connected by the 1-morphisms.

We remark that 1̂i1̂ j and êiê j are t-patch operators with an
1-dimensional patch, while b̂s,i �s b̂s, j is a t-patch operators
with a 2-dimensional patch (i.e., a disk). The string sZ2 form
a part of the boundary of the disk, and the string 1str form the
other part of the boundary. The two types of boundaries are
connected by the 1-morphism bs.

(3) The symmetric operators Osymm are 2-morphisms.
From the operator algebra

êiê j (b̂s,i �s b̂s, j ) = ZiZ j

∏
i′∈stri j

P+,i′ + ZiZ j

∏
i′∈stri j

P−,i′

=
∏

i′∈stri j

P+,i′ +
∏

i′∈stri j

P−,i′

= b̂s,i �s b̂s, j, (107)

we see that we cannot distinguish bs,i from ei ⊗ bs,i, i.e., they
are connected by identity operator. This implies the relations

bs,i
Osymm→ ei ⊗ bs,i and ei ⊗ bs,i

Osymm→ bs,i, proposed in Eq. (96).
We also note that operator 1̂i1̂ j = idiid j cannot be con-
nected to operator êiê j = ZiZ j via local symmetric operators
near vertex-i and vertex- j. This implies that there is no 2-
morphisms connecting 1 and e.

In our above description of symmetric fusion 2-category
2RepZ2

, we include a descendant excitation[40,45,87,88] sZ2

formed by elementary excitations e. Such a descendant string
excitation sZ2 is a spontaneous Z2 symmetry breaking state
formed by 1d e gas.

In the above description of operator algebra, we construct
the string operators (or the disk operator with empty bulk)
via operators P± on the string. In general, the disk operator
with empty bulk is given by a tensor network operator, whose
structure is given in Fig. 9.

Since descendant excitations are formed by lower-
dimensional excitations, their existence and properties can be
derived. Thus, we may drop all the descendant excitations and
use only elementary excitations [40,41],6 to obtain a simpler
description of the symmetric fusion 2-category:

6The elementary excitations are not formed by lower-dimensional
excitations. They are defined as the excitations that do not have any
domain wall with the trivial excitations.

i

j
gij

FIG. 10. A 2d lattice bosonic model, whose degrees of freedom
live on the links and are labeled by the elements in a group: gi j ∈ G.

(1) The stringlike excitations 1str is the only elementary
object in 2RepZ2

.
(2) The pointlike excitations 1 and e are the only elemen-

tary 1-morphisms:

1str
1→ 1str, 1str

e→ 1str, (108)

(3) The symmetric operators Osymm are all the 2-
morphisms:

1
Osymm→ 1, e

Osymm→ e. (109)

Note that the elementary morphisms (or objects) 1 and e are
not connected to any other elementary morphisms (except
themselves) by higher morphisms. This defines the elemen-
tary morphisms or objects [40,41].

Through the above example, we see that the algebra of
the patch charge operators generated by Zstri j from a sym-
metric fusion 2-category 2RepZ2

. Such a symmetric fusion
2-category 2RepZ2

fully characterize Z2 symmetry in 2-
dimensional space, which is called the representation category
of the symmetry.

Similarly, we can use a fusion 2-category to describe the
symmetry transformations of the Z2 0-symmetry, i.e., to de-
scribe the operator algebra generated by the patch symmetry
operators Xdisk. The boundary of the disk operators Xdisk are
labeled by the group elements in G = Z2, and correspond
to the objects in the fusion 2-category. Adding the trivial
1-morphisms and the top 2-morphisms formed by the local
operators Xi (i.e., the small disk operators), we get a fu-
sion 2-category 2VecZ2 . The fusion 2-category 2VecZ2 fully
describes the Z2 0-symmetry in 2d space, which is the trans-
formation category of the symmetry.

C. Z(1)
2 1-symmetry in 2d space

In this section, we are going to discuss a lattice model
with the simplest higher symmetry, and the algebra of its local
symmetric operators, as well as its categorical description. Let
us consider a 2d lattice bosonic quantum system with two state
on every link of the lattice (see Fig. 10). The Z2 1-symmetry
is defined by the transformations on all the loops S1 (formed
by the links, see Fig. 11):

W (S1) =
⊗

〈i j〉∈S1

X̃i j, (110)
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patch

string

FIG. 11. A loop formed by links and a patch formed by vertices.
The boundary of the patch is formed by the links of the dual lattice.

where X̃i j are the Pauli X-operators acting in the link 〈i j〉.
Local symmetric operators satisfy

W (S1)Osymm
i = Osymm

i W (S1), ∀ loops S1. (111)

Such kind of symmetry was called d-dimensional gaugelike
symmetry [1] or higher form symmetry [4].

The algebra of local symmetric operators is generated by
the following open string operators and disk operators:

X̃stri j =
⊗

〈i′ j′〉∈stri j

X̃i′ j′ , Z̃disk =
⊗

〈i′ j′〉∈∂disk

Z̃i′ j′ . (112)

The key relations of the patch operator algebra are given by
(see Fig. 12)

X̃stri j X̃str jk = X̃strik , Z̃disk1 Z̃disk2 = Z̃disk1+2 ,

X̃strZ̃disk = ±Z̃diskX̃str, (113)

where the ± signs depend on the relation between the string
and the disk [see Figs. 12(c) and 12(d)]. Here and later in
this paper, we will ignore the operators associated with the
descendant excitations. All those descendant operators are
generated by the elementary operators (associated with the
elementary excitations) listed above.

We can also use the patch operators X̃str on open strings to
define the 1-symmetry (see Fig. 13):

X̃strO
symm
i = Osymm

i X̃str, (114)

where i is far away from string ends. Using such patch sym-
metry operators, we can measure the Z(1)

2 1-charge on the
boundary of the disk operator Z̃disk:

Z̃diskX̃str = −X̃strZ̃disk, (115)

(c) (d)

i j k 21

(a) (b)

FIG. 12. (a) “Fusion” of two string operators. (b) “Fusion” of two
disk operators. (c) Non-trivial “braiding” between string operator and
disk operator. (d) Trivial “braiding” between string operator and disk
operator.

FIG. 13. Nontrivial “braiding” between string operator and disk
operator measures the 0-symmetry charge carried by boundary of
string, if the disk operator generates a 0-symmetry. It measures the
1-symmetry charge carried by boundary of disk, if the string operator
generates a 1-symmetry.

when the string straddle across the boundary of the disk.
We see that a Z(1)

2 1-charge in 2-dimensional space is a 1-
dimensional extended object. In general, an n-dimensional
charge object correspond to n-symmetry, in any space dimen-
sions.

We can use a fusion 2-category to describe the charges
of the Z(1)

2 1-symmetry, i.e., to described the operator alge-
bra of the patch charge operators Z̃disk. The 1-dimensional
(codimension-1) extended charge objects (the boundary of
the disk operators Z̃disk) are labeled by the group elements
in G = Z2, and correspond to the objects in the fusion
2-category. Adding the trivial 1-morphisms and the top
2-morphisms formed by the local operators

∏
i∈small loop Z̃i

(i.e., the small disk operators), we get a fusion 2-category
2VecZ2 . The fusion 2-category 2VecZ2 fully describes the Z2

1-symmetry in 2d space. Such a fusion 2-category 2VecZ2 is
the representation category of the symmetry.

We can also use a fusion 2-category to describe the sym-
metry transformations of the Z(1)

2 1-symmetry, i.e., to describe
the operator algebra of the patch symmetry operators X̃str. The
boundary of the string operators X̃str) are labeled by the repre-
sentations in G = Z2, and correspond to the 1-morphisms in
the fusion 2-category. Adding the trivial objects and the top
2-morphisms formed by the local operators X̃i (i.e., the small
string operators), we get a fusion 2-category 2RepZ2

.7 The
fusion 2-category 2RepZ2

fully describes the Z2 1-symmetry
in 2d space. Such a fusion 2-category 2RepZ2

is the trans-
formation category of the Z(1)

2 1-symmetry in 2-dimensional
space.

D. The equivalence between Z2 0-symmetry and Z(1)
2

1-symmetry in 2d space

We have seen that a Z2 0-symmetry can be fully described
by a representations category 2RepZ2

or by a transformation
category 2VecZ2 . We also see that a Z(1)

2 1-symmetry can be
fully described by a representations category 2VecZ2 or by a
transformation category 2RepZ2

. Now it is clear that the two
very different looking symmetries, Z2 and Z(1)

2 , are closely
related, i.e., they become identical if we exchange what we
call patch charge operators and what we call patch symmetry
operators.

In fact, the two symmetries, Z2 and Z(1)
2 , are indeed

equivalent, if we consider the operator algebras of all local

7In this paper, when we refer to 2RepG, we mostly only consider its
associated elementary excitations and the related structures (which
correspond to a prefusion 2-category). We do not fully discuss the
associated descendent excitations in 2RepG.
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symmetric operators, i.e., the operator algebras generated by
both patch charge operators and patch symmetry operators.
The full operator algebra of Z2 symmetry is defined via the
following operator relations

Zstri j Zstr jk = Zstrik , Xdisk1 Xdisk2 = Xdisk1+2 ,

ZstrXdisk = ±XdiskZstr, (116)

The full operator algebra of Z(1)
2 symmetry is defined via the

following operators relations

X̃stri j X̃str jk = X̃strik , Z̃disk1 Z̃disk2 = Z̃disk1+2 ,

X̃strZ̃disk = ±Z̃diskX̃str, (117)

We see that the two operator algebras are isomorphic. Thus,
the Z2 and Z(1)

2 symmetries have the same categorical sym-
metry, which implies that they are equivalent.

In fact, the categorical symmetry from the full algebra
of extended t-patch operators corresponds to a nondegener-
ate braided fusion 2-category 2GauZ2 (which describes the
excitations in a 2d Z2-gauge theory). The boundary of the
disk operators are labeled by the group elements of Z2, and
correspond to the object in the braided fusion 2-category
2GauZ2 . The ends of the string operators are labeled by the
group representations, and correspond to the 1-morphisms in
2GauZ2 . The local symmetric operators (i.e., the small string
and small disk operators) correspond to the 2-morphisms in
2GauZ2 . The stringlike elementary excitations (the objects)
and the pointlike elementary excitations (the 1-morphisms)
can fully detect each others, due to their nontrivial mutual
statistics, as implied by the operator relation

ZstrXdisk = ±XdiskZstr. (118)

Thus, the braided fusion 2-category for the full algebra of
extended t-patch operators is nondegenerate.8

A mathematically rigorous proof of this equivalence was
presented in Ref. [89], in terms of the category theoretical
notion of Morita equivalence.

IX. A REVIEW OF HOLOGRAPHIC THEORY
OF (ALGEBRAIC HIGHER) SYMMETRY

In the previous sections, we studied many simple exam-
ples, trying to demonstrate a holographic theory of (algebraic
higher) symmetry via algebras of local symmetric operator. In
this section, we are going to present the holographic theory
for generic cases. Such a holographic theory was developed
in Ref. [45] via excitations above the symmetric ground state.
Here we will present a simplified version, ignoring some
subtleties.

A. Representation category

We know that symmetries are classified by groups and
higher symmetries are classified by higher groups. As demon-
strated in the last section, it turns out that algebraic higher
symmetries (i.e., noninvertible symmetries) are described by

8The adjective “full” here refers to the “nondegeneracy” of the
associated braided fusion category.

fusion higher categories [45] which is the representation
category[32] generated by patch charge operators that we
introduced in Sec. IV D.

However, not all fusion higher categories can be represen-
tation categories that describe algebraic higher symmetries.
To identify which fusion higher category can describe a sym-
metry, we note that a symmetry is breakable. The symmetry
breaking will change the fusion higher category into a triv-
ial fusion higher category nVec. This motivate Ref. [45] to
conjecture that local fusion higher categories R (i.e., rep-
resentation categories generated by patch charge operators)
describe and classify algebraic higher symmetries:

Definitionph 10. A fusion n-category R equipped with a
top-faithful surjective monoidal functor β from R to the

trivial fusion n-category, R β→ nVec, is called a local fu-
sion n-category. Here, top-faithful means that the functor
β is injective when acting on the top morphisms (i.e., the n-
morphism in this case). The pair (R, β ) classify anomaly-free
algebraic higher symmetries in n-dimensional space (which
include anomaly-free symmetries, higher symmetries, and
noninvertible symmetries).

To be brief, we usually drop β in the pair. This generalizes
the discussion in Sec. IV D. Physically, the functor β means
“ignore the symmetry” or “explicitly break the symmetry
by small perturbations.” Thus, at the top-morphism level, β

maps local symmetric operators to local operators, which is
a injective map. At lower-morphism/object level, the charged
excitations in R are mapped to the excitations in nVec. This
implies that all the objects and morphisms in a local fusion
higher category R have integral quantum dimensions.

For example, if we have an SU (2) symmetry, then there is a
“charged” excitation, spin-1/2 excitation [carrying the 2-dim
representation of SU (2)]. If we ignore the SU (2) symmetry,
then such a spin-1/2 excitation can be viewed as an accidental
degeneracy of two trivial excitations:

spin-1/2︸ ︷︷ ︸
∈R

β→ 1 ⊕ 1︸ ︷︷ ︸
∈nVec

. (119)

As we have mentioned above, β is a symmetry breaking
process. We can also view R as the fusion higher category
describing the (extended) excitations in a symmetric product
state with the symmetry. From this angle, we can view β

as a domain wall between R and nVec. The domain wall is
transparent to all the top morphisms in R (see Fig. 14).

B. A holographic point view of symmetry

Consider two nd (algebraic higher) symmetries described
by two local fusion n-categories, R and R′. We know that
the two symmetries are equivalent if their algebras of local
symmetric operators are isomorphic. We have demonstrated
that an isomorphic class of local symmetric operator algebras
is described by a braided fusion n-category, and called such
an isomorphic class as a categorical symmetry. So what is
the categorical symmetry for a symmetry described by local
fusion higher categories, R?

To answer this question, let us first review the holo-
graphic principle of topological order: boundary uniquely
determines bulk. In physics, topological orders (i.e., gapped
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FIG. 14. A spacetime picture of the symmetry breaking process
β (the vertical direction is the time). β can be viewed as a domain
wall between a product state with the symmetry and a product state
with no symmetry. The (extended) excitations on the product state
with the symmetry are described by a fusion higher category R. The
(extended) excitations on the product state with no symmetry are
described by the fusion higher category nVec. All the top morphisms
(the symmetric spacetime instantons or symmetric local operators)
in R can go through the domain wall β and become the top mor-
phisms (the spacetime instantons or local operators) in nVec without
modification.

quantum liquids) in n + 1d space are characterized by their
codimension-1, codimension-2,... excitations. In other words,
such a topological orders are characterized by fusion n + 1-
category Mn+1

On a n-dimensional gapped boundary of the n + 1-
dimensional topological order, the excitations are described
by a fusion n-category Cn. The holographic principle of topo-
logical order state that the boundary Cn uniquely determines
the bulk Mn+1. Such a boundary-bulk relation is given by the
center map Z in mathematics (see Fig. 15) [40,41,49,95,96]:

Z (Cn) = Mn+1. (120)

We see that the physical meaning of “center” is “bulk.” The
center map (or the bulk map) Z has a property that the center
of a center (or the bulk of a bulk) is trivial

Z (Z (Cn)) = (n + 2)Vec. (121)

This is dual to the well known fact: the boundary of a bound-
ary is trivial.

It was conjectured that [45] in n-dimensional space, the re-
lation between the representation category R generated by all
the patch charge operators and the braided fusion n-category
M (i.e., the categorical symmetry) generated by all the
patch charge operators and the patch symmetry operators is
given by another center map, denoted as Z [40,41,49], that

FIG. 15. The holographic principle of topological order: bound-
ary Cn uniquely determines bulk Mn+1.

FIG. 16. Two symmetries described by fusion n-categories R
and R′ are equivalent (i.e., have the same categorical symmetry) iff
they have the same bulk topological order in one higher dimension:
Z(R) ∼= Z(R′).

maps a fusion n-category R into a braided fusion n-category
M. The new center map Z is closely related to the previous
center map Z that maps a fusion n-category R into a fusion
(n + 1)-category M. This is because both fusion (n + 1)-
category M and braided fusion n-category M can be use to
fully describe an anomaly-free topological order in n + 1-
dimensional space.

We note that in an anomaly-free topological order in (n +
1)-dimensional space, all the codimension-1 excitations are
descendant (i.e., formed by lower dim excitations). Dropping
the codimension-1 excitations (called looping �) maps a fu-
sion (n + 1)-category M into a braided fusion n-category M:
M = �M. Adding back the descendant codimension-1 exci-
tations is called delooping followed by Karoubi completion:
�M = M [40,88]. Thus, the anomaly-free topological order
can be described either by the braided fusion n-category M, or
by fusion (n + 1)-category M. The anomaly-free condition
of topological order corresponds to the nondegeneracy con-
dition for the braided fusion n-category M, which becomes
the trivial center condition for the fusion (n + 1)-category
M: Z (M) = (n + 2)Vec. The two kinds of center maps are
related by

�Z = Z, �Z = Z. (122)

This mathematical result provides a macroscopic way to
compute the holographic equivalence classes of symmetries
(i.e., the topological order in one higher dimension). In par-
ticular, the two symmetries, described by two representations
categories R and R′, are equivalent, iff they have equivalent
centers (i.e., have the same bulk topological order, or have the
same categorical symmetry, see Fig. 16) [45],

Z(R) ∼= Z(R′). (123)

Not every braided fusion higher category describes a
categorical symmetry. The operator algebra is formed by
all the local symmetric operators. The condition of all, is
translated into a condition on the braided fusion higher
category M: M must be nondegenerate, i.e., satisfying
Z(�M) = (n + 1)Vec. Therefore, categorical symmetries
(i.e., the isomorphic classes of algebras of symmetric local
operator) in nd space are classified by nondegenerate braided
fusion n-categories M.

C. Transformation category—Dual
of the representation category

Instead of representation category generated by patch
charge operators, we can also use transformation cate-
gory generated by patch symmetry operators to fully de-
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FIG. 17. R�M R̃rev is a fusion n-category that describes the
excitations in a slab of topological order in (n + 1)-dimensional
space. One boundary of the slab has excitations described by fu-
sion n-category R. The other boundary of the slab has excitations
described by fusion n-category R̃rev. The condition R�M R̃rev =
nVec ensure that all the excitations on the boundary R and R̃
comes from symmetry described by the bulk M. In other words, all
the excitations on the boundary are symmetry charges. There is no
topological excitations. FR is the forgetful functor that maps bulk
excitations described by M to boundary excitations described by R.
AR is a Lagrangian condensable algebra formed by bulk excitations,
which are mapped to trivial excitations on the boundary R. AR, with
a trivial action on the symmetric boundary, correspond to the patch
symmetry operators on the boundary. The nontrivial excitations R
on the R-boundary are created by the patch charge operator. R and
R̃ are dual to each other is all the bulk excitations either condense on
the R-boundary or R̃-boundary.

scribe an (algebraic higher) symmetry. We believe both
characterizations are complete characterizations. This belief
is supported by the following result [45]:

Proposition 2. Consider two fusion n-category R and R̃,
such that M = Z(R) = Z(R̃). If nVec = R�M R̃rev (see
Fig. 17), then both R and R̃ are local fusion n-categories.
Furthermore, for each R, R̃ is unique. We say that R̃ is the
dual of R.

For example, an nd bosonic lattice model with a finite
symmetry G has a representations category nRepG and a
transformation category is nVecG. nVecG happens to be the
dual of nRepG. Such a bosonic model has a dual lattice model
with a dual symmetry G(n−1)

rep (see Ref. [45] for an explicit con-
struction). The representations category of the dual symmetry
G(n−1)

rep is nVecG, and the transformation category of the dual
symmetry is nRepG. This example illustrates the dual relation
between the representations category and the transformation
category.

Putting the representation category and the transforma-
tion category together—i.e., combining the algebras of patch
charge operators and patch symmetry operators—gives us
the full algebra of local symmetric operators. This algebra
contains the full information of the categorical symmetry,
which represents the essence of symmetry. From this point
of view, symmetry and dual symmetry have the same cate-
gorical symmetry and are equivalent. They only differ by
swapping the names for patch charge operators and patch
symmetry operators.

D. A simple example

In this subsection, we are going to discuss a simple exam-
ple, to illustrate the above abstract discussions.

se

e
FIG. 18. A boundary of 3d Z2 topological order M = 2GauZ2

induced by s-string condensation. The boundary excitations is de-
scribed by fusion 2-category R = 2RepZ2

.

1. Holographic view of 2d Z2 0-symmetry

As we have discussed in Sec. VIII A, the representa-
tion category of 2d Z2 0-symmetry is a fusion 2-category
R = 2RepZ2

. The transformation category of 2d Z2 0-
symmetry is a fusion 2-category R̃ = 2VecZ2 . It has the
categorical symmetry 2GauZ2 = Z(2RepZ2

) = Z(2VecZ2 ),
which is the 3d topological order described by Z2 gauge
theory. In the following, we will use the holographic picture
to understand the above results.

The elementary excitations in 3d Z2-gauge theory include
pointlike excitations e (the bosonic Z2 charge) and stringlike
excitations s (the bosonic Z2-flux string), as well as the trivial
excitations 1 and 1str. They satisfy the fusion rule:

e ⊗ e = 1 s ⊗ s = 1str. (124)

The stringlike excitation s corresponds to the flux line in
the 3d Z2-gauge theory, which is an elementary excitation.
The 3d Z2-gauge theory also has a nonelementary excitation
(i.e., descendant) stringlike excitation, sZ2 , which is a Z2

spontaneous-symmetry-break state formed by the e-particles.
Here we ignore all the descendant excitations.

R = 2RepZ2
is a boundary of 2GauZ2 , induced by the

Z2-flux loop condensation, so on the boundary s ∼ 1str. The
boundary excitations then are described by {1, e} = 2RepZ2

.
Figure 18 represents the picture that a symmetry characterized
by representation category R = 2RepZ2

has the categorical
symmetry 2GauZ2 . The Lagrangian condensible algebra is
generated by s, which corresponds to the transformation cate-
gory R̃ = 2VecZ2 . Thus, Fig. 18 also represents the picture
that a symmetry characterized by transformation category
R̃ = 2VecZ2 has the categorical symmetry 2GauZ2 .

2. Holographic view of 2d Z2 1-symmetry

As we have discussed in Sec. VIII C, the representa-
tion category of 2d Z2 0-symmetry is a fusion 2-category
R̃ = 2VecZ2 . The transformation category of 2d Z2 0-
symmetry is a fusion 2-category R = 2RepZ2

. It belongs to
categorical symmetry 2GauZ2 = Z(2RepZ2

) = Z(2VecZ2 ),
which is the 3d topological order described by Z2 gauge
theory.

R̃ = 2VecZ2 is a boundary of 2GauZ2 , induced by the
Z2-charge condensation, so on the boundary e ∼ 1. The
boundary excitations then are described by {1str, s} = 2VecZ2 .
Figure 18 represents the picture that a symmetry characterized
by representation category R̃ = 2VecZ2 has the categori-
cal symmetry 2GauZ2 . The Lagrangian condensible algebra
is generated by e, which corresponds to the transformation
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s

s

e

FIG. 19. A boundary of 3d Z2 topological order M = 2GauZ2

induced by e-particle condensation. The boundary excitations is de-
scribed by fusion 2-category R̃ = 2VecZ2 .

category R = 2RepZ2
. Thus, Fig. 19 also represents the pic-

ture that a symmetry characterized by transformation category
R = 2RepZ2

has the categorical symmetry 2GauZ2 .

3. Symmetry R = 2RepZ2
and dual-symmetry ˜R = 2VecZ2

In 2d space, Z2 0-symmetry and Z(1)
2 1-symmetry are

equivalent, and are dual to each other. This means that Z2

0-symmetry and Z(1)
2 1-symmetry have the same 3d bulk

topological order 2GauZ2 (i.e., have the same categorical
symmetry). When we consider a slab 3d bulk topological
order 2GauZ2 with one boundary being 2RepZ2

and the other
boundary being 2VecZ2 , then all the nontrivial excitations in
the bulk, either condense on the 2RepZ2

-boundary or con-
dense on the 2VecZ2 -boundary (see Fig. 20). So the slab
is actually a trivial 2d topological order. This implies that
2RepZ2

and 2VecZ2 are dual to each other.

X. A DERIVATION OF TOPOLOGICAL
HOLOGRAPHIC PRINCIPLE

In this paper, we have derived a holographic point of
view of symmetry. For a lattice system with a symmetry,
we concentrate on the algebra of local symmetric operators,
and its irreducible representation—the symmetric sub-Hilbert
space. The symmetric sub-Hilbert space does not have a ten-
sor product decomposition, which indicates a (noninvertible)
gravitational anomaly.9 Since the (noninvertible) gravitational

9Here, we view a gravitational anomaly is an obstruction to have a
lattice realization without symmetry.

trivial

order
topo.

condense

condense

dual symmetry

symmetry

s

se
e

FIG. 20. All the nontrivial excitations in the bulk 2GauZ2 , either
condense on the 2RepZ2

-boundary (s condense) or condense on the
2VecZ2 -boundary (e condense). Thus, the slab has no topological
excitations and correspond to a trivial topological order.

anomaly corresponds to a topological order in one higher
dimension (for finite symmetries) [39,40], the symmetric sub-
Hilbert space, plus the algebra of local symmetric operators in
it, gives rise to a topological order in one higher dimension.

The above is just some vague ideas. In this paper, we
outline a way to compute this topological order in one higher
dimension, using the algebra of local symmetric operators.
This approach is very general. Even if we do not know the
symmetry transformation and do not know the symmetric
sub-Hilbert space, but if we know the set of local operators
and its algebra, then we can compute the bulk topological
order, by compute the braided fusion (higher) category from
the operator algebra.

Under such a general setting, our approach can be viewed
a derivation of topological holographic principle, which can
be simply stated as: boundary determines the bulk. The usual
holographic principle in AdS/CFT refers to boundary confor-
mal field theory (CFT) with a global symmetry determines
a bulk quantum gravity with a gauge theory in an anti-de
Sitter (AdS) space in one higher dimension. The topological
holographic principle here refers to boundary quantum field
theory determines a bulk topological order in one higher di-
mension. In this paper, we make the above statement more
precise by treating quantum field theory as an algebra of local
operators. As was shown in this paper, from the algebra of
local operators, we can determine a nondegenerate braided
fusion (higher) category, which in turn determine the bulk
topological order (provided that the braided fusion (higher)
category is finite). This corresponds to a derivation of the
topological holographic principle.

We may also consider one of the many boundaries of a
topological order. The boundary is more precisely described
by an algebra of boundary local operators, which create all the
low-energy boundary excitations.10 Then, from the boundary
operator algebra, we can determine a braided fusion (higher)
category which determine the bulk topological order, up to an
invertible topological order. The invertible topological order
correspond to the usual invertible gravitational anomaly of the
boundary theory, which is also determined by the boundary.
This way, we showed that

boundary theory uniquely determines the topological bulk,

which is the topological holographic principle.
In this paper, we try to use topological order to describe

generalized symmetry (which can go beyond group and higher
group) in one lower dimension. We remark that it is the
noninvertible topological order that is close to symmetry. The
invertible topological order (and the associated usual more
familiar invertible gravitational anomaly) is furthest from
symmetry. At the moment, it is not clear if we should general-
ize the symmetry even more to include the ones associated
with invertible topological order in one higher dimension,
or if we should use equivalent classes of bulk topological

10Here, we may assume the bulk topological order to have an
infinite energy gap. Then any finite energy excitations can be viewed
as boundaries excitations.
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order up to invertible topological order to describe generalized
symmetry.

XI. EQUIVALENT SYMMETRIES

One application of the holographic theory of symmetry
is to identify equivalence between symmetries, higher sym-
metries, anomalous (higher) symmetries, algebraic (higher)
symmetries, and gravitational anomalies. All those (anoma-
lous and/or higher) symmetries and gravitational anomalies
impose constraint on the low-energy dynamics of the system.
They are equivalent if they impose the identical constraint.
Such an equivalence was called holo-equivalence in Ref. [45],
to stress its connection holographic picture.

As we have discussed in this paper, two symmetries (de-
scribed by representation categories R and R′) are equivalent
if they have the same categorical symmetry, i.e., have the
same bulk topological order:

Z(R) ∼= Z(R′). (125)

In practice, if we know a (higher) symmetry R is realized as a
boundary of a SPT state or a symmetric product state, then the
categorical symmetry is simply the bulk topological order
obtained by gauging the (higher) symmetry in the bulk SPT
state or the symmetric product state. We can identify many
equivalent symmetries this way.

A. Some known examples

First, let us list some known examples. In nd space, Z (m)
N m-

symmetry can be realized by a boundary of (n + 1)d product
state with Z (m)

N m-symmetry. Thus, the categorical symmetry
of nd Z (m)

N m-symmetry is the (n + 1)d ZN (m + 1)-gauge
theory. In (n + 1)-dimensional space, ZN (m + 1)-gauge the-
ory and ZN (n − m)-gauge theory correspond to the same
topological order. Therefore, in nd space, Z (m)

N m-symmetry
is equivalent to Z (n−m−1)

N (n − m − 1)-symmetry:

Z (m)
N ∼ Z (n−m−1)

N . (126)

Furthermore, the two symmetries are dual to each other.
Using the similar argument, we can obtain the following

results:
(1) In 2d, Z3 × Z2 ∼ Z(1)

3 × Z2. This is actually a direct
application of Eq. (126).

(2) In 2d, S3 = Z3 � Z2 ∼ Z(1)
3 � Z2 [53]. This is the

twisted version of the above. Z(1)
3 � Z2 is a nontrivial mix of

Z(1)
3 1-symmetry and Z2 0-symmetry. The charge objects of

Z(1)
3 are strings labeled by s, s̄. The Z2 0-symmetry exchange

s and s̄.
(3) In 1d, an anomalous Z2 × Z2 × Z2 symmetry is equiv-

alent to D4 symmetry, for a very different reason than the
above two examples [97,98].

B. Equivalence between anomalous and anomaly-free
Zn and Zn1 × Zn2 symmetries in 1d space

In Sec. VI C, we find an equivalence between 1d Z4 sym-
metry and Z2 × Z2 symmetry with the mixed anomaly. In
this section, we generalize that result. A 1d anomalous Zn

symmetry is realized by a boundary of 2d Zn SPT state. After

gauging the Zn symmetry in the 2d SPT state, we obtain a
2d Abelian bosonic topological order, which is classified by
even K-matrices [80]. In the present case, the corresponding
topological order is given by [83]

K =
(−2m n

n 0

)
, (127)

where m ∈ H3(Zn; R/Z) = Zn characterizes the Zn anomaly
(m = 0 for anomaly-free). We will label the anomalous Zn

symmetry by (n; m).
Similarly, the anomalous 1d Zn1 × Zn2 symmetry is real-

ized by a boundary of 2d Zn1 × Zn2 SPT state. After gauging
the Zn1 × Zn2 symmetry, we obtain a 2d Abelian topological
order characterized by [83]

K =

⎛⎜⎜⎜⎜⎝
−2m2 n1 −m12 0

n1 0 0 0

−m12 0 −2m1 n2

0 0 n2 0

⎞⎟⎟⎟⎟⎠, (128)

where m1 ∈ Zn1 describing the anomaly of the Zn1 symme-
try, m2 ∈ Zn2 describing the anomaly of the Zn2 symmetry,
and m12 ∈ Zgcd(n1,n2 ) describing the mixed anomaly of the
Zn1 × Zn2 symmetry. We will label the anomalous Zn1 × Zn2

symmetry by (n1, n2; m1, m12, m2).
By computing the S, T matrices of the 2d topological or-

ders [47,99] described by K-matrices, we can identify a set of
K-matrices that give rise to the same 2d topological order, and
hence correspond to equivalent symmetries. This allows us to
find the following sets of equivalent symmetries:
• (2,2;0,0,1), (2,2;1,0,0), (2,2;1,0,1)
• (4;0), (2,2;0,1,0), (2,2;0,1,1), (2,2;1,1,0)
• (5;2), (5;3)
• (5;1), (5;4)
• (6;1), (2,3;1,0,1)
• (6;5), (2,3;1,0,2)
• (6;3), (2,3;1,0,0)
• (6;4), (2,3;0,0,1)
• (6;2), (2,3;0,0,2)
• (6;0), (2,3;0,0,0)
• (7;3), (7;5), (7;6)
• (7;1), (7;2), (7;4)
• (2,4;0,0,1), (2,4;1,0,1)
• (2,4;0,0,3), (2,4;1,0,3)
• (2,4;1,1,1), (2,4;1,1,3)
• (8;0), (2,4;0,1,0), (2,4;0,1,2), (2,4;1,1,0), (2,4;1,1,2)
• (8;4), (2,4;0,1,1), (2,4;0,1,3)
• (3,3;1,0,1), (3,3;1,1,2), (3,3;1,2,2), (3,3;2,1,1), (3,3;2,2,1),

(3,3;2,0,2)
• (3,3;0,0,1), (3,3;1,0,0), (3,3;1,1,1), (3,3;1,2,1)
• (9;1), (9;4), (9;7)
• (9;2), (9;5), (9;8)
• (3,3;0,0,2), (3,3;2,0,0), (3,3;2,1,2), (3,3;2,2,2)
• (9;0), (3,3;0,1,0), (3,3;0,2,0), (3,3;0,1,1), (3,3;0,2,1),

(3,3;0,1,2), (3,3;0,2,2), (3,3;1,1,0), (3,3;1,2,0), (3,3;1,0,2),
(3,3;2,1,0), (3,3;2,2,0), (3,3;2,0,1)

• (10;3), (10;7)
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• (10;1), (10;9)
• (10;2), (10;8)
• (10;4), (10;6)
• (11;2), (11;6), (11;7), (11;8), (11;10)
• (11;1), (11;3), (11;4), (11;5), (11;9)
• (12;1), (3,4;1,0,1)
• (12;7), (3,4;1,0,3)
• (12;5), (3,4;2,0,1)
• (12;11), (3,4;2,0,3)
• (12;9), (3,4;0,0,1)
• (12;3), (3,4;0,0,3)
• (12;10), (3,4;1,0,2)
• (12;4), (3,4;1,0,0)
• (12;2), (3,4;2,0,2)
• (12;8), (3,4;2,0,0)
• (12;6), (3,4;0,0,2)
• (12;0), (3,4;0,0,0)
• (13;2), (13;5), (13;6), (13;7), (13;8), (13;11)
• (13;1), (13;3), (13;4), (13;9), (13;10), (13;12)
• (14;3), (14;5), (14;13)
• (14;1), (14;9), (14;11)
• (14;6), (14;10), (14;12)
• (14;2), (14;4), (14;8)
• (15;7), (15;13)
• (15;1), (15;4)
• (15;2), (15;8)
• (15;11), (15;14)
• (15;3), (15;12)
• (15;6), (15;9)
• (4,4;1,0,1), (4,4;1,2,2), (4,4;2,2,1)
• (4,4;1,0,2), (4,4;1,2,3), (4,4;2,0,1), (4,4;2,0,3), (4,4;3,2,1),

(4,4;3,0,2)
• (4,4;2,2,3), (4,4;3,2,2), (4,4;3,0,3)
• (4,4;0,0,1), (4,4;1,0,0), (4,4;1,2,1)
• (4,4;0,2,1), (4,4;0,2,3), (4,4;1,2,0), (4,4;1,0,3), (4,4;3,2,0),

(4,4;3,0,1)
• (4,4;0,0,3), (4,4;3,0,0), (4,4;3,2,3)
• (4,4;0,0,2), (4,4;2,0,0), (4,4;2,0,2)
• (4,4;0,2,0), (4,4;0,2,2), (4,4;2,2,0)
• (4,4;1,1,1), (4,4;1,3,1), (4,4;1,1,3), (4,4;1,3,3), (4,4;3,1,1),

(4,4;3,3,1), (4,4;3,1,3), (4,4;3,3,3)
• (16;1), (16;9)
• (16;5), (16;13)
• (16;7), (16;15)
• (16;3), (16;11)
• (16;0), (4,4;0,1,0), (4,4;0,3,0), (4,4;0,1,1), (4,4;0,3,1),

(4,4;0,1,2), (4,4;0,3,2), (4,4;0,1,3), (4,4;0,3,3), (4,4;1,1,0),
(4,4;1,3,0), (4,4;1,1,2), (4,4;1,3,2), (4,4;2,1,0), (4,4;2,3,0),
(4,4;2,1,1), (4,4;2,3,1), (4,4;2,1,2), (4,4;2,3,2), (4,4;2,1,3),
(4,4;2,3,3), (4,4;3,1,0), (4,4;3,3,0), (4,4;3,1,2), (4,4;3,3,2).

We see that the two symmetries (4; 0) and (2, 2; 0, 1, 0) are
equivalent. This is the equivalence between Z2 × Z2 symme-
try with the mixed anomaly and Z4 symmetry in 1d discussed
in Sec. VI C, where we also find a duality transformation, that
maps a lattice model with anomalous Z2 × Z2 symmetry to
another lattice model with Z4 symmetry. We believe that, in
general, for any pair of equivalent symmetries, there is a lat-
tice duality transformation, that maps a lattice model with one
symmetry to another lattice model with the other equivalent

FIG. 21. The same topological order (in one higher dimension)
can have different shadows, which correspond to equivalent symme-
tries, and gives rise to the notion of categorical symmetry.

symmetry. Each pair of the equivalent symmetries in the above
list implies a lattice duality map.

We also see that (4; 0) and (2, 2; 0, 1, 1) are equivalent.
Thus, the Z4 symmetry is also equivalent to Z2 × Z2 sym-
metry with the mixed anomaly and an anomaly in one of
the Z2 symmetry. More generally, it appears that Zn × Zn

symmetry with a particular mixed anomaly is equivalent to
Zn2 symmetry. It is also interesting to note that, for Zp group
(2 < p = prime), its p − 1 anomalous symmetries form just
two equivalent classes, and its anomaly-free symmetry form
its own equivalent class.

XII. SUMMARY—THE ESSENCE OF A SYMMETRY

With so many equivalences between symmetries labeled by
(higher) groups and anomalies, it is clear that group, higher
group, anomalies, local fusion higher categories, etc., are not
the best notions to describe a symmetry. The algebra of local
symmetric operators provides a more fundamental description
of symmetries and (invertible and noninvertible) anomalies
of quantum many body systems. In this paper, we show that
this algebra contains a special subset of extended operators,
dubbed t-patch operators, whose algebraic relations encode
the data of a nondegenerate braided fusion n-category. This
category happens to capture the universal data of a topological
order in one higher dimension. So, this point of view leads to
a holographic theory of symmetries and anomalies.

With this, we reiterate our slogan: “Finite symmetry (with
or without anomaly) is the shadow of topological order in one
higher dimension” (see Fig. 21). The topological order in one
higher dimension—the categorical symmetry —captures
the essence of the symmetry. We end the paper by listing
different aspects of categorical symmetry:

A categorical symmetry is
• a symmetry plus its dual symmetry [45,53].
• a noninvertible gravitational anomaly [38,40–43,49].
• a class of isomorphic algebras of local symmetric operators.
• a nondegenerate braided fusion higher category.
• a topological order in one higher dimension [45,50,51,53].
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APPENDIX A: LOCAL SYMMETRIC OPERATOR
ALGEBRA AND NONDEGENERATE BRAIDED FUSION

3-CATEGORY—A 3-DIMENSIONAL EXAMPLE
WITHOUT SYMMETRY

Let us discuss an example to illustrate the definitions in
Sec. III, for the case without any symmetry. We assume the
space to be 3-dimensional. On each vertex-i, we have two
degrees of freedom labeled by elements in Z2 ≡ {+1,−1},
i.e., the local Hilbert space Vi on a vertex 2-dimensional. The
algebra of local operators is then generated by Xi, Zi acting on
Vi:

A = {Xi, Zi, XiZi, XiXj, ZiZ j, · · · }, (A1)

where i, j are near each other, and the Pauli-X, Z operators are
defined by

X | ± 1〉 = | ∓ 1〉, Z| ± 1〉 = ±| ± 1〉. (A2)

Our local symmetric operator algebra (after the closure by
the extended operators) is generated by the following t-patch
operators:

(1) 0-dimensional t-patch operators, Xi, Zi.
(2) 1-dimensional t-patch operators—string operators,

Xstri j = XiXj, Zstri j = ZiZ j, (A3)

where the stringi j connects the vertex-i and vertex- j. The
string operators must have an empty bulk to commute with
the 0-dimensional t-patch operators, when they are far away
from the ends of the strings.

(3) 2-dimensional t-patch operators—disk operators,

Xdisk =
∏

i∈∂disk

Xi, Zdisk =
∏

i∈∂disk

Zi,

Odisk =
∏

i∈∂disk

Oi, (A4)

where Oi can be any local operators.
(4) 3-dimensional t-patch operators—ball operators,

Xball =
∏

i∈∂ball

Xi, Zball =
∏

i∈∂ball

Zi,

Oball =
∑
{mi}

�({mi})
∏

i∈∂ball

Oi(mi ), (A5)

where Oi(mi ) can be any local operators. For example,
Oi(0) = id and Oi(1) = Xi. (More precisely, Oball is a tensor
network operator on the boundary of the ball, ∂ball.)

We see that the t-patch operators all have empty bulk,
i.e., are patch charge operators. There is no patch symmetry
operators. This implies that our bosonic system has no sym-
metry.

If some t-patch operators have nontrivial bulk, then our sys-
tem will have nontrivial symmetry, as we see in the examples
in Sec. IV and beyond of the main text. In fact, the nontrivial
bulk of the t-patch operators will generate the corresponding
symmetries, higher symmetries, and/or noninvertible higher
symmetries.

We believe that the above algebra of extended t-patch
operators is closely related of a braided fusion 3-category
3Vec. At moment, we can only give a very rough description
of this connection. A 3-category is formed by 0-morphisms
(also called objects), 1-morphisms, 2-morphisms, and 3-
morphisms (also called top morphisms). All those morphisms
have relations between them. In fact, the collection of all
relations between n-morphisms is the collection of all (n +
1)-morphisms. The ball operators correspond to the objects,
the disk operators the 1-morphisms, the string operators the
2-morphisms, and the local operators the top 3-morphisms.
The difference of two ball operators are given by the disk
operators, the difference of two disk operators are given by
the string operators, etc.

For example, if two string operators Ostri j and O′
stri j

are
related by local operators Oi and Oj :

O′
stri j

= OiOjOstri j , (A6)

then we say the 2-morphism Ostri j connects to the 2-morphism
O′

stri j
via the 3-morphism OiOj on the left:

Ostri j

L:OiOj−−−→ O′
stri j

. (A7)

Similarly, if Ostri j and O′
stri j

are related by local operators Oi

and Oj on the right:

O′
stri j

= Ostri j OiOj, (A8)

then we also say the 2-morphism Ostri j connects to the 2-
morphism O′

stri j
via the 3-morphism OiOj :

Ostri j

R:OiOj−−−→ O′
stri j

. (A9)

The 3-morphisms connecting 2-morphisms allow us to
defined the notion of simple 2-morphisms. A 2-morphism

Ostri j is simple if an existence of 3-morphism Ostri j

f−→ O′
stri j

always implies an existence of 3-morphism O′
stri j

g−→ Ostri j in
the opposite direction. It turns out that Xstri j and Zstri j intro-
duced above are not simple. The following string operators
are simple:

P±
stri j

= P±
i P±

j , P±
i = 1 ± Zi

2
, P±

j = 1 ± Zj

2
. (A10)

Certainly, the notion of simpleness applies to all morphisms.
If two 2-morphisms, Ostri j and O′

stri j
, satisfy

Ostri j

f−→ O′
stri j

, O′
stri j

g−→ Ostri j ,

Ostri j

f ◦g=id−−−→ Ostri j , O′
stri j

g◦ f =id−−−→ O′
stri j

, (A11)

then we say the two 2-morphisms are isomorphic. In the above

example, Ostri j

L:OiOj−−−→ O′
stri j

, if Oi and Oj are invertible, then
the 2-morphism O′

stri j
connects to the 2-morphism Ostri j via the

3-morphism O−1
i O−1

j :

Ostri j = O−1
i O−1

j O′
stri j

or O′
stri j

L:O−1
i O−1

j−−−−−→ Ostri j . (A12)
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In this case, the two 2-morphisms Ostri j and O′
stri j

are isomor-
phic.

The isomorphic relations between 2-morphisms is an
equivalent relation. For example P−

stri j
∼= P+

stri j
. Although there

are infinite many simple 2-morphisms in our example, there is
only one equivalence class of simple 2-morphisms. A repre-
sentative in this equivalence class is given by P−

stri j
= P−

i P−
j .

In this paper, when we refer to objects and morphisms, we
usually refer to the equivalence classes of objects and mor-
phisms, under the isomorphisms discussed above. Combining
the definition of simpleness and isomorphism, we see that two
simple morphisms cannot be connected by a higher morphism
if they are not isomorphic. In other words, different types of
morphisms (i.e., different equivalence classes of morphisms)
cannot be connected by a higher morphism.

We stress that although the t-patch operator considered
above all have an empty bulk, the tensor network operator on
the boundary can have a Wess-Zumino form. For example,
Oball is a tensor network operator on the boundary of the ball,
but it can be defined i.e., defined by a tensor network on an
extension of ∂ball in one higher dimension. Such a tensor
network can be viewed as a spacetime path integral on the ball,
which can give rise to a topologically ordered state on ∂ball
described by wave function �({mi}). We see that we can have
infinitely many types of ball operators, each type corresponds
to a topological order in 2-dimensional space. Since there is no
nontrivial topological order in zero- and 1-dimensional space,
thus we have only one type of stringlike t-patch operators
and one type of membranelike t-patch operators. Such a struc-
ture matches the structure of braided fusion 3-category 3Vec
[45,88].

APPENDIX B: DETAILED CALCULATIONS

1. Calculation of F(s, s, s)

To compute the F-symbol F (s, s, s), described in Eq. (44),
we refer to Fig. 5 and substitute a = b = c = s. Using the
definitions in Eqs. (39) and (40), this picture translates to the
following calculation:

.

This tells us that F (s, s, s) = −1. Note that our operator or-
dering convention is top-to-bottom and left-to-right (when in
the same row).

2. Self-statistics of s particles

We express Fig. 6 in equations as

Ts(0 → 1)Ts(1 → 2)Ts(3 → 1)

= Wpatch01
Wpatch12

W †
patch13

= e i θsW †
patch13

Wpatch12
Wpatch01

= e i θs Ts(3 → 1)Ts(1 → 2)Ts(0 → 1). (B1)

The left-hand side can be simplified as

,

while the right-hand side can be simplified as

.

Comparing the two, we can see that the self-statistics phase
e i θs equals i , i.e., θs = π/2. Thus, the s particles have
semionic self-statistics.
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3. Mutual and self statistics of m, m̃, s particles in Z2 × Z2

with mixed anomaly

First we calculate the mutual statistics of m and m̃, as
discussed in Eq. (54). Representing it pictorially, we find

.

This proves Eq. (54). Now, recall that s is a bound state of m
and m̃. In other words,

W s
patchi j

def= Wpatchi j
· W̃patchi j

(B2)

Then the self-statistics calculation shown in Fig. 6 corre-
sponds to the computation of the phase in the following
sequence of operations:

. (B3)

From the above picture, it is clear that the computation of
self-statistics of s particles is equivalent to the computation
of mutual statistics of m and m̃ particles.

APPENDIX C: GLOBAL ACTION OF 1 + 1D Z2 × Z2

SYMMETRY WITH MIXED ANOMALY

Symmetry protected topological (SPT) states in d space
dimensions are associated with anomalous symmetry actions
on their (d − 1)-dimensional boundary. Such nononsite action
of the symmetry encodes a ’t Hooft anomaly of the symmetry,
when considered exclusively on the boundary. In Ref. [79]
(Sec. 4), the authors wrote down an exactly soluble path inte-
gral model (also known as cocycle model[100]) to realize SPT

states in general d space dimensions. These were then used to
construct the corresponding anomalous symmetry action for
the boundary effective theory. This framework then provides
us with a recipe to write down a representative symmetry
action for any anomalous symmetry in any number of di-
mensions. In particular, we can use this recipe to write down
the anomalous (nononsite) symmetry action for the 1 + 1D
bosonic theory having a Z2 × Z2 symmetry with a mixed
anomaly. For this we must consider an SPT state in 2 + 1D
that is protected by Z2 × Z2 symmetry.11 The path integral is
defined on a 3-manifold M3 with boundary M2 = ∂M3, and
involves a 3-cocycle ν3. In Euclidean signature, the integrand
of the path integral reads

e− ∫
M3 LBulkd3x =

∏
M3

e2π i ν3(gi,g j ,gk ,gl ), (C1)

where the ordered collections (i, j, k, l ) are the tetrahedra be-
longing to the triangulation of M3. For the effective boundary
theory, one can simplify the bulk so that it contains a single
point. This reduces to an effectively 1 + 1D path integral
due to properties of the cocycle which we will not go into
here—the interested reader is directed to Sec. 4.2 of Ref. [79].
This path integral still has the original protecting symmetry
of the SPT state; however, it is no longer realized in an onsite
manner. In Hamiltonian formalism, this symmetry action on
the 1 + 1D boundary is given by

U (g) |{gi}〉 =
∏
(i, j)

e2π i ν3(gi,g j ,g∗,−g+g∗ ) |{g + gi}〉 , (C2)

where (i, j) are nearest neighbors on the 1d spatial boundary,
−g denotes the inverse of the group element g ∈ Z2 × Z2, and
g∗ is an arbitrary reference group element, which can be taken
to be the identity element of the symmetry group without any
loss of generality. One choice of ν3 that encodes the mixed
anomaly of two Z2 symmetries is

ν3 = a1 � a2 � a2, (C3)

with a = dg taking values on links, and the subscripts on a
labeling the two Z2 groups. Using equations (C2) and (C3)
allows us to write down the global symmetry generators in
Eqs. (48) and (49).

APPENDIX D: 2D NON-ABELIAN SYMMETRY
AND ITS DUAL

In the Sec. VIII, we see that a 2d Z2 0-symmetry is equiv-
alent to its dual, a 2d Z(1)

2 1-symmetry. The dual symmetry
is obtained by exchanging patch charge operators and patch
symmetry operators. We note that for a symmetry described
by a non-Abelian finite group G, it also has patch charge op-
erators and patch symmetry operators. Naturally, one may ask
what is the dual of the G symmetry? Are symmetry and dual
symmetry equivalent? In this section, we will discuss briefly
the algebra of local symmetric operators for a non-Abelian
symmetry, and the dual of a non-Abelian symmetry. Although
our discussion is far from complete, it suggests that the dual

11We use the additive presentation of the Z2 group in this Appendix.
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of the G 0-symmetry (whose charge-objects form a fusion
2-category 2RepG) is a symmetry whose charge-objects form
a fusion 2-category 2VecG. In other words, the symmetries
2RepG and 2VecG are dual to each other.

1. The G 0-symmetry in 2d space

Let us consider a bosonic quantum system, whose degrees
of freedoms live on the vertices and are labeled by a non-
Abelian group G. In other words, the total Hilbert space is
given by V = ⊗

i Vi (Vi = span{|gi〉 | gi ∈ G}).
The G 0-symmetry is defined by the transformations on the

whole 2d space

Th =
∏

i

Ti(h), h ∈ G, (D1)

where Ti(h) acts on Vi:

Ti(h)|gi〉 = |hgi〉. (D2)

The associated t-patch symmetry operator is given by

χ̂disk =
∑
h∈χ

ĥdisk, (D3)

where ĥdisk = ∏
i∈disk Ti(h) and χ is a conjugacy class of G.

Note that here we need to sum over conjugacy class as re-
quired by the transparency condition (i.e., Tdisk(χ ) must carry
vanishing total charge):

Tdisk(χ )Tdisk(χ ′) = Tdisk’(χ
′)Tdisk(χ ), (D4)

where the boundaries, ∂disk and ∂disk’, are far away (i.e., do
not intersect). Local symmetric operators satisfy

χ̂diskOsymm
i = Osymm

i χ̂disk, ∀ χ, (D5)

where i is far away from ∂disk.
The patch charge operators, with empty bulk, are given by

R̂stri j = Tr[R(ĝi )R(ĝ−1
j )], ĝi|gi〉 = gi|gi〉, (D6)

where R is an irreducible matrix representation of G. The
transparency condition requires us to take the trace:

χ̂diskR̂stri j = R̂stri j χ̂disk, (D7)

where stri j is far away from ∂disk. But the one end of string
operator carries a nonzero charge, which can be seen by trying
to calculate the commutation between χ̂disk and R̂stri j with one
end of string, i inside the disk and the other end of string, j
outside the disk:

χ̂diskR̂stri j =
⎛⎝∑

h∈χ

∏
i∈disk

Ti(h)

⎞⎠Tr
(
R(ĝi )R

(
ĝ−1

j

))

=
⎛⎝∑

h∈χ

Tr
(
R(h)R(ĝi )R

(
ĝ−1

j

)) ∏
i∈disk

Ti(h)

⎞⎠. (D8)

We see that commutator is complicated. In fact, they do not
even form a proper commutator. The nontrivial relation indi-
cates that the ends of string carries nontrivial charge. But for a
non-Abelian group G, the charge is not described by a simple
phase factor.

We know that the algebra generated by the patch charge
operators R̂stri j and patch symmetry operators χ̂disk should
correspond to a 3d topological order. For the present case,
such a 3d topological order should be the one described by
the G-gauge theory. The 1d boundary of the disk operator χ̂disk

corresponds to the flux loop in the G-gauge theory. When G
is non-Abelian, a single flux loop in G-gauge theory is not la-
beled by a group element in G, but rather by a conjugacy class
χ . For n flux loops with gauge flux described by h1, · · · , hn,
the distinct physical states that labeled the conjugacy class
[h1, · · · , hn] = {hh1h−1, · · · , hhnh−1|h ∈ G} For large n, the
number of distinct physical states is of order |G|n. In this case,
we may say the gauge flux is labeled by the group elements of
G.

Similarly, if we consider a more general patch symmetry
operators formed by n disks, it is given by

χ̂n-disk =
∑

h1,··· ,hn∈[h1,··· ,hn]

(ĥ1)disk1 · · · (ĥn)diskn . (D9)

We see that the number of generalized patch symmetry oper-
ators is of order |G|n. We may say n disklike patch symmetry
operators are labeled by the elements in Gn, and each disklike
patch symmetry operators are labeled by the elements in G.
This agrees with the picture from the gauge flux.

The patch charge operator R̂stri j corresponds to the charge
excitations in the 3d G-gauge theory on S0, i.e., on two points
with one carries charge R and the other charge R̄. Here R is a
representation of G and R̄ is its charge conjugate. The fusion
of the charges is given by the fusion of G-representations

R1 ⊗ R2 =
⊕

R3

NR3
R1,R2

R3. (D10)

To measure the charge in the G-gauge theory, let us braid a
charge R around a single flux χ . When G is non-Abelian, both
the charge R and the flux χ can be degenerate. The degeneracy
of the charge R is dim(R). The degeneracy of the flux χ is is
the number of group elements in conjugacy class χ , |χ |. With
those degeneracies, the braiding of a charge around a flux loop
is not simply a phase factor. This is why the commutation
Eq. (D8) is complicated.

The above correspondence suggests that the categorical
symmetry of a 2d G 0-symmetry is a 3d topological order de-
scribed by a G-gauge theory, which will be denoted as 2GauG.
2GauG can also be viewed as a nondegenerate braided fusion
2-category describing the pointlike excitations (the G-gauge
charge) and stringlike excitations (the G-gauge flux) in the
3d G-gauge theory. Thus, the categorical symmetry of a 2d
G 0-symmetry is a nondegenerate braided fusion 2-category
2GauG.

We mention that the patch charge operators R̂str should
generate a symmetric fusion 2-category 2RepG. The patch
symmetry operators χ̂disk should generate a braided fusion
2-category 2VecG.

We remark that the simple objects in 2VecG are labeled by
the elements g of the group G. The boundary of a single patch
symmetry operator χ̂disk correspond to a composite object
χ = ⊕

g∈χ g, where χ is a conjugacy class of G. However, the
boundary of n patch symmetry operators χ̂n-disk, in the large n
limit, correspond to the simple objects in 2VecG. Since both
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0-symmetry G and the algebraic 1-symmetry G(1)
rep have the

same categorical symmetry, they are equivalent symmetries.
The class of quantum systems with 0-symmetry G and the
class of quantum systems with algebraic 1-symmetry G(1)

rep
will have a 1-to-1 correspondence, so that the corresponding
quantum systems have identical local low-energy properties.

2. The G(1)
rep 1-symmetry in 2d space

The Z(1)
2 1-symmetry discussed before is described by

a higher group. In this section, we are going to study a
symmetry that is beyond higher group since the symmetry
transformation is not invertible. Such a symmetry is called
algebraic higher symmetry in Ref. [45].

Let us consider a bosonic quantum system, whose degrees
of freedoms live on the links and are labeled by by an non-
Abelian group G. In other words, the total Hilbert space is
given by V = ⊗

〈i j〉 Vi j (Vi j = span{|gi j〉 | gi j ∈ G})
The symmetry is defined by the transformations on all the

loops S1:

WR(S1) = Tr
∏

〈i j〉∈S1

R(ĝi j ), ĝi j |gi j〉 = gi j |gi j〉, (D11)

for all matrix representation R of G. Local symmetric opera-
tors satisfy

WR(S1)Osymm
i = Osymm

i WR(S1), ∀ S1, R. (D12)

We will call such a symmetry as G(1)
rep 1-symmetry.

The algebra of local symmetric operators is generated by
the following two kinds of operators:

R̂stri j = Tr(R(ĝik )R(ĝkl ) · · · R(ĝm j )),

χ̂disk =
∑
h∈χ

ĥdisk, (D13)

where χ is a conjugacy class of G, ĥdisk = ∏
i∈disk Ti(h), and

the Ti(h) operator (for h ∈ G) is defined as

Ti(h)| · · · , gki, gi j · · · 〉 = | · · · , gkih
−1, hgi j · · · 〉. (D14)

One can check that the above patch operators are t-patch
operators, satisfying the transparency condition Eq. (5). The
trace in the definition of R̂stri j and the sum over conjugacy
class in the definition of χ̂disk are important to ensure the
transparency property.

The symmetry transformations WR(S1) =
Tr

∏
〈i j〉∈S1 R(gi j ) are not invertible. They form a more

general algebra

WR1 (S1)WR2 (S1) =
∑
R3

NR3
R1,R2

WR3 (S1), (D15)

where NR3
R1,R2

is the fusion coefficients of the irreducible
representations, R1, R2, R3, of G [see Eq. (D10)]. Thus, the
symmetry generated by WR(S1)’s is a new kind of symmetry.

We remark that noninvertible symmetry also exist in
1-dimensional space, which can be constructed in a very
similar way. In 1d, the noninvertible symmetry is still de-
scribed by the transformation WR(S1) = Tr

∏
〈i j〉∈S1 R(gi j ),

which correspond to an noninvertible 0-symmetry denoted
as Grep. Those 1d beyond-group symmetries have been

studied under the name (1) topological defect-lines/twisted-
boundary-conditions in 1 + 1D (spacetime dimension) CFT
[64,90–92]; (2) fusion category symmetry [51,93]; (3) quan-
tum group symmetry [94]; etc.

Now let us go back to 2-dimensional space. We can use
the t-patch operators R̂str on open strings to define the 1-
symmetry, i.e., to select the local symmetric operators:

R̂strO
symm
i = Osymm

i R̂str, i far away from string ends. (D16)

The patch charge operator χ̂disk carry vanishing 1-charge
since

R̂strχ̂disk = χ̂diskR̂str (D17)

if the disk of χ̂disk is far away from the string ends of R̂str .
However, a segment of the boundary of the disk operator χ̂disk

can carry a non zero 1-charge. To measure such a 1-charge,
we try to compute the commutator

χ̂diskR̂stri j =
⎛⎝∑

h∈χ

∏
i∈disk

Ti(h)

⎞⎠Tr(R(gik )R(gkl ) · · · R(gm j ))

=
⎛⎝∑

h∈χ

Tr(R(h)R(gik )R(gkl ) · · · R(gm j ))
∏

i∈disk

Ti(h)

⎞⎠,

(D18)

assuming one end of string, i, is inside the disk and the other
end of string, j, is outside the disk. We see that commutator
is complicated. The nontrivial relation at least indicates that
the boundary of the disk carries nontrivial 1-charge. But for
a non-Abelian group G, the 1-charge is not described by a
simple phase factor. This, in fact, is an expected result.

The above discussion suggests the algebra of local
symmetric operator for 2d algebraic 1-symmetry G(1)

rep is iso-
morphic to the algebra of local symmetric operator from 2d
0-symmetry G. To see this more clearly, we remove the trace
and the sum over conjugacy class in equations (D8) and (D18),
and rewrite them as

ĥdiskR̂αβ
stri j

=
( ∏

i∈disk

Ti(h)

)
(R(gi )R(g−1

j ))αβ

=
⎛⎝∑

γ

R(h)αγ (R(gi )R(g−1
j ))γ β

∏
i∈disk

Ti(h)

⎞⎠
=

∑
γ

R(h)αγ R̂γ β
stri j

ĥdisk (D19)

and

ĥdiskR̂αβ
stri j

=
( ∏

i∈disk

Ti(h)

)
(R(gik )R(gkl ) · · · R(gm j ))

αβ

=
⎛⎝∑

γ

R(h)αγ (R(gik )R(gkl ) · · · R(gm j ))
γ β

∏
i∈disk

Ti(h)

⎞⎠
=

∑
γ

R(h)αγ R̂γ β
stri j

ĥdisk. (D20)
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The above two equations have the same form, suggesting
that the two operator algebras are isomorphic. In this case,
the 2d algebraic 1-symmetry G(1)

rep also has the categorical
symmetry 2GauG, the 3d G-gauge theory. The only differ-
ence is that, for 2d algebraic 1-symmetry G(1)

rep, the patch

symmetry operators generate a symmetric fusion 2-category
2RepG, while the patch charge operators generate a braided
fusion 2-category 2VecG. So compare to 2d 0-symmetry G,
the patch symmetry operators and the patch charge operators
are switched.
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