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Fast time evolution of matrix product states using the QR decomposition
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We propose and benchmark a modified time-evolving block decimation algorithm that uses a truncation
scheme based on the QR decomposition instead of the singular value decomposition (SVD). The modification
reduces the scaling with the dimension of the physical Hilbert space d from d* down to d?. Moreover,
the QR decomposition has a lower computational complexity than the SVD and allows for highly efficient
implementations on GPU hardware. In a benchmark simulation of a global quench in a quantum clock model,
we observe a speedup of up to three orders of magnitude comparing QR and SVD based updates on an A100

GPU.
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I. INTRODUCTION

Numerical simulation of the dynamics of quantum many-
body systems in and out of equilibrium is essential for the
understanding of a wide range of physical phenomena. Fol-
lowing the success of the density matrix renormalization
group (DMRG) method [1,2] for efficiently finding ground
states of one-dimensional (1D) quantum systems in terms
of matrix product states (MPSs), several related techniques
have been developed to efficiently simulate the time evo-
Iution [3-8], with applications to classical simulation of
generic quantum circuits and in particular of quantum com-
puting [9,10]. These methods have since allowed access to
experimentally relevant observables, such as dynamical cor-
relation functions which can be compared with data from
neutron scattering and ultracold atomic gases [11-13], and
far out of equilibrium dynamics [14], providing profound
insights into long-standing questions about quantum thermal-
ization [15], many-body localization [16—19], and transport
properties [20-25].

In a series of recent works [26-30], it has been demon-
strated that accelerated linear algebra operations on graphics
processing units (GPUs) and tensor processing units (TPUs)
allow various numerical tasks, and in particular simulation
of quantum dynamics, to be carried out not only signif-
icantly faster but also more power efficiently. However,
many MPS-based algorithms heavily rely on singular value
decompositions (SVDs), which are slow in the GPU im-
plementations known to us. For example, the prominent
time-evolving block decimation (TEBD) [5,31] algorithm per-
forms an SVD following every application of a two-site gate,
in order to truncate the bond dimension. In this work, we
propose a modification to the TEBD algorithm for MPS time
evolution, which uses QR decompositions to achieve a varia-
tional truncation, replacing the SVD. This truncation scheme
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is not only faster already on CPUs as it reduces the scaling
with the dimension of the physical Hilbert space d from
d? down to d?, but unlike for the SVD-based scheme, signifi-
cant speedups can be achieved on GPUs at the same accuracy.

This paper is organized as follows: In Sec. II, we briefly
review MPS and introduce the QR-based truncation scheme.
We elaborate on a way to dynamically adjust the MPS bond
dimension in Sec. III. A detailed benchmark study is provided
in Sec. IV, comparing results and runtimes between the differ-
ent TEBD schemes, both on CPU and GPU hardware, before
we conclude our findings in Sec. V.

II. QR-BASED TIME EVOLUTION ALGORITHM

We first review the isometric form of an MPS as shown
schematically in Fig. 1. While the algorithm can be used both
for finite as well as for uniform (i.e., infinite) MPS, in the
following we only focus on the latter case and assume a unit
cell of L sites. The MPS is parametrized by matrices B,
where i labels a basis of the local Hilbert space on site m and
matrix indices are suppressed, such that

W) = Y BB (). (1)
{ill}

The transfer matrix for a unit cell starting on site m is

. _ plmlpm+1] [m+L—1] [m] —
given by_ T,,'l =TT LT , Where T(W,)(ﬁﬁ/) =
> Bg’[;]’Bgf%’,. We choose a right isometric form, in which the
dominant right eigenvector ™! of T,, is pijt) = 8pp, while

its dominant left eigenvector is given by Aln) = 3, &l &)
with ||El™|| =1 and both respective eigenvalues equal to
1. Moreover, T translate the eigenvectors, i.e., A" T =
AlmH1and T plml — plm=11 " with superscripts modulo L.
Note that this makes the B isometric, in the sense that
s ng]’Bg’%’ = 844’ An MPS in this form allows us to di-
rectly evaluate local expectation values. It is represented in
memory by the {B"!} and { E"!} for n running over a unit cell.
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FIG. 1. (a) Uniform MPS, depicted here with a unit cell of
two sites. (b) Conditions for the right isometric form; dominant
right eigenvector of the transfer matrix, dominant left eigenvector,
normalization choice for dominant eigenvectors. (c) The isometry
conditions allow easy evaluation of local expectation values.

The isometric form does not fully fix the gauge freedom and is
a weaker requirement than the canonical form of MPS [31,32],
which would additionally require that the EI"! are diagonal
matrices with real positive entries in descending order, i.e., the
Schmidt values A, for a bipartition of the state by cutting the
bond between sites m and n, |V) = ;‘:1 loy s Ayl . Here,
|or) () denote orthonormal states on the sites left (right) of
the given bond, i.e., the left (right) Schmidt states. In the
isometric form we have |) = Zaﬁ la) 4 :[nf]fw)D’ such that
the Schmidt values can be obtained as the singular values of
the nondiagonal B!,

In order to approximate the time evolution of the MPS
with respect to a Hamiltonian H = )", H, ,+1, we apply the
Trotterized time evolution operator alternatingly to even and
odd bonds as shown in Fig. 2(a) in the same way as in the
original SVD-based infinite TEBD algorithm [5,31]. How-
ever, the update procedure for two neighboring sites m and
n =m+ 1 (mod L) differs in that we do not require an SVD
decomposition with a cost scaling as d3y® with the local
Hilbert space dimension d and MPS bond dimension y. In-
stead, the algorithm relies on two successive QR (or LQ)
decompositions and scales as d”>x>. As shown in Fig. 2(b),
the algorithm consists of three steps:

(1) We first construct a mixed representation 6. =
DI aﬁBg'}’/J’B["]’ of the state in terms of physical and
Virtual states. We apply the two-site gate U to the state,

b5 = Dij Ui’J’.’ '9'7'. The evolved state is then projected back
into the manifold of MPS of the given bond dimension, by
contracting it with the complex conjugate of the isometry
B to obtain X}, =", i 50;%3["]’ . We group the legs of
X » — X(aiyy and perform a QR decomposition of this matrix,
Xaiyy = 2 Q[(Zle)ﬁRﬂy Ung.rouping the legs Qm)ﬂ Q["’"
yields the left isometry used in the next step

(2) We start from the evolved state 0" s and project it by
contracting it with the complex conjugate of the left isom-
etry Q" to obtain Yy = ), , Q['"J’H” We group the legs of

[T ] o] [T ]
1T 1T 1T 1T "1

Y @

FIG. 2. Algorithm for the QR-based time evolution: (a) The time
evolution is decomposed into two-site gates acting on neighboring
sites. (b) Algorithm for the QR-based truncation scheme: (b1) Con-
traction of the time-evolved block with tensor B"™ and subsequent
QR decomposition. (b2) Contraction of the time-evolved block with
tensor Q" obtained in the previous step and subsequent LQ decom-
position. (b3) Obtaining the updated tensors B, B and Z1,

Y ﬁj s — Yp(;s) and perform an LQ decomposition of this matrix,

H [n]
Yg(js) = ZV LﬂyQy(j,;) Ungrouping the legs Q;[:l(]ja) Q’”

yields the right isometry used in the next step.
(3) We conclude the iteration by assigning the

. Al [H]J [nlj plmli _
updated tensors: By, =Lg,. B, =0 and B,z =

v >
i'j" plmli’ plnl)’ [n]J
Zya,.,j/juu Byl B By .

A few comments are 1n order. First, we can understand the
truncation scheme as an iterative solver for finding the opti-

mal approximation of & with reduced rank ¥, i.e., Oiyjs) ~

Zy:] Xwi)y Yy (js)- Keeping one of the components, e.g., Y,
constant and demanding that it be an isometry, the optimal
update for X which minimizes the distance ||§ — XY|| is
given by @Y. Before we can analogously update Y, we per-
form a gauge transformation via the QR decomposition, i.e.,
(X,Y) — (Q, RY), which makes the first matrix an isometry
while leaving the distance invariant. After updating Y, its
LQ decomposition yields an approximation of 6 in a suitable
isometric form. In order to approximate a generic matrix 6,
we expect that these updates need to be iterated until con-
vergence. In the specific case of Trotterized time evolution
we have U = 1 + O(8t), where &t is small to control the
Trotter error, such that the initial guess Yy = B is already
close to optimal, and we find that a single sweep is sufficient.
The approach of iteratively solving a local (here single-site)
problem, shifting the orthogonality center, and repeating until
convergence is widely used for MPS compression [8], in the
context of PEPS contraction [33,34], and is closely related to
the DMRG algorithm. We emphasize that this provides only
a heuristic intuition that the resulting approximation is sound,
while reliable evidence is obtained only a posteriori by ob-
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serving a small truncation error. Like in the SVD-based TEBD
algorithm, we have achieved a truncation of the evolved
wave function which is (approximately) optimal in the local
Frobenius norm of the tensor #. The isometric form of the
MPS then guarantees that it is also (approximately) optimal
in the Hilbert space norm and thus the algorithm simulates
a controlled approximation to the true dynamics within the
manifold of MPS of the given bond dimension j.

Second, the update for B! in the last step is motivated by
Hastings’ modified TEBD [35]. From our truncation scheme,
just as from SVD-based truncation, we get the left MPS tensor
in left isometric form, i.e., A" = Q") and Hastings’ modi-
fication allows us to form B = (Elmh)~1 A Z without
explicit matrix inversion, which would in practice often be ill
conditioned.

Lastly, the algorithm, as presented above, yields an MPS
with the same bond dimension y as the MPS before the time
step. A simple heuristic method to grow the bond dimension is
to replace B! in step (i) with an isometry Y, to a larger virtual
space, with a dimension 1 € [x, d x] which is determined a
priori, e.g., n = min(xmax, d X )- In practice, we could take an
arbitrary -dimensional slice of the left leg pair of . A con-
trolled method to increase the bond dimension dynamically,
based on a desired bound on the truncation error, is given
below.

III. CONTROLLED BOND EXPANSION

We discuss now how the MPS bond dimension can be
adjusted dynamically, e.g., based on the Schmidt values of the
state, as can be done in the SVD-based truncation scheme.
This is in analogy to the ideas of controlled bond expan-
sion [36-38], which originated in the context of single-site
DMRG [39,40] and improves upon the uncontrolled bond
expansion scheme outlined in the previous section. The al-
gorithm is illustrated schematically in Fig. 3. We choose—a
priori—a bond dimension n = x + Ax < dx at which we
perform the variational QR-based decomposition, then trun-
cate to ¥ < 1, based on the Schmidt values. The optimal value
of Ay is model dependent and has to be chosen empirically
as the sweet spot in a trade-off between computational cost,
which scales as d*nx 2, and the amount of entanglement which
can be represented, for which n gives an upper bound. In
practice we find that an increase of ~10% at each time step is
sufficient for the cases considered. Next, we require an initial
guess for the MPS tensor on site n, which allows us to enlarge
the dimension of the virtual Hilbert space. In step (i), we
choose an arbitrary n-dimensional slice on the left leg pair of
the time-evolved block, i.e., (¥p)); = > i P @irOaiyss
with the 7 x d x projection matrix (P,;)qp = dp. The follow-
ing steps (ii) and (iii) involve a QR and an LQ decomposition
and are performed exactly as described in the preceding
section. In step (iv), we diagonalize the Hermitian matrix
L'L = VTSV, where S? is a diagonal matrix containing the
real, non-negative eigenvalues. Note that S are the singu-
lar values of L, i.e., the Schmidt values of the state, and
we could have computed S and V via an SVD of L. This
appears to be significantly slower on the GPU, however.
By discarding the smallest singular values in S, along with

B = B

FIG. 3. Algorithm for the QR-based time evolution with con-
trolled bond expansion: (a) Obtain an initial guess Y, by
projecting/slicing the evolved wave function. (b), (¢) Decomposition
of the evolved wave function, similar to Sec. II and Fig. 2. (d)
Diagonalization of LL yields two of the three matrices comprising
the SVD of L. (e) Truncation of the implicit SVD to bond dimension
X, obtaining the updated tensors.

corresponding rows of V, a truncation to a bond dimension
of ¥ is achieved, controlled, e.g., by a desired truncation error
and/or a threshold below which Schmidt values are neglected.
In step (v), we finally absorb the projected unitary V into Q'™
then update the MPS tensors as in the previous section, that
i8, Byt =34, (POapVy 0y’ Saif = (PapSpy (Py)ys, and
Egng]i =57 Uiij/Bg’;]i’Bgfgj/B[ﬁ"gj , where Py is the projec-
tion matrix realizing the truncation, i.e., keeping the largest
% Schmidt values. If applied to all bonds and if trunca-
tion errors are negligible, the bond expansion scheme with
its implicit SVD brings the MPS to the canonical form,
where the EI" are diagonal matrices containing the Schmidt
values.

The controlled bond expansion is crucial when exploiting
symmetries via a block structure which these impose [41,42].
The scheme as outlined in Sec. II would need to make a choice
about the block structure, in particular the size of the individ-
ual blocks a priori. By using ¥, = B!, for example, they are
chosen to be the same as before the time step. The controlled
bond expansion, however, allows us to dynamically choose
the block dimensions y; optimally, in the sense of minimal
truncation error, just like in the SVD-based TEBD scheme.
Therefore, even when the total bond dimension x = ), x; is
already saturated, one can expand each block x; — x; + Ax;
and subsequently truncate back by keeping only at most x
dominant contributions—this allows us to dynamically adjust
the size of the individual blocks.
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IV. BENCHMARK

We choose the d-state quantum clock model to bench-
mark the algorithm. This model is generically nonintegrable
(d > 2) and allows us to highlight the scaling with the physi-
cal Hilbert space dimension d. The Hamiltonian reads

H=-Y(ZZ, +Hc)—gY (X,+Hc), (2

where the clock operators

3

are d x d generalization of Pauli matrices and w = €7/,
The model has a global Z, symmetry generated by [[; X;,
which we do not exploit in the numerical simulations. For
d < 4, the model has a critical point at g = 1, while there is an
extended critical region around g = 1 for d > 5 [43,44]. We
start with the Z = 1 product state and evolve it in time with
the g = 2 Hamiltonian.

We consider four algorithmic variations of the truncation
scheme: (i) via SVD, § = USVT, (ii) the same decomposi-
tion but numerically evaluated by diagonalizing 870 = VSV’
(note that U is not actually required), which we dub EIG, (iii)
the simple QR-based scheme we have introduced in Sec. II,
and (iv) the QR scheme with controlled bond expansion
(QR+CBE) as described in Sec. III. We run the benchmark
on a NVIDIA A100 GPU (80 GB RAM) with CUDA version
11.7, as well as an AMD EPYC 7763 CPU with 64 physical
cores and MKL version 2019.0.5. The two units have sim-
ilar power consumption: 300 W and 280 W thermal design
power, respectively. All simulations are performed in double
precision (i.e., complex128). The implementation used for the
benchmark and the data are available in the Supplemental
Material [45].

In Fig. 4, we perform full TEBD simulations of the quench
protocol for a d =5 clock model. We run the simulation
beyond times where the approximation of the evolved state
as an MPS of the given bond dimension breaks down, as
quantified by a large truncation error. In the time regime of
acceptable error € < 1075, that is, until ¢ < 2 depending
on bond dimension, we observe excellent agreement between
the different TEBD schemes in the extracted expectation val-
ues (Z) and entanglement entropy Syx up to relative deviations
of 107! ~ 10~'2. For the QR-based scheme, we do not have
access to all singular values of 6, from which the truncation
error is extracted in SVD-based TEBD. We instead explicitly
compute the distance between the evolved wave function
and its low rank approximation.

In Fig. 5, we benchmark runtimes for the core algorith-
mic step of contracting and subsequently decomposing the
evolved wave function 6 for all combinations of truncation
scheme and hardware, as well as a range of Hilbert space
dimensions d. We clearly observe the improved scaling of
the QR-based algorithm, which is quadratic in d instead of

1 -
N
£ 01
8 1 1 1 1
6 -
> 4 SVD on GPU
7% Ymax = 512 (32m)
2 Xmax = 1024 (206m)
—— Xmax = 2048 (24h)
01 —— Xmax = 4096 (179h)
1 T T T T
_Ash=A=A=AA—h—h—h—A—
10—5 .
g QR+CBE on GPU
E Xmax = 512 (215)
10710 4 Xmax = 1024 (69s)
AA A Xmax = 2048 (6m)
A X = 4096 (38m)
10_15 1 I 1 1
0 2 4 6 8 10
t

FIG. 4. TEBD simulation of a global quench in the d = 5 quan-
tum clock model from g = 0 to g = 2 with a time step of é¢ = 0.05.
We show a local Z expectation value (top), the half-chain von Neu-
mann entanglement entropy (center), and truncation error (bottom).
We compare data from SVD-based (solid lines) and QR-based (trian-
gles) TEBD simulations at a range of bond dimensions ymax (colors).
For the QR-based scheme, we employ controlled bond expansion
with 7 = max(100, 1.1x) and plot only every tenth data point. For
both schemes, we discard Schmidt values smaller than 10~'* and
keep at most yax of them. Time in the legend denotes the total wall
time needed for each simulation, i.e., to generate the shown data from
scratch.

cubic, as well as a speedup of one to two orders of magnitude
from hardware acceleration for EIG and QR based algorithms.
For example, the QR-based truncation scheme on the GPU
with x = 1024, d = 20 reaches a speedup factor of 2700
compared to the SVD-based scheme on the same GPU and
750 compared to SVD on CPU.

V. CONCLUSION

We proposed and benchmarked a modified time-evolving
block decimation (TEBD) algorithm that uses a variational
truncation scheme based on the QR decomposition instead of
the singular value decomposition (SVD). We demonstrated
that the QR-based truncation scheme allows simulation of
the time evolution of MPS to the same degree of accu-
racy, but compared to the SVD-based scheme drastically
decreases runtime and power consumption needed to obtain
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Y = 1024 Y = 2048
4 _1 1 1 1 1 1 1 1 1 1
103 _§ o
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] @ SVD
1071 3 %* EIG i
] E= CPUV QR
1 B GPU A QR+CBE
1072 T T T T 1 T T T T T T

2 3 5 10 202 3 5 10 20
d d

FIG. 5. Timing benchmark for the application of a single gate
to an MPS for different hardware (marker colors) and truncation
schemes (marker shapes). We give the average wall time needed to
compute the updated tensors B!, E"1 B"! from the old tensors E,
B! BI" and U. For the QR-based algorithm with (without) con-
trolled bond expansion (CBE), these are the steps illustrated in Fig. 3
(Fig. 2) and E are diagonal (nondiagonal) matrices. In the case of
SVD (EIG) based truncation, the task consists of first contracting 8,
performing an SVD of 8 (diagonalizing §78), and finally contracting
B For CBE, we choose Ay = 0.1y, the same expansion rate as
for Fig. 4. The initial MPS has a bond dimension x and the evolved
state is truncated to ¥ = x. Solid (dashed) lines are power laws with
the expected cubic (quadratic) scaling with the physical dimension
d. The missing data points for large d in the right panel were not
possible to obtain due to memory limitations.

the same results, especially when run on GPU hardware. The
improved scaling with the local Hilbert space dimension d
implies substantial performance increase even on CPU for
large d, e.g., in simulations of open systems [46] or bosonic
systems.

We expect that with small changes, the algorithm can be
used to accelerate MPS truncation in a broader class of algo-
rithmic settings, e.g., to apply long-range gates arising from
interactions beyond nearest neighbors or in the effective 1D
description of two-dimensional models, time evolution based
on applying MPOs [47], or DMRG [1]. An application to the
simulation of quantum circuits would need to be investigated
in further detail, since unlike for the Trotterized time evolution
with small time steps, the unitary gates in a generic quantum
circuit need not be close to unity. Hardware acceleration on
the heavily specialized tensor processing units (TPUs) [30,48]
may yield an even greater performance increase and make
larger bond dimensions accessible via large memory and
distributed linear algebra, allowing the simulation to repre-
sent more entanglement. For the simulation of finite systems,
parallel gate application can provide further performance in-
crease, as demonstrated in Ref. [49] for the time-dependent
variational principle.
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