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Efficient full frequency GW for metals using a multipole approach for the dielectric screening
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The properties of metallic systems with important and structured excitations at low energies, such as Cu, are
challenging to describe with simple models like the plasmon pole approximation (PPA), and more accurate and
sometimes prohibitive full frequency approaches are usually required. In this paper we propose a numerical
approach to GW calculations on metals that takes into account the frequency dependence of the screening via
the multipole approximation (MPA), an accurate and efficient alternative to current full frequency methods that
was recently developed and validated for semiconductors and overcomes several limitations of PPA. We now
demonstrate that MPA can be successfully extended to metallic systems by optimizing the frequency sampling
for this class of materials and introducing a simple method to include the long-wavelength limit of the intraband
contributions. The good agreement between MPA and full frequency results for the calculations of quasiparticle
energies, polarizability, self-energy, and spectral functions in different metallic systems confirms the accuracy
and computational efficiency of the method. Finally, we discuss the physical interpretation of the MPA poles
through a comparison with experimental electron energy loss spectra for Cu.
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I. INTRODUCTION

Many-body perturbation theory provides accurate methods
to study the spectroscopic properties of condensed-matter sys-
tems from first principles [1–3]. Calculations often adopt the
so-called GW approximation [2,4–8], for which the frequency
integration in the evaluation of the self-energy is crucial to the
deployment of the method. The frequency dependence of the
screened potential W is often described within the plasmon
pole approximation (PPA) [9–14], successfully applied to the
calculation of quasiparticle energies of semiconductors [9],
the homogeneous electron gas [15], and simple metals such
as Al and Na [16–19], especially for quasiparticles with en-
ergies close to the Fermi level. However, the description of
the self-energy and the spectral functions for the whole range
of frequencies is still challenging and requires expensive full
frequency (FF) approaches.

Despite its success, the use of PPA is problematic when
complex metals are concerned, even for the calculations of
quasiparticle energies [6]. Its applicability for transition and
noble metals has often been disputed [6,20], since the approx-
imation is based on the homogeneous electron gas, for which
PPA becomes exact in the long-wavelength limit [4,21,22],
while it is in principle not strictly valid in the presence of
strongly localized d bands. In fact, these metals present com-
plex screening effects due to collective excitations [23,24],
which result in highly structured energy-loss spectra whose
description is unattainable with a single plasmon peak [24].
Moreover, metals with relevant excitations at low energies,
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such as Cu, require a specially accurate description of the low-
frequency regime, which makes it difficult to determine the
PPA parameters since it requires sampling the polarizability
at zero frequency [20].

In this context, we have recently developed a multipole
approach (MPA) that naturally bridges from PPA to FF treat-
ments of the GW self-energy [25]. The method has been
implemented in the YAMBO code [26,27] and was validated
for bulk semiconductors. We have shown that, for semicon-
ductors, MPA attains an accuracy comparable to that of FF
methods at a much lower computational cost, while also cir-
cumventing several of the PPA shortcomings. Here we extend
the assessment of MPA validity and performance to the case
of metals. We do so by computing quasiparticle energies,
together with the full frequency dependence of the self-energy
and the spectral function. The approach is similar to the one
used for semiconductors [25], with only slight changes in the
frequency sampling strategy used in the multipole interpo-
lation. In the following, we show that MPA is accurate for
metallic systems, even in cases in which the use of PPA is
challenging. In addition to MPA, we also propose a simple ab
initio method to include intraband contributions [28–32] to the
dielectric function in the long-wavelength q → 0 limit, absent
in semiconductors. Despite its virtually zero computational
cost, it significantly accelerates the convergence of quasiparti-
cle energies with respect to the k-points grid in systems where
the intraband contributions are dominant.

The paper is organized as follows: In Sec. II, we briefly
summarize the GW approximation and the MPA approach.
In the same section, we further extend the strategy used in
the frequency sampling for the multipole interpolation, with
respect to the MPA implementation presented in Ref. [25] for
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semiconductors. We also discuss the relevance of the inclusion
of the intraband contribution to the dielectric function in the
limit q → 0. In Sec. III we first present MPA calculations
for simple metals and propose a simple way of including the
aforementioned intraband limit. We then describe in detail the
results obtained for Cu, a prototype challenging system for
PPA. Finally, in Sec. IV we summarize and discuss the main
conclusions of this work.

II. METHODS

A. Quasiparticle energies within GW

We adopt the GW approximation [2,4–8] for the evaluation
of the electron-electron self-energy, which is computed via
a frequency convolution of the one-particle Green’s function
G(ω) and the dynamical screened interaction potential W (ω):

�GW (ω) = i

2π

∫ +∞

−∞
dω′e−iω′ηG(ω − ω′)W (ω′). (1)

In the present work we limit ourselves to the G0W0 ap-
proximation, although MPA, the method we want to discuss
here, can be exploited also within more advanced approaches
such as different self-consistent GW schemes [33–40], or
methods including vertex corrections [36,41–44] and cumu-
lant expansions [45,46]. A more comprehensive discussion of
these aspects can be found, e.g., in Refs. [7,8]. The present
implementation uses as a starting point single-particle ener-
gies and wave functions computed within Kohn-Sham (KS)
density-functional theory (DFT) to then build the noninteract-
ing single-particle Green’s function G0(ω) and the irreducible
polarizability X0(ω).

The dressed polarizability X (ω) and the screened inter-
action, W (ω), are then numerically evaluated by solving the
Dyson equation for each given frequency:

X (ω) = X0(ω) + X0(ω)vX (ω),

W (ω) = ε−1(ω)v = v + vX (ω)v, (2)

where v is the bare Coulomb potential, ε the dielectric func-
tion and, for simplicity, we have omitted the spatial, nonlocal,
degrees of freedom. All the quantities have to be thought
as frequency-dependent operators or matrices of the form
X (ω) = X (r, r′, ω), or, when using a plane-wave basis set,
XGG′ (q, ω). The quasiparticle (QP) energies εQP

m are then com-
puted either by numerically solving the exact QP equation,

εQP
m = εKS

m + 〈
ψKS

m

∣∣�(
εQP

m

) − vKS
xc

∣∣ψKS
m

〉
, (3)

or its linearized form,

εQP
m ≈ εKS

m + Zm
〈
ψKS

∣∣�(
εKS

m

) − vKS
xc

∣∣ψKS
m

〉
, (4)

with the renormalization factors Zm given by

Zm =
[

1 − 〈
ψKS

m

∣∣∂�(ω)

∂ω

∣∣
ω=εKS

m

∣∣ψKS
m

〉]−1

. (5)

In the above equations we have made reference to the
Kohn-Sham eigenvalues and eigenvectors, εKS

m and |ψKS
m 〉,

respectively.
A key quantity in the above formulation is the dynam-

ical part of the inverse dielectric function, Y ≡ ε−1 − I =
vX , which determines the correlation part of W , Wc ≡ W −

v = Y v, and, through Eq. (1), the correlation part of the
self-energy, �c. With the purpose of avoiding the expen-
sive numerical evaluation of the frequency convolution in
�c, Eq. (1), as required, e.g., by full frequency real axis
(FF-RA) approaches [20,47] or contour deformation (FF-CD)
techniques [35,48,49], Y or X have been the target of several
analytical simplifications like the plasmon pole approximation
(PPA) [9–13], analytic continuations [50–54] or our multipole
approach (MPA) [25], briefly sketched below.

B. The multipole approach

The multipole approximation is inspired by the Lehmann
representation of the polarizability X . At the independent-
particle level, X (equal to X0) is written in a compact way as a
sum of poles with vanishing imaginary part corresponding to
all possible single-particle transitions (here considered at the
Kohn-Sham level for simplicity) of energy 
KS and probabil-
ity amplitude RKS:

X0(ω) =
NT∑
n

2RKS
n 
KS

n

ω2 − (

KS

n

)2 , (6)

where Re[
KS
n ] is positive defined and Im[
KS

n ] → 0− to
ensure the correct time ordering. The sum is truncated at a
finite number of transitions (NT ) determined by the number of
bands included in the calculation.

The MPA approach provides an analytic continuation for
the dressed polarizability X to the complex-frequency plane,
z ≡ ω + i� , by representing it as a sum of a few complex
poles np (usually of the order of 10 to 15), as

X MP(z) =
np∑
n

2Rn
n

z2 − 
2
n

. (7)

Note that this representation is applied to each matrix element
in reciprocal space, X MP

GG′ (q, z).
By considering Eq. (7) and the Lehmann representation

for G0, the correlation part of the GW self-energy is then
integrated analytically and reads:

�MP
c (ω) =

NB∑
m

np∑
n

PmvRn

[
fm

ω − Em + 
n − iη

+ (1 − fm)

ω − Em − 
n + iη

]
v, (8)

where Pm are projectors over KS states, Em their eigenen-
ergies, and fm their occupations. The sum over states is
truncated at the maximum number of bands, NB. This expres-
sion generalizes the PPA solution to the case of a multipole
expansion for X (z) and bridges between PPA and an exact full
frequency approach by increasing the number of poles in X .
More details about this procedure can be found in Ref. [25].

C. Multipole approach sampling for metals

As detailed in Ref. [25], the poles and residues in Eq. (7)
are obtained by numerically evaluating X for a number of
frequencies, z j , equal to twice the number of poles and solving
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the following system of equations:
np∑

n=1

2
nRn

z2
j − 
2

n

= X (z j ), j = 1, . . . , 2np. (9)

Since the number of poles used in the MPA model, np, is much
smaller than the total number of electron-hole transitions of
the target polarizability, NT , the representation, and there-
fore the efficiency of the method, depends critically on the
frequency sampling used in the interpolation. For semicon-
ductors, the so-called double parallel sampling proved to be
the most robust and accurate with respect to FF calculations,
with the fastest convergence with respect to the number of
poles. It runs along two parallel lines above the real axis:

sDP =
⎧⎨
⎩

z1: z1
n = ωn + i�1

z2: z2
n = ωn + i�2,

n = 1, . . . , np. (10)

The first of the two branches is closer to the real axis (e.g.,
with �1 = 0.1 Ha), except for the first point, set exactly at the
origin of coordinates, z1

1 = 0. The second branch is located
further away, typically at �2 = 1 Ha. In a simplified view, X
sampled along the first line preserves some of the structure of
X in a region close to its poles, while X sampled along the
second line is simple enough to be described with a few poles
and accounts for the overall structure of X . A more detailed
description can be found in Ref. [25].

To obtain a numerically stable and effective sampling for
metals we found that, at variance with the semiconductor
case [25], a small shift of the z1

1 point (in the origin) along
the imaginary axis is needed, resulting in z1

1 = i�1, where
�1 = 10−5 Ha. The shift is done in order to avoid numerical
instabilities due to intraband transitions with energies close
to zero. This is similar to the PPA implementation for metals
[26,27], which adopts a 10−8 Ha shift, but in this case along
the positive real axis instead of the imaginary axis.

A second difference with respect the strategy used for
semiconductors concerns the distribution of the frequency
sampling of X along the real axis. For semiconductors [25],
the frequency sampling is done in nonuniform grids, in par-
ticular, a semihomogeneous partition in powers of two that
ranges from zero to ωm, called linear partition. Here, we
generalize it to any possible exponent α:

{ωn}α :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0), np = 1

(0, 1)ωm, np = 2(
0, 1

2 , 1
)α

ωm, np = 3(
0, 1

4 , 1
2 , 1

)α
ωm, np = 4(

0, 1
8 , 1

4 , 1
2 , 1

)α
ωm, np = 5(

0, 1
8 , 1

4 , 1
2 , 3

4 , 1
)α

ωm, np = 6(
0, 1

8 , 1
4 , 3

8 , 1
2 , 3

4 , 1
)α

ωm, np = 7

. . . .

(11)

The distribution described in Ref. [25] corresponds to α =
1. As discussed below, there are cases (see, for example,
the case of copper in Fig. 4), in which X presents a more
complex structure at low frequencies and therefore a denser
sampling grid in that region is convenient. The distribution

corresponding to α = 2 concentrates more points at low
frequencies than the linear case, α = 1, and permits us to
increase the accuracy of the X description without changing
the frequency range ωm or increase the number of poles used
in MPA. In this work, we adopt a quadratic partition, corre-
sponding to α = 2, for Al and Cu, and a linear one, α = 1, for
Na, with ωm ranging up to 4, 5, and 10 Ha for Al, Na, and Cu,
respectively.

D. Intraband contributions

Despite the success of the GW approximation, systems
with metallic screening present specific methodological chal-
lenges, one being the inclusion of intraband transitions
[31,55]. Specifically, for partially filled bands, there is a non-
vanishing probability that an electron is excited within the
same band, i.e., within states with quantum numbers k, n
and k − q, m, with n = m. Notably, these transitions play an
important role, for example, in noble metals [20,56]. Both
inter- and intraband transitions contribute to the irreducible
polarizability as defined in Eq. (6). However, the energy of
the pole corresponding to intraband transitions decreases with
q until it vanishes in the q → 0 limit. Despite this behavior,
the contribution to the inverse dielectric function in the case of
bulk metals is still finite, due to the divergence of the Coulomb
potential, which makes Y = vX not vanishing for q → 0. For
this reason, in the case of metals it is important to properly
take this term into account, since it cannot be simply evaluated
as in the case of the interband contributions.

In principle, it is possible to decrease the weight of the q =
0 element, that contains only interband terms, by systemati-
cally increasing the number of k-points in the Brillouin-zone
(BZ) sampling. However, the contributions from the Fermi
surface can dramatically slow down the convergence with
respect to the k-space sampling [29], resulting in spurious
gaps at the Fermi level that vanish very slowly with increasing
number of k points [32]. Several approaches to include the
intraband limit have been proposed. Those based on explicit
Fermi-surface integration [28,30,31] are, as explained above,
computationally expensive since they require dense k grids.
Alternatively, analytical models based on a Taylor expan-
sion of the dielectric function in the small-q region, avoiding
explicit Fermi-surface calculations, are able to remove the
spurious gap at the Fermi level with a limited number of k
points [32,57,58]. Nevertheless, some of them may depend on
ad hoc external parameters.

A common approach to include the missing intraband
contribution relies on the use of a phenomenological Drude-
like term added to the head of the irreducible dielectric
matrix in the q → 0 limit, YG=G′=0(q = 0, ω) [30]. In
the long-wavelength limit q → 0, the Drude term for the
independent-particle dielectric function can be written in the
form [24,28,30,59,60]

YD(ω) = ω2
D

ω(ω + iγ )
+ O[q2], (12)

where the Drude frequency ωD (see Table I) is an input param-
eter of the model and the relaxation frequency γ is usually a
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TABLE I. Summary of the notation concerning frequency related
quantities introduced in this work. The plasma frequency is defined
in terms of the electronic density ρe. The Drude frequency or pole are
model parameters used to describe the plasmon or only its intraband
contribution, as described in Eq. (12).

Contribution Pole (complex) Frequency (real)

Intra-band 
A ωA = Re[
A]
Inter-band 
E ωE = Re[
E ]
Plasmon (intra + inter) 
p ωp = Re[
p]
Plasma ωpl = √

4πρe

Drude (model) ωD + iγ ωD

free parameter set typically to γ = 0.1 eV. In principle ωD can
be determined fully ab initio, resorting to very dense k-point
grids [20,30] or to an interpolation of the BZ, for instance
with Wannier functions [61–64] or the tetrahedron method
[29,30,40,65]. Alternatively, experimental values can also be
used when available.

In the next sections we discuss the possibility to extrapolate
a complex plasmon frequency (see Table I) in the q → 0 limit
from the frequency structure of Y (q, ω) at finite q, which
in general is a superposition of intra- and interband contri-
butions. In a second step, we will use a f -sum rule [24] in
the same spirit of Ref. [30], in order to estimate the intraband
contribution to the plasmon frequency. We also propose a sim-
ple and virtually zero-cost method to include an approximate
treatment of the missing intraband limit from first-principles,
without the need to resort to any add-on model.

III. RESULTS AND DISCUSSION

In the following, we present the results for three bulk
metallic systems highlighting different issues arising when
applying the GW approach to metals. We start by study-
ing the case of two simple metals, Al and Na (see, e.g.,
Refs. [66–68] for a description of their band structures). Next,
we focus our attention on Cu, a more challenging system
whose electronic structure has been thoroughly studied, both
experimentally [69,70] and theoretically [20,71–73]. The use
of PPA for Cu has been shown to be problematic [20] and, for
this reason, copper is not only an important test case for the
application of MPA and the description of intraband effects,
but also provides a better understanding of the applicability
of PPA.

As a starting point for our GW simulations, we use
DFT calculations performed at the PBE [74] level us-
ing scalar-relativistic optimized norm-conserving Vanderbilt
pseudopotentials [75], as implemented in the QUANTUM

ESPRESSO package [76,77]. The kinetic-energy cutoff is set to
100, 70, and 150 Ry for Al, Na, and Cu, respectively. The
k grids were determined by the convergence requirements of
the GW calculations, considering, in particular, the specific
treatment of the intraband limit. When reporting quasiparticle
energies, we use k-point grids of 16 × 16 × 16 for Al and Na,
and 12 × 12 × 12 for Cu. Moreover, the GW correction to
the Fermi level is linearly interpolated from the corresponding
corrections to the closer quasiparticles present in the specific
k mesh.

TABLE II. Al and Na quasiparticle energies (eV) with respect
the Fermi level computed within DFT-PBE, GW-PPA, and GW-
MPA using a 16 × 16 × 16 k grid including the q → 0 intraband
contribution through the constant approximation (CA) method (see
Sec. III C).

DFT-PBE GW-PPA GW-MPA

Al �1 −11.12 −10.79 −10.94
Al �25′ 12.71 12.30 12.48
Al X4′ −2.93 −2.91 −2.86
Al W3 −0.85 −0.83 −0.82

Na �1 −3.27 −2.85 −2.97
Na �25′ 11.76 11.19 10.81

The DFT results are in good agreement with previous re-
sults obtained with the same method [72] and in reasonable
agreement with the results reported for Cu in Ref. [20], per-
formed using the LDA [31]. In fact, the GW results for Cu
have shown to be very sensitive to the choice of the DFT start-
ing point [72], although we will not address this point here.
The GW calculations were done using the YAMBO [26,27]
code. The numerical convergence of the GW results has been
checked with care, and the resulting parameters, being system
dependent, are detailed in the sections below when discussing
the results.

A. Multipole approach for simple metals

We start by computing quasiparticle energies of Al and Na
using MPA. Here the frequency dependence of the polariz-
ability presents a structure with mainly one strong plasmon
peak, similar to that of silicon computed in Ref. [25]. As
expected, the double parallel sampling ensures convergence
with a similar number of poles, np = 8. The present results
were obtained considering 300 bands for both X and � and
an energy cutoff for X of 20 and 15 Ry for Al and Na,
respectively.

In Table II we report the quasiparticle energies for Al and
Na, including �1 (the lowest QP peak at �, corresponding
to the valence bandwidth) and other reference quasiparticles,
computed using PPA and MPA. MPA QPs are generally in
very good agreement with FF values from the literature (see,
e.g., Ref. [19] and references therein). According to our cal-
culations, the computed quasiparticles values for Al and Na
with MPA are estimated to differ by less than 8 meV from the
corresponding FF-RA results (comparison done using 10 Ry
cutoff to represent X0 for both MPA and FF-RA), as found for
semiconductors [25]. Instead, PPA QPs show deviations that
are systematically larger for states further from Fermi.

Previous GW calculations for Al and Na [19] have shown
that PPA describes well the tail of the self-energy, i.e., the
frequency region around the Kohn-Sham energies, and gives
reasonable QP solutions for both Al and Na. However, if we
consider the whole frequency range, the agreement between
PPA and FF-CD is less satisfactory. PPA shows sharp fluc-
tuations in the self-energy and spectral functions that result
in several spurious solutions of the quasiparticle equation,
evinced by multiple small peaks in the spectral function (see,
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FIG. 1. (a), (c) Frequency dependence of the real part of the self-energy and (b), (d) spectral function computed with MPA for three
quasiparticles of (a), (b) Al and (c), (d) two of Na, including the intraband limit using the constant approximation (CA) (presented in Sec. III C).
In the case of Na, we also show the corresponding curves without any intraband correction (nD).

e.g., Fig. 4 of Ref. [19]). In Fig. 1 we show the self-energy
and spectral function for Al and Na, this time computed with
MPA. The comparison with results obtained within FF-CD
[19] shows that MPA not only describes well the tail of the
X (ω) and �(ω) functions but also correctly describes the
positions of the peaks and their relative intensities in the whole
frequency range.

The left panels of Fig. 1 correspond to Al plots of the
MPA self-energy, 〈ψmk|�(ω)|ψmk〉, and the spectral function,
〈ψmk|Im[G(ω)]|ψmk〉, as a function of the frequency. These
quantities have been projected on three Al states, one cor-
responding to the bottom of the valence band at � and two
other Kohn-Sham states closer to the Fermi level. Compar-
ing the three self-energy functions, there is a more effective
pole superposition for states at energies further away from
the Fermi level. Indeed, for the lowest energy state with
EKS = −11.2 eV, this leads to a frequency dependence of �

with an intense single pole (at about −15 eV with respect
to EKS) and consequently a very broad and shallow QP peak
in the corresponding spectral function. At the same time the
satellite structure is enhanced to the point of becoming a
second peak, originating from a second solution of the quasi-
particle equation (intersections of the dashed line with the
self-energy function in the upper panel). This scenario is con-
sistent with the so-called “plasmaron” peak, a sharp satellite

feature emerging as an artifact of the G0W0 approximation to
the self-energy [2,45,78].

The situation is similar for the two QPs computed for Na
shown in the rights panel of Fig. 1, with the lowest state
presenting again two solutions for the QP equation.

B. Analysis of the intraband contribution

In common GW implementations, especially those tar-
geting semiconductors, the intraband contribution to the
dielectric function in the q → 0 limit, Eq. (6), is often not
included, as explained in Sec. II D. In the case of Al, where
a substantial part of the Fermi surface is very close to the
BZ boundary, one can expect [32] that many of the metallic
contributions are effectively interband rather than intraband
terms, resulting in a small error when the intraband limit is
neglected [32], while for Na it is found to be more relevant.

For both Al and Na, in Fig. 2 we show how this affects
the frequency dependence of the YG=G′=0 matrix elements
computed for different q vectors along an arbitrary direction.
The curves in green shades correspond to Y (ω) computed for
finite but small q. The orange curve corresponds to the q → 0
limit evaluated only for the interband term. There are two
main differences between the green and orange curves. The
first difference is the limit of Re[Y ] as the frequency tends to
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the region around ω = 0. Panel (e) shows the q dispersion of the real and the imaginary parts of the main pole of Y for q0–q4 (qn = n

8 in units
of 2π/a, being a the respective Al and Na lattice parameters). The solid lines show the corresponding parabolic fits consistent with a Lindhard
(bulk) plasmon dispersion [30,32,79,80]. The black dashed lines correspond to the experimental plasmon frequency of Al [30] and Na [79].
Dash-dot purple lines correspond to the values of the intraband frequency, ωA, computed in Ref. [19] using the method described in Ref. [57],
while the violet one corresponds to our estimate for Al, computed by means of Eq. (14).

zero (static limit), which evolves smoothly for finite q but in
general tends to a value different from the one corresponding
to q = 0. As shown in the insets of Fig. 2, the smallest finite
q provides a static limit very similar to the value for q = 0 in
the case of Al, while it is considerably larger in the case of Na
(both results in agreement with previous studies [32]).

This difference has been commonly used as a measure
of the missing intraband term [19,32], since for metals in
the limit q → 0, ε−1

G=G′=0(q, ω = 0) vanishes, meaning that
Y00(q, ω = 0) → −1, as apparent from the progression of the
curves with finite q, that include intraband transitions. In fact,
in the independent-particle picture, the q → 0 limit of Re[Y ]
at ω = 0 is related to a nonvanishing probability of vertical
transitions within the same band [30], and can therefore be
used to estimate a Drude frequency [81,82]. However, this
probability alone does not determine the plasmon frequency
(see Table I for a summary of the nomenclature) or the posi-
tion of the pole of Re[Y ] for q → 0.

In fact, the second difference between the orange (q = 0,
no intraband contribution) and the green curves (finite q,
intraband included) in Fig. 2 is the position of the main pole
of Y (ω), here called 
p, or in the case of Na, to the apparent
absence of poles for q = 0, whose small amplitudes cannot be
seen in the plot. If the whole frequency range is considered,
we see that the behavior of Re[Y (ω → 0)] depends on the
position of 
p. Following the green curves at finite q, it is
clear that YG=G′=0 for both Al and Na change smoothly with
q. The curves present a pole 
p(q) of decreasing energy and

increasing amplitude, just above 0.5 Ha for Al and 0.2 Ha for
Na. As shown in Fig. 2(e), both the real and imaginary part of
this pole can be easily extrapolated to q = 0, by means of the
Lindhard plasmon dispersion [30,32,79,80].

In the same plot we show, as a reference, the Drude fre-
quency corresponding to the q → 0 limit of the intraband
contributions, ωA (see Table I), as computed in Ref. [19] for Al
and Na, in addition to the experimental plasmon frequency ωp

of Al [60,79,83–86] and Na [79]. In the simulations we can
also extrapolate, already with a 8 × 8 × 8 k-point mesh, the
plasmon frequency at q → 0 from the position of the main
structure of the response functions, namely ωp ≡ Re[
p].
This procedure provides ωp = 0.55 Ha (15.01 eV) for Al, in
excellent agreement with the experimental value of 15.0 eV
[30]. Similarly, the value extrapolated for Na, ωp = 0.21 Ha
(5.79 eV), matches very well the experimental value of 5.9 eV
[79] and both compare well with the Drude intraband fre-
quency computed in Ref. [19] (6.18 eV). The small difference
between our theoretical result and Ref. [19] can be attributed
to methodological differences (e.g., the DFT functional on top
of which the GW calculations are performed). In contrast, the
difference between ωp and ωA for Al is larger than 2.5 eV
since the plasmon frequency ωp has non-negligible contribu-
tions from both intra- and interband transitions, as previously
reported in Refs. [30,60]. Note however that the interband
contributions are not included in the Drude frequency com-
puted in Ref. [19].
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To discriminate between the intra- and interband contri-
butions to the plasmon frequency, we have used a simple
expression based on the f -sum rule [2,30,87], but separating
the two contributions:


2
A = − lim

q→0

2

π

∫ ∞

0
dωωIm[Y (q, ω) − YE (q, ω)], (13)

where YE corresponds to interband transitions only, while Y
accounts for the complete response. Within MPA the integral
is solved analytically (derivation in Sec. I of the Supplemental
Material [88]), leading to


2
A = 2v(Rp
p − RE
E ), (14)

where 
E and vRE are the position and the residue of the
most relevant pole of YE (q = 0), while 
p and vRp are the
corresponding values for Y (q = 0).

In principle, the product vRp
p should be computed in the
q → 0 limit. We have instead considered the extrapolation
of 
2

p, which is equivalent in our model (see Sec. I in the
Supplemental Material [88]) and significantly more stable.
The values of vRE
E are taken directly from the calculation
at q = 0 [orange curves in Figs. 2(a) and 2(b)], since no
intraband transitions are considered, as explained above. For
Al, the real part of 
E is ωE = 0.37 Ha (10.08 eV) and thus,
applying Eq. (14), the real part of the intraband pole 
A is
ωA = 0.43 Ha (11.72 eV). For Na, ωp and ωA are similar.
The comparison of ωp and ωA confirms that the experimental
plasmon frequency, ωp, in the case of Na corresponds mainly
to intraband contributions, while for Al there is an important
interband contribution [60], and its use as a Drude intraband
frequency would result in an overestimation of the actual ωA.

Making use of the extrapolation procedures described
above in the context of the MPA framework, and of a simple
f -sum rule, it is possible to determine not only the real but
also the imaginary part of both the plasmon and the intraband
pole, usually not considered in other ab initio methods. It is
also worth noticing that the extrapolation is done with points
from a much coarser k grid (8 × 8 × 8 for both Al and Na),
with respect to the grids required to compute the intraband
frequency with an independent-particle formulation [31,32].

Despite the limited accuracy of the computed imaginary
values, they are meaningful and provide a qualitative under-
standing of how intra- and interband terms, linearly summed
at the independent-particle level, are combined after the in-
version of the Dyson equation. While the Na case is trivial,
since the interband contribution is negligible, in the case of
Al the small difference between ωA and ωE , comparable to
their imaginary parts, explains the presence of a single pole
in Y (ω) located roughly at ω2

p ∼ ω2
A + ω2

E (see Sec. I of the
Supplemental Material [88]).

C. Modeling of the intraband limit

Our analysis of the dressed response function Y (ω)
suggests that an alternative to the direct evaluation of the in-
traband limit, usually determined from X at the independent-
particle level [31], can be obtained, either by (1) including a
complex Drude pole YD(ω), according to Eq. (12), in the head
(G = G′ = 0) of the independent-particle dielectric function,
with the Drude frequency given by the computed intraband

pole; or (2) approximating the full Y (q = 0) matrix element
by its nearest neighbor Y (q �= 0), i.e., with the q-vector clos-
est to zero according to the adopted k-point grid.

The first method builds on using an estimate of the Drude
intraband frequency, similar to the extrapolations used in
Ref. [82], but here considering the whole frequency range and
both intra- and interband contributions. The second method,
which we will call from now on constant dielectric function
approximation (CA), assumes that the whole Y (q) matrix is
constant in a small region around q = 0. This approach is
inspired by the leading term of the Taylor expansion for small
q of the Thomas-Fermi distribution, and is corroborated by
the small difference of 0.006 Ha (0.17 eV) found for both,
Al and Na, between the extrapolated value of 
p and its
value at the first finite q, as shown in Fig. 2(e). Both methods
simultaneously correct the position of the plasmon pole and
the limit of YG=G′=0 for ω = 0 and add virtually no compu-
tational cost to the calculation. In addition, CA also corrects
other matrix elements for which the intraband limit may be
important.

In Sec. II of the Supplemental Material [88] we report plots
similar to those in Fig. 2 for Y matrix elements of Na other
than the head, showing that after the head (YG=G′=0), intraband
contributions are relevant also for the so-called wing elements
(YG=0 �=G′ and YG �=0=G′ ), while less important for the diagonal
elements (YG=G′ �=0), especially at increasing |G|. For finite |G|
the evolution of the Y (q) matrix elements when q → 0 is less
smooth and the position of the poles does not always change
monotonically, meaning that an extrapolation would require
a denser k-point grid. Even if the constant dielectric function
approximation has limited accuracy for some of these matrix
elements, it still provides a significant overall improvement.
In particular in materials such as Cu, as discussed below,
the CA method presents some clear advantages regarding the
estimation of ωA.

To assess the effect of this approximation in the QP so-
lution, in Fig. 3 we show Al and Na QP energies computed
without (nD) and with (CA) intraband corrections. When the
number of k points is increased, the weight of the Y (q = 0)
element in the self-energy decreases and both methods even-
tually converge to the same quasiparticle values, but only very
slowly, as discussed above. In fact, Fig. 3 shows that for two
selected QPs of Na the intraband term is fundamental due to
the importance of this contribution to the screening properties
of the system. In contrast, for Al the difference is small, and
the convergence is governed by the inter- rather than intraband
contributions for all four QPs considered. In the bottom panel
of Fig. 3 one can see the significant acceleration introduced by
CA in the convergence of the bandwidth of Na, where, besides
a small oscillation in the 20 × 20 × 20 grid (caused by oscil-
lations in the DFT eigenvalues), the first point corresponding
to the 8 × 8 × 8 mesh already provides very accurate results.
In the CA scheme the convergence benefits simultaneously
from the decrease of the weight of the Y (q = 0) contribution
and from the fact that the correction itself improves for denser
grids in reciprocal space, since the first q �= 0 is closer to zero.

In Fig. 1 we show the frequency dependence of the real
part of the self-energy (top) and spectral function (bottom)
computed for two quasiparticles of Na, within MPA with and
without the CA intraband correction. The correction does not
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FIG. 3. (top panel) Difference between GW-MPA corrections
computed with the (CA) intraband term and without (nD) as a
function of the number of k points, for two quasiparticles of Na
(light and dark yellow) and four of Al (green shades). (bottom panel)
Convergence of the GW correction for the QP at �1 of Na (yellow)
and Al (green) with CA (solid) and nD (dashed).

change dramatically the shape of the self-energy, but intro-
duces an extra pole in the real part of the self-energy at the
intraband frequency (≈ − 6 eV) and renormalizes the peaks
of the spectral function. The inclusion of this term promotes
the pole overlapping around the plasmon frequency, which
is already accurate without CA. However, CA increases the
intensity of the plasmon affecting the tail of the self-energy
and thus the QP solution, as illustrated in the insets of Fig. 1,
differently for each quasiparticle.

A similar picture is found for Al, for which the intraband
transitions are less important. In this case, the change in in-
tensity of the plasmon is smaller and the plasmon is located
farther from ω = 0. Therefore, the effects of CA on the tail
of the self-energy and consequently, on the QP solution are
much less important.

For both Al and Na, the QP energies computed with the
Drude model, Eq. (12) using as input ωD = ωA, and the CA
schemes are very similar, with differences below 20 meV
when using the 8 × 8 × 8 k grid. This leads us to con-
clude that the CA scheme could replace the usual Drude
correction, replacing a semiempirical scheme by a simple ab
initio approximation. This is particularly relevant when the
Drude intraband frequency is difficult to estimate either from

experiments or calculations, since the CA scheme has vir-
tually zero computational cost and, as the extrapolation
presented in the previous section, describes both the real and
the imaginary part of Y .

To summarize this section, the inclusion of the intraband
limit through the proposed CA scheme requires no extra com-
putational cost with respect to the standard GW calculation
and accelerates the k-grid convergence of the QP energies for
systems where the intraband contribution dominates, like Na,
without resorting to semi-empirical corrections such as the
Drude model or computationally costly ab initio approaches.

D. Frequency representation of the response function of copper

As mentioned before, the case of copper presents several
challenges for an accurate GW description. The Cu band
structure features a series of flat d bands around 2 eV below
the Fermi level, leading to strong transitions in YG,G′ (q, ω)
spread over a large energy range [20]. As shown in Fig. 4
for q = 0, even for small values of G and G′, YG,G′ (q, ω) can
behave very differently from a single pole case, hindering the
use of PPA but suggesting that a multipole approach could
prevent resorting to more expensive FF methods.

When considering PPA or in general MPA with only a few
poles, one of the main issues is that the interpolation of X or
Y may give rise to nonphysical poles, posing representability
problems. Within the Godby and Needs (GN) PPA scheme
implemented in YAMBO [11,26,89,90], the condition used to
identify these so-called unfulfilled modes is the following:

Re

[
YGG′ (q, 0)

YGG′ (q, i�pl )
− 1

]
< 0, (15)

�pl being a frequency on the imaginary axis used to perform
the GN interpolation, typically set to �pl = 1 Ha or to a value
of the order of the plasma frequency (�pl � ωpl), computed
from the electronic density, ρe (see Table I). As an exam-
ple, for the diagonal elements (G = G′), the polarizability
evaluated on the imaginary axis should be real and therefore
unfulfilled modes are those for which the resulting pole is
instead imaginary. In these cases, the position of the pole is
typically set to 
GN

fail = 1 Ha.
Setting the pole at 
GN

fail usually works well for simple
semiconductors [25,89]. However, in more complex systems it
can compromise the PPA approach. In fact, when performing
GW calculations using GN-PPA for Cu, we found that no less
than 48% of the matrix elements are unfulfilled modes. This
means that, for almost half of the matrix elements, the position
of the pole is spuriously set to 1 Ha, severely affecting the self-
energy and the quasiparticle solution, as shown in the insets
of Fig. 5. Within the MPA, increasing the number of poles in
the description of Y , together with the generalized condition
to assign the position of the poles of the unfulfilled modes,
as described in Ref. [25], leads to a significant improvement
in the representability of Y , as illustrated in Sec. III of the
Supplemental Material [88].

In Fig. 4 we compare selected Y matrix elements com-
puted within MPA with 1 and 12 poles, with the FF results
computed with a frequency grid of 1000 points (all other
convergence parameters being the same: k grid, number of
empty bands, etc.) At first glance, the enveloping structure
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 4. Selected Cu Y (q = 0) matrix elements computed within MPA with 1 and 12 poles compared with the corresponding FF results.
The y axes are scaled with the factors indicated on top of each panel.

of diagonal elements presents a strong overall peak, as in the
case of semiconductors such as Si, hBN, and TiO2, which are
well-described within the PPA and MPA [25]. However, in
the case of Cu, there are other important peaks close to the
origin not captured by a single-pole model. In this case, PPA

quasiparticle energies are not just numerically inaccurate, as
in the case of the discussed semiconductors, but PPA becomes
an inadequate model. Increasing the number of poles from 1
to 12 significantly improves the agreement between Y com-
puted with MPA and FF, reproducing the overall frequency

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Frequency dependence of the real part of the self-energy (top) and spectral function (bottom) of three quasiparticle states of Cu:
(a), (b) one close to the Fermi energy; (c), (d) �12; and (e), (f) �1 computed with PPA, MPA, and FF. The intersections with the dotted lines
represent the graphical solutions of Eq. (3).
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dependence even if MPA presents a much smoother shape.
While the rapid oscillations in the FF response function are
enhanced by the discretization of the Brillouin zone, the origin
of such fluctuations can be related to the topology of the flat
d bands of Cu [20], consistently, e.g., with the very structured
W (ω) computed for Ni [91]. In fact, regardless of the overall
simple shape of X , numerous interband transitions, close in
energy and not effectively overlapped, contribute to the fluc-
tuations of the polarizability X and of the inverse dielectric
function Y , when computed within FF. Nevertheless, as dis-
cussed in the next section, they do not significantly influence
the computed GW quasiparticle energies.

E. Quasiparticles and spectral function of copper

In Fig. 5 (top panels) we show the frequency dependence of
the self-energy projected on three selected quasiparticle states
of Cu calculated within PPA, MPA, and FF-RA. The details
of � computed within the FF approach, better appreciated in
Fig. 5(c), depend on the fine structure of W , which requires a
dense frequency grid when computing the polarizability, as
shown in Sec. V of the Supplemental Material [88]. Since
these calculations are very expensive, the curves shown in
Fig. 5 were computed including 200 bands for all the three
methods, and using a frequency grid with 1000 points for FF
and no intraband correction. Fully converged MPA results and
intraband corrections are discussed at the end of this section.

The FF-RA self-energy presents a rather flat structure with
no dominant peaks. Since � is obtained from the convolution
of G and W in Eq. (1), the oscillations of W are attenuated,
resulting in a much smoother function. Nevertheless, the con-
vergence of the QP solution is challenging, since it requires
an accurate description of the tail of the self-energy, as shown
in the insets of Fig. 5. This could explain, at least in part, the
variety of results present in the literature.

PPA results (blue curves in Fig. 5) show that the quasi-
particle solution (insets of Fig. 5) obtained with a single pole
model for W deviates from the FF-RA solution. Besides the
deviations at the tail of �, PPA fails to describe the frequency
dependence of � and the spectral function (bottom panels).
On the other hand, the MPA results, here obtained with
12 poles and the quadratic sampling, are very accurate, not
only in the tail region, that determines the QP corrections,
but also for the whole frequency range of both the self-energy
and the spectral function. The difference between MPA with
12 poles and FF-RA QP energies, computed as the graphical
solution of Eq. (3), are smaller than 8 meV for �12 and 30 meV
for �1, while in the case of PPA they range from 180 to
420 meV.

Comparing the three selected quasiparticle states in Fig. 5,
the effect of the overlapping of the independent-particle exci-
tations (due to the inclusion of local field effects via the Dyson
equation for W ) on the self-energy of Cu is more relevant
for �1 than for �12 and the QPs around the Fermi energy.
Indeed, as shown in the bottom panels of Fig. 5, for the QPs
closer to the Fermi level, the shape of the spectral function has
a very narrow quasiparticle peak and three satellites. When
compared with the QPs close to Fermi, the QPs at deeper
energies (�12 and �1) present a broader quasiparticle peak
and more intense satellites. The shallower satellite (above

−10 eV) forms a shoulder structure for �12 (central panel) and
eventually merges with the QP peak to form a single broader
peak for �1 (right panel). Despite its complexity, the Cu states
at different energies present similar trends as the cases of Al
and Na discussed in Sec. III A.

It is worth emphasizing the importance of the frequency
sampling in MPA. Since copper X and Y present a rich struc-
ture at low frequencies, but the energy range ωm in Eq. (11)
is still large, the quadratic sampling has shown to be more
efficient than the linear one. Specifically, it provides, with
the same number of poles and the same ωm, a larger density
of points in the low-frequency region and therefore higher
accuracy. The comparison between the computational cost
of MPA and the FF-RA method can be done in a simplified
way by comparing the number of frequencies for which X is
numerically computed in each approach. Here, for MPA we
use 24 frequency points, corresponding to 12 poles, while the
FF-RA frequency grid has 1000 points, corresponding to a 40
times gain in computational efficiency of MPA with respect to
FF-RA.

The convergence with respect to the number of bands and
the size of the X matrices is particularly challenging, as al-
ready reported for example for other systems with d states
[92–94], with a slow, nonmonotonic convergence that hinders
the use of extrapolations (see more detail in Sec. V of the Sup-
plemental Material [88]). For this reason, the computational
efficiency of MPA is particularly beneficial as it allows for the
use of fine GW convergence parameters, thereby increasing
the overall accuracy of the results.

In Table III we show the MPA results obtained with 60 Ry
of energy cutoff and 1000 bands for both X and �. These
parameters are comparable to the largest ones used within
a static subspace approximation [73]. The reported MPA
quasiparticle energies are in good agreement with previous
calculations using different FF approaches and are summa-
rized in Table III. The main differences can be explained
by the use of different starting points for the GW calcula-
tion, i.e., different exchange-correlation functionals and/or
pseudopotentials in the DFT ground state, and possibly to
an incomplete convergence of some of the results. While the
use of converged parameters is essential when comparing the
computed QP energies with experiments, GW corrections do
not always improve over DFT or PBE results, as also observed
in Refs. [72,73]. In the present case, GW significantly im-
proves �1, while for �12 and other QPs, the GW correction
is rather small and slightly worsens the DFT results. The
localized nature of the d states in Cu may require methods
beyond GW in order to further improve the agreement with
experiments [37,46,95,96].

F. Intraband effects in copper

To investigate the intraband contributions of copper, in
Fig. 6 we show the frequency dependence of the YG=G′=0

matrix elements computed for the smallest q vectors along
one direction of a 16 × 16 × 16 k grid. Since Y (ω) of Cu is
very structured at small frequencies, where the effects of the
intraband contributions are expected to be stronger, we have
used MPA with a quadratic sampling, Eq. (11) with α = 2
and np = 15, a number of poles slightly larger than the value
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TABLE III. DFT and GW quasiparticle energies of Cu computed with different methodologies by different groups and compared with the
experimental values. All the GW calculations correspond to FF approaches ran on top of LDA [20] and PBE [72].

DFT/LDA DFT/PBE DFT/PBE GW@LDA GW@PBE GW@PBE Expt.
QP (eV) Ref. [20] Ref. [72] (current work) Ref. [20] Ref. [72] (current work) Ref. [69]

�12 −2.27 −2.05 −2.18 −2.81 −1.92 to −2.11 −2.12 −2.78
�1 −9.79 −9.29 −9.27 −9.24 −9.14 to −9.20 −9.06 −8.60
X5 −1.40 −1.33 −1.49 −2.04 −1.45 to−1.22 −1.39 −2.01
L2′ −1.12 −0.92 −0.99 −0.57 −0.98 to −1.02 −1.05 −0.85
L3 −1.63 −1.47 −1.63 −2.24 −1.58 to −1.36 −1.57 −2.25
L gap 5.40 4.80 4.66 4.76 4.98 to 5.09 4.88 4.95

needed to converge the quasiparticle energies. In contrast
with Na, the orange curve (q = 0, no intraband contribution)
presents a similar shape and scale with respect to the green
curves (small but finite q, with intraband contributions), even
if with less intense peaks.

In the right panel of Fig. 6 we show the position of the first
four poles of Y (ω) as a function of q, which present a rather
flat dispersion, when compared with the plasmon dispersion
of Al in Fig. 2. As expected, for q = 0 the position of some
poles does not correspond exactly to the limit given by the
curves with finite q. However, the main difference between

the zero and finite q curves of Y (ω) is not in the position
but rather in the value of the residues of the poles, which is
reflected in the intensity of some of the peaks, as shown in
Fig. 6.

To compare the computed results with experiments, we
used electron energy-loss data extracted from a compilation of
optical measurements found in Table I of the chapter Optical
Constants of Metals of Ref. [24] (see, e.g., Fig. 8 of Ref. [31]),
after interpolation with a multipole model. For this, we chose
18 points of the spectra, with a frequency distribution corre-
sponding to the quadratic sampling of Eq. (11) and used them

(a) (c)

(b) (d)

FIG. 6. (left panels) Frequency dependence of the (a) real and (b) imaginary part of YG=G′=0 for Cu computed within MPA for different q
values tending to zero (qn = n

16 in units of 2π/a, where a is the lattice parameter of Cu). For q = 0 (orange curves) the intraband term is not
included. (right panels) (c) Real and (d) imaginary parts of the four most relevant poles at low energies in the Y curves for different q values.
The purple dashed lines lines correspond to the position of the poles extracted from optical measurements collected in Ref. [24], as explained
in the main text. The blue dashed lines correspond to the values of the intraband frequency ωA computed by means of Eq. (14) and reported in
Ref. [31].
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to interpolate a nine-pole model. We then analyzed the four
poles with the highest residues in the frequency interval we
are interested in. In the upper panel of Fig. 6 we show, as
horizontal lines, the corresponding experimental energies of
the poles. Interestingly, the experimental poles are very simi-
lar to the poles computed at the RPA level within MPA. This
supports the interpretation (see, e.g., Ref. [97]) that the MPA
poles of Y are not a mere mathematical construct aimed at
improving representability but indeed correspond to physical
collective excitations, each of them describing the envelope of
a set of single-particle transitions, with a finite imaginary part
corresponding to the width of the excitation. We emphasize
that the agreement with the experiment is achieved without
resorting to any ad hoc parameters such as the damping in
the case of the full frequency mesh on the real axis used in
Ref. [31].

In simpler systems, the inclusion of the intraband limit,
even with a simple Drude tail fitted from the experimental
spectra, is expected to correct the residues and thus the in-
tensity of the peaks at q = 0. However, in systems for which
the intra- and interband contributions are superimposed in a
more structured frequency dependence, the description of the
experimental spectra with only the Drude term from Eq. (12)
is not possible [59,81,98], and indeed models often resort to
variable or multiple relaxation frequencies [59,84,98]. In fact,
as shown in Fig. 6, the q dependence of Y does not allow one
to discriminate between peaks with an intra- or an interband
character. To circumvent this difficulty, in Ref. [31] the in-
traband frequency is evaluated numerically as the limit of an
intraband integral at the independent-particle level, while in
Ref. [58] it is estimated within a noninteracting uniform-gas
theory.

Here we use again the f -sum rule by integrating Eq. (13),
but generalizing Eq. (14) to the case where, in contrast with Al
and Na, more than one pole contributes to the intraband term
(see Sec. I of the Supplemental Material [88]). The resulting
intraband frequency, ωA = 0.36 Ha (9.80 eV), compares well
with the corresponding result of 0.34 Ha (9.27 eV) from
Ref. [31] and both values are very close in energy to the sec-
ond pole shown in Fig. 6. We find that intraband contributions
represent around the 25% of the corresponding f -sum rule
of this pole (R
 product), being the largest ratio among all
the poles. However, as can be appreciated in Fig. 6 from the
change of intensity of the peaks, the interband contributions
are dominant. In fact, the intraband contributions to the total
f -sum rule (sum of all R
 products) is rather small, less than
4%.

Using the frequency determined in Ref. [31] (9.27 eV) and
the relaxation frequency fixed to 0.1 eV as the inputs to the
Drude correction of Eq. (12), in our MPA calculations, we find
that the Drude tail overlaps with the several interband peaks
of Y (ω), without affecting the position of the poles while
changing their residues (Sec. IV of the Supplemental Mate-
rial [88]), similar to the effect of the CA correction, Y (q =
0) ∼ Y (qmin), as proposed in Sec. III B. In any case, CA is
general and independent of the complexity of the frequency
structure of the inverse dielectric function Y . It works well
for Cu, as confirmed by the comparison with the experimental
data and constitutes a very simple procedure. Despite these
considerations and similarly to the case of Al, the intraband

correction has a small effect on the Cu QP energies, that
present differences of the order of 5 meV when computed with
and without CA in a 12 × 12 × 12 k grid.

IV. SUMMARY AND CONCLUSIONS

In this work we address the accuracy of the MPA scheme
as applied to the full frequency GW calculation of metals.
This approach, previously validated for semiconductors [25],
is now applied to metals using Al, Na, and Cu as prototype
systems. Also in the case of metals, MPA is shown to deliver
results with an accuracy similar to other FF methods at a much
lower computational cost, comparable to other analytical con-
tinuation approaches [25,54].

After presenting the MPA theoretical framework, we have
applied the approach to simple metals and discussed the role
of inter- and intraband contributions to the dielectric func-
tions of bulk Al and Na. To evaluate the response function
and the GW corrections in metals, we have proposed two
simple methods to include the intraband terms in the inverse
dielectric function in the q → 0 limit: (1) by extrapolating
the position of the main pole in Y00(q, ω), from small q to
q = 0, and computing the intraband pole through the f -sum
rule of Eq. (14), which can then be used as an input value in
a Drude model to correct Y0. This approach is generalized for
a multipole structure of Y (q, ω) in the case of Cu. And (2)
by approximating Y (q = 0) by Y (qmin). The second method,
here called CA, is simpler and spares the determination of the
intraband frequency.

Both methods significantly accelerate the convergence of
the QP energies with respect to the k-point grid. In addition,
CA simultaneously corrects all Y matrix elements. CA works
equally within PPA, MPA, and FF and can be used indepen-
dently of the dimensionality of the system under study, even if
the leading power of series expansion of the inverse dielectric
function in the q → 0 limit depends on dimensionality. In
fact, it can be thought of as the most trivial case of a polyno-
mial interpolation (a constant) [99,100]. A similar approach
can be applied in situations where the q → 0 limit of Y (or
other many-body operators, such as W ) is difficult to evaluate.
Even if the proposed methodologies were exemplified for
three isotropic metals, the extension to nonisotropic systems
is straightforward.

Eventually, GW QP corrections for Na, Al, and Cu were
evaluated, showing an excellent agreement with existing the-
oretical literature and experimental data, further stressing the
accuracy of the proposed approach. Notably, the case of Cu
was discussed with particular detail, since PPA calculations
present several drawbacks. In fact, for Cu, the PPA quasipar-
ticle solutions deviate significantly from the FF results and
completely fail to describe the frequency dependence of �

and the spectral function. In contrast, MPA reproduces very
accurately the FF results, not only in the tail region that
determines the quasiparticles corrections, but in the whole
frequency range for both the self-energy and the spectral func-
tion. The frequency representation of the polarizability and the
inverse dielectric function present strong oscillations within
FF. In contrast, MPA results are much more stable, leading to
a smooth frequency representation of X and Y .
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Importantly, the smoother structure of the MPA dielectric
function does not necessarily result in a loss of accuracy in
the subsequent calculation of the self-energy, the QP energies,
and the spectral function. In fact, the frequency dependence
of Y given by MPA is meaningful and reproduces the main
peaks of the experimental energy-loss spectra. This leads us
to conclude that the MPA poles of Y may be seen not only as
a mathematical tool, but also as an efficient description of col-
lective excitations, with each pole representing the envelope
of a set of single-particle transitions.

In conclusion, MPA reproduces well the overall frequency
dependence of the polarizability, the inverse dielectric func-
tion, the self-energy and the spectral function in metallic
systems, and gives results for the quasiparticle energies sim-
ilar to those obtained within FF methods. Moreover, the
favorable computational performance allows for the use of
more stringent convergence parameters such as denser k grids
and larger number of bands and polarizability matrices. The

use of the proposed intraband corrections further accelerates
the convergence with the k grid and the accuracy of the final
results.
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