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Fragile topological phase on the triangular kagome lattice and its bulk-boundary correspondence
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We predict and examine various topological states on a two-dimensional triangular kagome lattice (TKL)
using the tight-binding models and theory of topological quantum chemistry (TQC). First, on the basis of TQC,
we diagnose band structures with fragile topology and calculate Wilson-loop spectra and Hofstadter butterfly
spectra to confirm their nontrivial nature. Second, we examine the bulk-boundary correspondence and find
that an obstructed atomic limit (OAL) insulator hosts fractional corner states without being accompanied by
fragile topological band structures, which implies that the presence of OALs and corner states is not a sufficient
condition to fragile topology. Last but not least, we predict a topological phase transition from a second-order
topological phase to a first-order topological phase that can be realized in the TKL under the action of a magnetic
field.
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I. INTRODUCTION

Since the discovery of integer quantum Hall effect, ro-
bust bulk-boundary correspondence has become a hallmark of
nontrivial topology. Later, the discovery of high-order topo-
logical insulators enriched the physics with robust high-order
bulk-boundary correspondence (e.g., bulk-hinge correspon-
dence and bulk-corner correspondence) [1–8], namely, an
(N-n)-order topological insulator is an N-dimensional insu-
lator which hosts topological states on its n-dimensional
boundaries.

Recently, however, this seemingly complete scheme has
been challenged by the fact that fragile topological phases
(FTPs) violate the bulk-boundary correspondence and only
host chiral edge states under some specific twisted boundary
conditions [9–32]. In addition, those widely used topological
invariants that have been proposed to diagnose stable nontriv-
ial topology (e.g., Chern number and Kane-Mele invariant)
fail to capture the FTPs because of the fragility of these phases
manifested by the addition of trivial bands [16–21]. More
specifically, the Wannier obstructions of the FTPs (i.e., the
topological obstacles that prevent FTPs from transforming
into atomic limits which are described by exponentially lo-
calized Wannier functions) can be resolved only by coupling
these phases with trivial bands, which is totally outside the
K-theory framework.

In this situation, the theory of topological quantum chem-
istry (TQC) has been developed to characterize the fragile
topology of FTPs [16–21]. Its central idea is to construct
mappings from real-space orbitals to momentum-space topol-
ogy. According to this theory, a set of exponentially localized,
decoupled orbitals on maximal Wyckoff positions (the high-
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symmetry positions of a space group) in the real space can
induce a nonlocal space-group representation in the momen-
tum space, which is the so-called band representation (BR) or
elementary band representation (EBR) [16–21]. Mathemati-
cally, a BR is a direct sum of EBRs. A band structure shares
the first-order triviality of an atomic limit if its irreducible
representations of the point groups at the momenta in the first
Brillouin zone (BZ) are the same as those of a BR; otherwise,
this band structure carries nontrivial topology [16].

The irreducible representations of the point groups at the
momenta in the first BZ determine whether a band structure
shares the first-order triviality of an atomic limit or carries
nontrivial (first-order or fragile) topology [16]. If a band
structure’s irreducible representations match those of a band
representation, its first-order topology is trivial. Otherwise, it
is topologically nontrivial.

To be more precise, a subtraction of EBRs, which topo-
logically cannot be transformed into a BR, maps to a set of
fragile topological bands (FTBs), and a representation outside
the first-order trivial and fragile-topological classes maps to
a band structure with stable first-order topology [16]. The
former mapping properly manifests the fragility of fragile
topology: the obstruction of transforming a subtraction of
EBRs into a BR disappears after the addition of those EBRs
that have been subtracted.

The subtraction of EBRs represents a split band structure
that consists of two subspaces: in most cases, the lower one
is fragile topological and the upper one possesses a “practi-
cal” Wannier obstruction [33–37], namely, electronic bands
with this obstruction adiabatically connect to the so-called
obstructed atomic limits (OALs) [16] where the localized
orbitals do not coincide with any of the ionic sites in the
unit cell. These bands are hereafter referred to as OALs for
simplicity.

According to Refs. [6–8], an OAL directly brings about
a second-order topology because of the special position of
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FIG. 1. (a) Diagram of a TKL and its first BZ. a1, a2, b1, b2 are basis vectors in real space and momentum space, respectively. NN hoppings
with energies t and t ′ are represented by black and orange bonds, respectively. NNN hoppings with energies tNNN and t ′

NNN are represented by
yellow dashed and blue solid bonds, respectively. Those anticlockwise Haldane-model-like hoppings with energy tSOC are represented by green
dashed arrows. Wyckoff positions 1a and 3c are indicated in this diagram. (b) Band structure of HTB

NN along the path M − K ′ − � − K − M (in
b1 + b2 direction), with t = 1 and t ′ = 0.2t . The top, middle, and bottom groups and their corresponding EBRs are indicated in this spectrum.
[(c), (d )] Wilson-loop spectra of the upper and lower sets of FTBs. Red and blue spectral lines belong to different FTBs from the same set.
Despite that the upper set is flatter than the lower set, they exhibit the same Wilson-loop spectrum because of their identical momentum-space
representations. The Wilson loop along b2 and the integral loop along b1 are indicated by yellow and black dashed lines in BZ, respectively.

its Wannier center, which also gives rise to extra fractional
charge distribution on the corners of a finite lattice (details
are demonstrated in Appendix A). Therefore, when a FTP is
complementary to an OAL (i.e., all the bands under the OAL,
including the FTBs, are filled), it hosts fractional corner states
under open boundary conditions [33–37].

As for higher-order topology, it is actually included in the
first-order trivial class because the OALs can exhibit nontriv-
ial higher-order topology that can be identified through TQC
methods. The term “stable topology” is commonly used to
refer to first-order topology, and there is no reasonable def-
inition of whether a second-order topological phase (SOTP)
is stable or not. For example, we can consider coupling a
two-dimensional SOTP with a two-dimensional first-order
topological phase (with a Chern number of 1), and the
original zero-dimensional corner states will be replaced by
one-dimensional edge states. The SOTPs of the first-order
topological phase (FOTP) are trivial, but coupling it with a
SOTP makes the second-order phase disappear. According
to the definition of fragile topology, it seems that this SOTP

should be defined as a second-order fragile topological phase.
However, when this process also can be seen as coupling an
OAL with a Chern band, it ultimately results in a multiband
structure with a Chern number of 1 and cannot be determined
as a certain fragile topology using TQC methods. Therefore,
because of the lack of clear definition, in this paper stable
topology is only used to refer to first-order topology.

Although stable topological invariants fail to distinguish
FTPs from normal trivial phases, there are clear differences
between them. For example, FTPs react differently towards a
perpendicular magnetic field. In this magnetic field, electrons
on 2D lattices exhibit a kind of fractal structure in energy
spectra called the Hofstadter butterly [38]. Since the Landau
levels (LLs) of a set of trivial electronic bands are bounded
inside the energy span of this set in the zero-field limit, the
Hofstadter butterfly of a trivial set shall never connect to the
one of another trivial set if these sets are isolated from each
other before the presence of the magnetic field. Interestingly,
FTPs exhibit connected Hofstadter butterfly spectra, which
manifests their nontrivial nature [12–15,37,39–41].
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TABLE I. The irreducible representations at �, K , and M for the three groups of bands, the two sets of FTBs, and the three EBRs of P6mm.
By comparing these irreducible representations, we find that the top and bottom groups match the EBR A1 ↑ G(3c) and the middle one matches
B2 ↑ G(3c). Similarly, we subtract A1 ↑ G(1a) from A1 ↑ G(3c) and obtain the representations of the two sets of FTBs. The notations used
here are from the Bilbao Crystallographic Server [51–53]. The number in brackets behind an irreducible representation denotes its dimensions,
and the letter in brackets behind an EBR denotes the Wyckoff positions wherefrom this EBR is induced.

Trivial bands � K M

Top group �1(1) ⊕ �5(2) K1(1) ⊕ K3(2) M1(1) ⊕ M3(1) ⊕ M4(1)
Middle group �4(1) ⊕ �6(2) K2(1) ⊕ K3(2) M1(1) ⊕ M2(1) ⊕ M4(1)
Bottom group �1(1) ⊕ �5(2) K1(1) ⊕ K3(2) M1(1) ⊕ M3(1) ⊕ M4(1)
EBRs
A1 ↑ G(3c) �1(1) ⊕ �5(2) K1(1) ⊕ K3(2) M1(1) ⊕ M3(1) ⊕ M4(1)
B2 ↑ G(3c) �4(1) ⊕ �6(2) K2(1) ⊕ K3(2) M1(1) ⊕ M2(1) ⊕ M4(1)
A1 ↑ G(1a) �1(1) K1(1) M1(1)
FTBs
Upper set �5(2) K3(2) M3(1) ⊕ M4(1)
Lower set �5(2) K3(2) M3(1) ⊕ M4(1)

Moreover, FTPs also exhibit nontrivial windings of Berry
phases in Wilson-loop spectra, which definitely indicates their
nontrivial topology. Therefore, these spectra have been widely
analyzed to study the difference between FTPs and normal
trivial phases. In this paper, we focus on examining the FTP
on a triangular kagome lattice (TKL) [42–50] and its bulk
boundary correspondence. Compared to the kagome lattice,
we find that the more frustrated structure of the TKL becomes
an advantage for hosting various topological states since more
complicated Wannier obstructions can be created. Last but not
least, we also find a topological phase transition from a SOTP
to a FOTP that can be realized in this lattice.

The rest of this paper is organized as follows: In Sec. II A,
we use the theory of TQC to diagnose the band topology of
several tight-binding (TB) models on a TKL. We compute
the Wilson-loop spectra of two sets of FTBs in Sec. II B and
examine the bulk-boundary correspondence in Sec. II C. In
Sec. III A, we compute the Hofstadter butterfly spectra and
discuss their bounded and connected patterns. In Sec. III B,
we demonstrate how to realize the transition from a SOTP to
a FOTP by increasing the magnetic field strength. Finally, we
conclude in Sec. IV.

II. FRAGILE TOPOLOGICAL BANDS AND
BULK-BOUNDARY CORRESPONDENCE

A. Symmetry analysis based on TQC

First, we consider a spinless nearest-neighbor (NN) TB
model on the TKL [see Fig. 1(a)],

H
TB

NN
=

∑
<i, j>

⎡
⎣t

∑
α,β

C†
i,αCj,β + t ′ ∑

β ′,β

C†
i,β ′Cj,β

⎤
⎦ + H.c., (1)

where 〈 〉 denotes that only the hoppings between nearest sites
are considered in this summation. The lattice sites of the small
and big triangles in the unit cell are labeled by α(α′)=1, 2, 3
and β(β ′)=4, 5, 6, 7, 8, 9, respectively. To be specific, in
Fig. 1(a), black dots labeled by 1, 2, 3 form the big triangles,
and orange dots labeled by 4, 5, 6 or 7, 8, 9 form the small
triangles. The space group of the TKL is P6mm (No. 183), and

the point groups of the three high-symmetry momenta in the
BZ [i.e., �=(0,0), K = ( 2π

3 , 2π
3 ), M = ( π

2 , 0)] are C6v , C3v ,
and C2v , respectively.

To be representative, we assume that the energies of the
hoppings along the black and orange bonds in Fig. 1(a) is are
t = 1 and t ′ = 0.2t , respectively. The resulting band structure
is shown in Fig. 1(b), where the nine bands are divided into the
top, middle, and bottom groups. By calculating the irreducible
representations (see Table I), we determine that the top and
bottom groups are represented by the EBR A1 ↑ G(3c) and the
middle group is represented by B2 ↑ G(3c). These two EBRs
are induced by orbitals localized on the 3c Wyckoff positions
[see Fig. 1(a)] in the unit cell, where ionic sites coincide with
the centers of the orbitals. Therefore, no OAL is created and
these groups of bands are normally trivial. Next, We introduce
the next-nearest-neighbor (NNN) hoppings shown in Fig. 1(a)
into the TB model to create FTB structures:

H
TB

NNN
= HNN + HNNN , HNNN

=
∑
〈〈i, j〉〉

⎡
⎣tNNN

∑
α,α′

C†
i,αCj,α′ + t ′

NNN

∑
β ′,β

C†
i,β ′Cj,β

⎤
⎦ + H.c.,

(2)

where 〈〈 〉〉 denotes that the hoppings between next-nearest
sites are also considered in this summation. In this paper, the
term next-nearest hopping refers specifically to the hopping
between two α(β ) sites, not the hopping between one α and
one β site. The latter is useless for creating FTBs and therefore
ignored. With the parameters of the NN hoppings unchanged,
we set the parameters of the NNN hoppings between α sites
and between β sites to be tNNN = 0.6t and t ′

NNN
= 0.4t ′, respec-

tively.
The resulting band structure is shown in Fig. 2(a), where

the top and bottom groups are both split into an OAL and a set
of FTBs (i.e., a two-band subspace hosting fragile topology),
and the middle group remain unchanged, still represented
by B2 ↑ G(3c). The two sets of FTBs, called the upper and
lower sets, are represented by the same subtraction of EBRs
(see Table I): A1 ↑ G(3c) � A1 ↑ G(1a). It indicates that they
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FIG. 2. (a)–(c) Band structures of H
TB

NNN
for (a) periodic boundary conditions, (b) open boundary condition in a1 direction (L1 = 200),

and (c) open boundary conditions in a1 and a2 directions (L1 = L2 = 30), with tNNN = 0.6t , t ′
NNN = 0.4t ′, and t ′=0.2t . (d)–(f) Similar band

structures of H
TB

SOC
with tSOC = 0.3t and t ′=0.3t . In (c) and (f), the energy spectrum on the left shows the fractional corner states marked by red

dots, and the diagram on the right shows the distribution of the corner states on the 30 × 30 TKL. Chiral edge states appear in (e), and those
in the first and second gaps (counted from the bottom) are redrawn and highlighted in red in the inset in (f). Black dashed rectangles in (a) and
(d) draw the energy ranges of the spectra and insets in (c) and (f), respectively.

are indeed fragile topological, which can be confirmed by
calculating the Wilson-loop spectrum (see Sec. II B). As for
the band represented by A1 ↑ G(1a), it is identified as an OAL
since no ionic site coincides with the 1a Wyckoff position in
the unit cell [see Fig. 1(a)]. Even though the band structure
seems to be completely changed, all the degeneracies at high-
symmetry points are still preserved because the space-group
symmetry remains unchanged. Besides, the NNN hoppings
have no effect on time-reversal symmetry T because of their
real hopping parameters.

B. Wlison loop spectra

Even though the two sets of FTBs both have a zero Chern
number, their nontrivial topology can be manifested in the
Wilson-loop spectrum. First, we define the Wilson-loop op-
erator wk [23], which is constructed by the wave functions ψ1

and ψ2 of the two FTBs from the same set,

wk = [
ψ1

k, ψ
2

k

]
, (3)

where k = k1b1 + k2b2, with k1, k2 ∈ [0,2π ]. This operator
is discretized into N2 operators when periodic conditions are

applied to the boundaries of a N × N TKL. Next, while keep-
ing k2 fixed, we multiply all the discretized Wilson operators
along an integral loop in the b1 direction [23]:

W (k2) =
N−1∏
n=0

w
†
n·2π

N ,k2
× w (n+1)·2π

N ,k2
. (4)

By calculating the eigenvalues of −i ln W (k2), we obtain the
Berry phases of the two FTBs along the one-dimensional
integral loop that starts at (0,k2). As k2 circulates around
the Wilson loop (i.e., a closed path around the BZ along b2
direction), the one-dimensional Berry phases of the two FTBs
evolve from −π (π ) to π (−π ) as shown in Figs. 1(c) and
1(d), contributing opposite winding numbers (n = ±1). This
is a Z classification introduced in the Wilson loop to diagnose
the topology of connected subspaces in which every band
crosses with each other.

In fact, it is the combined symmetry C2zT that protects
these nontrivial windings [17,21,23]. Here are the reasons: (1)
After the addition of the NNN hoppings, T is still preserved
and enforces the Chern number of each set of FTBs to be zero,
which consequently protects the opposite winding numbers.
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TABLE II. C2z eigenvalues of the two sets of FTBs at � and M.

FTBs � M

Upper set 2 −2
Lower set 2 −2

(2) By calculating the C2z eigenvalues of each set of FTBs in
the BZ, we find that the signs of these eigenvalues are opposite
at � and M (see Table II). This difference of a minus sign sym-
bolizes a phase difference of π between the wave functions
at the two points, which explains the nontrivial windings of
Berry phases from � to M along the Wilson loop. (3) In this
2D spinless model, C2z rotates k to −k around the out-of-plane
z axis and T reverses −k back to k, keeping every momentum
k in the BZ fixed. Therefore, C2zT is preserved everywhere
in the BZ, including in the Wilson loop. As a result, the
continuity of the evolution of the Berry phases along this loop
is ensured by this combined symmetry.

C. Fractional corner states hosted by an OAL insulator

We apply the open boundary conditions in a1 and a2
directions to cut the TKL into a 30 × 30 lattice and then
calculate the energy spectrum of H

TB

NNN
to examine the bulk-

boundary correspondence of the FTBs. The results are shown
in Fig. 2(c), where two isolated degenerate states appear in the
gap above the upper set of FTBs. By looking into the distribu-
tion of their wave functions on the finite TKL, we determine
that these states are SOTPs with fractional distribution at the
corners, which, according to Refs. [6–8,33–37], are created by
the OAL above them. (see more details in Appendix A).

Given that FTBs are always accompanied by OALs, one
might expect this second-order bulk-corner correspondence to
be a fingerprint of FTPs. However, we find that an OAL and its
corner states appear without the accompany of FTBs, which
implies that the presence of OALs is not a sufficient condition
to the fragile topology. To demonstrate this phenomenon, first,
we replace the NNN hoppings with the Haldane-model-like
ones [see Fig. 1(a)] to break T . These terms are still referred to
as the spin-orbit-coupling (SOC) terms even though our model
is spinless. They can be considered as the hoppings between
orbitals with the same spin (e.g., ↑ or ↓). The TB Hamiltonian
then becomes

H
TB

SOC
= HNN + HSOC , HSOC

=
∑
β ′,β

exp(iφ(rβ ′ − rβ ))tSOCC†
β ′Cβ + H.c., (5)

where exp(iφ(rβ ′ − rβ ))=(±)i when the hoppings are anti-
clockwise (clockwise), as indicated in Fig. 1(a). Apparently,
these hoppings are endowed with in-plane chiralities by their
phase factors. Hence, T is broken due to the imaginary phase
factors, and all the mirror symmetries of P6mm with mirror
planes perpendicular to the plane of Fig. 1(a) are also broken,
since no in-plane chirality is invariant after undergoing these
reflections.

Consequently, the space-group symmetry is reduced from
P6mm (No. 183) to P6 (No. 168), which lifts all the degenera-
cies at � and K and splits the bottom group into three single

bands, as shown in Fig. 2(d). The middle band is an OAL
represented by the EBR E1 ↑ G(1a), whereas the other two
bands cannot be represented by any one-dimensional EBRs
or subtractions of EBRs and therefore carry opposite Chern
numbers (C = ±1). Naturally, a pair of edge states with op-
posite chiralities appears in the gaps between the two bands
and the OAL, as shown in Fig. 2(e). Besides, as shown in
Fig. 2(f), two pairs of isolated states (each pair consists of
two degenerate states) manifest themselves on the corners of
the 30 × 30 TKL, with their energies lying in the gap above
the three bands. If all the bands under this gap are filled, this
system turns into an OAL insulator which hosts fractional
corner states.

III. PRESENCE OF MAGNETIC FIELDS

A. Hofstadter butterfly spectra

To compute the Hofstadter butterfly spectrum, first we
choose the Landau gauge A(r)=(0, φr · a1) to introduce a uni-
form magnetic field, where A is the magnetic vector potential
and φ is the magnetic flux per unit cell. In this gauge, the
r dependence of the nonzero component of A along the a1
direction breaks the translational invariance in this direction.
However, at a commensurate φ=2π

p
q (i.e., the two integers

p and q are coprime), the broken translational invariance is
restored with the cost of making the unit cells q times larger.
Correspondingly, the first BZ shrinks, with k1 ∈ [0, 2π

q ] and
k2 ∈ [0, 2π ].

In the magnetic field, every hopping along a Peierls path
acquires an extra phase factor exp(iθ (r − r′)) via the Peierls
substitution, where the argument θ (r − r′) can be calculated
through an integral along the Peierls path [37]:

θ (r − r′) =
∫

Cr′→r

A(r) · dr. (6)

In this paper, we choose the Peiels paths to be straight lines
connecting ionic sites. Now we give the Hofstadter Hamilto-
nians for the TB models on the TKL:

H
Hof =

∑
i, j,α,β

exp(iθ (ri,α − r j,β ))ti, j,α,β · C†
i,αCj,β + H.c., (7)

where H
Hof ≡ H

Hof

NN
(H

Hof

NNN
) for H

TB

NN
(H

TB

NNN
). We diagonalize these

Hamiltonians in the enlarged magnetic unit cell and show the
resulting Hofstadter butterfly spectra in Figs. 3(a) and 3(b).

As shown in Fig. 3(b), each set of FTBs connects to
its complementary OAL when the magnetic field is present,
manifesting its nontrivial topology, whereas the middle group
represented by the EBR B2 ↑ G(3c) always stays bounded no
matter how strong the magnetic field becomes. The black part
in Fig. 3(b) indicates that the gap between the upper (lower)
FTBs and OAL closes once and then opens again within the
domain (2π, 11π

4 ). Therefore, FTBs and OAL are correlated
with each other and combine as an ensemble that jointly
contributes to the connecting Hofstadter butterfly.

Considering that the bounded pattern of the middle group
comes from its topological trivial nature, it is reasonable to
expect that the top and bottom groups that are classified as
A1 ↑ G(3c) are also bounded. However, Fig. 3(a) shows the
anomalous expansions of these groups, which becomes an
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FIG. 3. (a), (b) Hofstadter butterfly spectra for (a) H
Hof

NN
and (b) H

Hof

NNN
, with the same parameters of Figs. 1(b) and 2(a), respectively. In (a),

the Hofstadter butterflies of the top and bottom groups expand towards the middle group. In (b), the connected parts of the Hofstadter butterflies
are painted red. (c), (d) Energy spectra of H

Hof

NNN
with open boundary condition in a1 direction at (c) φ = 2π

q (q = 200) and (d) φ = 2π . In (c),
the inset on the right exhibits two degenerate corner states marked by red dots. In (d), chiral edge states are represented by red lines.

intriguing issue. We conjecture that the T -breaking effect of
the magnetic field, which can lift the degeneracies at high-
symmetry points and create isolated Chern bands [as in the
case of Fig. 2(d)], causes the expansions. It also explains the
connections between FTBs and OALs, since the T -breaking
magnetic field can simultaneously break C2zT and split each
set of FTBs into two Chern bands.

As for the middle group, it is immune from being affected
by the magnetic field because of its solid trivial nature, i.e.,
this group of bands adiabatically turns into a trivial flat band
when t ′ gradually decreases to zero. Considering that the
expanded and bounded groups are represented by different
EBRs, we believe that the theory of TQC may catch some
implicit differences between these two trivial band structures,
which are waiting for more explorations.

B. Topologcial phase transition from a SOTP to a FOTP

The expanded and connected patterns of Figs. 3(a) and 3(b)
indicate that nontrivial LLs can be shifted under the action
of a magnetic field with increasing strength, which enables a
topological phase transition from a SOTP to a FOTP in the
TKL. First, we search for a gap wherein corner states already
exist before the presence of a magnetic field. When all the
levels under this gap are filled, a SOTP appears on the lattice.

After the shifts of the LLs with nonzero Chern numbers from
the unoccupied subspace to the occupied subspace across the
gap, a FOTP appears and exhibits topological states on edges
instead of on corners, which symbolizes the completion of the
transition.

On the basis of the discussion in Sec. II C, we choose
the gap between the upper set of FTBs and its comple-
mentary OAL as our candidate. While the magnetic field
is barely introduced (φ= 2π

q ), the SOTP is preserved since
the corner states still exist in this gap [see Fig. 3(c)]. At
φ=2π , the Chern number of the occupied bands becomes
1 from zero and the corner states are submerged into chiral
edge states [see Fig. 3(d)], which indicate the transition to
the FOTP.

Generally speaking, it is difficult but not impossible to
create such a strong magnetic field that squeezes a magnetic
flux quantum into one unit cell. Recently, researchers have
realized some many-body phases of twisted-bilayer graphene
at 2π flux in experiments [54,55], encouraging us to consider
realizing this transition in a twisted-bilayer TKL.

IV. CONCLUSION AND DISCUSSION

Considering the recent popularity of kagome metals
[56–58] and insulators with nontrivial topology, we believe

155129-6



FRAGILE TOPOLOGICAL PHASE ON THE TRIANGULAR … PHYSICAL REVIEW B 107, 155129 (2023)

FIG. 4. FL scheme of second-order topological phases in (a) triangular lattice and (b) square lattice. Black dots represent Wannier center,
orange dots represent corner states. Blue arrows are polarization vectors.

that it is of great interest to explore the topological physics
behind the more frustrated kagomelike lattices, which can
simultaneously enhance Wannier obstructions and the elec-
tronic correlations. Our paper is a very beginning study in this
direction.

In this paper, we diagnosed the fragile topology of the two
band structures with different energy spans. The windings of
Berry phases and the connected Hofstadter butterflies confirm
their nontrivial topology. During the calculations, we realize
that magnetic fields can release implicit details of topologi-
cal band structures to create and shift nontrivial LLs, which
eventually gives rise to the connected Hofstadter spectrum.
However, a trivial band structure represented by A1 ↑ G(3c)
also exhibits an expanded pattern in the magnetic field, which
is different from the bounded group represented by B2 ↑
G(3c). We believe that the trivial nature of the expanded group
is less solid than the bounded group and that the difference
between these two trivial band structures is captured by the
theory of TQC, which demonstrates that a classification could
exist between the trivial and fragile toplogy.

By examining the bulk-boundary correspondence, we find
that the presence of OALs and corner states is not a suffi-
cient condition of fragile topology, which makes us wonder
whether it is possible to find a FTP without the presence
of complementary OALs. It is of great interest to explore
the bulk-boundary correspondence of this kind of FTP. Last
but not least, considering that it is experimentally realiz-
able to reach one quantum flux in the moire unit cell of
twisted-bilayer structures, we are inspired to explore possible
applications of the topological phase transition in a twisted-
bilayer TKL.
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APPENDIX A: CONNECTION BETWEEN WANNIER
CENTER AND SECOND-ORDER TOPOLOGY

In this Appendix, we want to discuss the connection
between the position of Wannier center and second-order
topology. Benalcazar et al. calculated the Wilson loop of two
occupied bands in a four-band model in a square lattice and
found that the Berry phase of the two occupied bands did not
reach π

2 on the entire Wilson loop [6]. This seems to imply
that there is no obstructed atomic limit in the band structure
of this model. However, they then used the nested Wilson loop
method to reassign the two intersecting occupied bands as two
separated Wannier bands and calculated the Wannier centers
of these two bands, and found that both were located at (see
Fig. 4) R

2 , which is the middle position between two adjacent
unit cells [6]. In the original paper, the polarization vectors of
the Wannier bands defined by the nested Wilson loop method
were calculated. This is a higher-order topological invariant,
which is essentially the average of the Berry phase obtained
along the x or y direction and thus equivalent to the Wannier
center in physical meaning. Therefore, the Wannier centers of
the occupied bands are indeed separated from the lattice sites.

Song et al. also discussed in detail the relationship between
SOTPs in square lattices and the Wannier centers of occupied
bands [7]. Ezawa further clarified this relationship by propos-
ing a SOTP that appears in Kagome lattices [8]. Essentially,
this work constructed one-dimensional SSH models on each
edge of a triangular lattice and tuned them to the nontriv-
ial phase, resulting in zero-dimensional boundary states at
the corners where these SSH models intersect. The proposed
second-order topological index in this paper is the sum of the
squares of the polarization vectors on the three edges of the
triangular lattice. Since the polarization vector is equivalent
to the Wannier center, this topological index actually gives the
distance between the Wannier center of the occupied band and
the origin. This paper showed that in the nontrivial phase, the
topological index of the occupied band (which has only one
band) is 1

2 , indicating that the Wannier center of this band is
located at (see Fig. 4) R

2 . Therefore, in this second-order phase
within a triangular lattice, the Wannier center of the occupied
band still does not coincide with the lattice sites.

In conclusion, the separation of the Wannier center from
ionic sites directly brings about second-order topology. The
mechanism behind this phenomenon can be explained by the
modern polarization theory which use Wannier center to de-
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FIG. 5. Scheme of the C2z rotation. Sites in different unit cells are
related by the rotation:1 ↔ 1, 2 ↔ 2, 3 ↔ 3, 4 ↔ 9, 5 ↔ 7, 6 ↔ 8.

fine polarization vectors:

P = −e

(2π )3

∫
BZ

Atr (k)d3k = −e

Vcell

occ∑
n

rn

(
mod

eR
Vcell

)
, (A1)

where rn is the Wannier center of the n{\rm th} band in
occupied subspace. The Wannier center of the occupied band
located at R

2 indicates the existence of a polarization vector,
pointing from the center to corners of a lattice. This results in
the separation of positive and negative charges at the center
and causes the charges to move along the direction of the
polarization vector towards the corners, resulting in charge
accumulation at the corners.

APPENDIX B: DETAILS OF THE DERIVATION FOR THE
IRREDUCIBLE REPRESENTATIONS TABLE

We begin by constructing matrix representations of the
symmetry operators of the P6mm space group in real space.
We use the same set of basis vectors as the TB Hamiltonians
defined in the main text and transform these matrices into
momentum space. The resulting matrices depend on wave
vector k and allow us to calculate the symmetry eigenvalues of
each band at every point in the BZ. By comparing the results
with the character table of the point group of each k, we obtain
the irreducible representations presented in Table I.

For example, under C2z rotation with the 1a position as the
center, the orbitals of the system are rotated from one site to
another as shown in Fig. 5. The nonzero matrix elements of

TABLE III. Character table of the point groups of � and M
[51–53].

� E C3z C2z C6z m100 m120

�1 1 1 1 1 1 1
�2 1 1 −1 1 −1 −1
�3 1 1 −1 −1 1 −1
�4 1 1 −1 −1 −1 1
�5 2 −1 0 −1 0 0
�6 2 −1 0 1 0 0

M E C2z m100 m120

M1 1 1 1 1
M2 1 1 −1 −1
M3 1 −1 −1 1
M4 1 −1 1 −1

C2z are contributed by sites that are related by the rotation:

C2z(1, 1) = ei(kx+ky ),C2z(2, 2) = ei·ky ,

C2z(3, 3) = ei(kx+2ky ),C2z(9, 4) = ei( 3kx
2 +ky ),

C2z(7, 5) = ei(kx+ ky
2 ),C2z(8, 6) = ei( 3kx

2 + ky
2 ). (B1)

Since both the point groups of � and M include C2z symmetry,
we can directly calculate C2z characters of the nine bands
at these two points. For an isolated band, its wave functions
at these points form one-dimensional irreducible representa-
tions. Their eigenvalues are simply the characters. For the
upper OAL band, its C2z eigenvalues at � and M are both 1,
and we classify its irreducible representations at � and M as
�1 and M1, respectively, by comparing with the character table
of C6v and C2v (Table III).

When two bands cross at � or M, their degenerate wave
functions at these points form two-dimensional irreducible
representations. We can determine the C2z characters of these
irreducible representations by diagonalizing their 2 × 2 ma-
trix representations and summing the eigenvalues. For the
upper FTB band, which has a twofold degeneracy at �, we
find that its irreducible representation is �5, since the eigen-
values are both 1 and the character is 2. By following this
procedure, we can determine all the irreducible representa-
tions listed in Table I.
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