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Understanding the correlation effects in unconventional topological materials, in which the fermion excitations
take unusual dispersion, is an important topic in recent condensed matter physics. We study the influence
of short-range four-fermion interactions on three-dimensional semi-Dirac semimetal with an unusual fermion
dispersion that is linear along two directions and quadratic along the third one. Based on renormalization group
theory, we find all of 11 unstable fixed points including five quantum critical points, five bicritical points,
and one tricritical point. The physical essences of the quantum critical points are determined by analyzing the
susceptibility exponents for all of the source terms in particle-hole and particle-particle channels. We also verify
phase diagrams of the system in the parameter space through numerically studying the flows of the four-fermion
coupling parameters and behaviors of the susceptibility exponents. These results are helpful for us to understand
the physical properties of candidate materials for three-dimensional semi-Dirac semimetal such as ZrTe5.
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I. INTRODUCTION

In the past 15 years study about topological materials has
become one of the most important fields in condensed matter
physics [1–10]. Topological materials have wide potential
implications as electronic devices due to their fascinating
physical properties. In some topological materials, such as
Dirac semimetal (DSM) including Cd3As2 and Na3Bi and
Weyl semimetal (WSM) including TaAs, TaP, NbAs, and
NbP, the low-energy fermion excitations are Dirac fermions
or Weyl fermions, which resemble the elementary particles in
high energy physics. Thus these materials provide a platform
to verify some important concepts in high energy physics.

Besides Dirac and Weyl fermions, there could be uncon-
ventional fermions with unusual dispersion in topological
materials. In double (triple) WSM, the fermion dispersion
is quadratic (cubic) along two directions and linear along
the third one [11,12]. Semi-DSM emerges at the topologi-
cal quantum critical point (QCP) between DSM and band
insulator [13,14]. For two dimensional (2D) semi-DSM, the
dispersion of fermion excitations is linear along one direc-
tion and quadratic along another one. For three dimensional
(3D) semi-DSM, the fermion dispersion is linear along two
directions and quadratic along the third one as shown in
Fig. 1. Higher spin fermions with multiband crossing have
also attracted a lot of interest recently [15–17]. Spin-1 chiral
fermions characterized by a combination of a Dirac-like band
and a flat band with three-bands crossing and spin-3/2 chiral
fermions displaying a birefringent spectrum with two distinct
fermion velocities have been observed recently [18–22].
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The correlation effects in Dirac and Weyl fermion systems
are extensively studied and are well understood relatively
[23–34]. The influence of many-body interaction on uncon-
ventional fermion systems also attracted much interest and is
an important topic. There have been studies about influence
of long-range Coulomb interaction [35–51], short-range four-
fermion interaction [52–57], and quantum fluctuation of order
parameter [58–61] on some unconventional fermion systems.
These studies revealed many novel behaviors, such as vari-
ous quantum phase transitions, non-Fermi liquid behaviors,
anisotropic screening effect, etc. These studies also showed
that the correlation effects in unconventional fermion systems
depend on the fermion dispersion subtly. For 2D semi-DSM,
Isobe et al. showed that long-range Coulomb interaction re-
sults in non-Fermi liquid behaviors in a wide intermediate
energy range and marginal Fermi liquid behaviors in the low-
est energy regime [39]. However, for 3D semi-DSM, it was
revealed that long-range Coulomb becomes irrelevant in the
lowest energy regime and the system exhibits Fermi liquid
behaviors [37,38].

There are still some important open questions about the
correlation effects in unconventional fermion systems. An in-
sightful study about the influence of short-range four-fermion
interactions on 2D semi-DSM was performed by Roy and
Foster [54]. However, the effects of short-range four-fermion
interactions in 3D semi-DSM is an urgent question, which is
yet to be resolved. In this article, we provide a comprehensive
study for this question through renormalization group (RG)
theory.

II. MODEL

The free action for 3D semi-DSM can be written as

S0 =
∫

dω

2π

d3k
(2π )3

�̄(ω, k)γ0[iω + H(k)]�(ω, k), (1)
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FIG. 1. Energy dispersion of fermions in 3D semi-DSM.

where the Hamiltonian density H(k) is given by

H(k) = γ0
(
ivγ1k1 + ivk2γ2 + iAk2

3γ3
)
, (2)

with v and A being model parameters. � is a four compo-
nent spinor and �̄ = �†γ0. The gamma matrices are defined
as γ0 = τ3 ⊗ σ0, γ1 = τ2 ⊗ σ1, γ2 = τ2 ⊗ σ2, γ3 = τ2 ⊗ σ3,
and γ5 = τ1 ⊗ σ0, where τ1,2,3 and σ1,2,3 are Pauli matrices.
It is easy to verify that γ5 = γ0γ1γ2γ3. The gamma matri-
ces satisfy the anticommutation relation {γμ, γν} = 2δμν for
μ, ν = 0, 1, 2, 3, 5. The gamma matrices have the following
properties:

γ †
μ = γμ, (3)

γ ∗
0,2,5 = γ0,2,5, γ ∗

1,3 = −γ1,3, (4)

γ T
0,2,5 = γ0,2,5, γ T

1,3 = −γ1,3. (5)

The energy dispersion of fermions takes the form E (k) =
±

√
v2k2

⊥ + A2k4
3 , where k2

⊥ = k2
1 + k2

2 . Density of states

(DOS) is given by ρ(ω) ∝ ω3/2/(v
√

A), which vanishes at the
Fermi level.

The fermion action S0 is invariant under the discrete trans-
formations including parity (P), time reversal (T ), and charge
conjugation (C). Under parity transformation, the fermion
spinor fields satisfy

P�kP−1 = iγ1γ2�−k, (6)

P�̄kP−1 = −�̄−kiγ2γ1. (7)

Utilizing time-reversal transformation, we have

T �kT −1 = −iγ1γ5�−k, (8)

T �̄kT −1 = �̄−kiγ5γ1. (9)

It should be noted that T iT −1 = −i. The realization of charge
conjugation on spinor fields reads as

C�kC−1 = −iγ0γ1�
∗
k = −(�̄kiγ1)T , (10)

C�̄kC−1 = −(iγ1�k )T . (11)

The fermion action S0 remains invariant under a continuous
global U (1) chiral rotation

�k → eiθγ5�k, (12)

�̄k → �̄keiθγ5 . (13)

The fermion action S0 is also symmetric under a discrete Z2

chiral transformation

�k → γ5�k, (14)

�̄k → −�̄kγ5. (15)

The O(2) rotation about the z axis is generated by

Rz(φ) = e
iφ
03

2 , (16)

where 
03 = τ0 ⊗ σ3. We notice that 
03 can also be ex-
pressed by 
03 = iγ5γ0γ3. Under the O(2) transformation,

Rz(φ)ĥ(k)R−1
z (φ) = ĥ(k′), (17)

where

k′
1 = k1 cos(φ) + k2 sin(φ), (18)

k′
2 = −k1 sin(φ) + k2 cos(φ), (19)

k′
3 = k3. (20)

Thus S0 is invariant under the O(2) rotation. For φ = π
2 ,

Rz

(π

2

)
= e

iπ
03
4 , (21)

which is just the C4 rotation about the z axis.
If the four-fermion interaction is weak, it is irrelevant in

3D semi-DSM, due to the vanishing DOS. However, if the
four-fermion interaction is strong enough, the system could
be driven to a new phase. As shown in Appendix A, there are
12 kinds of four-fermion interactions. Due to the constraint by
Fierz identity, five of them are linearly independent. Here, we
consider the interacting Lagrangian as follows:

Lint = g1(�̄γ0�)2 + g2(�̄�)2 + g4(�̄γ0γ5�)2

+ g5(�̄iγ5�)2 + g3z(�̄γ0γ3�)2. (22)

In this article, we study the influence of four-fermion interac-
tions on 3D semi-DSM through the RG method [62].

III. MEAN-FIELD RESULTS

In this section, taking the four-fermion interaction
g2(�̄�)2 as an example, we first show the results of mean-
field analysis.

Under the influence of short-range four-fermion interaction
g2(�̄�)2, the expectation value

�2 = 〈�̄�〉 (23)

could become finite. According to the derivation shown in
Appendix B, we obtain the free energy density

f = −4T
∫

d3k
(2π )3

ln

[
2 cosh

(
Ek,�2

2T

)]
+ �2

2

2g2
, (24)

where Ek,�2 =
√

v2k2
⊥ + A2k4

3 + �2
2.

Through

∂ f

∂�2
= 0, (25)
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FIG. 2. Mean field results. (a) Dependence of �2 on g2 at zero
temperature; (b) dependence of Tc on g2; (c) dependence of �2 on
g2 at different finite temperatures T/�; (d) dependence of �2 on
temperature T with different values of g2/g2c.

we get the self-consistent equation for �2 as follows:

1 = 2g2

∫
d3k

(2π )3
tanh

(
Ek,�2

2T

)
1

Ek,�2

. (26)

At zero temperature, the equation becomes

1 = 2g2

∫
d3k

(2π )3

1

Ek,�2

. (27)

Based on analytical calculation for Eq. (27), we find that
�2 is given by

�2 ≈ c1�
(g2 − g2c)

2
3

g
2
3
2

, (28)

if g2 is close to g2c, where

g2c = 3π2v2
√

A

2�
3
2

(29)

and c1 ≈ 0.662596. Taking �2 = 0 for Eq. (26), we notice
that the critical temperature Tc satisfies

Tc ≈ c2�
(g2 − g2c)

2
3

g
2
3
2

, (30)

if g2 is close to g2c, where c2 = 1/(2
√

2a)
2
3 ≈ 0.622863.

Numerical results are shown in Figs. 2(a)–2(d). In
Fig. 2(a), dependence of �2 on g2 at zero temperature is
depicted. Dependence of critical temperature Tc on g2 is dis-
played in Fig. 2(b). The behaviors of �2 at finite temperature
are shown in Figs. 2(c) and 2(d).

IV. RG RESULTS

As shown in Appendix C, we first calculate all of the
corrections from the one-loop Feynman diagrams, by em-

ploying a momentum shell b� <

√
v2k2

⊥ + A2k4
3 < �, where

b = e−�, with � being the RG running parameter. Then, we
consider these corrections and perform RG transformations
to restore the original form of the actions. Accordingly, we

obtain the RG equations for ga, which can be written as

dga

d�
= −3

2
ga + Fa(g1, g2, g4, g5, g3z ), (31)

where a = 1, 2, 4, 5, 3z. The concrete expressions of Fa can
be found in Appendix C.

Solving the equations

dga

d�

∣∣∣∣
(g1,g2,g4,g5,g3z )=(g∗

1,g
∗
2,g

∗
4,g

∗
5,g

∗
3z )

= 0, (32)

we get 12 fixed points, including the trivial Gaussian fixed
point (g∗

1, g∗
2, g∗

4, g∗
5, g∗

3z ) = (0, 0, 0, 0, 0) and 11 nontrivial
fixed points

FPi: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (g∗

1,i, g∗
2,i, g∗

4,i, g∗
5,i, g∗

3z,i ), (33)

with i = 1, 2, . . . , 11.
Expanding the RG equations of ga in the vicinity of a fixed

point, we obtain

dδga

d�
=

∑
b

Mabδgb, (34)

where δga = ga − g∗
a. M is a five dimension square matrix

and the matrix elements are expressions of g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z.

From eigenvalues of M at a fixed point (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ), we

can get the properties of the fixed point. A negative (positive)
eigenvalue is corresponding to a stable (unstable) eigendirec-
tion [32,34]. There is one unstable direction for QCP, and
there are two and three unstable directions for bicritical point
(BCP) and tricritical point (TCP), respectively. Substituting
the values of g∗

a at each fixed point into the expression of
M, we calculate the corresponding eigenvalues of M. We find
that FP1, FP2, FP3, FP4, and FP5 are QCPs, FP6, FP7, FP8,
FP9, and FP10 are BCPs, and FP11 is a TCP. The detailed
calculations are presented in Appendix E.

For a QCP, the correlation length exponent ν is determined
by the inverse of the corresponding positive eigenvalue of M.
For the five QCPs, ν always satisfies

ν−1 = 1.5. (35)

In order to determine the physical essences of the QCPs,
we analyze the RG flows of all the fermion bilinear source
terms in particle-hole and particle-particle channels. The
source terms in particle-hole channels can be written as

Ss = �X

∫
dω

2π

d3k
(2π )3

�̄(ω, k)
X �(ω, k). (36)

There are 12 choices for the matrix 
X , which corresponds to
12 different order parameters in particle-hole channels. The
source terms in particle-particle channels take the form

Ss = �Y

∫
dω

2π

d3k
(2π )3

�†(ω, k)
Y �∗(ω, k). (37)

There are six choices for the matrix 
Y , which are correspond-
ing to six different superconducting pairings.

As presented in Appendix D, we calculate the one-loop
order corrections to the source terms as shown in Eqs. (36)
and (37) induced by the four-fermion interactions as shown
in Eq. (22). Then, we include these corrections and perform
RG transformations to restore the original forms of the source
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terms. Accordingly, through the RG transformations, we ob-
tain the equations

β̄X,Y = HX,Y (g1, g2, g4, g5, g3z ), (38)

where

β̄X,Y = d ln (�X,Y )

d�
− 1. (39)

β̄X,Y are termed as susceptibility exponents or anomalous
dimensions for the fermion-bilinear source terms. HX,Y are
functions of ga with a = 1, 2, 4, 5, 3z. The concrete ex-
pressions of HX,Y are shown in Appendix D. For a QCP,
substituting the values of ga at the QCP into Eq. (38), and
finding the largest one among all of β̄X,Y , we can determine
the physical meaning of the QCP.

For FP1, β̄2 takes the largest value. It represents that this
fixed point is corresponding to the QCP to a state in which the
order parameter �2 = 〈�̄�〉 acquires finite value. The phys-
ical meaning of �2 is scalar mass. �2 breaks the continuous
U (1) chiral symmetry, but preserves P , T , C symmetries. If
�2 becomes finite, the fermion dispersion becomes Ek,�2 =√

v2k2
⊥ + A2k4

3 + �2
2, which is gapped.

For FP2, β̄5 is the largest one. It means that this fixed point
stands for the QCP to a state in which the order parameter
�5 = 〈�̄iγ5�〉 becomes finite. The physical meaning of �5

corresponds to pseudoscalar mass. �5 breaks continuous U (1)
chiral symmetry and C symmetry, but preserves P and T sym-
metries. Once �5 becomes finite, the corresponding fermion

dispersion can be written as Ek,�5 =
√

v2k2
⊥ + A2k4

3 + �2
5.

For FP3, β̄2 and β̄5 are largest simultaneously. It indicates
that the fixed point corresponds to the QCP to a phase in
which both �2 and �5 become finite. The parameter of this
phase can be written as 〈�̄[cos(θ ) + iγ5 sin(θ )]�〉. In the ax-
ionic insulating phase, the continuous U (1) chiral symmetry
is broken. This phase represents an axionic insulator [33]. In
this case, the fermion dispersion takes the form Ek,�2,�5 =√

v2k2
⊥ + A2k4

3 + �2
2 + �2

5.
If the order parameters �2 and �5 are generated by four-

fermion interactions, the continuous U (1) chiral symmetry is
broken. There will be a gapless Goldstone boson accompanied
with breaking of continuous U (1) chiral symmetry. In real
solid-state materials, some higher-order gradient terms such
as �̄k214×4�, �̄k414×4�, etc. could appear in the action
of free 3D semi-DSM. In this case, the action of free 3D
semi-DSM breaks the continuous U (1) chiral symmetry, but
still satisfies the discrete symmetries including P , T , and C
symmetries. Correspondingly, if �2 and �5 are generated by
four-fermion interactions, we notice that the discrete symme-
try C is broken. Breaking of discrete symmetry will not lead
to a gapless Goldstone mode.

For FP4, β̄7z takes the largest value. It signifies that this
fixed point is corresponding to the QCP to a state in which
the order parameter �7z = 〈�̄iγ5γ3�〉 becomes finite. �7z

stands for axial magnetization along the z axis. �7z breaks
T symmetry, but preserves P , C, and U (1) chiral symme-
tries. If �7z > 0, the original fermion dispersion becomes
two dispersions E±

k,�2
, which can be written as E±

k,�7z
=

TABLE I. There are five QCPs among the 11 nontrivial unstable
fixed points. The corresponding order parameters for the five QCPs
are shown in the second rows.

FP1 FP2 FP3 FP4 FP5

Order parameter �2 �5 �2/�5 �7z �8z

√
v2k2

⊥ + (Ak2
3 ± �7z )2. It is easy to find that one dispersion

E+
k,�7z

is gapped, but another dispersion E−
k,�7z

is gapless

at two points ka = (0, 0,

√
�7z

A ) and kb = (0, 0,−
√

�7z

A ). At
these two gapless points, the fermion dispersion takes the form

EK,�7z =
√

v2K2
⊥ + v2

z K2
z , with vz = 2

√
A�7z and K being

the momentum relative to the point ka or kb. It is obvious that
this fermion dispersion is linear within the xy plane and also
linear along the z axis.

For FP5, β̄8z is the largest one. It suggests that this fixed
point represents the QCP to a state with finite order param-
eter �8z = 〈�̄iγ3�〉. �8z does not break the symmetries of
the free semi-DSM. The physical meaning of �8z is current
along the z axis. If �8z > 0, the fermion dispersion becomes

Ek,�8z =
√

v2k2
⊥ + (Ak2

3 + �8z )2, which is gapped.
For convenience, we summarize the corresponding order

parameters for the five QCPs in Table I.
For general given initial conditions that are decided by

(g1,0, g2,0, g4,0, g5,0, g3z,0), we determine the corresponding
phase through the flows of four-fermion coupling parameters
ga and flows of susceptibility exponents β̄X,Y . We show the
flows of g1, g2, g4, g5, and g3z under several initial conditions
in Fig. 3. If ga with a = 1, 2, 4, 5, 3z approaches zero, it
represents that the system is still in SM phase. If |ga| flows to
infinity at a finite running parameter �c, the system becomes
unstable to a new phase.

FIG. 3. (a)–(e) Flows of g1, g2, g4, g5, and g3z with different
initial conditions g2,0: 0.5 (blue), 1.0 (red), 1.5 (green), 2.0 (black),
and 2.5 (magenta). g1,0 = 0, g4,0 = 0, g5,0 = 0, and g3z,0 = 0 are
taken.
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FIG. 4. Flows of β̄X,Y which approach to positive infinity and
ratios between β̄X,Y . (a),(b) g1,0 = 0.15, g2,0 = 1.3, g4,0 = 0.46,
g5,0 = −0.56, and g3z,0 = 0.055 are taken; (c),(d) g2,0 = 0.14, g2,0 =
−0.59, g4,0 = 0.42, g5,0 = 1.36, and g3z,0 = 0.07 are taken; (e),(f)
g1,0 = 0, g2,0 = 1.4, g3,0 = 0, g5,0 = 0.2, and g3z,0 = 0 are taken.

In order to determine the physical essence of the new
phase, we calculate the flows of the susceptibility exponents
β̄X,Y and compare them. For three general initial conditions,
the flows of β̄X,Y and the ratio between them are presented
in Figs. 4(a)–4(f). Here we only show the susceptibility ex-
ponents that approach positive infinity in Figs. 4(a), 4(c),
and 4(e), respectively. For the initial condition corresponding
to Figs. 4(a) and 4(b), we find that β̄2 approaches positive

infinity most quickly. It means that scalar mass �2 is gener-
ated in the new phase. For the initial condition corresponding
to Figs. 4(c) and 4(d), β̄5 flows to positive infinity with the
largest speed. It indicates that pseudoscalar mass �5 becomes
finite in the new phase. For the initial condition corresponding
to Figs. 4(e) and 4(f), we notice that β̄2 and β̄5 approach pos-
itive infinity most quickly and β̄5/β̄2 → 1. It represents that
the system becomes a new phase where �2 and �5 acquire
finite values simultaneously. Namely, the system becomes an
axionic insulating phase.

The phase diagrams on the planes composed by initial
values of two four-fermion coupling parameters are shown
in Fig. 5. Different phases are marked by different colors. In
Figs. 5(a)–5(j), we show all 10 phase diagrams on the planes
composed by initial values of two coupling parameters chosen
from the five linearly independent coupling parameters. The
initial values of rest of three coupling parameters are taken
as zero. Taking Fig. 5(a) composed by g2,0 and g5,0 as an ex-
ample, we can notice that there are five phases: SM, insulator
with scalar mass �2, insulator characterized by pseudoscalar
mass �5, axionic insulating phase, and a phase with current
along z axis �8z. In Fig. 5(k), we present the phase diagram
composed by g5,0 and g3z,0. In this phase diagram, g1,0, g2,0,
and g4,0 are taken as proper values so that the phase with axial
magnetization along z axis �7z appears in the phase diagram.

The behaviors in the vicinity of a QCP are generally
consistent with those indicated by Sur and Roy [60]. In 3D
semi-DSM, the Yukawa coupling between quantum fluctu-
ation of order parameter and fermion excitations becomes
irrelevant in the low energy regime. Thus the fermions should
take Fermi liquid behaviors in the vicinity of a QCP between
SM phase and a symmetry breaking phase in 3D semi-DSM.

FIG. 5. Phase diagrams on the planes of two initial values of four-fermion coupling strength. (a) g2,0 and g5,0; (b) g2,0 and g1,0; (c) g2,0 and
g4,0; (d) g2,0 and g3z,0; (e) g5,0 and g1,0; (f) g5,0 and g4,0; (g) g5,0 and g3z,0; (h) g1,0 and g4,0; (i) g1,0 and g3z,0; (j) g4,0 and g3z,0; (k) g5,0 and g3z,0.
In (a)–(j), the initial values of rest four-fermion coupling parameters are taken as zero. For example, g1,0 = 0, g4,0 = 0, and g3z,0 = 0 are taken
in (a). In (k), g1,0 = −2.3, g2,0 = 0, and g4,0 = −0.61 are taken.
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Concretely, the residue of fermions Z f approaches a finite
constant value in the lowest energy limit and the Landau
damping rate of fermions 
(ω) satisfies

lim
ω→0


(ω)

ω
→ 0. (40)

Additionally, under the influence of quantum fluctuation of
order parameter, the observable quantities DOS ρ, specific
heat Cv , compressibility κ , and optical conductivities within
the xy plane and along z axis σ⊥⊥ and σzz should respectively
still take the behaviors

ρ(ω) ∼ ω3/2, Cv (T ) ∼ T 5/2, κ (T ) ∼ T 3/2,

σ⊥⊥(ω) ∼ ω1/2, σzz(ω) ∼ ω3/2, (41)

which are qualitatively the same as the ones for free fermions.

V. INTERPLAY WITH COULOMB INTERACTION

In 3D semi-DSM, the long-range Coulomb interaction
becomes irrelevant in the low energy regime [37,38]. Con-
sidering the interplay of short-range four-fermion interactions
and long-range Coulomb interaction, we find that the flow
of Coulomb interaction is not changed and still becomes
irrelevant in the low energy regime, whereas the flows of four-
fermion interactions are modified by Coulomb interaction.
It is shown that Coulomb interaction tends to enhance the
instabilities in particle-hole channels. For the case that all the
initial values of four-fermion coupling strength vanish, if the
Coulomb interaction is strong enough, the four-fermion inter-
actions are generated and become divergent finally driven by
the Coulomb interaction. We notice that the system is driven
into an axionic insulating phase in this case. The detailed
derivation and numerical results are shown in Appendix F.

VI. SUMMARY

To conclude, we perform comprehensive studies about
the influence of four-fermion interactions on 3D semi-DSM
through RG theory. We find 11 unstable fixed points and show
that five of them are QCPs, five are BCPs, and the remaining
one is a TCP. The physical essence of the QCPs are deter-
mined by analyzing the scalings of fermion bilinear source
terms. The phase diagrams for general initial conditions are
also presented through detailed numerical calculations of
flows of four-fermion couplings and susceptibility exponents.

According to the theoretical study by Yang and Nagaosa
[14], the 3D semi-DSM state can be realized at the topo-
logical QCP between 3D DSM and band insulator. Through
magneto-optics and magnetotransport, Yuan et al. observed
the evidence of a 3D semi-DSM phase in ZrTe5 [63]. The
subsequent study about magnetotransport properties of ZrTe5

under hydrostatic pressure also supports the existence of a
3D semi-DSM phase [64]. Recent measurements of optical
spectroscopy in ZrTe5 are also consistent with a 3D semi-
DSM phase [65,66]. A 3D semi-DSM state was also realized
in pressured Cd3As2 [67]. Recently, Monhanta et al. showed
that nonmagnetic tetragonal perovskite oxides with I4/mcm
symmetry, e.g., SrNbO3, CaNbO3, and SrMoO3, host 3D
semi-Dirac fermions which are protected by a nonsymmor-
phic symmetry [68]. The present RG calculation results are

helpful for understanding the physical properties of these can-
didate materials for 3D semi-DSM.
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APPENDIX A: FIERZ IDENTITY

1. Fierz identity for 3D DSM

The four-fermion interactions can be generally written
as form (�̄M�)(�̄N�), where M and N are four di-
mensional matrices. There are 16 independent four-by-four
matrices. Accordingly, there are a possible 16 + 16 × 15/2 =
136 kinds of four-fermion interactions. However, the num-
ber of four-fermion interactions can be drastically reduced
by the symmetries of the system [31–34,52]. The action
of free fermions satisfies the symmetries including parity
symmetry, time-reversal symmetry, charge conjugation sym-
metry, rotation symmetry, etc. We could reduce the number
of four-fermion interactions by these symmetries of action
of free fermions [31–34,52]. The four-fermion interactions
(�̄M�)(�̄N�) with M = N respect these symmetries, but
the four-fermion interactions (�̄M�)(�̄N�) with M 
= N
cannot fulfill these symmetries. Therefore, we do not consider
the four-fermion interactions (�̄M�)(�̄N�) with M 
= N
which are not allowed by the symmetries.

For 3D DSM, the interacting Lagrangian density can be
written as [33]

Lint = g1(�̄γ0�)2 + g2(�̄�)2 + g3

3∑
j=1

(�̄γ0γ j�)2

+ g4(�̄γ0γ5)2 + g5(�̄iγ5�)2

+ g6

∑
〈lk〉

(�̄iγlγk�)2 + g7

3∑
j=1

(�̄iγ5γ j�)2

+ g8

3∑
j=1

(�̄iγ j�)2, (A1)

where ∑
〈lk〉

(�̄iγlγk�)2 = [(�̄iγ2γ3�)2 + (�̄iγ3γ1�)2

+ (�̄iγ1γ2�)2]. (A2)

There are eight kinds of four-fermion couplings. However, not
all of them are linearly independent, due to the constraint by
Fierz identity [31,33,34].

The Fierz identity indicates that [31,33,34]

[�̄(x)M�(x)][�̄(y)N�(y)]

= − 1
16 Tr[M
aN
b][�̄(x)
a�(y)][�̄(y)
b�(x)]. (A3)
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For local interaction, we have x = y. Thus

[�̄(x)M�(x)][�̄(x)N�(x)]

= − 1
16 Tr[M
aN
b][�̄(x)
a�(x)][�̄(x)
b�(x)]. (A4)

Repeat of indexes a and b in Eqs. (A3) and (A4) repre-
sents summation. Substituting each four-fermion coupling in
Eq. (A1) into Eq. (A4), we could get eight equations, which
can be compactly expressed by

FX = 0, (A5)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�̄γ0�)2

(�̄�)2∑3
j=1(�̄γ0γ j�)2

(�̄γ0γ5�)2

(�̄iγ5�)2∑
〈lk〉(�̄iγlγk�)2∑3
j=1(�̄iγ5γ j�)2∑3

j=1(�̄iγ j�)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A6)

and

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1 1 1 1
1 5 −1 −1 −1 1 1 −1
3 −3 3 −3 3 1 −1 1
1 −1 −1 5 −1 −1 1 1
1 −1 1 −1 5 −1 1 −1
3 3 1 −3 −3 3 −1 1
3 3 −1 3 3 −1 3 −1
3 −3 1 3 −3 1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

It is easy to verify that rank of F is 4, namely

Rank(F ) = 4. (A8)

Then, the number of linearly independent couplings is

8 − Rank(F ) = 4. (A9)

For convenience, we take the four couplings

(�̄γ0�)2, (�̄�)2, (�̄γ0γ5�)2, (�̄iγ5�)2 (A10)

as linearly independent couplings. The other couplings

3∑
j=1

(�̄γ0γ j�)2,
∑
〈lk〉

(�̄iγlγk�)2,

3∑
j=1

(�̄iγ5γ j�)2,

3∑
j=1

(�̄iγ j�)2 (A11)

can be expressed by the four independent couplings shown
in Eq. (A10). In order to obtain the concrete expressions for

other couplings, we define

X̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑3
j=1(�̄γ0γ j�)2∑
〈lk〉(�̄iγlγk�)2∑3
j=1(�̄iγ5γ j�)2∑3

j=1(�̄iγ j�)2

(�̄γ0�)2

(�̄�)2

(�̄γ0γ5�)2

(�̄iγ5�)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A12)

It is easy to find that

F̃ X̃ = 0, (A13)

where

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 5 1 1 1
−1 1 1 −1 1 5 −1 −1

3 1 −1 1 3 −3 −3 3
−1 −1 1 1 1 −1 5 −1

1 −1 1 −1 1 −1 −1 5
1 3 −1 1 3 3 −3 −3

−1 −1 3 −1 3 3 3 3
1 1 −1 3 3 −3 3 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A14)

Performing a series of similarity transformations for F̃ ,

F̃ → F̃ ′, (A15)

we obtain

F̃ ′X̃ = 0, (A16)

where

F̃ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 −1 −1 2
0 1 0 0 1 2 −1 −1
0 0 1 0 2 1 1 1
0 0 0 1 1 −1 2 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A17)

Equation (A16) can be equivalently expressed by
3∑

j=1

(�̄γ0γ j�)2 = −(�̄γ0�)2 + (�̄�)2

+ (�̄γ0γ5�)2 − 2(�̄iγ5�)2, (A18)∑
〈lk〉

(�̄iγlγk�)2 = −(�̄γ0�)2 − 2(�̄�)2

+ (�̄γ0γ5�)2 + (�̄iγ5�)2, (A19)

3∑
j=1

(�̄iγ5γ j�)2 = −2(�̄γ0�)2 − (�̄�)2

− (�̄γ0γ5�)2 − (�̄iγ5�)2, (A20)
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TABLE II. Transformation properties of various fermion bilinears under parity (P), time-reversal (T ), charge conjugation (C), Z2 chiral,
U (1) chiral, and O(2) ration transformations. Notice that j = 1, 2 and lk = 23, 31. Here, + (−) represents that the fermion bilinear is even
(odd) under a transformation. In the sixth column, � represents that the bilinear is a scalar under the U (1) chiral transformation. Fermion
bilinears which transform as components of a chiral U (1) vector under the U (1) chiral transformation are marked by circles with the same
color. The colors red, green, and blue correspond to three different chiral U (1) vectors. In the seventh column, 0 (1) stands for the fact that the
bilinear transforms as a scalar (vector) under the O(2) rotation about the z axis.

Bilinear P T C Z2 U (1) O(2)

�̄γ0� + + − + � 0
�̄� + + + − • 0
�̄γ0γ j� − + − − • 1
�̄γ0γ3� + − + − • 0
�̄γ0γ5� + − − + � 0
�̄iγ5� + + − − • 0
�̄iγlγk� − + + − • 1
�̄iγ1γ2� + − − − • 0
�̄iγ5γ j� − + − + � 1
�̄iγ5γ3� + − + + � 0
�̄iγ j� − − − + � 1
�̄iγ3� + + + + � 0

3∑
j=1

(�̄iγ j�)2 = −(�̄γ0�)2 + (�̄�)2

− 2(�̄γ0γ5�)2 + (�̄iγ5�)2. (A21)

2. Fierz identity for 3D semi-DSM

For 3D semi-DSM, the interacting Lagrangian density is
described by

Lint = g1(�̄γ0�)2 + g2(�̄�)2 + g3⊥
2∑

j=1

(�̄γ0γ j�)2

+ g3z(�̄γ0γ3�)2 + g4(�̄γ0γ5�)2 + g5(�̄iγ5�)2

+ g6⊥
∑
〈〈lk〉〉

(�̄iγlγk�)2 + g6z(�̄iγ1γ2�)2

+ g7⊥
2∑

j=1

(�̄iγ5γ j�)2 + g7z(�̄iγ5γ3�)2

+ g8⊥
2∑

j=1

(�̄iγ j�)2 + g8z(�̄iγ3�)2, (A22)

where∑
〈〈lk〉〉

(�̄iγlγk�)2 = [(�̄iγ2γ3�)2 + (�̄iγ3γ1�)2]. (A23)

As shown in Eq. (A1), there are eight four-fermion couplings
for 3D DSM. However, we consider 12 kinds of four-fermion
couplings as shown in Eq. (A22) for 3D semi-DSM, due to
the anisotropy of the fermion dispersion.

After careful derivation, as shown in Table II, we obtain
the properties of each fermion bilinear under the parity (P),

time-reversal (T ), charge conjugation (C), and Z2 chiral, U (1)
chiral, and O(2) rotation transformations. We reduce 136 pos-
sible four-fermion interactions (�̄M�)(�̄N�) by imposing
discrete transformations including P , T , C, and Z2 chiral
symmetries. It is easy to find that both (�̄M�) and (�̄N�)
should be either even or odd under P , T , C, and Z2 trans-
formations, such that the four-fermion interaction is invariant
under all these four individual discrete symmetries. We can
find that there are no two identical rows under these four
symmetry transformations in Table II. Therefore, there exists
no interaction term (�̄M�)(�̄N�) with M 
= N that mixes
any two different fermion bilinears.

Substituting each four-fermion coupling in Eq. (A22) into
Eq. (A4), we could get 12 equations, which can be compactly
expressed by

FX = 0, (A24)

where

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(�̄γ0�)2

(�̄�)2∑2
j=1(�̄γ0γ j�)2

(�̄γ0γ3�)2

(�̄γ0γ5�)2

(�̄iγ5�)2∑
〈〈lk〉〉(�̄iγlγk�)2

(�̄iγ1γ2�)2∑2
j=1(�̄iγ5γ j�)2

(�̄iγ5γ3�)2∑2
j=1(�̄iγ j�)2

(�̄iγ3�)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A25)
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and

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 1 1 1 1 1 1 1 1 1 1 1
1 5 −1 −1 −1 −1 1 1 1 1 −1 −1
1 −1 2 −1 −1 1 0 1 0 −1 0 1
1 −1 −1 5 −1 1 1 −1 −1 1 1 −1
1 −1 −1 −1 5 −1 −1 −1 1 1 1 1
1 −1 1 1 −1 5 −1 −1 1 1 −1 −1
1 1 0 1 −1 −1 2 −1 0 −1 0 1
1 1 1 −1 −1 −1 −1 5 −1 1 1 −1
1 1 0 −1 1 1 0 −1 2 −1 0 −1
1 1 −1 1 1 1 −1 1 −1 5 −1 1
1 −1 0 1 1 −1 0 1 0 −1 2 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A26)

It is easy to find that

Rank(F ) = 7. (A27)

Then the number of linearly independent couplings is

12 − Rank(F ) = 5. (A28)

For convenience, we take the five couplings

(�̄γ0�)2, (�̄�)2, (�̄γ0γ5�)2,

(�̄iγ5�)2, (�̄γ0γ3�)2 (A29)

as linearly independent couplings. The other couplings

2∑
j=1

(�̄γ0γ j�)2,
∑
〈〈lk〉〉

(�̄iγlγk�)2, (�̄iγ1γ2�)2,

2∑
j=1

(�̄iγ5γ j�)2, (�̄iγ5γ3�)2,

2∑
j=1

(�̄iγ j�)2, (�̄iγ3�)2 (A30)

can be expressed by the five independent couplings shown
in Eq. (A29). In order to obtain the concrete expressions for
other couplings, we define

X̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑2
j=1(�̄γ0γ j�)2∑

〈〈lk〉〉(�̄iγlγk�)2

(�̄iγ1γ2�)2∑2
j=1(�̄iγ5γ j�)2

(�̄iγ5γ3�)2∑2
j=1(�̄iγ j�)2

(�̄iγ3�)2

(�̄γ0�)2

(�̄�)2

(�̄γ0γ5�)2

(�̄iγ5�)2

(�̄γ0γ3�)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A31)

It is easy to get that

F̃ X̃ = 0, (A32)

where

F̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 5 1 1 1 1
−1 1 1 1 1 −1 −1 1 5 −1 −1 −1

2 0 1 0 −1 0 1 1 −1 −1 1 −1
−1 1 −1 −1 1 1 −1 1 −1 −1 1 5
−1 −1 −1 1 1 1 1 1 −1 5 −1 −1

1 −1 −1 1 1 −1 −1 1 −1 −1 5 1
0 2 −1 0 −1 0 1 1 1 −1 −1 1
1 −1 5 −1 1 1 −1 1 1 −1 −1 −1
0 0 −1 2 −1 0 −1 1 1 1 1 −1

−1 −1 1 −1 5 −1 1 1 1 1 1 1
0 0 1 0 −1 2 −1 1 −1 1 −1 1
1 1 −1 −1 1 −1 5 1 −1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A33)

Carrying out a series of similarity transformations for F̃ ,

F̃ → F̃ ′, (A34)
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we arrive

F̃ ′X̃ = 0, (A35)

where

F̃ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 1 −1 −1 2 1
0 1 0 0 0 0 0 1 1 −1 0 1
0 0 1 0 0 0 0 0 1 0 −1 −1
0 0 0 1 0 0 0 1 1 1 0 −1
0 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 1 0 1 −1 1 0 1
0 0 0 0 0 0 1 0 0 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A36)

Equation (A35) can also be written as
2∑

j=1

(�̄γ0γ j�)2 = −(�̄γ0�)2 + (�̄�)2 + (�̄γ0γ5�)2 − 2(�̄iγ5�)2 − (�̄γ0γ3�)2, (A37)

∑
〈〈lk〉〉

(�̄iγlγk�)2 = −(�̄γ0�)2 − (�̄�)2 + (�̄γ0γ5�)2 − (�̄γ0γ3�)2, (A38)

(�̄iγ1γ2�)2 = −(�̄�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2, (A39)

2∑
j=1

(�̄iγ5γ j�)2 = −(�̄γ0�)2 − (�̄�)2 − (�̄γ0γ5�)2 + (�̄γ0γ3�)2, (A40)

(�̄iγ5γ3�)2 = −(�̄γ0�)2 − (�̄iγ5�)2 − (�̄γ0γ3�)2, (A41)

2∑
j=1

(�̄iγ j�)2 = −(�̄γ0�)2 + (�̄�)2 − (�̄γ0γ5�)2 − (�̄γ0γ3�)2, (A42)

(�̄iγ3�)2 = −(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2. (A43)

APPENDIX B: MEAN-FIELD ANALYSIS

Here taking the short-range four-fermion interaction
g2(�̄�)2 as an example, we give the details of the deriva-
tion and calculation for the mean-field analysis. Analysis for
other kinds of four-fermion interactions could be carried out
similarly.

1. Derivation of the self-consistent equation

Under the influence of short-range four-fermion interaction
g2(�̄�)2, the expectation value

�2 = 〈�̄�〉 (B1)

could become finite. Considering the order parameter �2, the
fermion propagator can be written as

G(iω, k,�2) = [
iωγ0 + iv(k1γ1 + k2γ2)

+ iAk2
3γ3 + �2

]−1
. (B2)

For finite temperature, we employ the propagator in Matsub-
ara formalism as follows:

G(iωn, k,�2) = [
iωnγ0 + iv(k1γ1 + k2γ2)

+ iAk2
3γ3 + �2

]−1
, (B3)

where ωn = (2n + 1)πT with n being integers and T the
temperature.

The partition function is given by

Z =
∫

D�̄ D� eS

=
∏
ωn

∏
k

∫
D�̄ D� e�̄ωn ,kβG−1(iωn,k,�2 )�ωn ,k e− ∫

dτ
∫

d3x
�2

2
2g2 ,

(B4)

where β = 1
T . Using the functional integral formula∫

Dη̄Dη eη̄Kη = det K, (B5)

we get

Z =
∏
ωn

∏
k

β4 det[G−1(iωn, k,�2)]e− ∫
dτ

∫
d3x

�2
2

2g2 , (B6)

which leads to

ln Z =
∑
ωn

∑
k

ln{β4 det[G−1(iωn, k,�2)]}

−
∫

dτ

∫
d3x

�2
2

2g2
. (B7)
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It is easy to obtain

det[G−1(iωn, k,�2)] = (
ω2

n + E2
k,�2

)2
, (B8)

where

Ek,�2 =
√

v2k2
⊥ + A2k4

3 + �2
2. (B9)

Thus we arrive at

ln Z =
∑
ωn

∑
k

ln
[
β4

(
ω2

n + E2
k,�2

)2]

−
∫

dτ

∫
d3x

�2
2

2g2
. (B10)

Carrying out the summarization of frequency, we get

ln Z = 4
∑

k

ln

[
2 cosh

(
Ek,�2

2T

)]
− βV �2

2

2g2
, (B11)

where V is volume of sample.
The free energy density f and free energy F are defined as

f = F

V = − 1

β
ln Z

= −4T
1

V
∑

k

ln

[
2 cosh

(
Ek,�2

2T

)]
+ �2

2

2g2
. (B12)

Taking the continuous limit by using the replacement

1

V
∑

k

→
∫

d3k
(2π )3

, (B13)

we obtain

f = −4T
∫

d3k
(2π )3

ln

[
2 cosh

(
Ek,�2

2T

)]
+ �2

2

2g2
. (B14)

The self-consistent equation for �2 is determined by

∂ f

∂�2
= 0. (B15)

Concretely, the self-consistent equation is given by

1 = 2g2

∫
d3k

(2π )3
tanh

(
Ek,�2

2T

)
1

Ek,�2

. (B16)

At zero temperature, the equation becomes

1 = 2g2

∫
d3k

(2π )3

1

Ek,�2

. (B17)

2. Solving the self-consistent equation

a. Zero temperature

At zero temperature, the self-consistent equation can be
written as

1 = 2g2

∫
d3k

(2π )3

1√
v2k2

⊥ + A2k4
3 + �2

2

= g2

π2

∫
dk⊥d|k3|k⊥

1√
v2k2

⊥ + A2k4
3 + �2

2

. (B18)

We employ the transformations

E =
√

v2q2
⊥ + A2q4

3, δ = Aq2
3

vq⊥
, (B19)

which are equivalent to

q⊥ = E

v
√

1 + δ2
, |q3| =

√
δ
√

E
√

A(1 + δ2)
1
4

. (B20)

The integration measures satisfy the relation

dq⊥d|q3| =
√

E

2v
√

A
√

δ(1 + δ2)
3
4

dE dδ. (B21)

Utilizing the transformations Eqs. (B19)–(B21), we obtain

1 = g2

2π2v2
√

A

∫ �

0
dE

E
3
2√

E2 + �2
2

∫ +∞

0
dδ

1
√

δ(1 + δ2)
5
4

= g2

π2v2
√

A

∫ �

0
dE

E
3
2√

E2 + �2
2

. (B22)

It can be further written as

1 = g2�
3
2

π2v2
√

A

[∫ 1

0
dx

(
x

3
2√

x2 + (
�2
�

)2
− x

1
2

)
+ 2

3

]
. (B23)

Taking �2 = 0, we can get the critical coupling strength g2c,
which satisfies

g2c = 3π2v2
√

A

2�
3
2

. (B24)

In the limit �2 � �, we have

1 ≈ 2g2�
3
2

3π2v2
√

A

[
1 − 


(
1
4

)



(
5
4

)
√

π

(
�2

�

) 3
2

]

= g2

g2c

[
1 − 


(
1
4

)



(
5
4

)
√

π

(
�2

�

) 3
2

]
. (B25)

Thus �2 is given by

�2 ≈ c1�
(g2 − g2c)

2
3

g
2
3
2

, (B26)

where

c1 =
( √

π



(

1
4

)



(
5
4

)
) 2

3

≈ 0.662596. (B27)

b. Finite temperature

At finite temperature, the self-consistent equation can be
written as

1

g2
= 1

π2

∫
dk⊥d|k3|k⊥

1√
v2k2

⊥ + A2k4
3 + �2

2

× tanh

(√
v2k2

⊥ + A2k4
3 + �2

2

2T

)
. (B28)

155125-11



WANG, LI, AND ZHANG PHYSICAL REVIEW B 107, 155125 (2023)

TABLE III. Energy dispersions of fermion excitations considering different order parameters.

Order parameter Expectation value Energy dispersion

�1 〈�̄γ0�〉 E±
k,�1

= √
v2k2

⊥ + A2k4
3 ± �1

�2 〈�̄�〉 Ek,�2 = √
v2k2

⊥ + A2k4
3 + �2

2

�3⊥
∑

j=1,2〈�̄γ0γ j�〉 E±
k�3⊥ =

√
1
2 v2(k1 + k2 )2 + 2[�3⊥ ± 1

2

√
v2(k2 − k1)2 + 2A2k4

3 ]2

�3z 〈�̄γ0γ3�〉 E±
k,�3z

= √
(vk⊥ ± �3z )2 + A2k4

3

�4 〈�̄γ0γ5�〉 E±
k,�4

= √
v2k2

⊥ + A2k4
3 ± �4

�5 〈�̄iγ5�〉 Ek,�5 = √
v2k2

⊥ + A2k4
3 + �2

5

�6⊥ 〈�̄(iγ2γ3 + iγ3γ1)�〉 E±
k�6⊥ =

√
1
2 v2(k1 + k2 )2 + 2[�6⊥ ± 1

2

√
v2(k2 − k1)2 + 2A2k4

3 ]2

�6z 〈�̄iγ1γ2�〉 E±
k,�6z

= √
(vk⊥ ± �6z )2 + A2k4

3

�7⊥
∑

j=1,2〈�̄iγ5γ j�〉 E±
k,�7⊥ =

√
1
2 (k1 − k2)2 + A2k4

3 + 1
2 (k1 + k2 ± 2�7⊥)2

�7z 〈�̄iγ5γ3�〉 E±
k,�7z

= √
v2k2

⊥ + (Ak2
3 ± �7z )2

�8⊥
∑

j=1,2〈�̄iγ j�〉 Ek,�8⊥ = √
(vk1 + �8⊥)2 + (vk2 + �8⊥)2 + A2k4

3

�8z 〈�̄iγ3�〉 Ek,�8z = √
v2k2

⊥ + (Ak2
3 + �8z )2

Employing the transformations, Eqs. (B19)–(B21), and carry-
ing out the integration of δ, we obtain

1

g2
= 1

π2v2
√

A

∫ �

0
dE

E
3
2√

E2 + �2
2

× tanh

(√
E2 + �2

2

2T

)
. (B29)

Tc is determined by

1

g2
= 1

π2v2
√

A

∫ �

0
dE

√
E tanh

(
E

2Tc

)

= 2
√

2T
3
2

c

π2v2
√

A

[
2

3

(
�

2Tc

) 3
2

tanh

(
�

2Tc

)

−2

3

∫ �
2Tc

0
dx x

3
2

1

cosh2 (x)

]
. (B30)

If Tc � �, the equation can be approximated by

1

g2
≈ 2

√
2T

3
2

c

π2v2
√

A

[
2

3

(
�

2Tc

) 3
2

− 2

3

∫ +∞

0
dx x

3
2

1

cosh2 (x)

]

= 1

g2c
− 2

√
2a

1

g2c

(
Tc

�

) 3
2

, (B31)

where

a =
∫ +∞

0
dx x

3
2

1

cosh2 (x)
≈ 0.719227. (B32)

Then Tc satisfies

Tc ≈ c2�
(g2 − g2c)

2
3

g
2
3
2

, (B33)

where c2 = 1/(2
√

2a)
2
3 ≈ 0.622863.

3. Dispersion of fermions with finite order parameter

Mean-field analysis for other four-fermion couplings can
be performed through similar procedures as subsections B 1
and B 2. For convenience, we show the fermion dispersions
with various finite order parameters in Table III.

If �1 > 0, the original fermion dispersion Ek =√
v2k2

⊥ + A2k2
3 becomes two dispersions E+

k,�1
and

E−1
k,�1

. E+
k,�1

is gapped, whereas, E−
k,�1

is gapless when√
v2k2

⊥ + A2k2
3 = �1. It indicates that the gapless nodal

point becomes gapless on a surface. If �2 > 0, the fermion
dispersion becomes Ek,�2 , which is gapped. If �3⊥ > 0, there
are two fermion dispersions E+

k,�3⊥ and E−
k,�3⊥ . We find that

E+
k,�3⊥ is gapped, but E−

k,�3⊥ is gapless along a nodal line
which is determined by

k1 + k2 = 0, (B34)

1
2

√
v2(k2 − k1)2 + 2A2k4

3 = �3⊥. (B35)

If �3z > 0, one dispersion E+
k,�3z

is gapped, but another dis-
persion E−

k,�3z
is gapless along a nodal line which is decided

by vk⊥ = �3z and k3 = 0. If �4 > 0, the dispersion E+
k,�4

is
gapped, whereas E−

k,�4
is gapless on the surface which satisfies√

v2k2
⊥ + A2k2

3 = �4. If �5 > 0, the corresponding fermion

dispersion Ek,�5 is gapped. If �6⊥ > 0, the dispersion E+
k,�6⊥

is gapped, but the dispersion E−
k,�6⊥ is gapless along a nodal

line which satisfies

k1 + k2 = 0, (B36)

1
2

√
v2(k2 − k1)2 + 2A2k4

3 = �6⊥. (B37)

If �6z > 0, we can find that one dispersion E+
k,�6z

is gapped,
but another dispersion E−

k,�6z
is gapless along a nodal line

which is determined by vk⊥ = �6z and k3 = 0. If �7⊥ > 0,
there are two fermion dispersions E+

k,�7⊥ and E−
k,�7⊥ . It is easy

to verify that E+
k,�7⊥ is gapless at the point (−�7⊥,−�7⊥, 0)

and E−
k,�7⊥ is gapless at (�7⊥,�7⊥, 0). At these two gapless
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FIG. 6. Feynman diagrams for the self-energies of fermions in-
duced by four-fermion interactions. Solid line represents the fermion
propagator and wavy line stands for the four-fermion interaction.

points, the fermion dispersions are still linear within the xy
plane and quadratic along the z axis. If �7z > 0, we can find
that one dispersion E+

k,�7z
is gapped, but another dispersion

E−
k,�7z

is gapless at two points

ka =
(

0, 0,

√
�7z

A

)
, kb =

(
0, 0,−

√
�7z

A

)
. (B38)

At these two gapless points, the fermion dispersion can be
written as

EK,�7z =
√

v2K2
⊥ + v2

z K2
z , (B39)

with vz = 2
√

A�7z and K being the momentum relative to
the point ka or kb. It is clear that this fermion dispersion is
linear within the xy plane and also linear along the z axis. If
�8⊥ > 0, the fermion dispersion Ek,�8⊥ is gapless at the point
(−�8⊥/v,−�8⊥/v, 0). If �8z > 0, the fermion dispersion
Ek,�8z > 0 is gapped.

APPENDIX C: DERIVATION OF THE RG EQUATIONS FOR
THE STRENGTH OF FOUR-FERMION COUPLINGS

1. Self-energy of the fermions

The fermion propagator reads as

G0(iω, k) = − iωγ0 + iv(k1γ1 + k2γ2) + iAk2
3γ3

ω2 + E2
k

, (C1)

where Ek =
√

v2k2
⊥ + A2k4

3 with k2
⊥ = k2

1 + k2
2 . The self-

energy of fermions resulting from Fig. 6(a) takes the form

�1 =
∑

a

ga

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3


aG0(ω, k)
a, (C2)

where ∑
a

≡
∑

a=1,2,4,5,3z

. (C3)

∫ ′ represents that a momentum shell will be properly taken.
Figure 6(b) induces the self-energy of fermions as follows:

�2 =
∑

a

ga

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

Tr[G0(ω, k)
a]. (C4)

Substituting Eq. (C1) into Eqs. (C2) and (C4), we obtain

�1 = 0, (C5)

�2 = 0. (C6)

FIG. 7. One-loop Feynman diagrams for the corrections to the
four-fermion couplings.

It should be noted that a generated constant term in �1 has
been discarded. The generated constant term in self-energy
is also discarded in the study about long-range Coulomb
interaction in 3D semi-DSM [38]. According to Eqs. (C5)
and (C6), the fermion propagator is not renormalized by the
four-fermion interactions to one-loop order.

For the five independent four-fermion interactions shown
in Eq. (22), there is not a constant term in �2 and �2 al-
ways equals zero. If we consider the four-fermion interaction
(�̄iγ3�)2, we can find that there is a constant term in �2.
This constant term is actually a correction for the chemical
potential μ. This constant term could modify the chemical
potential μ from zero to finite and thus drive the Fermi level
away from the node. In this case, we assume that the system
parameters (for example, gate voltage, pressure, etc.) are fine-
tuned in such a way that effective chemical potential is zero.
This way we can study the influence of interactions on 3D
semi-DSM with zero chemical potential.

2. One-loop corrections for the four-fermion couplings

Figure 7(a) leads to the correction

V (1)
a = −2g2

a(�̄
a�)2
∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

× Tr[
aG0(iω, k)
aG0(iω, k)]. (C7)

Figure 7(b) results in the correction

V (2)
a =

∑
b

V (2)
ab , (C8)

where

V (2)
ab = 4gagb(�̄
a�̄ )

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

× [�̄
bG0(iω, k)
aG0(iω, k)
b�]. (C9)
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Figures 7(c) and 7(d) induce the correction

V (3)+(4) =
∑

a

∑
a�b

V (3)+(4)
ab , (C10)

where

V (3)+(4)
ab = 4gagb

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

[�̄
aG0(iω, k)
b�]�̄{[
bG0(iω, k)
a + 
aG0(−iω,−k)
b]}�. (C11)

Substituting Eq. (C1) into Eq. (C7), we obtain

V (1)
a = δg(1)

a (�̄
a�)2, (C12)

where

δg(1)
1 = 0, (C13)

δg(1)
2 = g2

2
2�

3
2

π2v2
√

A
�, (C14)

δg(1)
4 = 0, (C15)

δg(1)
5 = g2

5
2�

3
2

π2v2
√

A
�, (C16)

δg(1)
3z = g2

3z

2�
3
2

5π2v2
√

A
�. (C17)

Substituting Eq. (C1) into Eqs. (C8) and (C9), we find that the contribution from Fig. 7(b) can be written as

V (2)
a = δg(2)

a (�̄
a�)2, (C18)

where

δg(2)
1 = 0, (C19)

δg(2)
2 = (−g2g1 − g2

2 + g2g4 + g2g5 + g2g3z
) �

3
2

π2v2
√

A
�, (C20)

δg(2)
4 = 0, (C21)

δg(2)
5 = (−g5g1 + g5g2 + g5g4 − g2

5 − g5g3z
) �

3
2

π2v2
√

A
�, (C22)

δg(2)
3z = (−g3zg1 + g3zg2 + g3zg4 − g3zg5 − g2

3z

) �
3
2

5π2v2
√

A
�. (C23)

Substituting Eq. (C1) into Eq. (C11), the contribution from Figs. 7(c) and 7(d) can be written as

V (3)+(4)
1,1 = g2

1
�

3
2

5π2v2
√

A
�(�̄iγ3�)2, (C24)

V (3)+(4)
2,2 = g2

2
�

3
2

5π2v2
√

A
�(�̄iγ3�)2, (C25)

V (3)+(4)
4,4 = g2

4
�

3
2

5π2v2
√

A
�(�̄iγ3�)2, (C26)

V (3)+(4)
5,5 = g2

5
�

3
2

5π2v2
√

A
�(�̄iγ3�)2, (C27)

V (3)+(4)
3z,3z = g2

3z

�
3
2

5π2v2
√

A
�(�̄iγ3�)2, (C28)

V (3)+(4)
1,2 = g1g2

2�
3
2

5π2v2
√

A
�

2∑
j=1

(�̄γ0γ j�)2, (C29)

V (3)+(4)
1,4 = g1g4

�
3
2

5π2v2
√

A
�(�̄iγ5γ3�)2, (C30)
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V (3)+(4)
1,5 = g1g5

2�
3
2

5π2v2
√

A
�

∑
〈〈lk〉〉

(�̄iγlγk�)2, (C31)

V (3)+(4)
1,3z = 0, (C32)

V (3)+(4)
2,4 = −g2g4

�
3
2

π2v2
√

A
�(�̄iγ5�)2 + g2g4

�
3
2

5π2v2
√

A
�(�̄iγ1γ2�)2, (C33)

V (3)+(4)
2,5 = −g2g5

�
3
2

π2v2
√

A
�(�̄γ0γ5�)2 + g2g5

2∑
j=1

2�
3
2

5π2v2
√

A
�(�̄iγ5γ j�)2, (C34)

V (3)+(4)
2,3z = −g2g3z

�
3
2

π2v2
√

A
�(�̄iγ3�)2, (C35)

V (3)+(4)
4,5 = −g4g5

�
3
2

π2v2
√

A
�(�̄�)2 + g4g5

�
3
2

5π2v2
√

A
�(�̄γ0γ3�)2, (C36)

V (3)+(4)
4,3z = −g4g3z

�
3
2

π2v2
√

A
�(�̄iγ1γ2�)2 + g4g3z

2∑
j=1

2�
3
2

5π2v2
√

A
�(�̄γ0γ j�)2 + g4g3z

�
3
2

5π2v2
√

A
�(�̄iγ5�)2, (C37)

V (3)+(4)
5,3z = g5g3z

2∑
j=1

2�
3
2

5π2v2
√

A
�(�̄iγ j�)2 + g5g3z

�
3
2

5π2v2
√

A
�(�̄γ0γ5�)2. (C38)

Using the relations shown in Eqs. (A37)–(A43), we further get

V (3)+(4)
1,1 = g2

0
�

3
2

5π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C39)

V (3)+(4)
2,2 = g2

2
�

3
2

5π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C40)

V (3)+(4)
4,4 = g2

4
�

3
2

5π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C41)

V (3)+(4)
5,5 = g2

5
�

3
2

5π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C42)

V (3)+(4)
3z,3z = g2

3z

�
3
2

5π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C43)

V (3)+(4)
1,2 = g1g2

2�
3
2

5π2v2
√

A
�[−(�̄γ0�)2 + (�̄�)2 + (�̄γ0γ5�)2 − 2(�̄iγ5�)2 − (�̄γ0γ3�)2], (C44)

V (3)+(4)
1,4 = g1g4

�
3
2

5π2v2
√

A
�[−(�̄γ0�)2 − (�̄iγ5�)2 − (�̄γ0γ3�)2], (C45)

V (3)+(4)
1,5 = g1g5

2�
3
2

5π2v2
√

A
�[−(�̄γ0�)2 − (�̄�)2 + (�̄γ0γ5�)2 − (�̄γ0γ3�)2], (C46)

V (3)+(4)
1,3z = 0, (C47)

V (3)+(4)
2,4 = g2g4

�
3
2

5π2v2
√

A
�[−(�̄�)2 − 4(�̄iγ5�)2 + (�̄γ0γ3�)2], (C48)

V (3)+(4)
2,5 = g2g5

2�
3
2

5π2v2
√

A
�

[
− (�̄γ0�)2 − (�̄�)2 − 7

2
(�̄γ0γ5�)2 + (�̄γ0γ3�)2

]
, (C49)

V (3)+(4)
2,3z = −g2g3z

�
3
2

π2v2
√

A
�[−(�̄γ0γ5�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2], (C50)

V (3)+(4)
4,5 = g4g5

�
3
2

5π2v2
√

A
�[−5(�̄�)2 + (�̄γ0γ3�)2], (C51)

V (3)+(4)
4,3z = g4g3z

2�
3
2

5π2v2
√

A
�

[
− (�̄γ0�)2 + 7

2
(�̄�)2 + (�̄γ0γ5�)2 − 4(�̄iγ5�)2 − 7

2
(�̄γ0γ3�)2

]
, (C52)

V (3)+(4)
5,3z = g5g3z

2�
3
2

5π2v2
√

A
�

[
− (�̄γ0�)2 + (�̄�)2 − 1

2
(�̄γ0γ5�)2 − (�̄γ0γ3�)2

]
. (C53)
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Thus the contribution from Figs. 7(c) and 7(d) is given by

V (3)+(4) =
∑

a=1,2,4,5,3z

∑
a�b

V (3)+(4)
ab =

∑
a=1,2,4,5,3z

δg(3)+(4)
a (�̄
a�)2, (C54)

where

δg(3)+(4)
1 =

(
− g1g2 − 1

2
g1g4 − g1g5 − g2g5 − g4g3z − g5g3z

)
2�

3
2

5π2v2
√

A
�, (C55)

δg(3)+(4)
2 =

(
g1g2 − g1g5 − 1

2
g2g4 − g2g5 − 5

2
g4g5 + 7

2
g4g3z + g5g3z

)
2�

3
2

5π2v2
√

A
�, (C56)

δg(3)+(4)
4 =

(
−1

2
g2

1 − 1

2
g2

2 − 1

2
g2

4 − 1

2
g2

5 − 1

2
g2

3z + g1g2 + g1g5 − 7

2
g2g5 + 5

2
g2g3z + g4g3z − 1

2
g5g3z

)
2�

3
2

5π2v2
√

A
�, (C57)

δg(3)+(4)
5 =

(
1

2
g2

1 + 1

2
g2

2 + 1

2
g2

4 + 1

2
g2

5 + 1

2
g2

3z − 2g1g2 − 1

2
g1g4 − 2g2g4 − 5

2
g2g3z − 4g4g3z

)
2�

3
2

5π2v2
√

A
�, (C58)

δg(3)+(4)
3z =

(
1

2
g2

1 + 1

2
g2

2 + 1

2
g2

4 + 1

2
g2

5 + 1

2
g2

3z − g1g2 − 1

2
g1g4 − g1g5 + 1

2
g2g4 + g2g5 − 5

2
g2g3z

+ 1

2
g4g5 − 7

2
g4g3z − g5g3z

)
2�

3
2

5π2v2
√

A
�. (C59)

As shown above, the one-loop corrections are proportional to �
3
2 . This characteristic actually is easy to see from the

expressions of the one-loop corrections to four-fermion interactions. From Eqs. (C7) to (C11), we can find that the one-loop
corrections should be proportional to

�
2

z⊥ + 1
z3

�
= �

3
2 , (C60)

where z⊥ = 1 and z3 = 2. The numerator �
2

z⊥ + 1
z3 = �

5
2 comes from the integral measure

∫ ′ d3k. The denominator � results
from the expression of integrand after the integration of energy ω is carried out.

From the above results, we obtain

δga = δg(1)
a + δg(2)

a + δg(3)+(4)
a . (C61)

Concretely,

δg1 =
(

−g1g2 − 1

2
g1g4 − g1g5 − g2g5 − g4g3z − g5g3z

)
2�

3
2

5π2v2
√

A
�, (C62)

δg2 =
(

5

2
g2

2 − 3

2
g1g2 − g1g5 + 2g2g4 + 3

2
g2g5 + 5

2
g2g3z − 5

2
g4g5 + 7

2
g4g3z + g5g3z

)
2�

3
2

5π2v2
√

A
�, (C63)

δg4 =
(

−1

2
g2

1 − 1

2
g2

2 − 1

2
g2

4 − 1

2
g2

5 − 1

2
g2

3z + g1g2 + g1g5 − 7

2
g2g5 + 5

2
g2g3z + g4g3z − 1

2
g5g3z

)
2�

3
2

5π2v2
√

A
�, (C64)

δg5 =
(

1

2
g2

1 + 1

2
g2

2 + 1

2
g2

4 + 3g2
5 + 1

2
g2

3z − 2g1g2 − 1

2
g1g4 − 5

2
g1g5 − 2g2g4 + 5

2
g2g5 − 5

2
g2g3z

+5

2
g4g5 − 4g4g3z − 5

2
g5g3z

)
2�

3
2

5π2v2
√

A
�, (C65)

δg3z =
(

1

2
g2

1 + 1

2
g2

2 + 1

2
g2

4 + 1

2
g2

5 + g2
3z − g1g2 − 1

2
g1g4 − g1g5 − 1

2
g1g3z + 1

2
g2g4 + g2g5 − 2g2g3z

+1

2
g4g5 − 3g4g3z − 3

2
g5g3z

)
2�

3
2

5π2v2
√

A
�. (C66)

3. Scaling transformations

The free action of fermions is

S� =
∫

dω

2π

d3k
(2π )3

�̄(ω, k)
(
iωγ0 + ivk1γ1 + ivk2γ2 + iAk2

3γ3
)
�(ω, k). (C67)
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The fermion self-energy induced by four-fermion interactions to one-loop order vanishes. Thus the form of action S� is not
changed. Employing the transformations

ω = ω′e−�, (C68)

k1 = k′
1e−�, (C69)

k2 = k′
2e−�, (C70)

k3 = k′
3e− �

2 , (C71)

v = v′, (C72)

A = A′, (C73)

� = � ′e
9
4 �, (C74)

the action becomes

S� ′ =
∫

dω′

2π

d3k′

(2π )3
�̄ ′(ω′, k′)

(
iω′γ0 + iv′k′

1γ1 + iv′k′
2γ2 + iA′k′2

3 γ3
)
� ′(ω′, k′), (C75)

which has the same form as the original action.
The original action of four-fermion interactions takes the form

S�4 =
∑

a=1,2,4,5,3z

ga

∫
dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3

dω3

2π

d3k3

(2π )3
�̄(ω1, k1)
a�(ω2, k2)�̄(ω3, k3)
a�(ω1 − ω2 + ω3, k1 − k2 + k3).

(C76)

Including the one-loop order correction, the action becomes

S�4 =
∑

a=1,2,4,5,3z

(ga + δga)
∫

dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3

dω3

2π

d3k3

(2π )3
�̄(ω1, k1)
a�(ω2, k2)�̄(ω3, k3)
a

×�(ω1 − ω2 + ω3, k1 − k2 + k3). (C77)

Utilizing the transformations Eqs. (C68)–(C71) and (C74), we get

S� ′4 =
∑

a=1,2,4,5,3z

(ga + δga)e− 3
2 �

∫
dω′

1

2π

d3k′
1

(2π )3

dω′
2

2π

d3k′
2

(2π )3

dω′
3

2π

d3k′
3

(2π )3
�̄ ′(ω′

1, k′
1)
a�

′(ω′
2, k′

2)�̄ ′(ω′
3, k′

3)
a

×� ′(ω′
1 − ω′

2 + ω′
3, k′

1 − k′
2 + k′

3). (C78)

Letting

g′
a = (ga + δga)e− 3

2 � ≈ ga − 3
2 ga� + δga, (C79)

we obtain

S� ′4 =
∑

a=1,2,4,5,3z

g′
a

∫
dω′

1

2π

d3k′
1

(2π )3

dω′
2

2π

d3k′
2

(2π )3

dω′
3

2π

d3k′
3

(2π )3
�̄ ′(ω′

1, k′
1)
a�

′(ω′
2, k′

2)�̄ ′(ω′
3, k′

3)
a�
′(ω′

1 − ω′
2 + ω′

3, k′
1 − k′

2 + k′
3),

(C80)

which recovers the original form of the action.
From Eq. (C79), we get the RG equation for ga as follows:

dga

d�
= −3

2
ga + dδga

d�
. (C81)
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Substituting Eqs. (C62)–(C66) into Eq. (C81), we find

dg1

d�
= −3

2
g1 − 2

5
g1

(
g2 + 1

2
g4 + g5

)
− 2

5
(g2g5 + g4g3z + g5g3z ), (C82)

dg2

d�
= −3

2
g2 + g2

2 + g2

(
−3

5
g1 + 4

5
g4 + 3

5
g5 + g3z

)
− 2

5
g1g5 + g4

(
−g5 + 7

5
g3z

)
+ 2

5
g5g3z, (C83)

dg4

d�
= −3

2
g4 − 1

5
g2

4 − 1

5

(
g2

1 + g2
2 + g2

5 + g2
3z

) + 2

5
g4g3z + 2

5
g1(g2 + g5) + g2

(
−7

5
g5 + g3z

)
− 1

5
g5g3z, (C84)

dg5

d�
= −3

2
g5 + 6

5
g2

5 + 1

5

(
g2

1 + g2
2 + g2

4 + g2
3z

) + g5(−g1 + g2 + g4 − g3z ) − 2

5
g1

(
2g2 + 1

2
g4

)
− g2

(
4

5
g4 + g3z

)
− 8

5
g4g3z,

(C85)

dg3z

d�
= −3

2
g3z + 2

5
g2

3z + 1

5

(
g2

1 + g2
2 + g2

4 + g2
5

) − 2

5
g3z

(
1

2
g1 + 2g2 + 3g4 + 3

2
g5

)
− 2

5
g1

(
g2 + 1

2
g4 + g5

)

+ 2

5
g2

(
1

2
g4 + g5

)
+ 1

5
g4g5. (C86)

The redefinition

�
3
2 ga

π2v2
√

A
→ ga (C87)

has been employed.

APPENDIX D: SUSCEPTIBILITY OF SOURCE TERMS

We consider the Lagrangian for the source terms as fol-
lows:

Ls = �1�̄γ0� + �2�̄� + �3⊥
2∑

j=1

�̄γ0γ j�

+�3z�̄γ0γ3� + �4�̄γ0γ5� + �5�̄iγ5�

+�6⊥
∑
〈〈lk〉〉

(�̄iγlγk�) + �6z�̄iγ1γ2�

+�7⊥
2∑

j=1

�̄iγ5γ j� + �7z�̄iγ5γ3�

+�8⊥
2∑

j=1

�̄iγ j� + �8z�̄iγ3� + �S�
†iγ0γ5γ2�

∗

+�op�
†iγ0γ2�

∗ + �V,1�
†γ3�

∗ + �V,2�
†iγ0γ5�

∗

+�V,3�
†γ1�

∗ + �V,0�
†iγ0γ2γ3�

∗. (D1)

1. One-loop order corrections for source terms
in particle-hole channels

There are two one-loop Feynman diagrams leading to the
corrections for source terms in particle-hole channels. The
one-loop correction for the source term �X from Fig. 8(a) is
given by

W (1)
�X

= −2�X gX (�̄
X �)
∑

a=1,2,4,5,3z

ga

∫ +∞

−∞

dω

2π

×
∫ ′ d3k

(2π )3
Tr[
X G0(iω, k)
aG0(iω, k)]. (D2)

The one-loop correction for the source term �X resulting from
Fig. 8(b) can be written as

W (2)
�X

= 2�X

∑
a=1,2,4,5,3z

ga

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

× [�̄
aG0(iω, k)
X G0(iω, k)
a�]. (D3)

Substituting Eq. (C1) into Eq. (D2), we find

W (1)
�1

= 0, (D4)

W (1)
�2

= �2g2
2�

3
2

π2v2
√

A
�(�̄�), (D5)

W (1)
�3⊥ = 0, (D6)

W (1)
3z = �3zg3z

2�
3
2

5π2v2
√

A
�(�̄γ0γ3�), (D7)

W (1)
�4

= 0, (D8)

W (1)
�5

= �5g5
2�

3
2

π2v2
√

A
�(�̄iγ5�), (D9)

FIG. 8. (a),(b) One-loop Feynman diagrams for the corrections
to the source terms in particle-hole channels. (c) One-loop Feynman
diagram for the corrections to the source terms in particle-particle
channels.
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W (1)
�6⊥ = 0, (D10)

W (1)
�6z

= 0, (D11)

W (1)
�7⊥ = 0, (D12)

W (1)
�7z

= 0, (D13)

W (1)
�8⊥ = 0, (D14)

W (1)
�8z

= 0. (D15)

Substituting Eq. (C1) into Eq. (D3), we obtain

W (2)
�1

= 0, (D16)

W (2)
�2

= 1

2
�2(−g1 − g2 + g4 + g5 + g3z )

�
3
2

π2v2
√

A
�(�̄�), (D17)

W (2)
�3⊥ = �3⊥(−g1 + g2 + g4 − g5 + g3z )

�
3
2

5π2v2
√

A
�

2∑
j=1

(�̄γ0γ j�), (D18)

W (2)
�3z

= �3z(−g1 + g2 + g4 − g5 − g3z )
�

3
2

10π2v2
√

A
�(�̄γ0γ3�), (D19)

W (2)
�4

= 0, (D20)

W (2)
�5

= �5(−g1 + g2 + g4 − g5 − g3z )
�

3
2

2π2v2
√

A
�(�̄iγ5�), (D21)

W (2)
�6⊥ = �6⊥(−g1 − g2 + g4 + g5 − g3z )

�
3
2

5π2v2
√

A
�

∑
〈〈lk〉〉

(�̄iγlγk�), (D22)

W (2)
�6z

= �6z(−g1 − g2 + g4 + g5 + g3z )
�

3
2

10π2v2
√

A
�(�̄iγ1γ2�), (D23)

W (2)
�7⊥ = �7⊥(−g1 − g2 − g4 − g5 + g3z )

3�
3
2

10π2v2
√

A
�

2∑
j=1

(�̄iγ5γ j�), (D24)

W (2)
�7z

= −�7z(g1 + g2 + g4 + g5 + g3z )
2�

3
2

5π2v2
√

A
�(�̄iγ5γ3�), (D25)

W (2)
�8⊥ = �8⊥(−g1 + g2 − g4 + g5 − g3z )

3�
3
2

10π2v2
√

A
�

2∑
j=1

(�̄iγ j�), (D26)

W (2)
�8z

= �8z(−g1 + g2 − g4 + g5 + g3z )
2�

3
2

5π2v2
√

A
�(�̄iγ3�). (D27)

From

W�X = W (1)
�X

+ W (2)
�X

, (D28)

we arrive at

W�X = δ�X (�̄
X �). (D29)

The parameters δ�X are given by

δ�1 = 0, (D30)

δ�2 = �2(−g1 + 3g2 + g4 + g5 + g3z )
�

3
2

2π2v2
√

A
�, (D31)

δ�3⊥ = �3⊥(−g1 + g2 + g4 − g5 + g3z )
�

3
2

5π2v2
√

A
�, (D32)
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δ�3z = �3z(−g1 + g2 + g4 − g5 + 3g3z )
�

3
2

10π2v2
√

A
�, (D33)

δ�4 = 0, (D34)

δ�5 = �5(−g1 + g2 + g4 + 3g5 − g3z )
�

3
2

2π2v2
√

A
�, (D35)

δ�6⊥ = �6⊥(−g1 − g2 + g4 + g5 − g3z )
�

3
2

5π2v2
√

A
�, (D36)

δ�6z = �6z(−g1 − g2 + g4 + g5 + g3z )
�

3
2

10π2v2
√

A
�, (D37)

δ�7⊥ = �7⊥(−g1 − g2 − g4 − g5 + g3z )
3�

3
2

10π2v2
√

A
�, (D38)

δ�7z = �7z(−g1 − g2 − g4 − g5 − g3z )
2�

3
2

5π2v2
√

A
�, (D39)

δ�8⊥ = �8⊥(−g1 + g2 − g4 + g5 − g3z )
3�

3
2

10π2v2
√

A
�, (D40)

δ�8z = �8z(−g1 + g2 − g4 + g5 + g3z )
2�

3
2

5π2v2
√

A
�. (D41)

2. One-loop order corrections for source terms in particle-particle channels

In particle-particle channels, to one-loop order, there is one Feynman diagram as shown in Fig. 8(c) resulting in the corrections
to source terms. The correction can be expressed as

W�Y = 2�Y

∑
a=1,2,4,5,3z

ga

∫ +∞

−∞

dω

2π

∫ ′ d3k
(2π )3

[
�†
T

a GT
0 (iω, k)
Y G0(−iω,−k)
a�

∗], (D42)

where T represents transposition. Substituting Eq. (C1) into Eq. (D42), we get

W�Y = δ�Y (�†
Y �∗), (D43)

where

δ�S = �S (g1 − g2 + g4 + g5 − g3z )
2�

3
2

5π2v2
√

A
�, (D44)

δ�op = �op(g1 + g2 + g4 − g5 + g3z )
2�

3
2

5π2v2
√

A
�, (D45)

δ�V,1 = �V,1(g1 + g2 − g4 + g5 + g3z )
�

3
2

5π2v2
√

A
�, (D46)

δ�V,2 = �V,2(g1 + g2 − g4 + g5 + g3z )
�

3
2

5π2v2
√

A
�, (D47)

δ�V,3 = �V,3(g1 + g2 − g4 + g5 − g3z )
�

3
2

2π2v2
√

A
�, (D48)

δ�V,0 = �V,0(g1 − g2 − g4 − g5 + g3z )
�

3
2

20π2v2
√

A
�. (D49)

3. Derivation of the RG equations for source terms

In particle-hole channels, the bare action for the source terms is

Ss = �X

∫
dω

2π

d3k
(2π )3

�̄(ω, k)
X �(ω, k). (D50)
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Considering the one-loop order corrections, we obtain

Ss = (�X + δ�X )
∫

dω

2π

d3k
(2π )3

�̄(ω, k)
X �(ω, k). (D51)

Using the transformations Eqs. (C68)–(C71) and (C74), we can get

Ss = (�X + δ�X )e�

∫
dω′

2π

d3k′

(2π )3
�̄ ′(ω′, k′)
X � ′(ω′, k′)

≈ (�X + �X � + δ�X )
∫

dω′

2π

d3k′

(2π )3
�̄ ′(ω′, k′)
X � ′(ω′, k′). (D52)

Letting

�′
X = �X + �X � + δ�X , (D53)

the action can be further written as

Ss = �′
X

∫
dω′

2π

d3k′

(2π )3
�̄ ′(ω′, k′)
X � ′(ω′, k′), (D54)

which recovers the form of the original action. We can easily
find that the RG equation for �X is

d�X

d�
= �X + dδ�X

d�
. (D55)

Performing similar rescaling transformations, we can get the
RG equation for source terms in particle-particle channels

d�Y

d�
= �Y + dδ�Y

d�
. (D56)

Substituting Eqs. (D30)–(D41) into Eq. (D55), and substitut-
ing Eqs. (D44)–(D49) into Eq. (D56), we get the RG equations

β̄1 = 0, (D57)

β̄2 = 1
2 (−g1 + 3g2 + g4 + g5 + g3z ), (D58)

β̄3⊥ = 1
5 (−g1 + g2 + g4 − g5 + g3z ), (D59)

β̄3z = 1
10 (−g1 + g2 + g4 − g5), (D60)

β̄4 = 0, (D61)

β̄5 = 1
2 (−g1 + g2 + g4 + 3g5 − g3z ), (D62)

β̄6⊥ = 1
5 (−g1 − g2 + g4 + g5 − g3z ), (D63)

β̄6z = 1
10 (−g1 − g2 + g4 + g5 + g3z ), (D64)

β̄7⊥ = 3
10 (−g1 − g2 − g4 − g5 + g3z ), (D65)

β̄7z = 2
5 (−g1 − g2 − g4 − g5 − g3z ), (D66)

β̄8⊥ = 3
10 (−g1 + g2 − g4 + g5 − g3z ), (D67)

β̄8z = 2
5 (−g1 + g2 − g4 + g5 + g3z ), (D68)

β̄S = 2
5 (g1 − g2 + g4 + g5 − g3z ), (D69)

β̄op = 2
5 (g1 + g2 + g4 − g5 + g3z ), (D70)

β̄V,1 = 1
5 (g1 + g2 − g4 + g5 + g3z ), (D71)

β̄V,2 = 1
5 (g1 + g2 − g4 + g5 + g3z ), (D72)

β̄V,3 = 1
2 (g1 + g2 − g4 + g5 − g3z ), (D73)

β̄V,0 = 1
20 (g1 − g2 − g4 − g5 + g3z ), (D74)

where

β̄X,Y = d ln(�X,Y )

d�
− 1. (D75)

For convenience, we show the physical meaning of differ-
ent order parameters and corresponding fermion bilinears in
Table IV.

TABLE IV. Physical meaning of different order parameters and
the corresponding fermion bilinears.

Order
parameter Fermion bilinear Physical meaning

�1 �̄γ0� Chemical potential
�2 �̄� Scalar mass
�3⊥

∑
j=1,2 �̄γ0γ j� Spin-orbit coupling within xy plane

�3z �̄γ0γ3� Spin-orbit coupling along z axis
�4 �̄γ0γ5� Axial chemical potential
�5 �̄iγ5� Pseudoscalar mass
�6⊥ �̄(iγ2γ3 + γ3γ1)� Magnetization within xy plane
�6z �̄iγ1γ2� Magnetization along z axis
�7⊥

∑
j=1,2 �̄iγ5γ j� Axial magnetization within xy plane

�7z �̄iγ5γ3� Axial magnetization along z axis
�8⊥

∑
j=1,2 �̄iγ j� Current within xy plane

�8z �̄iγ3� Current along z axis
�S �†iγ0γ5γ2�

∗ s-wave pairing
�op �†iγ0γ2�

∗ Odd-parity pairing
�V,1 �†γ3�

∗ Vector pairing along x axis
�V,2 �†iγ0γ5�

∗ Vector pairing along y axis
�V,3 �†γ1�

∗ Vector pairing along z axis
�V,0 �†iγ0γ1γ3�

∗ Temporal vector pairing
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APPENDIX E: NUMERICAL RESULTS

1. Fixed points and their properties

Solving the RG equations for ga as shown in Eqs. (C82)–(C86), we obtained the real roots as follows:

FP0: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0, 0, 0, 0, 0), (E1)

FP1: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0.152019, 1.25444, 0.459247,−0.561711, 0.0551435), (E2)

FP2: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0.140905,−0.585585, 0.418385, 1.34668, 0.06996), (E3)

FP3: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (−0.100015, 0.575751,−0.61003, 0.775675, 0.199924), (E4)

FP4: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (−2.33263, 0,−0.610178,−1.72246,−1.72246), (E5)

FP5: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0.126936,−0.463077,−0.854005, 0.769245, 1.23232), (E6)

FP6: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0.0860014, 1.37623, 0.236822,−0.304132, 0.0941005), (E7)

FP7: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0.103947,−0.465334, 0.29293, 1.43995, 0.0944817), (E8)

FP8: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (−3.33745,−1.22097,−1.28072,−1.32395,−0.102973), (E9)

FP9: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (−2.68181, 1.06255,−1.97657,−1.35604,−2.41859), (E10)

FP10: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (0, 0,−1.25, 1.25, 1.25), (E11)

FP11: (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ) = (−5.16737, 0,−4.38982,−0.777544,−0.777544). (E12)

FP0 is the trivial Gaussian fixed point. FP1–FP11 are nontrivial fixed points.

Expanding the RG equations (C82)–(C86) in the
vicinity of a fixed point (g∗

1, g∗
2, g∗

4, g∗
5, g∗

3z ), we find
that

dG

d�
= MG, (E13)

where

G =

⎛
⎜⎜⎜⎜⎝

δg1

δg2

δg4

δg5

δg3z

⎞
⎟⎟⎟⎟⎠, (E14)

with δga = ga − g∗
a. The matrix M is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (E15)

where

M11 = −(
3
2 + 2

5 g∗
2 + 1

5 g∗
4 + 2

5 g∗
5

)
, (E16)

M12 = − 2
5 (g∗

1 + g∗
5), (E17)

M13 = −(
1
5 g∗

1 + 2
5 g∗

3z

)
, (E18)

M14 = − 2
5

(
g∗

1 + g∗
2 + g∗

3z

)
, (E19)

M15 = − 2
5 (g∗

4 + g∗
5), (E20)

M21 = − 3
5 g∗

2 − 2
5 g∗

5, (E21)

M22 = − 3
2 + 2g∗

2 − 3
5 g∗

1 + 4
5 g∗

4 + 3
5 g∗

5 + g∗
3z, (E22)

M23 = 4
5 g∗

2 − g∗
5 + 7

5 g∗
3z, (E23)

M24 = 3
5 g∗

2 − 2
5 g∗

1 − g∗
4 + 2

5 g∗
3z, (E24)

M25 = g∗
2 + 7

5 g∗
4 + 2

5 g∗
5, (E25)

M31 = − 2
5 g∗

1 + 2
5 g∗

2 + 2
5 g∗

5, (E26)

M32 = − 2
5 g∗

2 + 2
5 g∗

1 − 7
5 g∗

5 + g∗
3z, (E27)

M33 = − 3
2 − 2

5 g∗
4 + 2

5 g∗
3z, (E28)

M34 = − 2
5 g∗

5 + 2
5 g∗

1 − 7
5 g∗

2 − 1
5 g∗

3z, (E29)

M35 = − 2
5 g∗

3z + 2
5 g∗

4 + g∗
2 − 1

5 g∗
5, (E30)

M41 = 2
5 g∗

1 − g∗
5 − 4

5 g∗
2 − 1

5 g∗
4, (E31)

M42 = 2
5 g∗

2 + g∗
5 − 4

5 g∗
1 − 4

5 g∗
4 − g∗

3z, (E32)
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TABLE V. Eigenvalues of matrix M at different fixed points.

FP0 FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10 FP11

−1.5 −3.12277 −3.05426 −2.11269 −4.19874 −2.50996 −2.98441 −2.99224 −5.70333 −5.29866 −2.25 −9.30126
−1.5 −2.7634 −2.48233 −1.42791 −2.79748 −2.05542 −2.77106 −2.49091 −3.26902 −3.36509 −2.25 −1.69424
−1.5 −1.77432 −1.76197 −1.26511 −2.46863 −1.41052 −1.80787 −1.77301 −1.46547 −1.38636 −1.47474 1.5
−1.5 −0.412398 −0.231803 −1.18664 −0.848268 −1.06884 0.390411 0.224733 1.5 1.5 0.974745 3.33999
−1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.47601 2.17557 1.5 5.46863

M43 = 2
5 g∗

4 + g∗
5 − 1

5 g∗
1 − 4

5 g∗
2 − 8

5 g∗
3z, (E33)

M44 = − 3
2 + 12

5 g∗
5 − g∗

1 + g∗
2 + g∗

4 − g∗
3z, (E34)

M45 = 2
5 g∗

3z − g∗
5 − g∗

2 − 8
5 g∗

4, (E35)

M51 = 2
5 g∗

1 − 1
5 g∗

3z − 2
5 g∗

2 − 1
5 g∗

4 − 2
5 g∗

5, (E36)

M52 = 2
5 g∗

2 − 4
5 g∗

3z − 2
5 g∗

1 + 1
5 g∗

4 + 2
5 g∗

5, (E37)

M53 = 2
5 g∗

4 − 6
5 g∗

3z − 1
5 g∗

1 + 1
5 g∗

2 + 1
5 g∗

5, (E38)

M54 = 2
5 g∗

5 − 3
5 g∗

3z − 2
5 g∗

1 + 2
5 g∗

2 + 1
5 g∗

4, (E39)

M55 = − 3
2 + 4

5 g∗
3z − 1

5 g∗
1 − 4

5 g∗
2 − 6

5 g∗
4 − 3

5 g∗
5. (E40)

From eigenvalues of M at a fixed point (g∗
1, g∗

2, g∗
4, g∗

5, g∗
3z ), we

can get the properties of the fixed point. A negative (positive)
eigenvalue is corresponding to a stable (unstable) eigendi-
rection [32,34]. For quantum critical point (QCP), bicritical
point (BCP), and tricritical point (TCP), there is/are one, two,
and three unstable direction(s), respectively. For a QCP, the
correlation length exponent is determined by the inverse of
the corresponding positive eigenvalue.

Substituting the values of g∗
a at each fixed point into the

expression M, we calculate the corresponding eigenvalues of
M. The eigenvalues for the fixed points are shown in Table V.
For FP0, the eigenvalues of M are always negative; thus FP0
is a stable fixed point. We can find that there is one positive
eigenvalue for FP1, FP2, FP3, FP4, and FP5, and there are
two positive eigenvalues for FP6, FP7, FP8, FP9, and FP10,
and three positive eigenvalues for FP11. Thus FP1, FP2, FP3,
FP4, and FP5 are QCPs, FP6, FP7, FP8, FP9, and FP10 are
BCPs, and FP11 is a TCP.

It is easy to find that the correlation length exponents at the
QCPs FP1, FP2, FP3, FP4, and FP5 all satisfy

ν−1 = 1.5. (E41)

Substituting the values of g∗
a with i = 1, 2, 4, 5, 3z into

Eqs. (D57)–(D74), we can get values of β̄X,Y for different
�X,Y , which are shown in Table VI. For a QCP, the largest
value of βX,Y is marked by the bold style. It represents that
the fixed point is a QCP to the new state in which �X,Y ac-
quires finite value. FP1, FP2, FP4, and FP5 are corresponding
to QCPs to a state in which �2, �5, �7z, and �8z acquire
finite value, respectively. For FP3, it stands for a QCP to a
state in which both �2 and �5 become finite generally. This
state represents an axionic insulator whose order parameter
can be written as 〈�̄[cos(θ ) + iγ5 sin(θ )]�〉 [33].

APPENDIX F: INTERPLAY OF FOUR-FERMION
INTERACTION AND LONG-RANGE COULOMB

INTERACTION

The Coulomb interaction between fermions can be de-
scribed by the coupling between fermion field � and boson
field φ as the following action:

Sψφ = iλ
∫

dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3
�̄(ω1, k1)γ0�(ω2, k2)

×φ(ω1 − ω2, k1 − k2), (F1)

where λ = e√
ε

with e the elementary charge and ε the dielec-
tric constant. The free action of φ is given by

S0
φ =

∫
dω

2π

d3k
(2π )3

φ(ω, k)

(
1√
η

k2
⊥ + √

ηk2
z

)
φ(ω, k). (F2)

1. Interaction corrections related to Coulomb interaction

a. Fermion self-energy induced by Coulomb interaction

As shown in Fig. 9(a), the fermion self-energy induced by
long-range Coulomb interaction is given by

�C (iω, k) = −λ2
∫ +∞

−∞

d�

2π

∫ ′ d3q
(2π )3

γ0G0(i�, q)γ0

× D0(iω − i�, k − q), (F3)

where

D0(i�, q) =
√

η

q2
⊥ + ηq2

3

. (F4)

Substituting Eqs. (C1) and (F4) into Eq. (F3), we obtain

�C (iω, k) = −iv(k1γ1 + k2γ2)�C,⊥
− iAk2

3γ3�C,3, (F5)

where

�C,⊥ = λ2√η

4π2

∫ ′
dq⊥d|q3|q⊥

q2
⊥√

v2q2
⊥ + A2q4

3

× 1(
q2

⊥ + ηq2
3

)2 , (F6)

�C,3 = λ2η
3
2

4π2

∫ ′
dq⊥d|q3|q⊥

q2
3

(−q2
⊥ + 3ηq2

3

)
√

v2q2
⊥ + A2q4

3

× 1(
q2

⊥ + ηq2
3

)3 . (F7)

155125-23



WANG, LI, AND ZHANG PHYSICAL REVIEW B 107, 155125 (2023)

TABLE VI. βX,Y at different fixed points. The largest value at a QCP is marked by the bold style. Notice that FP1, FP2, FP3, FP4, and FP5
are QCPs.

FP1 FP2 FP3 FP4 FP5 FP6 FP7 FP8 FP9 FP10 FP11

β̄1 0 0 0 0 0 0 0 0 0 0 0
β̄2 1.78199 −0.0313166 1.09642 −0.861228 −0.184302 2.03474 0.163708 −1.51656 0.0591369 0.625 −0.388772
β̄3⊥ 0.435705 −0.316965 −0.102003 0.344491 −0.196188 0.385057 −0.324365 0.411346 0.141049 −0.25 0.155509
β̄3z 0.212338 −0.165478 −0.070994 0.344491 −0.221326 0.183119 −0.171631 0.21597 0.312383 −0.25 0.155509
β̄4 0 0 0 0 0 0 0 0 0 0 0
β̄5 −0.0893033 1.83099 1.09642 −0.861228 −0.184302 0.260278 1.97451 −1.51656 0.0591369 0.625 −0.388772
β̄6⊥ −0.312814 0.427957 −0.102003 0.344491 −0.196188 −0.324729 0.399958 0.411346 0.141049 −0.25 0.155509
β̄6z −0.145378 0.227971 −0.0110167 −0.172246 0.14837 −0.143544 0.218875 0.185078 −0.413193 0.125 −0.0777544
β̄7⊥ −0.374656 −0.375128 −0.132437 0.882843 0.495967 −0.390247 −0.383104 2.11804 0.759982 0.375 2.86716
β̄7z −0.543656 −0.556138 −0.336522 2.55509 −0.324568 −0.59561 −0.586391 2.90643 2.94818 −0.5 4.44491
β̄8⊥ 0.00789679 0.0395537 0.558464 0.882843 −0.0597252 0.196553 0.144978 0.652867 2.03504 0.375 2.86716
β̄8z 0.0546439 0.108706 0.904558 −0.20084 0.906224 0.337352 0.26889 0.788112 0.778521 1.5 3.20084
β̄S −0.504013 0.968638 −0.284018 −1.17712 −0.290828 −0.580657 0.883073 −1.84727 −1.86335 −0.5 −3.82288
β̄op 0.993025 −0.521206 −0.284018 −1.17712 −0.290828 0.838916 −0.565572 −1.84727 −1.86335 −0.5 −3.82288
β̄V,1 0.0881294 0.110715 0.412273 −1.03347 0.503886 0.203076 0.176024 −0.940925 −0.683464 0.75 −0.466527
β̄V,2 0.0881294 0.110715 0.412273 −1.03347 0.503886 0.203076 0.176024 −0.940925 −0.683464 0.75 −0.466527
β̄V,3 0.16518 0.206828 0.830758 −0.861228 0.027394 0.41359 0.345578 −2.24934 0.709928 0.625 −0.388772
β̄V,0 −0.0472408 −0.0484308 −0.0320743 −0.0861228 0.0953547 −0.0564411 −0.053456 0.019261 −0.141517 0.0625 −0.0388772

A constant term that does not depend on energy and momenta
has been discarded.

Utilizing the transformations, Eqs. (B19)–(B21), and car-
rying out the integrations of E and δ within the ranges b� <

E < � and 0 < δ < +∞, we get

�C,⊥ ≈ C1�, �C,3 = C2�, (F8)

where

C1 = λ2ζ
3
2

8π2v

∫ +∞

0
dδ

1√
δ(1 + δ2)

1
4

1(
ζ + δ(1 + δ2)

1
2
)2 ,

(F9)

C2 = λ2ζ
1
2

8π2v

∫ +∞

0
dδ

√
δ(1 + δ2)

1
4

( − ζ + 3δ(1 + δ2)
1
2
)

(
ζ + δ(1 + δ2)

1
2
)3 ,

(F10)

with ζ = A�
v2η

.

FIG. 9. (a) Feynman diagram for the self-energy of fermions in-
duced by long-range Coulomb interaction; (b) Feynman diagram for
self-energy of the boson field. The solid line represents the fermion
propagator and the spiral line stands for the boson field which is
equivalent to the long-range Coulomb interaction.

b. Boson self-energy

As depicted in Fig. 9(b), the boson self-energy is given by

�(i�, q) = −λ2
∫

dω

2π

∫ ′ d3k
(2π )3

Tr[γ0G0(iω, k)γ0

× G0(iω + i�, k + q)]. (F11)

Substituting Eq. (C1) into Eq. (F11) and expanding to
quadratic order of � and qi, we arrive at

�(i�, q) = λ2v2q2
⊥

1

8π2

∫ ′
dk⊥d|k3|k⊥

(
2

E3
k

− v2k2
⊥

E5
k

)

+ λ2v2A2q2
3

1

π2

∫ ′
dk⊥d|k3|k⊥

k2
3k2

⊥
E5

k

. (F12)

Employing the transformations, Eqs. (B19)–(B21), and per-
forming the integrations of E and δ, � can be expressed as

�(i�, q) = C⊥q2
⊥� + Czq

2
3�, (F13)

where

C⊥ = 3λ2

20π2
√

A
√

�
, (F14)

Cz = 4λ2
√

A�
1
2

21π2v2
. (F15)

c. Corrections to fermion-boson coupling

As displayed in Fig. 10(a), the correction to fermion-boson
coupling induced by Coulomb interaction takes the form

V (1)
C = −iλ3

∫ ′ d�

2π

d3q
(2π )3

γ0G0(i�, q)γ0G0(i�, q)γ0

× D0(i�, q). (F16)
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FIG. 10. Feynman diagrams for the vertex corrections to
fermion-boson coupling due to (a) long-range Coulomb interaction
and (b) four-fermion interaction.

Substituting Eqs. (C1) and (F4) into Eq. (F16), we find

V (1)
C = −iλ3γ0

∫ ′ d3q
(2π )3

∫ +∞

−∞

d�

2π

−�2 + E2
q(

�2 + E2
q

)2

×
√

η

q2
⊥ + ηq2

z

= 0, (F17)

which means

δλ(1) = 0. (F18)

As presented in Fig. 10(b), the correction to fermion-boson
coupling generated by four-fermion interactions can be writ-
ten as

V (2)
C = iλ3

∑
a=1,2,4,5,3z

g2
a

∫ ′ d�

2π

d3q
(2π )3


aG0(i�, q)γ0

× G0(i�, q)
a. (F19)

Substituting Eq. (C1) into Eq. (F19), one can obtain

V (2)
C = iλ3

∑
a=1,2,4,5,3z

g2
a

∫ ′ d3q
(2π )3

∫ +∞

−∞

d�

2π

aγ0

× −�2 + E2
q(

�2 + E2
q

)2 
a = 0. (F20)

Thus δλ(2) is given by

δλ(2) = 0. (F21)

The total correction to fermion-boson coupling is

δλ = δλ(1) + δλ(2) = 0. (F22)

d. Corrections to four-fermion couplings induced by long-range
Coulomb interaction

The correction from Fig. 11(a) is

V (5)
a = 2λ2ga(�̄
a�)2

∫ ′ dω

2π

d3k
(2π )3

Tr[γ0G0(iω, k)
a

× G0(iω + i�, k + q)]D0(i�, q). (F23)

Figure 11(b) leads to the correction

V (6)
a = −4λ2ga(�̄
a�)

∫ ′ d�

2π

d3q
(2π )3

[�̄γ0G0(i�, q)
a

× G0(i�, q)γ0�]D0(i�, q). (F24)

FIG. 11. Feynman diagrams for the vertex corrections to four-
fermion interaction induced by long-range Coulomb interaction.

The correction from Figs. 11(c) and 11(d) takes the form

V (7)+(8)
a = −4λ2ga

∫ ′ d�

2π

d3q
(2π )3

[�̄
aG0(i�, q)γ0�]

×{�̄[γ0G0(i�, q)
a

+
aG0(−i�,−q)γ0]�}D0(i�, q). (F25)

Figures 11(e) and 11(f) generate the correction

V (9)+(10) = 4λ4
∫ ′ d�

2π

d3q
(2π )3

[�̄γ0G0(i�, q)γ0�]

× D0(i�, q)
{
�̄[γ0G0(i�, q)γ0

+ γ0G0(−i�,−q)]γ0�}D0(i�, q). (F26)

Substituting Eqs. (C1) and (F4) into Eq. (F23), we get

V (5)
a = δg(5)

a (�̄
a�)2, (F27)

where

δg(5)
1 = −2g1

(√
ηC⊥ + Cz√

η

)
�, (F28)

δg(5)
2 = 0, (F29)

δg(5)
4 = 0, (F30)

δg(5)
5 = 0, (F31)

δg(5)
3z = 0. (F32)

Substituting Eqs. (C1) and (F4) into Eq. (F24), we arrive at

V (6)
a = δg(6)

a (�̄
a�)2, (F33)

where

δg(6)
1 = 0, (F34)

δg(6)
2 = g2C3�, (F35)

δg(6)
4 = 0, (F36)

δg(6)
5 = g5C3�, (F37)

δg(6)
3z = −g3zC4�, (F38)
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with

C3 = λ2√ζ

2π2v

∫ +∞

0
dδ

1√
δ(1 + δ2)

1
4

1

ζ + δ(1 + δ2)
1
2

,

(F39)

C4 = λ2√ζ

2π2v

∫ +∞

0
dδ

δ
3
2

(1 + δ2)
5
4

1

ζ + δ(1 + δ2)
1
2

. (F40)

Substituting Eqs. (C1) and (F4) into Eq. (F25), V (7)+(8)
a can

be written as

V (7)+(8)
1 = −(�̄iγ3�)2g1C4�, (F41)

V (7)+(8)
2 =

2∑
j=1

(�̄γ0γ j�)2g2C5�, (F42)

V (7)+(8)
4 = −(�̄iγ5γ3�)2g4C4�, (F43)

V (7)+(8)
5 = −

∑
〈〈lk〉〉

(�̄γlγk�)2g5C5�, (F44)

V (7)+(8)
3z = 0, (F45)

where

C5 = λ2√ζ

4π2v

∫ +∞

0
dδ

1
√

δ(1 + δ2)
5
4

1

ζ + δ(1 + δ2)
1
2

. (F46)

Through the relations Eqs. (A37), (A38), (A41), and (A43),
we obtain

V (7)+(8)
1 = [(�̄γ0γ5�)2 − (�̄iγ5�)2 − (�̄γ0γ3�)2]g1C4�,

(F47)

V (7)+(8)
2 = [−(�̄γ0�)2 + (�̄�)2 + (�̄γ0γ5�)2

− 2(�̄iγ5�)2 − (�̄γ0γ3�)2]g2C5�, (F48)

V (7)+(8)
4 = [(�̄γ0�)2 + (�̄iγ5�)2 + (�̄γ0γ3�)2]g4C4�,

(F49)

V (7)+(8)
5 = [(�̄γ0�)2 + (�̄�)2 − (�̄γ0γ5�)2

+ (�̄γ0γ3�)2]g5C5�. (F50)

Thus the total correction from Figs. 11(c) and 11(d) can be
expressed as

V (7)+(8) =
∑

a=1,2,4,5,3z

V (7)+(8)
a

=
∑

a=1,2,4,5,3z

δg(7)+(8)
a (�̄
a�)2, (F51)

where

δg(7)+(8)
1 = (−g2C5 + g2C4 + g5C5)�, (F52)

δg(7)+(8)
2 = (g2C5 + g5C5)�, (F53)

δg(7)+(8)
4 = (g1C4 + g2C5 − g5C5)�, (F54)

δg(7)+(8)
5 = (−g1C4 − 2g2C5 + g4C4)�, (F55)

δg(7)+(8)
3z = (−g1C4 − g2C5 + g4C4 + g5C5)�. (F56)

Substituting Eqs. (C1) and (F4) into Eq. (F26), one can get

V (9)+(10) = (�̄iγ3�)2 π2v2A
1
2

�
3
2

C6�, (F57)

where

C6 = λ4ζ

2π4v2

∫ +∞

0
dδ

δ
3
2

(1 + δ2)
1
4

1[
ζ + δ(1 + δ2)

1
2
]2

. (F58)

Using Eq. (A43), we can get

V (9)+(10)
3z = [−(�̄γ0γ5�)2 + (�̄iγ5�)2

+ (�̄γ0γ3�)2]
π2v2A

1
2

�
3
2

C6�. (F59)

It indicates that

δg(9)+(10)
1 = 0, (F60)

δg(9)+(10)
2 = 0, (F61)

δg(9)+(10)
4 = −π2v2A

1
2

�
3
2

C6�, (F62)

δg(9)+(10)
5 = π2v2A

1
2

�
3
2

C6�, (F63)

δg(9)+(10)
3z = π2v2A

1
2

�
3
2

C6�. (F64)

2. RG equations

Considering the correction of interactions, the action of
fermions becomes

S� =
∫

dω

2π

d3k
(2π )3

�̄(ω, k)
[
iωγ0 + ivk1γ1 + ivk2γ2

+ iAk2
3γ3 − �C (iω, k)

]
�(ω, k)

≈
∫

dω

2π

d3k
(2π )3

�̄(ω, k)
(
iωγ0 + ivk1γ1 + ivk2γ2

× eC1� + iAk2
3γ3eC2�

)
�(ω, k). (F65)

Employing the transformations, Eqs. (C68)–(C71), (C74), and

v = v′e−C1�, (F66)

A = A′e−C2�, (F67)

the action becomes

S� ′ =
∫

dω′

2π

d3k′

(2π )3
�̄ ′(ω′, k′)

(
iω′γ0 + iv′k′

1γ1 + iv′k′
2γ2

+ iA′k′2
3 γ3

)
� ′(ω′, k′), (F68)

which recovers the original form of the fermion action.
Including the correction of boson self-energy, the action of

φ can be written as

Sφ =
∫

dω

2π

d3k
(2π )3

φ(ω, k)

(
1√
η

k2
⊥ + √

ηk2
z + �(k)

)
φ(ω, k)

≈
∫

dω

2π

d3k
(2π )3

φ(ω, k)

(
1√
η

k2
⊥e

√
ηC⊥� + √

ηk2
z e

Cz√
η
�

)
×φ(ω, k). (F69)
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Utilizing the transformations, Eqs. (C68)–(C71), and

φ = φ′e
(

5
2 −

√
ηC⊥+ Cz√

η

4

)
�
, (F70)

η = η′e
(
−1+√

ηC⊥− Cz√
η

)
�
, (F71)

the action can be expressed as

Sφ′ =
∫

dω′

2π

d3k′

(2π3)
φ′(ω′, k′)

(
1√
η′ k

′2
⊥ +

√
η′k′2

z

)
φ′(ω′, k′),

(F72)

which has the same form as the original action of boson.
Including the correction of one-loop Feynman diagrams,

the action of fermion-boson couplings can be written as

Sψφ = i(λ + δλ)
∫

dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3
�̄(ω1, k1)γ0

×�(ω2, k2)φ(ω1 − ω2, k1 − k2)

= iλ
∫

dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3
�̄(ω1, k1)γ0�(ω2, k2)

×φ(ω1 − ω2, k1 − k2), (F73)

since δλ = 0. Employing the transformations, Eqs. (C68)–
(C71), (C74), (F70), and

λ = λ′e
(√

ηC⊥+ Cz√
η

4

)
�
, (F74)

the action becomes

Sψ ′φ′ = iλ′
∫

dω′
1

2π

d3k′
1

(2π )3

dω′
2

2π

d3k′
2

(2π )3
�̄ ′(ω′

1, k′
1)γ0

×� ′(ω′
2, k′

2)φ′(ω′
1 − ω′

2, k′
1 − k′

2), (F75)

which recovers the original form of the action of fermion-
boson coupling.

Including the corrections of one-loop Feynman diagrams,
the action of four-fermion interaction becomes

S�4 =
∑

a=1,2,4,5,3z

(ga + δga)
∫

dω1

2π

d3k1

(2π )3

dω2

2π

d3k2

(2π )3

× dω3

2π

d3k3

(2π )3
�̄(ω1, k1)
a�(ω2, k2)�̄(ω3, k3)
a

×�(ω1 − ω2 + ω3, k1 − k2 + k3). (F76)

Using the transformations, Eqs. (C68)–(C71), (C74), and

g′
a = (ga + δga)e− 3

2 � ≈ ga − 3
2 ga� + δga, (F77)

we get

S� ′4 =
∑

a=1,2,4,5,3z

g′
a

∫
dω′

1

2π

d3k′
1

(2π )3

dω′
2

2π

d3k′
2

(2π )3

dω′
3

2π

d3k′
3

(2π )3

× �̄ ′(ω′
1, k′

1)
a�
′(ω′

2, k′
2)�̄ ′(ω′

3, k′
3)
a

×� ′(ω′
1 − ω′

2 + ω′
3, k′

1 − k′
2 + k′

3), (F78)

which recovers the original form of the action.

From the transformations as shown in Eqs. (F66), (F67),
(F71), (F74), and (F77), we can get the RG equations

dv

d�
= C1v, (F79)

dA

d�
= C2A, (F80)

dη

d�
= (1 − β + γ )η, (F81)

dg

d�
= −β + γ

4
g, (F82)

dĀ

d�
=

(
−1

2
+ 1

2
C2 − C1 + 1

2
β − 1

2
γ

)
Ā, (F83)

dα

d�
=

(
−C1 − 1

2
β − 1

2
γ

)
α, (F84)

dβ

d�
=

(
1

2
− 1

2
C2 − β

)
β, (F85)

dγ

d�
=

(
−1

2
+ 1

2
C2 − 2C1 − γ

)
γ , (F86)

dg1

d�
= −3

2
g1 − 2

5
g1

(
g2 + 1

2
g4 + g5

)
− 2

5
(g2g5

+ g4g3z + g5g3z ) − 2g1(β + γ ) +
(

− 2g1C1

− 1

2
g1C2 − g2C5 + g2C4 + g5C5

)
, (F87)

dg2

d�
= −3

2
g2 + g2

2 + g2

(
−3

5
g1 + 4

5
g4 + 3

5
g5 + g3z

)

− 2

5
g1g5 + g4

(
−g5 + 7

5
g3z

)
+ 2

5
g5g3z

+
(

− 2g2C1 − 1

2
g2C2 + g2C3 + g2C5 + g5C5

)
,

(F88)

dg4

d�
= −3

2
g4 − 1

5
g2

4 − 1

5

(
g2

1 + g2
2 + g2

5 + g2
3z

)
+ 2

5
g4g3z + 2

5
g1(g2 + g5) + g2

(
−7

5
g5 + g3z

)

− 1

5
g5g3z +

(
g1C4 + g2C5 − 2g4C1 − 1

2
g4C2

− g5C5

)
− 2

5
C6, (F89)

dg5

d�
= −3

2
g5 + 6

5
g2

5 + 1

5

(
g2

1 + g2
2 + g2

4 + g2
3z

)
+ g5(−g1 + g2 + g4 − g3z ) − 2

5
g1

(
2g2 + 1

2
g4

)

− g2

(
4

5
g4 + g3z

)
− 8

5
g4g3z +

(
− g1C4 − 2g2C5

+ g4C4 − 2g5C1 − 1

2
g5C2 + g5C3

)
+ 2

5
C6, (F90)
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FIG. 12. One-loop Feynman diagrams for the corrections to
the source terms in particle-hole channels induced by long-range
Coulomb interaction.

dg3z

d�
= −3

2
g3z + 2

5
g2

3z + 1

5

(
g2

1 + g2
2 + g2

4 + g2
5

)
− 2

5
g3z

(
1

2
g1 + 2g2 + 3g4 + 3

2
g5

)

− 2

5
g1

(
g2 + 1

2
g4 + g5

)
+ 2

5
g2

(
1

2
g4 + g5

)

+ 1

5
g4g5 +

(
− g1C4 − g2C5 + g4C4 + g5C5

− 2g3zC1 − 1

2
g3zC2 − g3zC4

)
+ 2

5
C6, (F91)

where

α = λ2

4πv
, (F92)

Ā =
√

A
√

�

v
√

η
, (F93)

β = √
ηC⊥ = 3

5π

α

Ā
, (F94)

γ = Cz√
η

= 16

21π
αĀ, (F95)

and redefinition
�

3
2 ga

π2v2
√

A
→ ga (F96)

has been employed.

3. Source terms

The one loop correction for the source term �X in particle-
hole channels induced by long-range Coulomb interaction as
shown in Fig. 12(a) can be written as

W (3)
�X

= 2�X λ2(�̄
X �)
∫ +∞

−∞
dω

∫ ′ d3k
(2π )3

× Tr[
X G0(iω + i�, k + q)γ0G0(iω, k)]

× D0(i�, q). (F97)

In particle-hole channels, the one-loop correction for the
source term �X from Fig. 12(b) is given by

W (4)
�X

= −2�X λ2
∫ +∞

−∞

d�

2π

∫ ′ d3q
(2π )3

[�̄γ0G0(i�, q)
X

× G0(i�, q)γ0�]D0(i�, q). (F98)

It should be noted that long-range Coulomb interaction does
not induce correction for the source terms in particle-particle
channels.

Calculating the corrections for source terms in particle-
hole channels induced by long-range Coulomb interaction
through Eqs. (F97) and (F98), and rederiving the RG equa-
tions for �X , we finally obtain

β̄�1 = −2(β + γ ), (F99)

β̄�2 = 1
2 (−g1 + 3g2 + g4 + g5 + g3z ) + 1

2C3, (F100)

β̄�3⊥ = 1
5 (−g1 + g2 + g4 − g5 + g3z ) + 1

2C5, (F101)

β̄�3z = 1
10 (−g1 + g2 + g4 − g5 + 3g3z ) + 1

2C4, (F102)

β̄�4 = 0, (F103)

β̄�5 = 1
2 (−g1 + g2 + g4 + 3g5 − g3z ) + 1

2C3, (F104)

β̄�6⊥ = 1
5 (−g1 − g2 + g4 + g5 − g3z ) + 1

2C5�, (F105)

β̄�6z = 1
10 (−g1 − g2 + g4 + g5 + g3z ) + 1

2C4�, (F106)

β̄�7⊥ = 3
10 (−g1 − g2 − g4 − g5 + g3z ) + 1

2 (C4 + C5),

(F107)

β̄�7z = 2
5 (−g1 − g2 − g4 − g5 − g3z ) + C5, (F108)

β̄�8⊥ = 3
10 (−g1 + g2 − g4 + g5 − g3z ) + 1

2 (C4 + C5),

(F109)

β̄�8z = 2
5 (−g1 + g2 − g4 + g5 + g3z ) + C5, (F110)

where β and γ are given by Eqs. (F94) and (F95) and C3, C4,
and C5 are given by Eqs. (F39), (F40), and (F46), respectively.
The RG equations for source terms in particle-particle chan-
nels are still given by Eqs. (D69)–(D74).
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FIG. 13. Flows of α, β, v, and A with different initial values of
Coulomb strength α0 : 0.02 (blue), 0.05 (red), 0.1 (green), 0.5 (black),
and 1.0 (magenta). β0 = 0.1 is taken.
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FIG. 14. Flows of g1, g2, g4, g5, and g3z are shown in (a)–(e) with
different values of Coulomb strength α0: 0.1 (blue), 0.2 (red), 0.3
(green), 0.4 (black), and 0.5 (magenta). (f),(g) Flows of β̄X,Y which
approach positive infinity and ratios between β̄X,Y . In (a)–(g) g1,0 =
0, g2,0 = 1.4, g4,0 = 0, g5,0 = 0, g3z,0 = 0, and β0 = 0.1 are taken.
α0 = 0.5 is taken in (f) and (g).

4. Numerical results

The flows of α, β, v, and A are shown in Figs. 13(a)–13(d),
respectively. We can find that α approaches zero quickly in
the lowest energy limit. It represents that long-range Coulomb
interaction becomes irrelevant in the lowest energy regime. As
shown in Fig. 13(b), β → 1

2 , which indicates the anisotropic
screening of Coulomb interaction. According to Figs. 13(c)
and 13(d), v and A approach constant values in the lowest
energy limit. Thus the fermion dispersion is not changed
qualitatively by long-range Coulomb interaction.

According to Fig. 14, the four-fermion interactions be-
come divergent more quickly with the increase of the initial
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FIG. 15. Flows of g1, g2, g4, g5, and g3z are shown in (a)–(e)
with different initial values of Coulomb strength α0: 0.1 (blue), 1
(red), 2 (green), 5 (black), and 10 (magenta). (f),(g) Flows of β̄X,Y

which approach positive infinity and ratios between β̄X,Y . In (a)–(g)
g1,0 = 0, g2,0 = 0, g4,0 = 0, g5,0 = 0, g3z,0 = 0, and β0 = 0.1 are
taken. α0 = 10 is taken in (f) and (g).

value of Coulomb strength. This result reveals that the
long-range Coulomb interaction can enhance the instabilities
in particle-hole channels, although it becomes irrelevant in
the low energy regime. As shown in Figs. 15(a)–15(e), if the
initial value of the Coulomb strength is large enough, we can
find that, even if the initial values of the four-fermion interac-
tions all vanish, the four-fermion interactions can be generated
and become divergent finally at a finite energy scale. Accord-
ing to Figs. 15(f) and 15(g), the axionic insulating phase is
generated if the initial value of Coulomb interaction is strong
enough.
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