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Engineering Dirac cones and topological flat bands with organic molecules
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We investigated polyhedral π -conjugated molecules with threefold rotation symmetry, which can be suitable
building blocks for both Dirac cones and a topological flat-band system. The two dimensional network structures
of such molecules can be characterized by intra- and intermolecular interactions. We constructed tight binding
models of these structures by systematically changing the intra- (t0) and intermolecular (t1) transfer integrals
as independent parameters. The degree of freedom for the interactions provides a topological flat band and a
massless or massive Dirac cone. We analyzed the topological features and origins of the flat band and Dirac cone
of a molecule-based triangular lattice.
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I. INTRODUCTION

In the field of materials science, band theory provides
a fundamental idea of how electrons behave and is used
extensively to understand, explain, and predict solid-state
physics. Electronic structures of graphene and related ma-
terials have attracted much attention over the years because
of their unique electronic band structures and exotic phys-
ical properties [1–3]. Unique properties of graphene are
discussed in terms of linear energy dispersions called Dirac
cones, which give massless fermions [4]. Emerging be-
yond graphene, two-dimensional (2D) materials [5–7] such
as transition metal dichalcogenides [8,9], transition metal
carbides/nitrides [10,11], and monoelemental 2D materials
[12,13] are explored to transcend the limits of graphene. In-
version symmetry breaking and/or introduction of spin-orbit
coupling (SOC) to the graphene structure leads to the band
gap at the Dirac cone [Fig. 1(a)], which gives massive Dirac
fermions [14–20]. Materials with gapped Dirac cones are
regarded as promising platforms for valleytronics [21–23], a
novel mechanism of electronics. A topological flat band has a
contrasting feature that has no energy dispersion in the entire
k-space. In contrast to a Dirac cone, the effective mass of
the topological flat band can be regarded as infinitely heavy.
Structural models for topological flat bands, such as Kagome
lattices [Fig. 1(b)] [24,25], Lieb lattices [26–28], etc. [29,30],
are being actively investigated, since flat band dispersion has
a possibility of providing ferromagnetism [26,31–34] and su-
perconductivity [35,36]. There are a number of theoretical
structural models for such topological band structures from
the physical point of view [37–42], but it is still difficult to
find a suitable chemical structure that realizes the geometry
and interactions of ideal model structures. Establishment of a
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chemical methodology to prepare materials that realize Dirac
cones and flat bands is an urgent topic.

In the field of topological physics, inorganic materials
used to be the main research focus because of their stronger
interaction compared to organic or molecular materials. In
recent years, research interest has spread to metal–organic and
organic materials [28,43–46]. We focused on molecular free-
dom for the construction of topological materials. Previously
we demonstrated that polyhedral π -conjugated molecules
with threefold rotation symmetry (hereafter denoted as poly-
hedral π -molecules) such as triptycene tri-p-benzoquinone
(p-TT) [47] and naphthalenediimide (NDI)-� [48] form
highly symmetric 2D (honeycomb) and three-dimensional
(3D) (gyroid) crystal structures, and their band structures cal-
culated with tight binding models include both Dirac cones
and flat bands [49,50] [Figs. 1(c) and 1(d)]. Highly symmet-
ric and unique arrangements of π -conjugated fragments of
polyhedral π -molecules enable the formation of efficiently
correlated 2D and 3D network structures by π -π interactions.
One of the advantages of organic materials is that the struc-
tures, interactions, and redox capacities of molecules can be
tuned by chemical modification, which provides a variety of
crystal and band structures, and makes it possible to con-
trol the band filling. Actually, large numbers of polyhedral
π -molecules with various functional groups have been re-
ported so far. Research into these polyhedral π -molecules
motivated us to investigate their crystal structures and elec-
tronic band structures further.

Here, we propose a rational method to construct a Dirac
cone and flat band, and to introduce a mass term to the Dirac
Hamiltonian by using organic molecules. We theoretically in-
vestigated the band structures of 2D triangular lattices formed
by polyhedral π -molecules. Based on the fragment molecular
orbital picture, we systematically calculate the band structures
of polyhedral π -molecules based triangle lattices and discuss
their topological features and the origins of their topological
band structures.
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FIG. 1. Topological band structures of the model structures and polyhedral π -conjugated molecules. (a) Gapped Dirac cone of symmetry-
broken honeycomb lattice. (b) Coexisting Dirac cone and flat band of kagome lattice. (c) and (d) Molecular structures and schematic images
of crystal packings and band structures of polyhedral π -molecules p-TT (c) and NDI-� (d). The three π -fragments that consist of molecules
are blue.

II. MOLECULAR ORBITALS AND INTRAMOLECULAR
INTERACTIONS

The possible shapes of polyhedral π -molecules can be
classified into two types, labeled Y and � types, in which
π -fragments are connected as paddlewheel-like (p-TT) and
triangular (NDI-�), respectively. In both types of polyhe-
dral π -molecules, the molecular orbitals (MOs), �, can be
expressed as linear combinations of frontier MOs of three con-
stituent π -fragments (ϕ), |�〉 = cA|ϕA〉 + cB|ϕB〉 + cC |ϕC〉. In
this work, we consider only the π -orbitals and their interac-
tions, because the frontier orbitals of such π -fragments are
generally π -MOs. The Hamiltonian for the three interacting
π -fragments in a molecule (Hintra ) can be expressed as

Hintra =
⎛
⎝ 0 −t0 −t0

−t0 0 −t0
−t0 −t0 0

⎞
⎠, (1)

where t0 is the intramolecular transfer integral between π -
fragments. The diagonal term shows the Coulomb integral of
the π -fragment, which is defined as the origin of the energy.

Based on this Hamiltonian, the energy levels of MOs
are given as E = t0, t0, –2t0. For each energy level, coeffi-
cients of the MO have the following relationships: cA + cB +
cC = 0 (E = t0) and cA = cB = cC(E = –2t0). The MOs
of a polyhedral π -molecule can be expressed as one-
dimensional, ψa ∝ (ϕA + ϕB + ϕC), and two-dimensional,
ψe ∝ (ϕA − ϕB), (ϕA + ϕB − 2ϕC), as illustrated in Fig. 2.
The energy splitting of MOs represents 3t0 and the sign of
t0 can be determined by the positions of degenerate orbitals
in energy. The MOs of polyhedral π -molecules and the sign
of t0 can be clearly explained by the schematic MOs and
energy diagram. When t0 is negative, the degenerated orbitals
�e are more stable (bonding) than nondegenerated orbital
�a [Figs. 2(a) and 2(b)]. When t0 is positive, �a can be

drawn as all bonding interactions and are more stable than �e

[Fig. 2(c)]. For Y-type molecules, t0 are negative regardless of
the constituent π -orbitals [Fig. 2(a)]. On the other hand, the
sign of t0 for �-type molecules can be determined by the num-
ber of nodes between the joints of π -fragments—specifically,
an odd number of nodes gives t0 < 0 [Fig. 2(b)] and an even
number gives t0 > 0 [Fig. 2(c)]. The density functional theory
calculations on the reported polyhedral π -molecules were also
performed (Sec. I of Supplemental Material [51]). The MOs of
Y-type molecules triptycene tri-o-benzoquinone (o-TT) [52]
and triptycene trithianthrene (TTA) [53] in Supplemental Ma-
terial Fig. S2 [51], and �-type molecules pyromellitdiimide
(PMDI)-� [54] and NDI-� [48] in Supplemental Material
Fig. S3 [51] show the clear correspondence of the MOs and
sign of t0.

III. MOLECULAR PACKINGS AND INTERMOLECULAR
INTERACTIONS IN TRIANGULAR LATTICES

The model structures we consider are triangular ar-
rangements of polyhedral π -molecules, which are connected

FIG. 2. Schematic images of molecular orbitals and signs of t0.
(a)–(c) The interaction can be categorized as Y-type molecules (a)
and �-type molecules with odd (b) and even numbers (c) of nodes in
π -fragments.
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FIG. 3. (a) Representative crystal packing of triangle lattice of
Y-type molecules o-TT [52] and TTA [53]. The gray, white, red, and
yellow spheres show carbon, hydrogen, oxygen, and sulfur atoms, re-
spectively. (b) Schematic packing motif of polyhedral π -molecules.
The left side shows the schematic image of t0 and t1 interactions be-
tween the π -fragments (gray circles with A, B, and C) of polyhedral
molecules. The right side shows the hexagonal packing of intra- and
intermolecular trimers of π -fragments (red triangles with α and blue
triangles with β, respectively), and the vectors between them (d1, d2

and d3).

to each other by intermolecular π -π interactions. This
arrangement is observed in, for example, neutral triptycene
derivatives o-TT [52] and TTA [53], which consist of
three o-benzoquinone and thianthrene moieties, respectively
[Fig. 3(a)]. Based on the existent crystal structures, we
constructed a model structure of a polyhedral π -molecule–
based triangular lattice, as shown in Fig. 3(b), left. Three

FIG. 4. Schematic image of an intermolecular MO overlaps. The
sign of t1 is determined by the overlap symmetry. (a) The case of
t0 < 0 with odd number of nodes in a trimer overlap. (b) The case of
t0 > 0 with even number of nodes.

π -conjugated fragments of a polyhedral π -molecule are
shown as gray circles (labeled A, B, and C) connected by
intramolecular interactions (t0, red dotted lines). One poly-
hedral molecule interacts with six neighboring molecules in
a triangular lattice by t1 (blue dotted lines). The existent 3D
crystal structures might be less symmetric than the ideal trian-
gular lattice, presumably because of interlayer arrangements
or the symmetry of crystal solvents. Though the lower sym-
metry raises small differences in interactions, we approximate
that the interactions of the 2D triangular lattice system are
symmetric. Here we also ignore the interlayer interactions, be-
cause the unique molecular shapes of polyhedral π -molecules
enable the intralayer π -π interactions to be much stronger
than interlayer interactions.

With this consideration, the Hamiltonian of the nearest-
neighboring π -π interactions can be expressed as

Hinter =
⎛
⎝ 0 −t1 −t1

−t1 0 −t1
−t1 −t1 0

⎞
⎠, (2)

where t1 is the intermolecular transfer integral. Since the
intermolecular trimer of a π -fragment forms a triangular ar-
rangement, as shown in Fig. 4, t1 can be estimated in the same
manner as discussed for the t0 of �-type molecules, and the
sign of t1 is sensitive to the intermolecular overlaps. Although
it is difficult to achieve the alternating signs of transfer in-
tegrals in inorganic materials, the π -molecules with clearly
determined positive and negative transfer integrals have an
advantage for the t0/t1 < 0 system.

IV. BAND STRUCTURE CALCULATIONS
IN RECIPROCAL SPACE

We constructed a tight binding model of polyhedral π -
molecules in a triangular lattice with t0 and t1. Since there are
three sites of π -fragments (A, B, and C) in the unit cell, the
Hamiltonian can be described by a 3 × 3 matrix:

Hcryst (k) =

⎛
⎜⎜⎝

0 −t0eik·RAB − t1eik·R′
AB −t0eik·RAC − t1eik·R′

AC

−t0eik·RBA − t1eik·R′
BA 0 −t0eik·RBC − t1eik·R′

BC

−t0eik·RCA − t1eik·R′
CA −t0eik·RCB − t1eik·R′

CB 0

⎞
⎟⎟⎠, (3)
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where RAB and R′
AB represent the vectors connecting the cen-

ters of the nearest-neighboring fragments within the molecule
and between the molecules, respectively (see Sec. II of Sup-
plemental Material [51]). As discussed earlier, the absolute
values and signs of t0 and t1 can be determined by the
molecular shapes, MOs of π -fragments, and intermolecular
overlaps in their crystal structures, and can be regarded as
independent parameters for model calculation. As an example
of an existent system, the MOs and energy diagrams of Y-
type π -molecules o-TT and TTA are shown in Supplemental
Fig. S2 [51], and their transfer integrals can be estimated as
t0 = –0.26 eV and t1 = –0.093 eV for o-TT, and t0 = –0.067
eV and t1 = +0.12 eV for TTA. To interpret the nature of
their band structures, we constructed tight binding models by
systematically changing the parameters t0 and t1. Figures 5(a)
and 5(b) show the calculated band structures of polyhedral
π -molecules in a triangular lattice with some selected pa-
rameters. For better visibility, the energy was normalized by
|t0 + t1| for t0/t1 > 0 [Fig. 5(a)] and |t0 − t1| for t0/t1 < 0
[Fig. 5(b)]. As a general feature of the band structures, the
same energy (E) is obtained by swapping t0 and t1, and energy
with the opposite sign (–E) is obtained by reversing both
signs of t0 and t1. Hereafter we show the band structures of
t1 < t0 < 0 for t0/t1 > 0 and –t1 < t0 < 0 for t0/t1 < 0. Re-
gardless of the conditions of t0 and t1, a flat band was always
observed. Conical dispersions with single-point band touching
were also observed in some critical conditions, specifically
when t1/t0 = 1 at the K̄-point and when t1/t0 = –1 at the
	̄-point, and the difference between |t0| and |t1| brings band
gaps on these points.

The topological features of the flat band and the point
nodes become apparent by tracking the singularity of the
wavefunction. For this purpose, we analyze the Berry cur-
vature, 
ν (k) ≡ ∂

∂kx
Ay

ν (k) − ∂
∂ky

Ax
ν (k), where ν is the band

index and Aν (k) = (Ax
ν
(k), Ay

ν
(k)) is the so-called Berry con-

nection Aν (k) ≡ −i〈�ν (k)|∇k|�ν (k)〉, representing how the
wave function varies by k [55–59]. For several choices of
parameters, 
ν (k) are projected onto the band structure as
shown in Figs. 5(e)–5(h). The 
ν (k) values of the respective
bands are shown in Figs. 5(i)–5(l). In the case of a regular
kagome lattice, 
ν (k) becomes zero except for the Dirac
points. In the present case, 
ν (k) becomes nonzero at general
points of k , since the inversion symmetry is broken due
to the imbalance between hopping amplitudes t0 and t1, and
due to the deviation of the positions of the center of mass
from the kagome sites. The net topology of each band can
be characterized by the Chern number Cν ≡ 1

2π

∫
BZ 
ν (k)d2k,

where the integral over k is taken in the first Brillouin zone.
As seen from Figs. 5(e) and 5(i), 
ν (k) has an opposite sign
by k → −k, and thus the Chern number of each band is zero,
indicating it is topologically trivial.

However, the situation can be altered by introducing in-
finitesimal SOC [60]. Here we analyze the Berry curvature
in the presence of the weak intrinsic SOC. As is well known
for the honeycomb lattice, the topological phase transition
arises from the competition between the inversion symmetry
breaking and the spin–orbit coupling [58]. In our polyhedral
π -molecule system, the three bands show small spin splitting
when the weak, intrinsic SOC is introduced, as shown in

Supplemental Material Figs. S6 and S7 [51]. The profile of
the Berry curvature near the Dirac points K̄ and K′ shown
in Figs. 5(g) and 5(j) are essentially the same as in the case
without SOC, since the inversion symmetry-breaking effect
dominates the SOC effect. On the other hand, 
ν (k) for
the flat band has a significant amplitude near the 	-point.
Since the spin-splitting bands have opposite signs of Berry
curvature, the spin Chern number of the flat band becomes
±1. The flat band has no characteristic energy scale, and
thus the infinitesimal SOC can make the flat band topolog-
ical. In addition, the dispersive middle band also acquires a
nonzero spin-Chern number with the opposite sign, as seen
in Figs. 5(g) and 5(j). A similar feature is observed at the
	-point of t0/t1 < 0 in Figs. 5(h) and 5(l). The spin-Chern
number for each band can be controlled by the systematic
change in the hopping amplitudes. The topological flat band
and the dispersive bands made by the polyhedral π -molecule
thus have a potential application to a new type of valleytron-
ics device [21–23], the emerging spin Hall effect [16,17,38],
and other topology-related phenomena [55–58]. The nonzero
spin-Chern number is directly related to the singular behavior
of the spin Hall effect, by the so-called Thouless-Kohmoto-
Nightingale-Nijs formula [61,62]. The calculated spin Hall
conductivity σ

spin
xy is shown in Figs. 5(c) and 5(d). As the

Fermi energy approaches the energy level of the flat band, the
spin Hall conductivity is significantly enhanced and reaches
the universal value e/2π . To realize the physical properties
based on the topological band structure, band width and band
filling are important factors. The estimated band widths from
the crystal structures are 1 eV for o-TT and 0.6 eV for TTA,
which are sufficient dispersions for physical property mea-
surements. The valence/conduction band of the neutral o-TT
and TTA are fully occupied/empty, but the electron accept-
ing/donating ability of o-TT/TTA enables up to three electron
reductions/oxidations [52,53]. These redox abilities cover the
filling control of one and a half bands, and are accessible to
the topological bands of triangular lattices.

V. ORIGIN OF THE TOPOLOGICAL FLAT BAND AND THE
EFFECTIVE LOW-ENERGY THEORY FOR DIRAC AND

NON-DIRAC POINT NODES

The topological flat band originates from the interfer-
ence effect of wavefunctions due to the C3 symmetry of
the molecular structure and the triangular lattice. Moreover,
the emergence of the topological flat band indicates that the
macroscopic number of the wavefunctions localized in real
space have a common energy. In the following, the origin of
the topological flat band is clarified by building the localized
wavefunction explicitly. In terms of the localized Wannier
orbital of the π -fragment |ϕA,B,C(R)〉, the wavefunction of the
system can be expressed as

|�〉 =
∑

n

[
cA

(
RA

n

)∣∣ϕA
(
RA

n

)〉 + cB
(
RB

n

)∣∣ϕB
(
RB

n

)〉
+ cC

(
RC

n

)∣∣ϕC
(
RC

n

)〉]
, (4)

where cA,B,C are the coefficients to be determined to satisfy
the Schrödinger equation, RA,B,C

n indicate the position of the
center of mass of the fragment, and n is the index of the unit
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FIG. 5. Electronic band structures and Berry curvatures of polyhedral π -molecules in triangular lattices. (a)–(d) Calculated band structures
with variable t0/t1 values, the signs of which are positive (a) and negative (b), and their spin Hall conductivity [(c) and (d)]. (e)–(h) 3D plots
of the band structures for t0/t1 = +0.75 [(e) and (g)] and −0.75 [(f) and (h)] with the color scale of Berry curvature without [(e) and (f)] and
with SOC [(g) and (h)]. (i)–(l) Berry curvature of each band. The signs of t0 and t1 were set as t0 < 0 and t1 < 0 for t0/t1 > 0, and t0 < 0 and
t1 > 0 for t0/t1 < 0.
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FIG. 6. Localized wavefunction that forms a topological flat
band. The signs + and − represent the coefficients of π -fragments.
The coefficient of the π -fragment is zero when the MO is not shown.

cell. If we consider an isolated molecule with C3 symmetry,
where the Hamiltonian is given in Eq. (1), doubly degenerate
e-orbitals are constructed by the orthogonality condition to
the one-dimensional a-orbital, i.e., cA + cB + cC = 0. In the
case of the crystal shown in Fig. 3, the system has another
C3 symmetry reflecting the triangular lattice structure, as seen
in Eq. (2). These two kinds of C3 symmetry give rise to the
emergence of the macroscopically degenerate state, i.e., the
topological flat band. The degeneracy within the intramolecu-
lar π -trimer [shown by red triangles in Fig. 3(b), right] can be
analyzed by the quantity

α
(
Rα

n

) ≡ cA
(
RA

n

) + cB
(
RB

n

) + cC
(
RC

n

)
, (5)

where we introduce the index α, indicating the center of mass
of the π -trimer, and Rα

n represents its position. The degenerate
MOs can be constructed by α(Rα

n ) = 0. Next, the degeneracy
within the intermolecular π -trimer [shown by blue triangles
in Fig. 3(b), right] can be analyzed by the quantity

β
(
Rβ

n

) ≡ cA
(
RA

n + a2
) + cB

(
RB

n − a1
) + cC

(
RC

n

)
, (6)

where the index β represents the center of mass of the in-
termolecular π -trimer and its position is given by Rβ

n . The
localized molecular orbitals with macroscopic degeneracy
can be constructed from the condition α(Rα

n ) = β(Rβ
n ) = 0

for any site n. This condition can be fulfilled by imposing
(cA, cB, cC) ∝ (+1,−1, 0), (0, +1, −1), or (−1, 0, +1) for
sites inside the localized orbital and (cA, cB, cC) = (0, 0, 0)
for sites outside. A wavefunction constructed in this manner
is illustrated in Fig. 6, where the sum of coefficients in all
intra- and intermolecular trimers is canceled out to zero. The
energy of this localized state is Eflat = t0 + t1 (Sec. III of Sup-
plemental Materials [51]). Since the position of the localized
state is arbitrary, the bulk number of such localized states
degenerates, and thus the flat band emerges in the polyhedral
π -molecule -based triangular lattice.

To investigate the nature of the remaining two dispersive
bands, especially of the point nodes at the K̄-, K′-, and
	-points, we derive a 2 × 2 Hamiltonian matrix and ana-
lyze its low-energy structure. The wavefunction coefficients
of the dispersive bands satisfy α(Rα

n ) �= 0 and β(Rβ
n ) �= 0. The

coefficients α and β can be determined by solving the eigen-
value problem of the 2 × 2 matrix (Sec. III of Supplemental

Material [51]):

E ′
k

(
α̃k

β̃k

)
= Hk

(
α̃k

β̃k

)
,

Hk =
(

− 3
2 (t0 − t1)

√|t0t1| a
h̄γk√|t0t1|sgn(t0t1) a

h̄γ ∗
k + 3

2 (t0 − t1)

)
, (7)

where α̃k and β̃k are the Bloch wave functions built up by
α(Rα

n ) and β(Rβ
n ), respectively. Here, E ′

k ≡ Ek + (t0 + t1)/2
and γk ≡ ih̄(eik·d1 + eik·d2 + eik·d3 )/a. The diagonal energy of
Hk is shifted to make it traceless. The matrix Hk has different
properties depending on the sign of t0/t1. In the following, we
discuss the low-energy effective Hamiltonian separately.

In the case of t0/t1 > 0, the gap between the two bands
becomes small at the K̄- and K′-points. By setting k = K +
q or k = K ′ + q, and by assuming small |q|, Eq. (7) can be
expressed by the well-known two-dimensional massive Dirac
Hamiltonian

HK+q = vh̄qxσx + τzvh̄qyσy + mv2σz, (8)

where σx, y, z are the Pauli matrices. The velocity and
the mass are given by v ≡ (

√
3a/2h̄)

√|t0t1| and m ≡
−(2h̄2/a2)(t0 − t1)/|t0t1|. Here, τz represents the valley de-
gree of freedom: τz = +1 for the K̄-point and τz = −1 for
the K′-point. This result indicates that the K̄- and K′-points
have opposite chirality, as can also be seen from the profile of
the Berry curvature shown in Fig. 5(g). Equation (8) has the
energy eigenvalue

E ′
k = ±

√
v2h̄2q2 + m2v4, (9)

which indicates the massive (m �= 0) and massless (m = 0)
Dirac cones. The lattice geometry in the case of t0/t1 > 0
is the same as that of the so-called breathing kagome lattice
[37,39], and the effective theory [Eq. (8)] has the same struc-
ture observed in the honeycomb lattice with chiral symmetry
breaking [14,17–20]. It is worth noting that Rα

n and Rβ
n intro-

duced in Eqs. (5) and (6) form two sublattice vectors of the
honeycomb lattice, and the asymmetry between the intra- and
intermolecular trimers causes the effect of chiral symmetry
breaking the honeycomb lattice, i.e., the nonzero mass term
of the Dirac Hamiltonian.

In the case of t0/t1 < 0, the gap becomes small at the 	-

point. By assuming small k =
√

k2
x + k2

y , the matrix Hk can be

described by

Hk =
(

− 3
2 (t0 − t1) i

√|t0t1|
(
3 − 1

4 k2 a2
)

i
√|t0t1|

(
3 − 1

4 k2 a2
) + 3

2 (t0 − t1)

)
, (10)

and its eigenenergy is given by

E ′
k = ±

√
9
4 (t0 + t1)2 + 3

2 |t0t1|k2a2. (11)

The gap amplitude at the 	-point is 3|t0 + t1|. If (t0 + t1) =
0, two bands degenerate at k = 0 and exhibit linear k depen-
dence, E ′

k ∝ ±
√

k2
x + k2

y . This conical band behavior cannot
be attributed to the Dirac dispersion since no peculiar signa-
ture can be observed in the Berry curvature [Figs. 5(f) and
5(k)].
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VI. CONCLUSION

In summary, we proposed that the molecular freedom of
polyhedral π -molecules with threefold rotation symmetry can
provide a rational method of constructing topological band
structures. The independently controllable interactions t0 and
t1 provide massless/massive Dirac cones and topological flat
bands. The difference between t0 and t1 leads to a band gap
opening and nonzero Berry curvature on the Dirac cone. Ad-
ditionally, infinitesimal SOC gives a nontrivial Chern number
on the topological flat band. The topological flat band can be
attributed to the interference effect of wavefunctions due to
the C3 symmetry of the molecule and lattice. The Dirac cone

originates from the honeycomb arrangement of π -fragment
trimers, and the mass term is given by the difference between
t0 and t1, which breaks the inversion symmetry of the honey-
comb structure.
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