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Schwinger-boson mean-field study of the spin-1/2 J1-J2-Jχ model in the
honeycomb lattice: Thermal Hall signature
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We theoretically investigate, within Schwinger-boson mean-field theory, the transition from a gapped Z2

quantum spin liquid, in a J1-J2 Heisenberg spin- 1
2 system in a honeycomb lattice, to a chiral Z2 spin-liquid

phase under the presence of time-reversal symmetry-breaking scalar chiral interaction (with amplitude Jχ ). We
numerically obtain a phase diagram of this J1-J2-Jχ system, where different ground states are distinguished
based on the gap and the nature of excitation spectrum, topological invariant of the excitations, the nature of
spin-spin correlation, and the symmetries of the mean-field parameters. The chiral Z2 state is characterized by
the nontrivial Chern number of the excitation bands and lack of long-range magnetic order, which leads to a
large thermal Hall coefficient.
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I. INTRODUCTION

Quantum spin liquid (QSL) is an exotic state of matter
where a spin system does not develop magnetic order or break
any lattice symmetry even at the absolute zero temperature.
Instead, the system develops a topological order with frac-
tionalized excitations [1–3]. QSLs cannot be described by
the traditional Landau paradigm where different phases are
characterized by local order parameters and broken symme-
try. Historically, QSL was proposed by Anderson [4] as a
quantum ground state for a geometrically frustrated trian-
gular lattice antiferromagnet, and since then, the search for
QSL in quantum magnets has primarily focused on frustrated
lattice systems, such as triangular, kagome, and pyrochlore
lattices. Among possible candidates, the Kitaev model for
spin- 1

2 on a honeycomb lattice is a promising candidate to
support QSL states, where strong quantum fluctuations arising
from the bond-dependent interaction destroys magnetic orders
[3,5,6]. This led to an intense experimental search for Kitaev
materials and signatures of the QSL state [7,8]. In addition
to Kitaev’s honeycomb model, the antiferromagnetic Heisen-
berg J1-J2 model has been studied extensively as a possible
QSL candidate [9,10]. The conventional ground state of the
nearest-neighbor Heisenberg model (without the next-nearest-
neighbor coupling J2), say, on the honeycomb lattice, is a
Néel ordered state, but when the second-nearest interaction
is turned on and increased, the long-range order can get de-
stroyed, and the system can enter into a quantum disordered
state for the intermediate coupling regime. Authors of various
numerical studies suggest that there is a QSL phase for an
intermediate ratio of J2/J1, although the parameter range of
the regime has been somewhat debated [11–18]. Apart from
the physics associated with QSLs, they also hold potential for
applications, especially in the field of quantum information
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processing [19], using properties of the long-range entangled
spins. For example, the Kitaev QSL can support fractional
excitations, represented by Majorana fermions [8], which can
be made to act as anyons obeying non-Abelian statistics.
Braiding these anyons could be an important step toward
topological quantum computation [2].

In recent years, there have also been numerous studies
to identify chiral spin orders in disordered systems, such
as the scaler chiral order [i.e., 〈�Si · (�S j × �Sk )〉 �= 0, where �Si

is the spin-operator at the ith site]. The presence of such
time-reversal (TR) symmetry-breaking chiral order can give
rise to nonzero Chern numbers of the excitations, which can
result in enhanced thermal Hall conductivity. In certain cases,
these states can be identified as chiral spin liquids (CSLs),
based on their ground-state degeneracy, which have been also
studied extensively in kagome [20–26], triangular [27–30],
square [31], and honeycomb lattices [32]. Very recently, au-
thors of Ref. [33] have investigated the topological phase
transition and nontrivial thermal Hall signatures for spins in a
honeycomb lattice in the presence of Zeeman coupling using
Abrikosov-fermion mean-field theory; they also report similar
findings of an unusual thermal Hall effect for the pseudogap
phase of copper-based superconductors [34].

In this paper, we consider the J1-J2 spin- 1
2 Heisenberg

model along with a scalar chiral three-spin term. Without the
scalar chiral term, in the classical limit S → ∞, the system is
Néel ordered for J2/J1 < 1

6 and magnetically ordered in a spi-
ral manner for J2/J1 > 1

6 [35–37]. For the quantum case, the
nature of the ground state has been extensively studied (with-
out the scalar chiral term), using spin-wave theory [36–39],
the nonlinear σ model [40], exact diagonalization [15,41],
variational Monte Carlo [11,18], and other methods [42].
The general understanding is that, for J2/J1 � 0.21, it orders
magnetically as a Néel phase; in the range 0.37 � J2/J1 �
0.21, there is a gapped spin-liquid (GSL) phase; in the range
0.4 � J2/J1 � 0.37, there is a C3-rotational symmetry-broken
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disordered valence-bond crystal (VBC) state, and for J2/J1 �
0.4, the system orders magnetically in a spiral manner.

Our work is based on Schwinger-boson mean-field theory
(SBMFT), where we find that the introduction of a scalar
spin-chiral term on the disordered (gapped) phase leads to
transition to chiral Z2 spin-liquid (CZSL) states, where the
Chern numbers of the excitation bands change. We also
theoretically study its signature in the thermal Hall measure-
ment, which captures the nontrivial topology of the spinon
bands.

Before we present details of the study, we note that there
are two approaches which are widely used in the literature to
investigate spin-liquid phases: Schwinger/Abrikosov-fermion
mean-field theory [43,44] and SBMFT [45–47], in which
the low-energy spin excitations are fermionic and bosonic,
respectively. The fermionic approach is more suited to ex-
plain the physics near a continuous Mott transition [48–50],
and the bosonic approach is more suitable near magnetic
phase transitions. At the spin-liquid–to–magnetically ordered
state transition, the gap vanishes at particular momentum
points in the Brillouin zone where the bosonic spinons can
condensate, giving rise to magnetic ordering. The advantage
of the Schwinger-boson approach lies in the fact that we can
access both the spin-liquid states and the magnetically ordered
state.

This paper is organized as follows. In Sec. II, we briefly
review the formalism of SBMFT and various technicalities
involved in solving for the ground-state properties. We pro-
vide details of the numerical simulation and further discussion
of how we identify various phases from numerical data in
Sec. III, and we present the numerical results in Sec. IV.
We discuss the results further and summarize our findings in
Sec. V.

II. FORMALISM

In this paper, we study the effect of the scaler three-spin
chiral term, with coefficient Jχ , in the J1-J2 Heisenberg spin- 1

2
Hamiltonian:

H =
∑

nn

J1 �Si · �S j +
∑
nnn

J2 �Si · �S j +
∑
�

Jχ �Si · ( �S j × �Sk ), (1)

where �Si is the spin operator at site i, J1 and J2 are the coupling
amplitudes for the nearest neighbor (abbreviated as nn) and
the next-nearest neighbors (abbreviated as nnn), whereas Jχ

is the amplitude of the scalar spin-chiral term, as outlined in
the Fig. 1. In the third term, the sum involves the triangular
plaquettes � formed by the nearest neighbors, as shown in
the same figure.

As a passing comment, strong coupling expansion of the
Hubbard model yields J1 = 4t2

1 /U and J2 = 4t2
2 /U , where

t1 and t2 are the nearest- and next-nearest-neighbor hopping
amplitudes of electrons, respectively, and U is the on-site
repulsion. On the other hand, scalar spin chirality is pro-
portional to −24t2

1 t2/U 2 sin �, where � is the magnetic
flux through the triangular plaquette [51]. Starting from the
Haldane-Hubbard model, one may also naturally lead to the
Jχ term without any further application of magnetic field
[21,32,32,51–54]

FIG. 1. Honeycomb lattice is defined by translation vectors
(ê1,ê2) and two sublattices u and v. The spin-spin exchange couplings
up to second order (J1 and J2, respectively) and the chiral coupling
Jχ are depicted.

We study this spin model, Eq. (1), using SBMFT, where we
represent the spin operators in terms of bosons. The nature of
the bosonic excitations on top of the mean-field ground state
predicts order-disorder transition and other physical proper-
ties of the system, as we discuss later. Before we discuss
our numerical findings, we present a short review of SBMFT
below.

A. SBMFT

The principle idea behind SBMFT is to express the spin
operators in terms of bosonic operators that carry spin. In
the SU(2) representation, where two bosonic flavors are in-
troduced to describe the spin operators, we write [55]

�Si = 1
2 b†

i,σ �τσσ ′bi,σ ′ , (2)

where τ i are the Pauli matrices, and b†
i,σ are the bosonic

creation operator of spin σ on site i. To preserve the SU(2)
commutation rule, the following local constraint must be ful-
filled on every site: ∑

σ

b†
iσ biσ = 2S, (3)

where S is the value of spin under consideration, which we
take to be 1

2 in this paper. However, it is typically difficult to
impose this constraint exactly [46]; thus, we impose it on the
average over the mean-field ground state, which is the most
common practice in the literature.

As we do not impose any symmetry to be broken in the
ground state, the only possible bilinears that preserve the spin-
rotation symmetry are the following:

Âi j = 1
2 [bi↑b j↓ − bi↓b j↑],

B̂i j = 1
2 [b†

i↑b j↑ + b†
i↓b j↓]. (4)

Physically, Ai j’s measure singlet-type correlations, while Bi j’s
measure triplet correlations [56]. In a gapped phase, the first
one is favored, whereas the triplet correlation allows the
spinons to hop between sites, giving rise to long-range orders.

It can be easily verified that

�Si · �S j =: B̂†
i j B̂i j : −Â†

i j Âi j, (5)
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FIG. 2. The nine independent mean-field complex parameters
Oid and their clockwise orientation conventions that allow the point
group symmetry breaking. The first subscript i refers to the neighbors
(i = 1, 2 for the nearest and the next nearest, respectively), while the
second subscript d refers to the three directions. For the next-nearest
neighbors i = 2, connected sites are on the same sublattices; we then
introduce two sets of mean-field parameters, labeled with the extra
superscript Ow , with w = u/v. O can be of type A or B between the
sites, totaling 18 independent parameters.

where : Ô : refers to the normal ordering. Now, we perform
the mean-field decoupling of Â, B̂ operators as

Â†
i j Âi j → A∗

i j Âi j + Â†
i jAi j − A∗

i jAi j,

B̂†
i j B̂i j → B∗

i j B̂i j + B̂†
i jBi j − B∗

i jBi j, (6)

where A, B are the complex-valued mean-field order parame-
ters that one computes self-consistently from the average over
the mean-field ground state |gs〉:

Ai j = 〈gs|Âi j |gs〉 , Bi j = 〈gs|B̂i j |gs〉 . (7)

These expectation values collectively define the parameters of
the mean-field Ansatz. The expectation values are calculated
in the new basis that diagonalizes the Hamiltonian, and using

γ�q,λ |gs〉 = 0, (8)

where |gs〉 is the vacuum state for the resulting bosonic ex-
citation γ�q,λ, details of these procedures will be discussed in
the Sec. II C. Once the decomposition in Eq. (6) is done, the
effective mean-field Hamiltonian is completely expressed in
terms of the bosonic bilinears. In the same way, we can do the
SBMFT decoupling of the scaler chirality term where we use
the following identity:

�Si · ( �S j × �Sk ) = 2i(−B̂†
kiB̂

†
jk B̂†

i j + B̂i j B̂ jkB̂ki ),

= −4Im[B̂i j B̂ jkB̂ki], (9)

which we write using the mean-field decomposition as

B̂i j B̂ jkB̂ki ≈ B̂i j 〈B̂ jk〉 〈B̂ki〉 + 〈B̂i j〉 B̂ jk 〈B̂ki〉
+ 〈B̂i j〉 〈B̂ jk〉 B̂ki − 2 〈B̂i j〉 〈B̂ jk〉 〈B̂ki〉 . (10)

In our original Hamiltonian, we have the Heisenberg inter-
actions up to second-nearest neighbor. Now, if we want to
preserve the translational symmetry but break all the point
group symmetries, we can get at most 18 inequivalent mean-
field Ansätze (bond parameters), nine for each Ai j and Bi j .
These are schematically shown in Fig. 2. For nearest-neighbor
interactions, the bonds are between one u and one v sublattice,

denoted by O1d , where d’s are the three possible orientations
(subscript 1 denotes nearest neighbor). For the next-nearest
interactions, the bonds are connections between two u or v

sublattices. We denote them with Ow
2d , where the superscript

represents the sublattice index and d’s are the three possible
orientations as before. Each O can be chosen as A or B type of
order parameters, totaling 18 of them.

The final mean-field Hamiltonian can be expressed as

Hmf =
∑

i j

Ji j (−A∗
i j Âi j + B∗

i j B̂i j + H.c.)

−
∑

i

μi

(∑
σ

b†
iσ biσ − 2S

)

+ 2i
∑
�

Jχ (BkiB jkB̂i j + Bi jBkiB̂ jk

+ Bi jB jkB̂ki − H.c.) + K, (11)

with

K =
∑

i j

Ji j (|Ai j |2 − |Bi j |2) + 8
∑
�

Jχ Im(Bi jB jkBki ). (12)

The above term in the Hamiltonian is the consequence of the
constraint in Eq. (3). Here, the chemical potentials μu and
μv depend on the sublattices. The Schwarz inequality restricts
the upper bounds on the moduli |A| � S + 1

2 , |B| � S, which
must be obeyed for any self-consistent Ansatz in SBMFT [46].

B. Diagonalization of bosonic quadratic Hamiltonian

The mean-field Hamiltonian, Eq. (11), can be diagonal-
ized using the Bogoliubov-Valantin canonical transformation
[57,58]. The procedure is following for a generic quadratic
bosonic Hamiltonian:

H = 1
2	†M	; 	† = (b†

1, . . . , b†
N , b1, . . . , bN ), (13)

where N is the degree of freedom and M is an 2N × 2N
matrix. Here, b†

n (bn) are the creation (annihilation) operators
in momentum, spin, or any other degrees of freedom. To find
the eigenvectors corresponding to the matrix M, we introduce
creation (annihilation) operators γ †

m (γm) such that

	 = T 
, 
† = (γ †
1 , . . . γ

†
N , γ1, . . . γN ), (14)

where T is the basis-transformation matrix. We choose our
T such that the Hamiltonian in Eq. (13) can be written in a
diagonal form as

H = 1
2
†T †MT 
, (15)

with

T †MT =

⎛
⎜⎜⎝

ω1 0 · · · 0
0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ω2N

⎞
⎟⎟⎠.

To preserve the bosonic commutation rules, the 	 and 


matrices should obey the following matrix equation:

[	i, 	
†
j ] = [
i, 


†
j ] = (ρ3)i j,
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where

ρ3 ≡
(

IN×N 0
0 −IN×N

)
. (16)

Here, IN×N is the identity matrix of dimension N . This implies
that the transformation matrix must satisfy

T ρ3T † = ρ3. (17)

In a more formal language, T is a paraunitary [58] SU(N, N )
matrix. The elements of the transformation matrix can be
found from the eigenvectors of the dynamic matrix, defined
as

D = ρ3M, (18)

which satisfies the Heisenberg equation of motion for 	 [34].
All the eigenvalues of the dynamic matrix (when it is diago-
nalizable) appear in pairs of opposite signs and are real. Here,
T is also referred to as the derivative matrix, consisting of all
the eigenvectors of D sorted in the form:

T = [V (ω1), . . . ,V (ωN ),V (−ω1), . . . ,V (−ωN )], (19)

with the eigenvectors normalized as

V †(ωi )ρ3V (ωi ) = 1, V †(−ωi )ρ3V (−ωi ) = −1, (20)

for all the sets of [V (ωi ),V (−ωi )]. After the diagonalization,
we have

T −1DT = diag (ω1, . . . , ωN ,−ω1, . . . ,−ωN ), (21)

and

T †MT = diag (ω1, . . . , ωN , ω1, . . . , ωN ). (22)

Both M and D are now simultaneously diagonalized. We call
the positive (negative) bands with indices n = 1, . . . , N (n =
N + 1, . . . , 2N) as the particle (hole) bands.

C. Mean-field dispersion

We use the method of the preceding section for diago-
nalization of the mean-field Hamiltonian in Eq. (11) in the
momentum space. We write the bosonic annihilation operator
in the Fourier space as

b�r,w,σ = 1√
nc

∑
�q

exp(i �q · �r)b�q,w,σ , (23)

where nc is the total number of unit cells in the real-space
lattice (each containing two sublattices); �r are the positions
of the unit cells, and w = u, v are sublattice indices. The
combination (�r,w) defines the position of a particular site,
and σ =↑ / ↓ are the flavors of the Schwinger bosons. Then
the mean-field Hamiltonian in the momentum space is written
as

Hmf = 1

2

∑
�q

	
†
�q M�q	�q − (2S + 1)nc

∑
w

μw + K, (24)

with

	
†
�q = (b†

�q,u,↑b†
�q,v,↑b−�q,u,↓b−�q,v,↓), (25)

where the coefficient matrix M�q = M (1)
�q + M (2)

�q consists of
two parts, where the second term is proportional to the scalar
chirality Jχ . The first of these terms is given by

M (1)
�q =

⎡
⎢⎢⎣

J2
(
Bu

2dφ2d +Bu∗
2dφ

∗
2d

)+2μu J1B∗
1dφ

∗
1d J2Au

2d (φ2d −φ∗
2d ) −J1A1dφ

∗
1d

J1B1dφ1d J2
(
Bv

2dφ2d +Bv∗
2dφ

∗
2d

)+2μv J1A1dφ1d J2Av
2d (φ2d −φ∗

2d )
J2Au∗

2d (−φ2d +φ∗
2d ) J1A∗

1dφ
∗
1d J2

(
Bu

2dφ
∗
2d +Bu∗

2dφ2d
)+2μu J1B1dφ

∗
1d

−J1A∗
1dφ1d J2Av∗

2d (−φ2d +φ∗
2d ) J1B∗

1dφ1d J2
(
Bv

2dφ
∗
2d +Bv∗

2dφ2d
) + 2μv

⎤
⎥⎥⎦,

where we have assumed the summation over repeated index
d and φid (�q) = exp(i �q · �δi,d ) is the phase factor associated
with the hopping to neighboring sites at distance �δi,d to the
ith neighbors (i = 1 and 2 refer to nearest and next-nearest
neighbors) and in one of three directions d , shown in Fig. 2.
The coefficient matrix M (2)

�q is given by

M (2)
�q =2Jχ

⎡
⎢⎢⎣

−2ImC11 C12 0 0
C∗

12 −2ImC22 0 0
0 0 −2ImC33 C34

0 0 C∗
34 −2ImC44

⎤
⎥⎥⎦,

where Ci j are �q-dependent expressions given by

C11 = B∗
12B13 exp(−iq2) + B∗

12B11 exp(−iq1)

+B∗
11B13 exp[i(q1 − q2)],

C22 = B∗
13B11 exp[i(q2 − q1)] + B∗

11B12 exp(iq1)

+B∗
12B13 exp(−iq2),

where C33 and C44 are the same as C11 and C22, respectively,
after the exchange of q1 → −q1 and q2 → −q2, and

C12 = i{A − exp(−iq1)B + exp[−i(q1 − q2)]C},
C34 = i{−A∗ + exp(−iq1)B∗ − exp[−i(q1 − q2)]C∗}.

with

A = B∗
12Bu∗

21 − Bu
23B∗

13 + Bv
23B∗

13 − B∗
12Bv∗

21,

B = Bu∗
22B∗

13 + Bu
21B∗

11 + B∗
13Bv∗

22 − Bv
21B∗

11,

C = B∗
12Bu

22 + B∗
11Bu∗

23 − B∗
11Bv∗

23 + Bv
22B∗

12.

To find the eigenmodes corresponding to M, we introduce
new annihilation (creation) operators γ (γ †), as before, such
that

	�q = T�q
�q, (26)

with



†
�q = (γ †

�q,u,↑γ
†
�q,v,↑γ−�q,u,↓γ−�q,v,↓). (27)
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Now the mean-field Hamiltonian takes the form, in this new
basis:

Hmf = 1

2

∑
�q



†
�q ω̂�q 
�q − (2S + 1)nc

∑
w

μw + K. (28)

The matrix T�q satisfies the following conditions:

T †
�q ρ3 T�q = ρ3, (29)

T †
�q M�q T�q = ω̂�q, (30)

where

ω̂q = I2×2 ⊗
[
ε�q,u 0
0 ε�q,v

]
. (31)

Now that we have found the mean-field spinon dispersion, one
can find the fixed point in the mean-field parameter space by
minimizing the free energy:

Fmf =
∑
�q,w

ε�q,w − (2S + 1)nc

∑
w

μw + K, (32)

with respect to the mean-field parameters and the chemical
potentials:

∂FMF

∂Oid
= 0,

∂FMF

∂μw

= 0. (33)

These equations can be solved numerically. In a second pro-
cedure, which is the one we employ in this paper, we solve for
the mean-field order parameters by self-consistently solving
Eq. (7). Also, in the latter method, the complex nature of the
Ansätze is inherent compared with solving them by minimiz-
ing the free energy.

D. Spin-structure factor

Although we work in a finite-sized lattice system, how
the static spin-structure factor 〈�S0 · �Si〉 behaves as a function
of Ri reveals the nature of the underlying ground state. In
such a finite-sized system, the spin-rotation symmetry is never
broken in the ground state, which allows us to write

〈�S0 · �Si〉 = 3
〈
Sz

0Sz
i

〉
= 3

4
〈(b̂†

0↑b̂0↑ − b̂†
0↓b̂0↓) (b̂†

i↑b̂i↑ − b̂†
i↓b̂i↓)〉. (34)

In the Fourier space, we have

Sz
0Sz

i = 1

4n2
c

∑
�k,�q, �k′, �q′

exp[i(�q − �q′) · �ri]

× [b̂†
�k↑b̂ �k′↑b̂†

�q↑b̂ �q′↑ + b̂†
�k↓b̂ �k′↓b̂†

�q↓b̂ �q′↓

− b̂†
�k↑b̂ �k′↑b̂†

�q↓b̂ �q′↓ − b̂†
�k↓b̂ �k′↓b̂†

�q↑b̂ �q′↑], (35)

where we have suppressed the sublattice index for brevity. The
expectation values of these operators can be calculated in the
diagonal basis of the Hamiltonian and using Eq. (8) [59].

E. Berry curvature and thermal Hall effect

Once we diagonalize the bosonic Hamiltonian, we have the
Hamiltonian of the excitation in the form of

HD =
∑

�q

Nband∑
n=1

ε�q,n

(
γ

†
�q,nγ�q,n + 1

2

)
, (36)

where Nband is the number of bosonic particle bands (with
ε�q,n > 0), which is two in our case. The thermal Hall coef-
ficient for this bosonic system is then defined as [60]

κxy = −k2
BT

h̄V

∑
�q

Nband∑
n=1

{
c2[nB(ε�q,n)] − π2

3

}
�n�q, (37)

where nB(ω) is the Bose distribution function,

c2(x) =
∫ x

0
dt

(
ln

1 + t

t

)2

, (38)

and �n�q is the Berry curvature in momentum space for the nth
band, defined as

�n�q ≡ iεμν

[
ρ3

∂ T †
�q

∂kμ

ρ3
∂T�q
∂kν

]
nn

, (39)

which can also be recast in the following form:

�n�q = iεμν 〈∂μψn(q)| ρ3 |∂νψn(q)〉 , (40)

where ψn(k) is the nth column of the Tq matrix. The numerical
evaluation of the Berry curvature follows the U(1)-link vari-
able method, outlined in Appendix A. The Chern number is
then evaluated as

Cn = 1

2π

∫
BZ

�n�q d �q, (41)

which are always integers and obey the following constraints:

Nband∑
n=1

Cn =
2N∑

n=Nband+1

Cn = 0, (42)

that is, the sums of Chern numbers over particle and hole
bands are individually zero [60].

III. DETAILS OF THE NUMERICAL SIMULATION

We solve for self-consistent values of the mean-field pa-
rameters in a finite lattice of nc = Ns × Ns unit cells, where
Ns = 36, in total containing 2 × 36 × 36 sites, considering
the two sublattices. There is a numerical advantage in solving
self-consistently Eq. (7) rather than solving Eq. (32), as it
requires no evaluation of numerical derivatives, which can
introduce errors of the order of grid separation (∼1/Ns) and
allows for finding completely unrestricted solutions [56]. We
take J1 = 1 as our unit of energy and the distance between two
neighboring u sublattices as our unit of length.

The minimization technique we use is as follows. First, we
choose a set of mean-field parameters O depending on the
possible ground state, which needs to be chosen carefully for
convergence. In the initial step, for this set of O’s, we scan
for allowed values of the chemical potentials μu, μv such that
the constraint, Eq. (3), is satisfied on both sublattices in the
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ground state average. In the next step, we evaluate the modi-
fied mean-field parameters using Eq. (7) [which is simplified
by using Eq. (8)], and again, we find appropriate μu, μv such
that the constraint, Eq. (3), is satisfied on both sublattices in
the modified ground state. This procedure continues until the
mean-field parameters as well as the chemical potentials con-
verge up to a value of tolerance. We first obtain the solutions
for Jχ = 0, and then we use these solutions as initial seeds for
solutions with small Jχ and follow the same procedure with
successively increasing Jχ . In our case, the tolerance on mean-
field parameters is at least ∼10−6. The values of the converged
mean-field Ansätze are all real for a topologically trivial phase,
but following the phase transition to a topologically nontrivial
phase, some of them acquire complex values. Because we
are dealing with spin-half systems, we must always preserve
|A| � 1 and |B| � 0.5, which is constrained by the Schwarz
inequality; the final converged solutions must also reflect this.

Physically, Ai j’s measure singlet-type correlations, while
the Bi j’s measure triplet correlations [56]; so while choosing
the initial values of the mean-field order parameters in the
ordered state, Bi j should be kept large, while in the disordered
state, it should be kept small to get quick convergence.

We distinguish different phases of the ground state by
following properties. First, we call a state gapless, if the gap
in the spectrum is <1/Ns, as there is always a finite-sized gap
present in our system, even though the state can be gapless in
the thermodynamic limit. Next, we look for the symmetries
of the converged mean-field parameters, which can predict
the nature of the ground state based on projective symmetry
ground analysis, which we present later. In the gapless state,
the momentum where the spectrum is minimum dictates the
ordering vector and thus the nature of the long-range order.
For the gapped state, we also compute the Chern number of
one of the excitation bands to distinguish between a trivial
QSL state (we call it GSL) or VBC, where the Chern number
is zero, from a CZSL state (with nonzero Chern number).
Finally, we also compute the static spin-spin correlation in the
ground state. How fast this correlation decays as a function of
the distance between two sites can differentiate the nature of
the ground state.

1. Projective symmetry of Ansatz

The idea of projective symmetry group (PSG) classification
for spin liquids was introduced by Wen [44,61] and Zhou and
Wen [62], in the context of the Schwinger-fermion approach.
PSG analysis in the Schwinger-boson approach was extended
by Wang and Vishwanath [46]. The study of PSGs provides
the allowed symmetries and sign structures of the mean-field
Ansatz. In the disordered phase, we want our mean-field state
to obey the underlying microscopic symmetries of the spin
model. For a honeycomb lattice, these symmetry transforma-
tions are lattice translations, point group symmetries (i.e., C3
rotation and reflections), spin-rotation symmetry, and the TR
symmetry. Additionally, for the case of Schwinger bosons,
under the local U(1) transformation:

b�rσ → exp[iφ(�r)]b�rσ , (43)

the mean-field Ansaätze transform as

Ai j → exp[−iφ(i) − iφ( j)]Ai j,

Bi j → exp[+iφ(i) − iφ( j)]Bi j . (44)

Under this, all the physical observables should remain in-
variant, but a subset of this, the U(1) transformation keeps
the Ansätze themselves invariant. The set of the elements of
PSGs that are of the kind in Eq. (43) form a group called the
invariant gauge group (IGG) [61]. For a honeycomb lattice
with both nonzero Ai j and Bi j , this IGG is simply Z2 [45]. For
the honeycomb lattice, such a PSG classification was found to
give two distinct spin-liquid states classified as 0 and π flux
states [45]. The spin-liquid states we found from numerical
simulations, starting from completely unrestricted Ansätze,
match with the zero flux states mentioned above.

The symmetries of the Ansatz that identifies the nature of
the ground state are following [45,56]:

(1) In the spin liquid and the Néel state:

A11 = A12 = A13 = A,

Au
21 = Au

22 = Au
23 = Av

21 = Av
22 = Av

23 = 0,

B11 = B12 = B13 = 0,

Bu
21 = Bu

22 = Bu
23 = Bv

21 = Bv
22 = Bv

23 = B. (45)

(2) In the VBC state:

A11 �= A12 = A13,

Au
21 �= Au

22 = −Au
23,

Av
21 �= Av

22 = −Av
23,

B11 �= B12 = B13,

Bu
21 �= Bu

22 = Bu
23,

Bv
21 �= Bv

22 = Bv
23. (46)

(3) In spiral-ordered state:

A11 = A12 �= A13,

Au
21 �= Au

22 = −Au
23,

Av
21 �= Av

22 = −Av
23,

B11 = B12 �= B13,

Bu
21 �= Bu

22 = Bu
23,

Bv
21 �= Bv

22 = Bv
23. (47)

For the CZSL phase:
(1) Real part:

A11 �= A12 = A13,

Au
21 = −Au

23 �= Au
23, Av

21 = −Av
23 �= Av

22,

B11 �= B12 �= B13,

Bu
21 = Bu

23 �= Bu
22, Bv

21 = Bv
23 �= Bv

22. (48)

(2) Imaginary part:

A11 �= A12 = −A13,

Au
21 = Au

23 �= Au
22, Av

21 = Av
23 �= Av

22,

B11 �= B12 �= B13,

Bu
21 = Bu

23 �= Bu
22, Bv

21 = Bv
23 �= Bv

22. (49)

The broken TR symmetry in the CZSL state gives rise to
a nonvanishing imaginary part of the mean-field parameters
[46,63]. This can be understood in the following way: The
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FIG. 3. Momentum dependence of the lowest spinon band for Jχ = 0 corresponding to four different phases: (a) J2/J1 = 0.197 (Néel
phase), (b) J2/J1 = 0.35 [gapped spin-liquid (GSL) phase], (c) J2/J1 = 0.38 [valence-bond crystal (VBC) phase], and (d) J2/J1 = 0.43 (spiral
antiferromagnetic phase).

scaler chiral interaction Hamiltonian can be written as Eq. (9).
Now, within SBMFT, the expectation values of the loop oper-
ators can be written as

〈B̂i j B̂ jkB̂ki〉 ≈ Bi jB jkBki. (50)

Now it is clear from Eq. (9) that the real-valued mean-field
Ansatz imposes 〈�Si · (�S j × �Sk )〉 = 0 and does not break the
TR symmetry or give rise to a noncoplanar spin configuration.
The complex arguments of the loops which are called fluxes
break the TR symmetry that invalidates the relation �z

n(�k) =
−�z

n(−�k), which is the condition for a nonzero Chern number.
Our numerical findings show that, beyond a critical value of
Jχ , the Ansatz B2 becomes imaginary, leading to a change in
the Chern number which marks a topological phase transi-
tion. Additionally, we find that reflection symmetry breaking
(Bd

2u �= Bd
2v) is necessary for a nontrivial topological phase. In

our case, A and B are both nonzero in numerical findings,
so we identify the GSL state as a Z2 QSL [46], and the
topologically nontrivial QSL phase as a CZSL state [63–65].

2. C3 symmetry-breaking order parameter

In the intermediate spin-disordered region, in the VBC
state, the spin-rotational symmetry SU(2) and transnational
symmetries are intact, but they may break the C3-rotational
symmetry of the lattice. Following Okumura et al. [66], we
define a C3-rotational symmetry-breaking order parameter:

ψ3 = p1�a1 + p2�a2 + p3�a3, (51)

with

pi = J1
(
B2

1i − A2
1i

)
.

Here, pα (α = 1, 2, 3) are nothing but the bond energies cor-
responding to nearest-neighbor bonds �aα (α = 1, 2, 3). This
order parameter is zero if the bond energies remain the same
along three different directions.

IV. NUMERICAL RESULTS

Without the application of the scalar chiral term (i.e., keep-
ing Jχ = 0), numerically, we find, for J2 � 0.22, the ground
state is gapless (defined as a gap <1/Ns), with Néel order,
and spiral magnetic order is also found for larger values of
J2 > 0.4. A gapped phase is found in the intermediate range

0.22 < J2 < 0.4 between the Néel and spiral orders. Within a
range of 0.37 � J2 < 0.4, we find the staggered VBC phase,
with the nonzero C3 symmetry-breaking order parameter de-
fined in Eq. (51). We call the rest of the gapped region a GSL
state. These findings match with previous studies [56,67].

In Fig. 3, we show the lower spinon (particle) bands, with-
out the application of Jχ in all four different phases. The
Brillouin zone is from −π to π in both momentums, measured
along the directions along the reciprocal translation vectors.
The dispersion in the Néel ordered phase shows the character-
istic minima (with gap <1/N) at the (0, 0) momentum, which
shifts away from this point in the case of the spiral ordered
state. The spectra for the GSL and VBC states are gapped
with different positions of minima in the band. The gap in
the spectrum for different phases is shown in the Fig. 4, where
we also show, in the inset of the same figure, the sudden rise
in the ψ3 order parameter in the VBC state. In Appendix B,
we have investigated the system size dependence of the gap of
the lower spinon band for different values of J2.

Within the GSL state, as Jχ is increased, we find, beyond a
certain value of Jχ , either the state becomes gapless with Néel

FIG. 4. Blue curve indicates the gap in the excitation spectrum
as a function of J2, with Jχ = 0, distinguishing gapped and gapless
(defined as when the gap is <1/Ns, with Ns = 36 in our case) phases.
The gray curve corresponds to the same plot with a different system
size Ns = 48. Inset: The C3 symmetry-breaking order parameter ψ3,
defined in Eq. (51), becomes nonzero in the small window of J2,
when we expect the valence-bond crystal (VBC) ground state.
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FIG. 5. (a) Phase diagram of J1-J2-Jχ Heisenberg model on the honeycomb lattice. Above: The phase diagram without the spin-chiral term
(i.e., Jχ = 0). Below: The phase diagram with the scalar spin-chiral term, where a gapped chiral Z2 spin-liquid phase (CZSL) emerges with
nonvanishing Chern number of the spinon bands. We set J1 = 1 as our scale of energy. We identify the various phase with the symmetry of the
order parameters (see Sec. III), the gap in the spectrum, as well as how the spin-spin correlation function decays. (b) and (c) show the spin-spin
correlation functions |〈�S0 · �SR〉/〈�S0 · �S0〉|, as a function of R (along ê2) in a log-log scale. (b) shows such correlations without the chiral spin
term Jχ , whereas in (c), we show the same with Jχ �= 0, for various phases. It is evident that the correlation decays much faster in gapped
spin-liquid (GSL), CZSL, and valence-bond crystal (VBC) phases, whereas the decay is slower for the case of gapless states.

ordering, or the bands acquire a nonzero Chern number, which
we identify as a CZSL state. It is important to note that, in the
CZSL state, spinon bands remain gapped but with increasing
perturbation (Jχ ); the particle bands themselves come closer,
leading to topological phase transition for a critical Jχ . If we
start instead from a VBC state, for a critical perturbation, we
also observe a topological transition in the spinon bands (the
ground state remains gapped).

In Fig. 5(a), we show the full phase diagram including
Jχ , which leads to a possible CZSL state, characterized by
a nonzero Chern number of the excitation bands. We also
show the static spin-spin correlation, defined in the Sec. II D,
in Figs. 5(b) and 5(c) for the phases without Jχ and with Jχ ,
respectively. From these logarithmic scaled plots, it is evident
that the spin-spin correlation |〈�S0 · �SR〉| decays at a much
faster rate, as a function of the distance R, in the GSL, CZSL,
and VBC states than magnetically ordered states, which is
expected.

With increasing Jχ , at a critical Jχ , there is a topological
transition to a nonzero Chern number (C) state, which can
also be seen from the Berry curvatures of the spinon bands.
When C �= 0, the symmetry of the Berry curvature is lost, i.e.,
�(�q) �= �(−�q). The plot of the Berry curvature is shown in
Fig. 6, before and after such a topological transition.

1. Nature of Chern transitions within CZSL

We have also studied a number of topological transitions
with increasing Jχ , in Fig. 7, where the system undergoes
a series of topological transitions with different Chern num-
bers. In Fig. 7(a), we show all Chern transitions for various
representative values of J2 corresponding to different phases
of the system as a function of Jχ . Chern transitions imply
interband gap closing, which we illustrate through FIig. 7(b)
for a particular value of J2 = 0.35. We have identified all the
transitions where the interband gap attains a minimum value

FIG. 6. Plot of the momentum resolved Berry curvature (�) of
the lower spinon band for J2 = 0.35; with Jχ = 0.15 (top), which is
before the transition to chiral Z2 (CZSL), and Jχ = 0.17 (bottom),
after the transition to CZSL. The value of � is shown in the units
of 1/δq1δq2, where δqi is the momentum-grid separation for the ith
direction.
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FIG. 7. (a) Chern transitions (upper band) with respect to Jχ for a few values of J2. For J2 = 0.38 and 0.37, there are transitions from
C = 2 to −1. Plot of (b) gap and (c) Chern number with respect to Jχ for J2 = 0.35 corroborates transitions from (a). Three Chern transitions
are accompanied by three band touchings. The inset in (c) shows the gap-closing points in the Brillouin zone.

(i.e., a gap closing) as a function of Jχ . To gain more insight,
we identify the gap closing points in each transition in the full
Brillouin zone, which differ quantitatively [see Fig. 7(c)]. We
observe that, in the �C = 1 transition, there is only one band
touching point, whereas for the �C = 2 transition, there are
two band touching points.

2. Thermal Hall effect

Finally, in Fig. 8, we show the thermal Hall coefficient in
the states with C �= 0, which peaks to an appreciable value at
a temperature equal to the gap in the lower spinon band. Due
to the preserved symmetry of the Berry curvature, the Hall
coefficient is vanishingly small in the case of the state with
C = 0. In Appendix C, we have also briefly studied the effect
of a nonzero Zeeman field on the thermal Hall coefficient
within the SBMFT formalism.

V. DISCUSSION

In conclusion, we investigated, within SBMFT, the phase
transition from a gapped Z2 QSL, in a J1-J2 Heisenberg spin- 1

2
system in a honeycomb lattice, to a CZSL phase under the
presence of a TR symmetry-breaking scalar-chiral interaction

(with amplitude Jχ ). The CZSL state is characterized by TR
broken mean-field parameters, nontrivial Chern bands for ex-
citations, and lack of long-range magnetic order. In this CZSL
phase, we find a nontrivial Chern number of the spinon bands
leads to a large thermal Hall coefficient.

The study is limited by the finite-sized effects in the spec-
trum, and a comparison with larger system size is left for
future study. Similarly, the topological invariant computation
can be erroneous in situations when the gap between the
spinon bands is small. We explored series of topological tran-
sitions with increase of the value of Jχ , but further exploration
of the same and effects of possible protected edge modes of
spinons is left for future study.

Possible materials for QSL states in Mott insulating states
in a honeycomb lattice, where the physics we explored can
be possible to observe, include inorganic materials such
as Na2Co2TeO6 [68], BaM2(XO4)2 (with X = As) [69],
Bi3Mn4O12(NO3) [70], and In3Cu2V O9 [71], where the
magnitudes of spin vary from S = 1

2 in BaM2(XO4)2 for
M = Co to S = 1 for M = Ni (with X = As) and S = 3

2
in Bi3Mn4O12(NO3). Spin-orbit coupled materials, such as
In3Cu2V O9, have also recently been explored [71], where the
Cu ions form a honeycomb structure with spin- 1

2 local mo-

FIG. 8. Left: Schematic picture of the setup where thermal Hall current carried by spinons in the presence of a longitudinal magnetic field,
where the role of the magnetic field is played by the scalar chiral coupling in our system. Right: Thermal Hall coefficient (κxy) as a function of
the temperature for the states with C �= 0. A critical T for the nonzero κxy reflects the fact that the spinon bands are gapped. In the states with
C = 0, the Hall coefficient is zero, in comparison.
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ments, which are also possible candidates. Another possible
avenue of realizing spin systems is cold-atomic experiments
where strongly correlated systems have been explored in re-
cent times [72–75].
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APPENDIX A: BERRY CURVATURE AND U(1)-LINK
VARIABLE

Here, we briefly summarize the method of Berry-curvature
computation, especially for the bosonic case, following
Refs. [76,77]. We first consider a two-dimensional fermionic
system with the Brillouin zone defined by 0 � qμ < 2π/aμ

(μ = 1, 2 with some integer aμ). As the Hamiltonian
H (q1, q2) is periodic in both directions, H (q1, q2) = H (q1 +
2π/a1, q2) = H (q1, q2 + 2π/a2).

The Berry connection Aμ(q) (μ = 1, 2) and the cor-
responding field strength F12(q), for the nth band, are
given by

An
μ(q) = 〈n(q)| ∂μ |n(q)〉 , (A1)

F n
12(k) = ∂1An

2(q) − ∂2An
1(q), (A2)

where |n(q)〉 is a normalized wave function of the nth Bloch
band such that

H (q) |n(q)〉 = En(q) |n(q)〉 . (A3)

In the expression above, the derivative ∂μ stands for ∂qμ
. We

assume that there is no degeneracy for the nth state.
The Berry curvature is computed as follows. First, we

discretize the Brillouin zone as follows:

ql = (q j1 , q j2 ), q jμ = 2π jμ
aμNμ

, ( jμ = 0, . . . , Nμ − 1),

(A4)
with discretization δqμ = 2π/aμNμ, where aμ is the lattice
spacing in μ̂th direction. It is also assumed that the state |n(�q)〉
is periodic on the lattice:

|n(�q + Nμμ̂)〉 = |n(kl )〉 , (A5)

where μ̂ is a vector in the direction μ with magnitude
2π/(aμNμ). We define the U1-link variable for the nth band

as

U n
μ̂(�q) ≡ 〈n(�q)|n(�q + μ̂)〉

Nn
μ̂(�q)

, (A6)

where

Nn
μ̂(�q) ≡ |〈n(�q)|n(�q + μ̂)〉|. (A7)

The link variables are well defined if Nn
μ̂(�ql ) �= 0, which can

always be assumed to be the case (one can avoid a singular
point by infinitesimal shift of the lattice). The field strength is
then numerically approximated by

F n
12(�q)δq1δq2 ≈ loge U n

1 (�q)U n
2 (�q + 1̂)

×U n
1 (�q + 2̂)−1U n

2 (�q)−1, (A8)

with

−π <
1

i
F n

12(�q)δq1δq2 � π. (A9)

Field strength is defined within the principle branch of the log-
arithm specified in Eq. (A8). It should also be noted that field
strength is gauge invariant. The Berry curvature is expressed
in terms of the field strength as

�n(�q) = −iF12(�q). (A10)

Finally, the Chern number on the lattice corresponding to the
nth band is defined as

Cn ≡ 1

2π i

∑
�q

F12(�q)δq1δq2. (A11)

For the bosonic case

To accommodate the commutation relations among the
bosonic operators, the generalized eigenvalue equation in the
case of a bosonic Hamiltonian M is written as

M(q) |n(�q)〉 = E (�q)ρ3 |n(�q)〉 . (A12)

As a consequence, the inner product in the U(1)-link variable
has the form [77]:

Uμ̂(�q) ≡ 〈n(�q)| ρ3 |n(�q + μ̂)〉
Nμ̂(�q)

, (A13)

where

Nμ̂(�q) ≡ | 〈n(�q)| ρ3 |n(�q + μ̂)〉 |. (A14)

Here, E (�q) has eigenvalues of the form:

(ε�q,↑, ε�q,↓,−ε�q,↑,−ε�q,↓). (A15)

For particle/hole bands, the eigenvector |n(�q)〉 is normalized
as follows:

〈nparticle(�q)| ρ3|nparticle(�q)〉 = 1, (A16)

〈nhole(�q)| ρ3|nhole(�q)〉 = −1. (A17)

APPENDIX B: SYSTEM SIZE DEPENDENCE OF THE GAP

We have studied how the gap (�) of the lowest spinon
band changes with increasing system size (nc, where nc is
the total number of unit cells). Our findings show that, with
increasing nc, the system persists to have a constant gap in the
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FIG. 9. This figure shows the dependence of system size (
√

nc)
on the energy gap (�) of the lowest spinon band. For the gapless
phase, � decreases with increasing system size, whereas in the
gapped spin-liquid phase, � converges to a finite value. Extrapola-
tion of this leads to vanishing of � for Néel and spiral phases in the
thermodynamic limit.

GSL phase, whereas for gapless phases, such as the Néel and
spiral phases, the gap monotonically decreases. The findings
are summarized in Fig. 9.

APPENDIX C: EFFECT OF NONZERO ZEEMAN FIELD

In the presence of a nonzero out-of-plane magnetic field,
the spin-rotation invariance of our Hamiltonian is broken, and
the Zeeman term of the Hamiltonian reads

HZ = −Bz

∑
i

Sz
i = Bz

2

∑
i,σ,σ ′

b†
i,σ (σz )σ,σ ′bi,σ ′ . (C1)

In the dynamical matrix, this Zeeman term is proportional
to an identity matrix, rendering the eigenstates of the spinon
bands intact [34]. As a result, the Berry curvature remains
the same. As the T�q matrix is invariant, the Ansätze are
also invariant under the application of the magnetic field.
In Schwinger-boson theory, the Ansätze we take are SU(2)
symmetric, so the magnetic field does not change the wave
functions. In terms of the Schwinger-boson operators, the

FIG. 10. This plot shows the magnetic field dependence of the
thermal Hall conductivity for different values of the temperature.
For large temperature, the Hall conductivity is approximately lin-
ear, whereas it becomes weakly nonlinear for the low-temperature
regime.

Zeeman term can be recast into the form:

−μBB

2

∑
i

〈b†
i,↑bi,↑〉 − 〈b†

i,↓bi,↓〉 . (C2)

Effectively, the magnetic field leads to different chemical
potentials for the ↑ and ↓ spin flavors of Schwinger bosons.
This breaks the up-down spin symmetry, i.e., the dispersion
of up and down spins becomes different, ew

�q,↑ �= ew
�q,↓. After

diagonalization, the mean-field Hamiltonian takes the form:

H (B) =
∑
�q,σ,w

εw
�q,σ

[
γ

†
�q,σ,w

γ�q,σ,w + 1

2

]
+ constant terms.

(C3)
We have studied the effect of a nonzero Zeeman field on the

thermal Hall conductivity of the particle bands in the CZSL
phase for different values of temperature. Figure 10 presents
a summary of the results.

This discussion is limited for the case when there is no
Bose-Einstein condensation, which can happen in the pres-
ence of a large magnetic field. In that case, the gap of one of
the bands may go to zero, leading to a magnetic ordering and
Goldstone modes.
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