
PHYSICAL REVIEW B 107, 155121 (2023)

Classical model emerges in quantum entanglement: Quantum Monte Carlo study
for an Ising-Heisenberg bilayer
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By developing a cluster sampling of the stochastic series expansion quantum Monte Carlo method, we
investigate a spin- 1

2 model on a bilayer square lattice with intralayer ferromagnetic (FM) Ising coupling and
interlayer antiferromagnetic Heisenberg interaction. The continuous quantum phase transition which occurs at
gc = 3.045(2) between the FM Ising phase and the dimerized phase is studied via large-scale simulations. From
analysis of the critical exponents we show that this phase transition belongs to the (2+1)-dimensional Ising
universality class. In addition, the quantum entanglement is strong between the two layers, especially in the
dimerized phase. The effective Hamiltonian of a single layer seems like a transverse-field Ising model. However,
we found that the quantum entanglement Hamiltonian is a pure classical Ising model without any quantum
fluctuations. Furthermore, we give a more general explanation about how a classical entanglement Hamiltonian
emerges.
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I. INTRODUCTION

Quantum entanglement is a powerful tool to detect and
characterize the informational, field-theoretical, and topolog-
ical properties of quantum many-body states [1–4], which
combines the conformal field theory (CFT) and the cat-
egorial description of the problem [5–17]. Since Li and
Haldane pointed out that the entanglement spectrum (ES)
is an important measurement with more information than
the entanglement entropy (EE) [18–20], a low-lying ES has
been widely employed as a fingerprint of CFT and topol-
ogy [21–37]. The entanglement Hamiltonian (EH) HA =
−ln(ρA) can be obtained from the reduced density matrix
(RDM) ρA = TrB(ρ) of the system A by tracing out the
environment B [18,38]. The energy spectrum of the en-
tanglement Hamiltonian HA, which is usually called the
entanglement spectrum, describes the rich information of the
system A.

Most of the numerical studies of ES have focused on
(quasi-)one-dimensional [(quasi-)1D] systems so far, because
of the limitations of the numerical methods. For example, due
to the exponential growth of the computational complexity
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and memory cost, numerical methods such as exact diago-
nalization (ED) and the density matrix renormalization group
(DMRG) have therefore obvious limitations for an entangling
region with long boundaries of the lattice and higher dimen-
sions. Recently, a novel scheme has been proposed to extract
the information of a high-dimensional entanglement spectrum
by using the quantum Monte Carlo (QMC) method, which
opens a new way to study the ES and EH of many-body
systems [39].

An interesting question can be asked: Can the EH, which is
used to describe quantum entanglement, be a classical model
(e.g., an Ising model)? Intuitively, the two are contradictory.
For example, all the eigenstates (as well as the ground state)
of the Ising model are classical direct-product states without
any entanglement. However, the EH itself is different from the
original Hamiltonian, and we cannot exclude the possibility
that this seemingly contradictory situation actually occurs. In
fact, such an example has been successfully constructed in
this paper on a bilayer lattice, and the result is not limited
to this case according to our discussion. The bilayer lattice
can be divided into two 2D layer parts, which is well suited
for studying the 2D entanglement properties. As the simplest
layered structure, it has revealed many novel physical phe-
nomena in 2D systems [40–57]. To answer the above question,
we design a bilayer model in which each spin in the system
(the first layer) is coupled to the environment (the second
layer) with antiferromagnetic (AFM) Heisenberg interaction
which introduces entanglement between the two layers. This
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FIG. 1. (a) Spin- 1
2 bilayer model on an L × L square lattice. L is

the length of each layer. J is the nearest-neighbor intralayer ferro-
magnetic Ising interaction, and J ′ is the interlayer antiferromagnetic
Heisenberg interaction. (b) Schematic diagram of update lines on the
space-time lattice, where the horizontal line represents the diagonal
or off-diagonal operator and above and below the line are four legs
of a vertex. When the update line meets a Heisenberg operator, only
the neighbor leg of the initial leg creates an update line (left panel).
In contrast, all the other three vertex legs create update lines when
the update line meets an Ising operator (right panel).

bilayer model with spin 1
2 is defined on an L × L square lat-

tice with intralayer ferromagnetic (FM) Ising interaction and
interlayer AFM Heisenberg interaction, as shown in Fig. 1(a).
The Hamiltonian is given by

H = −J
∑
〈i, j〉

(
Sz

A,iS
z
A, j + Sz

B,iS
z
B, j

) + J ′ ∑
i

SA,iSB,i, (1)

where SA,i and SB,i are spin operators at site i of the A (upper)
and B (bottom) layers, while Sz represents the spin operator
along the z axis. 〈i, j〉 denotes a pair of the nearest-neighbor
sites on the same layer with periodic boundary conditions.
J (> 0) is the intralayer Ising coupling strength, and J ′(> 0)
is the interlayer Heisenberg interaction.

In this paper, we develop a highly efficient cluster update
scheme of the stochastic series expansion (SSE) QMC algo-
rithm (Sec. II) and investigate the ground-state phase diagram
of the spin- 1

2 bilayer model (Sec. III). The transition point
and the critical exponents obtained from QMC simulations
demonstrate that this continuous quantum phase transition
(QPT) belongs to the 3D Ising universality class. Then we
measure the imaginary time correlations of the EH by a newly
developed QMC method [39] to prove that the EH is always
diagonal in the whole region of the phase diagram. We give an
argument to explain how the quantum model can emerge as a
classical EH in Sec. IV and a conclusion in Sec. V.

II. METHOD

In this section, we will introduce our efficient update
scheme within the SSE frame to deal with the Heisenberg-
Ising mixed interactions. Readers who are not interested in
the algorithm can skip to the next section; it does not affect the
physical results. Although the conventional directed-loop SSE
algorithm [58,59] can be employed to solve a model which
contains both Ising and Heisenberg interactions, we found
that it does not work effectively due to the pure Ising inter-
action. Therefore we have developed a cluster method based
on SSE combining the operator loop updates for the Heisen-
berg model [60,61] and cluster updates for the transverse-field
Ising model [62]. Details of the algorithm are explained be-

low. We note that readers who are not familiar with the SSE
may need a detailed SSE tutorial [63] to learn more basics.

In the SSE QMC method, the partition function can be
written as [60,61]

Z = Tr{e−βH }

=
∑

α

∑
SM

(−1)n2
βn(M − n)!

M!

〈
α

∣∣∣∣∣∣
M−1∏
p=0

Ha(p),b(p)

∣∣∣∣∣∣α
〉
, (2)

where α sum over all states in the system, SM denotes the
strings of the bond operators, and M is the series expan-
sion cutoff. n is the total number of the operators, and n2

is the number of off-diagonal operators. β is the inverse
temperature. Firstly, we add the constant 1

4 into the Hamil-
tonian to avoid the sign problem, as we usually do in SSE
[60,61,64,65], and separate it into the Ising part (HI ) and the
Heisenberg part (HH ):

H = −
∑
〈i j〉

HI −
∑

i

HH ,

HI = J

[(
Sz

A,iS
z
A, j + 1

4

)
+

(
Sz

B,iS
z
B, j + 1

4

)]
,

HH = H1,H + H2,H

= J ′
[(

1

4
− Sz

A,iS
z
B,i

)
+ 1

2
(S+

A,iS
−
B,i + S−

A,iS
+
B,i )

]
, (3)

where HI is the diagonal operator as well as H1,H = J ′( 1
4 −

Sz
A,iS

z
B,i ), and H2,H = J ′

2 (S+
A,iS

−
B,i + S−

A,iS
+
B,i ) is the off-diagonal

operator. Taking Sz as a complete set of basis for the system,
the nonzero matrix elements are

〈↑↑ |HI | ↑↑〉 = 〈↓↓ |HI | ↓↓〉 = J

2
,

〈↑↓ |H1,H | ↑↓〉 = 〈↓↑ |H1,H | ↓↑〉 = J ′

2
,

〈↑↓ |H2,H | ↓↑〉 = 〈↓↑ |H2,H | ↑↓〉 = J ′

2
. (4)

The sampling procedures include the diagonal updates and
the cluster updates. The diagonal updates either insert or re-
move a diagonal operator between two states with acceptance
probabilities, which are regulated by the detailed balanced
condition. The cluster updates change the types of operators
by flipping all spins on the clusters with probability 1

2 .
We describe the updating scheme in the following steps.

A. Diagonal update

We go through the operator strings along the imaginary
time direction and either remove or insert a diagonal operator
on a randomly selected bond. If the chosen bond has two
parallel (antiparallel) spins on its endpoints, the insertion of
the Heisenberg (Ising) operator is forbidden. So, we will have
several conditions.

Condition (a). For a diagonal operator (HI or H1,H ), we
removed it with the acceptance probability

Premove = min

(
M − n + 1

β(NH J ′ + 2NI J )/2
, 1

)
, (5)
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where NH is the number of interlayer bonds, NI is the number
of intralayer bonds in each layer, and thus NI = 2NH accord-
ing to our definition.

Condition (b). For a null operator, we substitute it with a
diagonal operator HI or H1,H by the procedures below.

(i) Firstly, we decide which type of diagonal operators to
insert. We choose to insert HI with probability

P(I ) = 2NI J

NH J ′ + 2NI J
(6)

or HH with probability P(H ) = 1 − P(I ).
(ii) Once the decision has been made, we need to choose

a certain position for the operator with probability 1/NH or
1/2NI . Then the operator will be inserted with the acceptance
probability

Pinsert = min

(
β(NH J ′ + 2NI J )/2

M − n
, 1

)
. (7)

Condition (c). For an off-diagonal operator, we ignore it
and go to the next slice of imaginary time.

B. Cluster update

(a) A schematic diagram of update lines in the configura-
tion space is shown in Fig. 1(b). The QMC method is based on
the path integral in imaginary time [58,66,67]. The evolution
of the system can be mapped on the space-time lattice. For
each step of the imaginary time propagation, an operator acts
on the initial state, and a new propagated state is obtained.
Figure 1(b) shows the action of the operator, where the hor-
izontal line represents the diagonal or off-diagonal operator,
and above and below the line are four legs of a vertex. When
an update line meets an Ising operator (intralayer), all the
other three vertex legs create update lines. In contrast, only
the neighbor leg of the initial leg creates an update line when
an update line meets a Heisenberg operator (interlayer).

For the off-diagonal updates, we follow two rules to con-
struct the clusters: (1) The two neighbor legs on the same
side of a Heisenberg operator HH belong to the same cluster,
and (2) the four legs of a Ising operator HI belong to one
cluster. In this way, the update line evolves and forms a cluster
eventually.

(b) Then the clusters constructed from the above rules
are flipped with probability 1

2 , which is according to the
Swendsen-Wang cluster updating scheme.

C. Remark

All the details about the update acceptance probability
are similar to the previous SSE: The update of Heisenberg
operators obeys the operator loop method for the Heisenberg
model [60,61], and that of Ising operators obeys the cluster
updates for the transverse-field Ising model [62,68–70].

III. PHASE DIAGRAM AND CRITICAL EXPONENTS

Using the QMC method we developed for the spin- 1
2

bilayer model, we study the ground states and the critical
properties of the system. Here we set the coupling ratio
g = J ′/J . When g → 0, the intralayer FM Ising coupling J
dominates, and the system favors a FM phase where all the

FIG. 2. Ground-state phase diagram of the square-lattice bilayer
model. When g > gc, there is a twofold degenerate FM phase, where
spins in the same layer are aligned parallel. For g > gc, the ground
state corresponds to a dimerized phase where spins in different layers
couple into singlets.

spins in the same layer are parallel. When g → ∞, which
means that the interlayer AFM Heisenberg interaction J ′ is
very large, the state corresponds to a dimerized phase where
the two spins of different layers are coupled into a singlet. The
phase diagram of the system is shown in Fig. 2.

To further understand the phase transition in this system,
we calculated several physical observables, including the or-
der parameter m, the Binder cumulant U2, the susceptibility
χ , and the spin-spin correlation function G(r). The order pa-
rameter m is defined as the magnetization difference between
the top and bottom layers:

m =
∑

i

(
Sz

A,i − Sz
B,i

)
. (8)

The Binder cumulant [71,72] U2 is given by

U2 = 3
2

(
1 − 1

3 R2
)
, (9)

where R2 = 〈m4〉/〈m2〉2 is the Binder ratio [71,73] of the
order parameter m. The susceptibility χ can be expressed as

χ = β

N
(〈m2〉 − 〈|m|〉2), (10)

where N is the total number of spins. The spin-spin correlation
function G(r) can be written as

G(r) = 〈
Sz

0Sz
r

〉
, (11)

where r is the distance between two sites.
The order parameter m versus g for different system sizes

is shown in Fig. 3(a), which depicts the vanishing of the FM
phase. As g increases, 〈|m|〉 tends toward zero, where two
spins in different layers form a singlet. To study the phase
transition between the FM state and the dimerized phase, we
show a log-log plot of 〈|m|〉 in Fig. 3(b) to analyze its different
decay behaviors in different phases. We found that in the FM
phase (g < gc), 〈|m|〉 drops to a constant as the system size
increases. In contrast, in the dimerized phase (g > gc), the
order parameter exponentially decays to 0 as L → ∞. At the
critical point gc, 〈|m|〉 shows a nontrivial power-law decay.

To determine the critical point gc, we obtain the Binder
cumulant and its data collapse with 3D Ising critical expo-
nents, which are shown in Fig. 4. We calculate systems with
L = 8, 16, 24, 32. The drift of the crossing points of different
system sizes in Fig. 4(a) indicates the finite-size effect in
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FIG. 3. (a) The order parameter m as a function of the coupling
ratio g. As g increases, 〈|m|〉 eventually decays to zero indicating
the vanishing of the FM phase. We calculate data with a smaller
interval nearby the critical point to illustrate the continuous quantum
phase transition in the system. (b) Log-log plot of 〈|m|〉 around the
transition point gc. We find that in the FM phase the order parameter
decays to a constant, while it decays to 0 in the dimerized phase. At
the critical point, it shows a power-law decay.

the system. So we perform an extrapolation of these crossing
points to obtain the critical point in the thermodynamic limit,
which gives gc = 3.045(2). The high-quality data collapse of
U2 in Fig. 4(b), where ν = 0.63 is the 3D Ising critical expo-
nent [74,75], suggests that the FM-phase-to-dimerized-phase
transition belongs to the 3D Ising universality class.

Besides, the susceptibility χ illustrated in the Fig. 5 shows
a peak in the transition point, which is supposed to diverge
with increasing system size L. Data with a smaller interval
are calculated to show the peak more clearly. We also per-
form the data collapse according to the scaling law χ̃ (L, t ) =
L−γ /νχ (tL1/ν ) [76]. Here, we use the Ising critical exponents
ν and γ , where γ = 1.24. The data collapse is very good near
the critical point.

We also consider the equal-time spin-spin correlation func-
tion G(r) of a single layer, which is shown in Fig. 6 in
a log-log plot. At the critical point, G(r) should decay as
a power law G(r) ∼ r−(1+η). As a comparison, we plot the
η = 0.036 line of the 3D Ising universality. These pieces of
numerical evidence confirm that there is a 3D Ising transition
between the FM phase and the dimerized phase.

FIG. 4. (a) The Binder cumulant U2 vs g. We determine the
critical point gc by extrapolating the crossing points of U2 curves
with different system sizes, which gives gc = 3.045(2). (b) The high-
quality data collapse of the Binder cumulant at the critical point. Here
we use the 3D Ising critical exponent ν = 0.63 in the scaling, which
suggests that our numerical results satisfy the 3D Ising universality
class.

IV. ENTANGLEMENT HAMILTONIAN

The Heisenberg interactions favor binding the spins of
different layers into singlets and induce the quantum entan-
glement between two layers. Obviously, the strength of the
quantum entanglement between layer A and layer B should be
different in FM and dimerized phases. We try to extract the in-
formation of the EH from QMC simulation through a recently
developed method which gained the ES successfully [39].
According to this method, we can obtain the imaginary time
correlations of the entanglement Hamiltonian HA = −ln(ρA)
via constructing the replica manifold to simulate Tr(ρn

A). Here,
ρA = TrB(ρ) is the RDM of layer A, and ρ is the density
matrix of the bilayer system. The key point of this method
is that the imaginary time correlation function can be ob-
tained by simulating Tr(ρn

A) via the QMC method [34–36,39].
Therefore, if we treat the n as the inverse temperature β for
the entanglement Hamiltonian HA, every ρA = e−HA can be
seen as an imaginary time evolution operator with the time
length 1.

We now discuss the Sz imaginary time correlations of the
EH, i.e., G(τ ) = 〈Sz(τ )Sz(0)〉EH. It is interesting that we find
that G(τ ) does not decay regardless of the phase of the system.
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FIG. 5. (a) The susceptibility χ as a function of g. The peak in
the critical point diverges as the system size L increases. (b) The data
collapse of the susceptibility is observed with 3D Ising exponents
ν = 0.63 and γ = 1.24, and our prediction for the universality class
is confirmed again.

As is shown in Fig. 7, the correlation function is always a
constant in the FM Ising phase, in the dimer phase, or at the
phase transition point. Its value is equal to 1 (blue line) only
at the k = (0, 0) momentum point [77] and is 0 anywhere else
(red line). In the real space, all the imaginary time correlations
Gi(τ ) = 〈Sz

i (τ )Sz
i (0)〉EH of site i are always A. All these pieces

of evidence demonstrate that the EH must be a diagonal matrix
in the Sz basis, which means that it is indeed a classical
Ising model without any quantum fluctuation. It is definitely a
nontrivial phenomenon that such a classical model emerges in
the quantum entanglement.

Back to the effective Hamiltonian of a single layer, it seems
like an Ising Hamiltonian with the quantum fluctuation term
Sx

i on every site i. As shown in Fig. 8, a configuration of the
path integral inside the RDM ρA contains several off-diagonal
operators of the Heisenberg interaction which flip the spins
along the time evolution. Because (S+

A,iS
−
B,i + S−

A,iS
+
B,i ) acts on

the interlayer, it takes an effective operator (S+
i + S−

i ) ∼ Sx
i

on position i for a single layer A. Therefore the effective
Hamiltonian of one layer has quantum fluctuations, which
is truly different from the single-layer EH obtained from the
above imaginary time correlations. In addition, there is a qual-
itative analogy: When the Heisenberg interaction is strong,
the effective Sx

i term on subsystem A also becomes strong.

FIG. 6. Log-log plot of the equal-time spin-spin correlation func-
tion G(r) vs the distance r at gc = 3.045(2), which fits the scaling
relation G(r) ∼ r−(1+η) = r−1.036. Here, we also use the 3D Ising crit-
ical exponent η = 0.036, which corresponds to the black reference
line. The scaling of G(r) shows a power-law decay at the transition
point.

The dimerized phase of the total system can be seen as a
paramagnetic phase of subsystem A in this sense.

Finally, we find the explanation from the path integral
of the RDM. As the EH is diagonal, it could be inferred
that the RDM ρA is diagonal, and we can focus on proving
that ρA = TrB(ρ) is diagonal. In our bilayer case, all the off-
diagonal operators are from the Heisenberg interactions which
act on the interlayer bonds only. To obtain ρA, we have to
trace layer B, which is regarded as the environment. The trace
operator requires the boundary condition of imaginary time
to be periodic, which means that the off-diagonal operators
should act an even number of times in layer B to keep the
upper and lower spin configurations the same, as shown in
Fig. 8. Therefore the off-diagonal operators must also act on
layer A an even number of times to ensure that the RDM ρA is
diagonal; that is, the upper and lower spin configurations of A
should be the same as well.

Perhaps the reader thinks the above explanation is very
tricky and dependent on the detailed QMC method. In fact,
it is just based on a path-integral frame generally. ρA =
TrB{e−βH } is the definition of the RDM, and it can be rewritten
via Taylor series expansion as TrB{a0 + a1H + a2H2 + · · · +
anHn}. The trace B requires that the initial and final config-
urations (bra and ket) of B should be the same. This means
that the off-diagonal H operators should not change the initial
configuration of B an odd number of times. In our case, all
the off-diagonal operators act on both A and B; that is, the
number of off-diagonal operators must be even. Because the
off-diagonal operators work as S+

A S−
B + H.c., this means that

the initial configurations of A and B should be flipped the same
number of times. Therefore the A configurations also stay un-
changed. Furthermore, this conclusion can be generalized to
more normal cases: All the intrasystem and intraenvironment
interactions are diagonal, while the off-diagonal interactions
only exist in the entangled boundary region.

Although the EH is always classical in these conditions,
the EH levels become higher while the interlayer cou-
pling interaction increases. Because the EE defined as SA =
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FIG. 7. G(τ ) of the entanglement Hamiltonian in the momentum
space of (a) the FM Ising phase, (b) the critical point, and (c) the
dimerized phase. G(τ ) at the 
 point (blue) and other momentum
points (red) are calculated with different g. We find that G(τ ) never
decay in any phase, which is equal to 1 only at the (0,0) point and 0
at other momentum points.

−Tr(ρAlnρA) increases as the eigenlevels of the EH, the clas-
sical EH is consistent with the strong EE. In fact, for a real
direct-product state without entanglement, its RDM is still a
pure state, and the EH only has one level, which means there
is no entanglement.

V. CONCLUSION

In this paper, we study a bilayer spin- 1
2 model with in-

tralayer FM Ising interaction and interlayer antiferromagnetic
Heisenberg interaction. An efficient cluster update of SSE
is developed to overcome the bounce problem [78] in the
directed-loop update in pure Ising interactions. Using this
developed QMC method, we determine the critical point

FIG. 8. Schematic diagram of the path integral of the RDM
ρA in the SSE framework. The imaginary time boundary of the
B part is periodic because of the TrB(ρ ). The red (white) circles
correspond to spin up (down). The horizontal black bars depict
off-diagonal operator an off-diagonal operator. A (B) refers to the
layer A (B). For convenience, we only draw one spin to represent one
layer.

gc = 3.045(2) for the phase transition between the FM phase
and the dimerized phase. Moreover, analysis of the critical
exponents indicates that the phase transition belongs to the
3D Ising universality class.

Furthermore, we find that the quantum entanglement
Hamiltonian of a single layer is a pure classical Ising model
without any quantum fluctuation, although its effective Hamil-
tonian seems like a transverse-field Ising model. Therefore
we give a more general conclusion for the reason why a
classical entanglement Hamiltonian can emerge. By calculat-
ing the imaginary time correlations of the EH, we find that
the EH is diagonal in both the FM phase and the dimer-
ized phase, which can be explained by the path integral of
the RDM.
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