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Emergent conservation in the Floquet dynamics of integrable non-Hermitian models
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We study the dynamics of a class of integrable non-Hermitian free-fermionic models driven periodically
using a continuous drive protocol characterized by an amplitude g1 and frequency ωD. We derive an analytic,
albeit perturbative, Floquet Hamiltonian for describing such systems using Floquet perturbation theory with g−1

1

being the perturbation parameter. Our analysis indicates the existence of special drive frequencies at which an
approximately conserved quantity emerges. The presence of such an almost conserved quantity is reflected in
the dynamics of the fidelity, the correlation functions, and the half-chain entanglement entropy of the driven
system. In addition, it also controls the nature of the steady state of the system. We show that one-dimensional
transverse field Ising model, with an imaginary component of the transverse field, serves as an experimentally
relevant example of this phenomenon. In this case, the transverse magnetization is approximately conserved;
this conservation leads to complete suppression of oscillatory features in the transient dynamics of fidelity,
magnetization, and entanglement of the driven chain at special drive frequencies. We discuss the nature of
the steady state of the Ising chain near and away from these special frequencies, demonstrate the protocol
independence of this phenomenon by showing its existence for discrete drive protocols, and suggest experiments
which can test our theory.

DOI: 10.1103/PhysRevB.107.155117

I. INTRODUCTION

The study of nonequilibrium dynamics of closed quantum
systems has received tremendous theoretical [1–9] and ex-
perimental [10–14] attention in recent years. Of the several
protocols available to drive a system out of equilibrium, pe-
riodic drive protocols have been studied most intensely. The
evolution operator U for such periodically driven systems at
stroboscopic times t = nT , where T = 2π/ωD is the time pe-
riod of the drive, n is an integer, and ωD is the drive frequency,
can be expressed in terms of its Floquet Hamiltonian HF as
[9,15]

U (nT, 0) = exp[−iHF nT/h̄]. (1)

The study of such driven systems therefore amounts to analy-
sis of their Floquet Hamiltonian.

The theoretical focus on periodically driven closed quan-
tum systems is mostly due to the fact that they display
various features that have no analog in their aperiodic coun-
terparts. Some of these include generation of topologically
nontrivial Floquet states [16–20], realization of time crystals
[21–23], and tuning ergodicity properties of nonintegrable
quantum systems [24–26]. In addition, they host phenomena
such as dynamical transitions [27–29], dynamical localization
[30–32], and dynamical freezing [25,26,33–37].

More recently, there has been considerable interest in
study of non-Hermitian quantum Hamiltonians [38–51]. Such
Hamiltonians may provide effective description for open
quantum systems [52]. In addition, they display several in-
teresting features such as non-Hermitian skin effect [53–55],
phase transition related to explicit breaking of PT symmetry
[38], and the presence of exceptional points where two or

more complex eigenvalues of a such Hamiltonians coincide
and corresponding eigenstates coalesce [38]. The presence of
such exceptional points leads to unconventional topological
features and novel bulk-edge correspondence in these systems
which have no analog in systems described by Hermitian
quantum Hamiltonians [56–60].

The description of out-of-equilibrium dynamics of such
non-Hermitian quantum systems has also been carried out
[61–66]. Most of these studies concentrated on periodically
driven systems and can be classified into two distinct groups.
The first involves study of systems driven using continu-
ous protocols at high frequencies where Magnus expansion
may be used to obtain analytic insight [63]. The second
involves use of discrete drive protocols where exact solution
of the Floquet Hamiltonian is available for integrable non-
Hermitian models [61,62]. Such studies has led to several
interesting phenomena such as non-Hermitian analog of Flo-
quet dynamical transitions [61], optically induced Liftshitz
transition in non-Hermitian Weyl semimetals [63], drive-
induced PT symmetry breaking [62], and non-Hermitian
topological phases and transitions [61]. In addition, quench
dynamics of non-Hermitian quantum spin chains has also
been studied with focus on time evolution of correlation
and entanglement entropy of such a chain following the
quench [65].

In this work we study the periodic dynamics of
a non-Hermitian free-fermionic integrable model whose
Hamiltonian is given by

H =
∑

�k
ψ

†
�k (τ3(g + iγ − a3�k ) + ��kτ1)ψ�k, (2)
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where ψ�k is a two-component fermion field and �τ =
(τ1, τ2, τ3) denotes corresponding Pauli matrices. Here g, a3�k ,
and ��k are parameters of the model, and the presence of
γ > 0 makes the model non-Hermitian. The Hermitian coun-
terparts (γ = 0) class of models serves as prototype for a
study of wide range of condensed matter system; in d =
1, it represents Ising and XY spin models [67]. For these
models, a3k = 2 cos k, �k = 2 sin k, and the two component
field ψk = (ck, c†

−k )T , where ck denote fermion annihilation
operator. In d = 2, H (γ = 0) describes the physics of Dirac
quasiparticles in graphene [68] and on surfaces of topo-
logical insulators [69], as well as the fermionic description
of the Kitaev honeycomb model [70]. Finally, in d = 3,
the model can be used to describe quasiparticles in Weyl
semimetals [71].

The presence of a nonzero γ leads to non-Hermitian nature
of the model. One context in which such a term naturally ap-
pears is the one-dimensional (1D) Ising model in the presence
of a measuring operator which measures n̂ j = (1 − σ z

j )/2
(where σ z

j denotes the usual Pauli matrix representing the spin
on site j of the chain) with a rate γ and in the so-called
no-click limit [65,72,73]; this leads to a complex magnetic
field term in the effective Hamiltonian of the spin chain [65].
Similar models of non-Hermitian chains have been discussed
in different contexts as well [74,75]. In the present manuscript,
we shall assume the existence of such nonhermiticity and
study the Floquet dynamics of the resultant model. We note
in this context that the quench dynamics of such a model has
already been studied in Ref. [65].

The main results that we obtain from our study are as
follows. First, we obtain an perturbative Floquet Hamiltonian,
using Floquet perturbation theory (FPT), which reproduces all
qualitative features of the dynamics of the model and provide
analytical insight into emergence of approximate conserved
quantities in this system. The FPT uses inverse of the drive
amplitude as the perturbation parameter; it produces quali-
tatively accurate results both in high and intermediate drive
frequency regime where a standard high-frequency expansion
fails [9].

Second, using the FPT, we identify special frequencies
at which the first-order Floquet Hamiltonian of the system,
H (1)

F leads to conserved quantities, i.e., [H (1)
F , Ô] = 0 for a

specific operator Ô. An example of such an operator, as we
shall show, is the transverse magnetization of the Ising chain.
Such a conservation is approximate since it is violated by
higher order terms in the Floquet Hamiltonian. Nevertheless,
we show, that the approximate conservation leaves distinct
imprint on the dynamics of the system which turns out to
be qualitatively different near and away from these special
frequencies. We also demonstrate the protocol-independence
of this phenomenon by demonstrating its presence for the
discrete square pulse protocol.

Third, we find that at these special frequencies, the cor-
relation functions, fidelity, and entanglement entropy shows
distinct lack of transient oscillations provided one starts from
an eigenstate of the conserved operator Ô. The absence of
such oscillations, which are typically present when the drive
frequency is different from the special frequencies, can be
directly linked to the approximate conservation mentioned
above. Moreover, the steady state of the driven system turns

out to be close to an eigenstate of the nearly conserved op-
erator for any chosen initial state. For example, consider the
non-Hermitian Ising model whose Hamiltonian is given by

HIsing = −J

⎛
⎝∑

〈i j〉
σ x

i σ x
j + (h(t ) + iγ )

∑
j

σ z
j

⎞
⎠, (3)

where J s the interaction strength, σ x
j and σ z

j denote Pauli
matrices on site j, and h(t ) = h0 + h1 cos ωDt denotes the
time-dependent dimensionless transverse field. The transverse
magnetization of this Ising chain is given by Sz = ∑

j σ
z
j . At

these special frequencies Sz is almost conserved and the steady
state, for γ > 0, is close to the ferromagnetic state with all
spins up (eigenstate of σ z

j with eigenvalue 1). Moreover, the
magnetization dynamics, starting from all spin-down state,
show complete absence of transient oscillations which are
normally present at other drive frequencies. Thus, our results
show that the emergent approximate conservation law in such
driven system leaves its imprint on both the dynamics and
the steady-state values of experimentally accessible quantities
such as magnetization of the Ising model. To the best of our
knowledge, this phenomenon has not been pointed out earlier
in the literature.

The organization of the rest of the paper is as follows. In
Sec. II, we demonstrate the emergence of conserved quantities
via derivation of the Floquet Hamiltonian corresponding to
driven free fermionic systems. We also provide semianalytic
expressions of fidelity, correlation functions, and entangle-
ment entropy for the driven model. This is followed by Sec. III
where we present our numerical results for the 1D transverse
field Ising model demonstrating qualitative match between
results obtained from FPT and exact numerics. Finally, in
Sec. IV, we discuss our main results, suggest possible experi-
ments which can test our theory, and conclude. The presence
of similar emergence of approximate conserved quantities for
discrete drive protocol is discussed in the Appendix.

II. FLOQUET PERTURBATION THEORY

In this section, we provide an analytic, albeit perturbative
expression of the Floquet Hamiltonian of the driven integrable
non-Hermitian model given by Eq. (2) using Floquet pertur-
bation theory. The protocol that we use is given by

g(t ) = g0 + g1 cos ωDt, (4)

where g0 is the static part of the drive and g1 is the drive
amplitude. We compute the Floquet Hamiltonian in Sec. II A.
This is followed by analytic expressions of correlation func-
tion, fidelity, entanglement entropy for the driven model in
Sec. II B.

A. Perturbative Floquet Hamiltonian

In the presence of the drive given by Eq. (4), the Floquet
Hamiltonian corresponding to Eq. (2) cannot be computed
exactly. This is in contrast to discrete protocols studied in
the literature [61,62]. To obtain an analytic understanding, we
therefore use the Floquet perturbation theory to compute HF

in the regime where g1 � g0, |��k|, |a3�k|. In this regime, one
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can write the Hamiltonian as H�k = H0�k + H1�k , where

H0�k = τ3g1 cos ωDt,

H1�k = τ3(g0 + iγ − a3�k ) + τ1��k . (5)

In what follows we shall treat H1�k perturbatively using FPT
[9]. This is usually done by first obtaining the evolution oper-
ator U0(t, 0) corresponding to H0(t ) (the term with the largest
amplitude in H) exactly; this is followed by computations
U1,U2...Un which are higher (nth)-order corrections to U0 due
to H1. One can then use these perturbative evolution operators
Un to obtain the nth-order Floquet Hamiltonian [9]. In what
follows, we shall restrict ourselves to the first- and second-
order perturbative corrections.

We begin by computing the evolution operator which, to
zeroth order in g1, is given by

U0�k (t, 0) = e−i
∫ t

0 H0�kdt ′/h̄ = exp

[
−iτ3

g1 sin ωDt

h̄ωD

]
. (6)

Thus, U0�k (T, 0) = I (where I denotes the 2 × 2 identity
matrix) and H (0)

F �k = 0 for all �k. Note that the expression of
U0�k (t, 0) is derived using the fact that H0�k (t ) commutes with
itself at all times.

The first-order Floquet Hamiltonian can be constructed
using standard perturbation theory. To this end, we first write
the expression of U1�k (T, 0) which is given by

U1�k (T, 0) = −i

h̄

∫ T

0
dt U †

0�k (t, 0)H1�kU0�k (t, 0)

= −iT

h̄

[
τ3(g0 + iγ − a3�k ) + τ1��kJ0

(
2g1

h̄ωD

)]
, (7)

where J0(x) denotes the zeroth-order Bessel function. Note
that the first term in Eq. (7) follows trivially since U0(t, 0)
commutes with τ3 at all times. The computation of the second
term can be done in a straightforward manner using the rela-
tion τxU0�k (t, 0) = U †

0�k (t, 0)τx and the identity exp[ia sin x] =∑∞
n=−∞ Jn(a) exp[inx]. Using Eq. (7), we find that the first-

order Floquet Hamiltonian is given by

H (1)

F �k = ih̄

T
U1�k (T, 0)

= τ3(α�k + iγ ) + τ1��kJ0

(
2g1

h̄ωD

)
, (8)

where α�k = g0 − a3�k .
We note that at special frequencies, for a fixed drive am-

plitude, which satisfy 2g1/(h̄ω∗
m) = ρm where ρm denotes the

position of the mth zero of J0, the off-diagonal term of H (1)

F �k
vanishes for all �k. At these frequencies, [H (1)

F �k , τ3] = 0. This
constitutes an emergent dynamical symmetry which forces
the dynamics to conserve τ3 for all �k. This symmetry will be
broken by higher order terms in the Floquet Hamiltonian as
we shall show later in this section. However, we note that at
large drive frequencies, the contribution of the higher order
Floquet Hamiltonian are small and we shall see that the cor-
relation functions of the driven system bear signature of this
approximate dynamical symmetry. The presence of similar
special frequencies for discrete square pulse protocol has been
shown in the Appendix.

Next we compute the second-order Floquet Hamiltonian.
To this end, we first note that the second-order evolution
operator U2�k (T, 0) is given by

U2�k (T, 0) =
(−i

h̄

)2 ∫ T

0
dt1 U †

0�k (t1, 0)H1�kU0�k (t1, 0)
∫ t1

0
dt2 U †

0�k (t2, 0)H1�kU0�k (t2, 0)

=
(−i

h̄

)2 ∫ T

0
dt1

∫ t1

0
dt2

(
(α�k + iγ )2 + A�k (t1, t2) (α�k + iγ )B�k (t1, t2)
−(α�k + iγ )B∗

�k (t1, t2) (α�k + iγ )2 + A∗
�k (t1, t2)

)
, (9)

where the functions A�k (t1, t2) and B�k (t1, t2) are given by

A�k (t1, t2) = �2
�ke

2ig1
h̄ωD

(sin ωDt1−sin ωDt2 )
,

B�k (t1, t2) = ��k
(

e
2ig1
h̄ωD

sin ωDt2 − e
2ig1
h̄ωD

sin ωDt1
)
. (10)

The integrations can be easily carried out using standard identities involving Bessel functions. A straightforward computation
leads to the second-order Floquet Hamiltonian

H (2)

F �k = ih̄

T

(
U2�k (T, 0) − U 2

1�k (T, 0)/2
) = −τ34�2

�k

∞∑
n=0

J0
( 2g1

h̄ωD

)
J2n+1

( 2g1

h̄ωD

)
(2n + 1)h̄ωD

+ τ14��k (α�k + iγ )
∞∑

n=0

J2n+1
( 2g1

h̄ωD

)
(2n + 1)h̄ωD

. (11)

Combining Eqs. (8) and (11), we find the final Floquet Hamiltonian to be

HF �k = τ3S1�k + τ1S2�k, S1�k = (α1�k + iγ ),

α1�k = α�k − 2�2
�k

∞∑
n=0

J0
( 2g1

h̄ωD

)
J2n+1

( 2g1

h̄ωD

)
(n + 1/2)h̄ωD

, S2�k = ��k (α2�k + iγ λ),

α2�k =
(

J0

(
2g1

h̄ωD

)
+ α�kλ

)
, λ = 2

∞∑
n=0

J2n+1
( 2g1

h̄ωD

)
(n + 1/2)h̄ωD

. (12)
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The energy spectrum of the Floquet Hamiltonian can be
easily found by diagonalizing HF �k . We find two energy bands
whose expressions are given by

E±
�k = ±E�k ; E�k = (ε�k + i
�k ),

ε�k = 1√
2

√
β1 +

√
β2

1 + 4γ 2(α1 + ��kα2λ)2,


�k =
γ
(
α1 + �2

�kα2λ
)

ε�k
,

β1 = α2
1 + �2

�kα
2
2 − γ 2

(
1 + �2

�kλ
2
)
, (13)

where we have not written down the �k dependence of α1, β1,
and α2 defined in Eq. (12) for brevity.

We note that the Floquet quasienergy spectrum allows for
long-lived quasienergy excitations for �k = �k0 which satisfies
α1�k0

= −λ�2
�k0
α2�k0

. Furthermore, it also shows the presence of
exceptional point for a critical γ = γE such that

γE = ±��k0
α2�k0

. (14)

It is easy to check that at these points E±
�k0

= 0.

Thus, the perturbative Floquet theory predicts that the
position of both long-lived quasienergy modes and the
presence/absence of exceptional points can be tuned using
the amplitude and frequency of the drive. In the next section,
we shall see that this statement holds qualitatively for the
exact spectrum. We note that the second-order Hamiltonian
H (2)

F �k leads to smaller contribution at large frequencies since its
terms are suppressed by a overall factor of 1/ωD. However, its
contribution to HF �k becomes important near special frequen-
cies ω∗

m for which J0[2g1/(h̄ω∗
m)] = 0. At these frequencies

H (2)

F �k contributes the only nonzero off-diagonal term in HF �k
(up to second-order perturbation theory) and its inclusion is
therefore crucial to obtain a qualitative match of the perturba-
tive analytical results with exact numerics.

B. Correlators, entanglement, and fidelity

In this section, we shall express the correlation functions,
fidelity, and entanglement entropy of the driven integrable
model in terms of the eigenvalues and eigenvectors of HF �k .
This will be particularly helpful in deducing their properties
using the expressions of second-order Floquet energy derived
in Eq. (12).

We start by noting that the normalized eigenvectors of the
second-order Floquet Hamiltonian corresponding to Floquet
energies E±

�k can be expressed in terms of components of a
unit vector �n�k = (nx�k, 0, nz�k ), where

nx�k = S2�k/E�k, nz�k = S1�k/E�k . (15)

In terms of these, the normalized eigenvectors of HF �k corre-
sponding to quasienergies ±E�k are given by

|±; �k〉 = 1

N±�k

(
p±�k
q±�k

)
p±�k = nz�k ± 1,

q±�k = nx�k N±�k =
√

|nz�k ± 1|2 + |nx�k|2. (16)

Note that for |g0| � 2, 
�k = Im[E�k] changes sign across �k =
�k∗ for which α1�k∗ = −α2�k∗λ�2

�k∗ . In this case, for ωD 
 ω∗
m

where S2�k/E�k � 1 for all �k, and for γ > 0, the eigenfunction
of HF �k corresponding to 
�k > 0 changes from ∼(0, 1)T to
∼(1, 0)T sharply as one crosses �k∗. In contrast, such a change
is much more gradual away from the special frequencies
where S2�k/E�k is not small.

In terms of |±; �k〉, it is possible to write the evolution
operator of the system at stroboscopic times tn = nT as

U�k (nT, 0) =
∑
a=±

e−iaE�k nT/h̄|a; �k〉〈a; �k|. (17)

We note that the evolution operator U�k (nT, 0) is not unitary
due to nonzero 
�k . Consequently, to obtain the state after
n drive cycles, we need to adapt the standard normalization
procedure for non-Hermitian systems [61–65] which yields

|ψ�k (nT )〉 = |ψ̃�k (nT )〉
|〈ψ̃�k (nT )|ψ̃�k (nT )〉| ,

|ψ̃�k (nT )〉 = U�k (nT, 0)|ψ0�k〉, (18)

where |ψ0�k〉 is the initial state. In what follows, we shall
parametrize the initial state |ψ0�k〉 = (u0�k, v0�k )T using an an-
gle θ0�k such that u0�k = cos θ0�k and v0�k = sin θ0�k . This allows
us to write, using Eqs. (16), (17), and (18), |ψ�k (nT )〉 =
(u�k (nT ), v�k (nT ))T , where

u�k (nT ) =
∑

a=± e−iaE�k nT/h̄μa�k pa�k
D�k (θ0�k )

,

v�k (nT ) =
∑

a=± e−iaE�k nT/h̄μa�kqa�k
D�k (θ0�k )

,

D�k (θ0�k ) =
[∣∣∣∣∣

∑
a=±

e−iEa�k nT/h̄ pa�kμa�k

∣∣∣∣∣
2

+
∣∣∣∣∣
∑
a=±

e−iEa�k nT/h̄qa�kμa�k

∣∣∣∣∣
2]1/2

,

μ±�k = p∗
±�k cos θ0�k + q∗

±�k sin θ0�k . (19)

Using this wave function, one can define the fidelity χ (nT ) =∏
�k χ�k (nT ) where χ�k (nT ) = |〈ψ0�k|ψ�k (nT )〉|2. In what fol-

lows, we shall be mainly interested in studying the behavior
of g(nT ) = ln χ (nT ) [76]. Using Eqs. (18) and (19), one can
express g(nT ) as

g(nT ) =
∫

dd k

V0
ln |u�k (nT ) cos θ0�k + v�k (nT ) sin θ0�k|2,

(20)

where V0 = (2π )d/2 denotes the volume of the d-dimensional
Brillouin zone.

Next, we compute the correlation functions of the model.
For the class of integrable models discussed here, the
nontrivial correlation functions are given by

N�k (nT ) = 〈(2c†
�kc�k − 1)〉 = 2|v�k (nT )|2 − 1,

F�k (nT ) = 〈c�kc−�k + H.c.〉 = (u∗
�k (nT )v�k (nT ) + H.c.). (21)
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The real-space correlation functions can be obtained via
Fourier transforms of N�k (nT ) and F�k (nT ).

Finally, we note that for this class of integrable models
the entanglement entropy can be expressed in terms of the

correlation matrix C. For a 1D fermionic chain of length L
and a subsystem of size � � L, the correlation matrix can be
written as [65]

C =

⎛
⎜⎜⎝

�0 �−1 .. �1−�

�1 �0 .. �2−�

.. .. .. ..

��−1 ��−2 .. �0

⎞
⎟⎟⎠, ��0 =

∫
dd k

V0
eik�0�̂k · τ̂k,

�yk = 2|vk (nT )|2 − 1, �xk = 2 Re[uk (nT )v∗
k (nT )], �zk = 2 Im[uk (nT )v∗

k (nT )]. (22)

The entanglement entropy can then be computed using eigen-
values ζr (nT ), where r = 1.. 2�, of C. In terms of these one
obtain the von-Neumann entropy as

S�(nT ) = −
2�∑

r=1

ζr (nT ) ln ζr (nT ). (23)

We shall use these expressions to compute the correlations,
fidelity, and entanglement both from exact numerics and using
the second-order perturbative Floquet Hamiltonian for the 1D
Ising chain in the next section.

III. NUMERICAL RESULTS

In this section, we present our numerical results for the
driven, non-Hermitian 1D Ising chain with the Hamiltonian
given by Eq. (3). Using a standard Jordan-Wigner transfor-
mation [67], the Ising chain [Eq. (3)] can be mapped into
the free fermion Hamiltonian [Eq. (5)] with the identification
a3k = 2 cos k, J = 1, g(t ) = 2h(t ) = 2(h0 + h1 cos ωDt ), and
�k = 2 sin k. In this notation, the ferromagnetic state with
spin-up on all sites is mapped to fermion vacuum. We note
that such a transformation provides a direct relation between
the fermion density operator n̂ j = c†

j c j (where c j denotes
the fermion annihilation operator on site j) and σ z

j as σ z
j =

1 − 2n̂ j .
We present our results obtained using both exact numerical

computation of Uk (T, 0) and using HFk [Eq. (12)] computed
using second-order FPT. For the former, we follow the stan-
dard procedure of Suzuki-Trotter decomposition of Uk into n0

steps of width δt = T/n0. The width of these time steps are
chosen such that Hk (t ) [Eq. (5)] does not change significantly
within each of these steps. This allows one to numerically
compute the evolution operator as

Uk (T, 0) =
∏

j=1,n0

Uk (t j, t j−1) =
∏

j=1,n0

e−iδtHk (t j )/h̄. (24)

One can then diagonalize Uk to find out its eigenvalues eiθ±
k

(where θ±
k = E±

k T/h̄ are in general complex numbers) and the
corresponding eigenvectors |±; k〉. This leads to the evolution
operator

Uk (nT, 0) =
∑
a=±

e−inθa
k |a; k〉〈a; k|. (25)

Using Eq. (25) one can compute fidelity, correlation function,
and entanglement entropy numerically following the steps
outlined in Sec. II B

A. Floquet spectrum

In this subsection we present our results for the Floquet
spectrum. To this end, we plot 
k and εk [Eq. (13)] in top
panels of Fig. 1 for h̄ωD/J = 9.24 [Fig. 1(a)] and 8 [Fig. 1(b)].
The branch of E±

k with εk > 0 is plotted in Fig. 1. Both the
figures show a change in sign of 
k around k = k∗ ∼ 1.5. The
value of k∗ is consistent with that found from the condition
k∗ 
 arccos h0; this is due to the fact that the second-order

FIG. 1. (a) Plot of imaginary part of the spectrum 
k as a function
of k for the branch having positive real part of the spectrum (εk > 0)
and with the drive frequency h̄ωD/J = 9.24. The inset shows εk

as a function of k. (b) Similar plot for h̄ωD/J = 8. The red(blue)
lines represents results obtained using exact numerics with system
size L = 1000 (second-order FPT). (c) Plots of exceptional points
as a function of h̄ωD/J and k as obtained using exact numerics.
(d) Same as panel (c) as obtained from second-order FPT by solving
Eq. (14). For all plots h0 = 0.1, γ = 0.05, h1 = 20 and energy scales
are measured in units of J . See text for details.
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contributions to the Floquet spectrum are small compared to
the first-order terms. This shows that such a change in sign
of 
k is contingent on the condition |h0| � 1. The change
of sign is gradual away from ω∗

m as shown for h̄ωD/J = 8
in the right panel; in contrast, it is abrupt for h̄ωD/J = 9.24
which corresponds to ωD = ω∗

3. We have checked that a sim-
ilar behavior holds near all other ωD = ω∗

m. We also note that
the second-order FPT (blue lines) shows an excellent match
with the exact results (red lines) for all k. We shall use these
properties of 
k , shown in Figs. 1(a) and 1(b), for the analysis
of the properties of correlation functions and entanglement in
the next section.

Figures 1(c) and 1(d) show the position of the exceptional
points as a function of h̄ωD/J and k where both real and
imaginary components of Ek vanishes. Figure 1(c) shows the
positions of the exceptional points obtained from exact nu-
merics; this is determined numerically by choosing |Ek| � δ

where δ ∼ 10−2. We have checked that lowering δ further
does not change the nature of the plots. Figure 1(d) shows
similar points obtained from second-order FPT by solving
Eq. (14). We note that near the special frequencies where
J0[4h1/(h̄ωD)] = 0 leading to very small off-diagonal terms,
our choice of parameters do not allow for exceptional point;
this is clearly seen in Figs. 1(c) and 1(d). Moreover, such
points form discrete set of points in k space; consequently,
their presence do significantly affect the dynamics of magne-
tization or correlation functions which involves sum over all
k points.

Before concluding this section, we note that the Floquet
spectrum obtained from the second-order FPT matches quite
well with exact numerics; moreover, the position of the ex-
ceptional points in the ωD-k plane obtained by exact numerics
also matches that obtained from Eq. (14). Thus, these results
confirm the validity of second-order FPT for a wide range
of ωD.

B. Fidelity and correlations

In this section, we first study the fidelity g(nT ) [Eq. (20)]
of the driven model as a function of n for several represen-
tative values of ωD. These plots for fidelity are shown in
Figs. 2(a) and 2(b) for an initial state |ψ0〉 = ∏

k (u0k, v0k )T =∏
k (0, 1)T while Figs. 2(c) and 2(d) show analogous plots for

|ψ0〉 = ∏
k (1, 0)T and |ψ0〉 = ∏

k (1, 1)T /
√

2, respectively.
Figure 2(a) shows the behavior of g(nT ) for h̄ωD/J = 8

and h̄ωD/J = 11 (inset). These frequencies are far away from
ω∗

m (for m = 1, 2, 3...) for which J0[4h1/(h̄ωD)] = 0; thus, the
behavior of g(nT ) in this plot represent its typical behavior
for a ferromagnetic initial state at most frequencies. The plot
indicates a decay of g(nT ) to its steady-state value with small
but finite oscillations. These features are predicted by both
second-order FPT (blue dashed lines) and exact numerics (red
solid lines); the perturbative prediction match the exact results
quite well at these frequencies.

In contrast, Figs. 2(b)–2(d) show the behavior of g(nT ) for
h̄ωD/J = 9.24 which corresponds to ωD = ω∗

3. Figures 2(a)
and 2(b) show lack of oscillations along with a steady-state
value of g(nT ) � 0. In contrast, the plot of g(nT ) in Fig. 2(c),
which corresponds to an initial state

∏
k (1, 0)T , yields a near-

zero steady-state value. This indicates a high overlap of the
steady state with the initial state. Figure 2(d), corresponding

FIG. 2. (a) Plot of fidelity g(nT ) as a function of n for the drive
frequency h̄ωD/J = 8 and |ψ0〉 = ∏

k (0, 1)T which corresponds to
the all spin-down ferromagnetic initial state. The inset shows anal-
ogous plot for h̄ωD/J = 11. (b) Similar plot for h̄ωD/J = 9.24.
(c) Similar plot for h̄ωD/J = 9.24 with the initial state |ψ0〉 =∏

k (1, 0)T which corresponds to the all spin-up ferromagnetic state.
(d) Similar plot for h̄ωD/J = 9.24 with the initial state |ψ0〉 =∏

k (1, 1)T /
√

2. For all plots red (blue) represents results obtained
from exact numerics (second-order FPT). All other parameters are
same as in Fig. 1. See text for details.

to |ψ0〉 = ∏
k (1, 1)T /

√
2, shows oscillatory nature of g(nT )

along with a steady-state value of ∼ ln(1/2).
To qualitatively understand these features, we first consider

the initial state
∏

k (0, 1)T . For any given k, the wave function
overlap for this initial state is given by χk (nT ) = |vk (nT )|2.
Moreover, for this initial state, μ±k = q∗

±k [Eq. (19)]. This
leads to

χk (nT ) = ||q+k|2e−iEk nT/h̄ + |q−k|2eiEk nT/h̄|2
|Dk (π/2)|2

= 1

D2
k (π/2)

[|q+k|4e2
knT/h̄ + |q−k|4e−2
k nT/h̄

+2|q+kq−k|2 cos(2εknT/h̄)
]
, (26)

where we have used Ek = εk + i
k and Dk (π/2) = Dk (θ0k =
π/2) [Eq. (19)]. The first two terms in the expression of χk

determines its steady-state behavior while the last term yields
the intermediate oscillation.

The nature of the fidelity can be qualitatively understood
from the behavior of q±k and 
k as a function of k. The plots
of |p±k|2 = 1 − |q±k|2 is shown in Fig. 3 as a function of k.
From this plot, we note that near the special frequencies ω∗

m,
|q−k|2 ∼ θ (k − k∗) and |q+k|2 ∼ θ (k∗ − k); thus, the oscilla-
tions in χk (nT ) whose amplitude ∼|q+kq−k|2 vanishes for all
n. Furthermore, when nT |
k|/h̄ � 1, such that Dk (π/2) ∼
(|q+k|2 + |q−k|2)1/2, we find

χk ∼ |q−k|2θ (k − k∗) + |q+k|2θ (k∗ − k) 
 1. (27)
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FIG. 3. Plot of coefficients |p+k |2 (red solid line) and |p−k |2 (blue
solid line), obtained using second-order FPT, as a function k for
h̄ωD/J = 9.24 (a) and h̄ωD/J = 8 (b). The behavior q±k can be read
off from these plots using the relation |p±k |2 + |q±k |2 = 1. All other
parameters are same as in Fig. 1. See text for details.

In contrast, for large n, where nT |
k|/h̄ � 1, one has

D2
k (π/2) 
 |q+k|2 exp (2
knT/h̄)

+|q−k|2 exp (−2
knT/h̄), (28)

the expression of χk can be written as

χk ∼|q−k|2
[

1 +
( |q+k|e−|
k |nT/h̄

|q−k|
)4

]
, k < k∗,

∼|q+k|2
[

1 +
( |q−k|e−|
k |nT/h̄

|q+k|
)4

]
, k > k∗, (29)

where we have used the fact that 
k < (>)0 for k < (>)k∗ as
shown in Figs. 1(a) and 1(b). This shows that g(nT ) [Eq. (20)]
assumes a large negative value at large n; moreover, the decay
to the steady state is exponential. The steady-state value of g
depends on ln χk for nT |
k|/h̄ � 1; near ω = ω∗

m, where q±k

shows a sharp jump around k = k∗, χk ∼ |q±k|2 → 0 for all
k as can be seen from Fig. 3. Thus, g ∼ ∫

dk ln χk assumes a
large negative value as can be seen from Fig. 2(b)

For the initial state
∏

k (1, 0)T , we find that μ±k = p∗
±k .

Using this, a similar calculation yields

χk (nT ) = 1

D2
k (0)

[|p+k|4e2
k nT/h̄ + |p−k|4e−2
k nT/h̄

+2|p+k p−k|2 cos (2εknT/h̄)
]
. (30)

We note that near ω∗
m for |
k|nT/h̄ � 1, a similar analysis

as given in Eq. (27) yields χk ∼ 1. In contrast, for the steady
state where |
k|nT/h̄ � 1, we find

χk ∼ |p−k|2
[

1 + |p+k|4 exp (−4|
k|nT/h̄)

|p−k|4
]
, k < k∗,

∼ |p+k|2
[

1 + |p−k|4 exp (−4|
k|nT/h̄)

|p+k|4
]
, k > k∗.

(31)

Thus, the steady-state value of χk remains close to unity for
all k near ω∗

m (Fig. 3). Consequently g(nT ) ∼ 0. Our analysis
thus reveals the reason of small values of g(nT ) when one
start from the initial state

∏
k (1, 0)T ; this also results in a

slightly lower match of g(nT ) obtained from second-order
FPT with its exact numerical counterpart since the finite value

of g in this case comes mostly from higher-order terms in the
perturbation series. We note that the oscillations are absent
for all n since the amplitude of such oscillations depends on
|p+k p−k|2 and is vanishingly small for all k.

Finally, for the initial state
∏

k (1, 1)T /
√

2, we find μ±k =
(p∗

±k + q∗
±k )/

√
2. Using this, one obtains

χk (nT ) = 1

D2
k (π/4)

{ ∑
s=±

[|Rsk|2e2s
k nT/h̄
]

+2R+kR−k cos(2εknT/h̄)

}
,

Rsk = 1

2
[1 + (p∗

skqsk + H.c.)]. (32)

We note that at large n, this yields

χk ∼ R−k

[
1 +

(
R+ke−2|
k |nT/h̄

R−k

)2
]
, k < k∗,

∼ R+k

[
1 +

(
R−ke−2|
k |nT/h̄

R+k

)2
]
, k > k∗. (33)

For ωD = ω∗
m, p∗

skqsk 
 0 for all k leading R±k ∼ 1/2 (Fig. 3).
Thus, the steady-state value of χk ∼ 1/2 for all k; this leads
to a g 
 − ln 2 in the steady state. The other features of g(nT )
can be inferred from an analysis similar to those carried out for
θ0k = 0, π/2. Thus, our analysis of g(nT ) as shown in Fig. 2
indicates that the presence of special frequencies ω∗

m shapes
the nature of the fidelity of the driven system.

The nature of the steady state of the driven non-Hermitian
steady state can be further understood by studying the steady-
state value of the magnetization of the driven system. We
note first that the magnetization of the driven Ising chain is
given by

M(nT ) = −
∫ π

0

dk

π
Nk (nT ) =

∫ π

0

dk

π
(1 − 2|vk (nT )|2).

(34)

The steady-state value of the magnetization, Mst, is obtained
for n � Min[J/
k]. Using Eqs. (19), and starting from an
initial product state

∏
k (0, 1)T , which corresponds to M(0) =

−1, we find that

Nk (nT ) = −1

D2
k (π/2)

{∑
s=±

[|qsk|2(|psk|2 − |qsk|2)e2s
k nT/h̄
]

+ 2Re
[
q+kq∗

−k (p∗
+k p−k − q∗

+kq−k )e2iεk nT/h̄
]}

.

(35)

For |
k|nT/h̄ � 1, since 
k changes sign at k = k∗, the
steady-state value of Nk , N st

k , is given terms of p±k, q±k by

N st
k = (|q−k|2 − |p−k|2)

(
1 − η0ke−4|
k |nT/h̄

)
, k < k∗,

= (|q+k|2 − |p+k|2)
(
1 − η−1

0k e−4|
k |nT/h̄
)
, k > k∗,

η0k = (|q+k|2 − |p+k|2)

(|p−k|2 − |q−k|2)

|q+k|2
|q−k|2 . (36)
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FIG. 4. Plot of Mst as a function h̄ωD/J as obtained from exact
numerics and second-order FPT. All parameters are same as in Fig. 1.
See text for details.

Thus, when ωD ∼ ω∗
m, N st

k ∼ −1 for all k leading to a steady-
state magnetization Mst ∼ 1. However, away from these
frequencies, both p±k and q±k are finite around k = k∗; thus,
the value of N st

k deviates from −1 when k is within this range.
This in turn leads to lower value of Mst when ωD is away from
ω∗

m. We therefore expect nonmonotonic behavior of Mst as a
function of the drive frequency.

The plot of the steady Mst, obtained from the value of
M(nT ) around n ∼ 1000 after averaging over 50 drive cycles,
plotted as a function of ωD in Fig. 4 (red curve), conforms
this behavior. The plot clearly shows that the steady-state
magnetization exhibits distinct dips at ωD = ω∗

m. The blue
curve of Fig. 4 shows the plot of Mst as obtained from second-
order perturbation theory. Here the steady state is constructed,
for each k, from the normalized wave function |ψk (nT )〉
[Eq. (18)] by retaining terms in uk (nT ) and vk (nT ) [Eq. (19)]
with 
k > 0 which survive in the limit n → ∞. This yields ust

k
and vst

k and leads to Mst = ∫ π

0 (dk/π )(1 − 2|vst
k |2). The result

obtained from second-order FPT in this manner is remarkably
close to the exact result. Thus, we conclude that the steady
state of the driven chain bears the signature of the approximate
dynamical symmetry as shown in Fig. 4.

Next, we study the behavior of the magnetization M(nT )
[Eq. (34)] as a function of n and the drive frequency ωD.
The corresponding plot is shown in Fig. 5. Figure 5(a) shows
the behavior of M(nT ) obtained from exact numerics, while
Fig. 5(b) shows the corresponding results from second-order
FPT; the latter shows excellent match with the former for
a wide range of drive frequencies. The behavior of M(nT )
shown in these plots can be understood from Eq. (35) as
follows.

First, we note that near ω∗
m, the oscillatory terms in Eq. (35)

vanishes since pskqsk ∼ 0 for s = ± and all k. Thus, we ex-
pect the oscillatory behavior of M(nT ) to be present only
away from these frequencies. This behavior is confirmed by
plots in Fig. 5. Second, from Fig. 5, we find that at ωD =
ω∗

m, M stays close to its initial value for a large number
of drive cycles; this is followed by a sharp decay to the

FIG. 5. Plot of the magnetization M(nT ) as a function of the
number of drive cycles n and the drive frequency h̄ωD/J as obtained
from exact numerics (a) and second-order FPT (b). All parameters
are same as in Fig. 1. See text for details.

steady-state value Mst 
 1. The sharpness of this decay is
a consequence of sharp change of q±k and 
k around k =
k∗. Third, the deviation of M from the steady-state value
occurs when η−1

0k (η0k ) exp[−4|
k|ncT/h̄] ∼ 1 for k > (<)k∗
[Eq. (36)]. Thus, the value of nc at which this crossover
occurs is exponentially sensitive to the distribution of |
k| as
a function of k around k = k∗. Since a sharp change of sign of

k around k = k∗, which occurs around ω∗

m, indicates a larger
value of |
k| for most k, we find that the system reaches its
steady state for smallest value of nc at ω∗

m. As one moves away
from ω∗

m, nc increases; concomitantly, q±k develop finite value
for larger range of k around k∗. Thus, M(nT ) starts to change
with n for n < nc in an oscillatory manner. The oscillation
amplitude are small near ω∗

m; thus, the system shows very slow
change in magnetization in the region 0 � n � nc. This leads
to peaklike structures around ω∗

m (Fig. 5) where the systems
shows slow but nonzero change in the magnetization before
reaching the steady state.

Next, we study the off-diagonal fermion correlation func-
tion F (nT ) given by

F (nT ) =
∫ π

0

dk

π
Fk (nT ). (37)

The plot of F (nT ) as a function of n and h̄ωD/J is shown
in Fig. 6. Once again we find that the second-order FPT
[Fig. 6(b)] reproduces all the qualitative features obtained
using exact numerics [Fig. 6(a)]. To understand these features,
we first note that starting from an initial state

∏
k (0, 1)T , the

FIG. 6. Plot of the correlation function F (nT ) as a function of
the number of drive cycles n and drive frequency h̄ωD/J as obtained
from exact numerics (a) and second-order FPT (b). All parameters
are same as in Fig. 1. See text for details.
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expression of Fk (nT ) can be written terms of p±k and q±k as

Fk (nT ) = 2

D2
k (π/2)

∑
s=±

(|qsk|2Re[p∗
skqsk]e2s
k nT/h̄ + |q−sk|2

× {Re[p∗
skqsk] cos(2εknT/h̄) − sIm[p∗

skqsk]

× sin(2εknT/h̄)}). (38)

From Eq. (38), we find that Fk ∼ 0 for all k at ω∗
m since

|p∗
skqsk| ∼ 0 for s = ± and at all k at these frequencies. The

amplitude of the oscillations of Fk (nT ) is also small for the
same reason. Consequently, F (nT ) remains close to zero at
these frequencies for all n. In contrast, significant oscillations
are seem away from ω∗

m where both psk and qsk are finite
for a range of k around k∗. Thus, our analysis of M(nT ) and
F (nT ), as shown in Figs. 5 and 6, respectively, indicates that
their properties can serve as a tool for detecting the magic
frequencies ω∗

m.
To summarize, we find that all correlations and the fidelity

bear signature of the approximate dynamical symmetry that
emerges at ω∗

m. The footprint of this emergent symmetry con-
stitutes lack of oscillatory features in fidelity and correlation
functions which can be discerned most easily by measuring
magnetization of the driven chain.

C. Entanglement

In this section we present our results for entanglement
entropy of the driven system. In what follows, we shall
mostly concentrate on the half-chain Von-Neumann entropy
S�=L/2(nT ) ≡ S(nT ) [Eq. (23)], where L is the chain length,
as a function of n and ωD.

A plot of S(nT ) is shown, starting from an initial state
|ψ0〉 = ∏

k (0, 1)T , as a function of n and ωD in Fig. 7. The
plots show that S follows an almost similar pattern as the
correlation functions and hence bears a signature of the special
frequencies. Moreover, from these plots, we find, comparing
Figs. 7(a) and 7(b), that the second-order FPT matches well
with exact numerics for a wide range of drive frequency.

The plot of S as a function of n for a fixed drive fre-
quency h̄ωD/J = 8 is shown in Fig. 7(c). The behavior of S,
as shown in this plot, brings out a key difference between it
and its counterpart for driven Hermitian Ising chains [28]. For
periodically driven Hermitian chains, S is known to first in-
crease and then saturate with increasing n. In contrast, for a
driven non-Hermitian chain S first increases, reaches a peak,
and then decays to its steady-state value at large n. This
behavior can be understood as follows.

The initial state of the system |ψ0〉 is a product state leading
to S(0) = 0. For small n, the behavior of S shows a similar
increase as in Hermitian driven chain. However, for large
n where |
k|nT/h̄ � 1 for all k, it starts to approach its steady-
state value. In contrast to driven Hermitian chains, the steady
state here has a low entropy, being an almost product state.
This indicates that S(nT ) for large n is also small; in fact,
it approaches zero as ωD → ω∗

m where the steady state is a
perfect product state with S = 0. This ensures that S(nT ) is
necessarily a nonmonotonic function of n. In between, S(nT )
reaches its peak value; the position of this peak depends on
both ωD and γ . We note that these features of S(nT ) are
accurately captured by the second-order FPT [blue curve in

FIG. 7. Plot of the entanglement S(nT ) as a function of the
number of drive cycles n and the drive frequency h̄ωD/J as obtained
from exact numerics (a) and second-order FPT (b). (c) Plot of S(nT )
as a function of n for h̄ωD/J = 8. (d) Plot of the steady-state entan-
glement Sst as a function of ωD showing dips at ωD = ω∗

m. For panels
(c) and (d) red (blue) lines circles (lines) represent results obtained
from exact numerics (second-order FPT). We have chosen L = 100
for all plots; the rest of the parameters are same as in Fig. 1. See text
for details.

Fig. 7(c)] which provides a near-exact match with exact nu-
merical results [red curve in Fig. 7(c)]. We note that Figs. 7(a)
and 7(b) indicate that the behavior of S(nT ) near ωD = ω∗

m is
qualitatively different compared to that away from ω∗

m.
The behavior of S(nT ) for ωD = ω∗

m as a function of n
is qualitatively similar to that shown in Fig. 7(c) with two
important differences. First, the oscillatory features of S are
absent at these frequencies, and second, the steady-state value
of S approaches zero. The latter can be most easily inferred
from the plot of Sst as a function of ωD as shown in Fig. 7(d).
We find that the special frequencies ω∗

m can be distinguished
by dips in Sst; this can be understood as a consequence of
the fact that the steady state, at these frequencies, are very
close to the product state |ψs〉 = ∏

k (1, 0)T . This confirms
that the steady-state entanglement, shown in Fig. 7(d), also
bears the signature of the emergent approximate conservation.

IV. DISCUSSION

In this work, we have studied a class of driven 1D
non-Hermitian integrable free fermionic models in the high
drive-amplitude regime. We have identified the presence of
approximately conserved quantities that leave their imprints
on the dynamics of these models. We have shown in the
Appendix that such emergent conservation can also be seen
for discrete drive protocols; this demonstrates the general,
protocol-independent, nature of this phenomenon.

For a continuous drive protocol, we have used Floquet per-
turbation theory to obtain the Floquet Hamiltonian HF of the
driven models. The method uses inverse of the drive amplitude
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as the perturbation parameter and thus provides reasonably
accurate results for high and intermediate drive frequency
regimes. This distinguishes it from the standard high fre-
quency expansions where the inverse frequency is taken as
the perturbation parameter. We show, using the example of
1D transverse field Ising chain, that the dynamics obtained
using HF computed from second-order FPT reproduces all the
features of its exact numerical counterpart.

The Floquet Hamiltonian obtained using this method pro-
vides analytic understanding of the reason for the emergent
approximate conservation at special frequencies. At these fre-
quencies, whose analytic expressions can be obtained using
FPT, the first-order Floquet Hamiltonian (also obtained from
FPT) commutes with certain operators. A specific example
of such an operator is shown to correspond to the transverse
magnetization of the driven non-Hermitian Ising chain. Such a
conservation is approximate and it is shown to be violated by
higher (second) order Floquet Hamiltonian. Nevertheless, this
approximate emergent conservation leaves its signature on the
dynamics of the driven chain. In this respect, non-Hermitian
systems differ qualitatively from their Hermitian counterparts
studied in Refs. [77]; for example, the magnetization of the
latter stays very close to its initial value for a very large
number of drive cycles at such special drive frequencies. In
contrast, the magnetization of integrable non-Hermitian sys-
tems studied here exhibit distinct dynamics and approaches
its steady-state value after n ∼ 200 drive cycles.

We discus the dynamical signature of this approximate
conservation and show that it also shapes the nature of the
steady states of these driven systems. Using the Ising model in
a transverse field as an example, we show that the steady state
of the driven non-Hermitian Ising chain coincides with an
eigenstate of the transverse magnetization at these special fre-
quencies. Moreover, the approach of the system to the steady
state shows distinct behavior at these special frequencies; they
lack the transient oscillations which is normally present when
the drive frequency is away from these special frequencies.
Such a qualitatively different behavior is also reflected in
the entanglement entropy S of such systems. In particular,
for the Ising chain, the steady-state entanglement entropy Sst

approaches zero at these special frequencies; in contrast, it is
finite at other drive frequencies. Our study also indicates the
nonmonotonic behavior of S as a function of n and ties it to
the non-Hermitian nature of these models.

There have been several suggestions of realization of non-
Hermitian Ising chains [72–75]. Some of these protocols
involve coupling a Hermitian Ising chain with a continuously
measuring device which measures the transverse magnetiza-
tion; the effective Hamiltonian of the system in the so-called

no-click limit is then given by a Ising chain with an imaginary
component γ0 of the transverse field [65]. The net trans-
verse field acting on the Ising spin thus becomes B + iγ0,
where B denotes the existing transverse field of the uncoupled
Hermitian Ising chain. Our proposition is to drive the chain
with a time dependent magnetic field B = B0 + B1 cos ωDt
starting from an all-down spin state. In the limit of large drive
amplitude, we predict that the steady-state magnetization per
unit length of the chain would be close to h̄/2 at special
drive frequencies ωD = ω∗

m. These frequencies are predicted
to be related to the drive amplitude by h1/(h̄ω∗

m) = ρm where
ρm denotes the position of the mth zero of J0 and h1 = μ0B
where μ0 is the magnetic moment associated with the Ising
spins. A similar phenomenon would be seen for square pulse
protocol at h1/(h̄ω∗

m) = mπ . The approach of the magnetiza-
tion M(nT ) to its steady-state value Mst as a function of the
number of drive cycles n can also be measured; we predict
that the evolution of M(nT ) will be consistent with Fig. 5 and
it will show lack of transient oscillations for ωD = ω∗

m.
In conclusion, we have studied the Floquet dynamics of

a class of driven non-Hermitian integrable models. We have
identified special drive frequencies in these systems which
leads to emergence of approximate conservation laws. We
have identified the signature of this phenomenon in the dy-
namics of the driven systems and suggested experiments
which can test our theory.
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APPENDIX: SQUARE PULSE PROTOCOL

In this Appendix, we show the presence of approximate
conservation laws in the limit of high drive amplitude for
integrable non-Hermitian free-fermionic models for a square
pulse protocol. To this end, we consider a square pulse drive
protocol

g(t ) = g0 for t � T/2

= −g0 for t > T/2, (A1)

where T is the time period. Substituting Eq. (A1) in Eq. (2),
one finds the evolution operator of the system at t = T and for
a given �k to be

U sq
�k (T, 0) = e−iH−

�k T/(2h̄)e−iH+
�k T/(2h̄)

,

H±
�k = (±g0 − a3�k + iγ )τ3 + ��kτ1. (A2)

A straightforward analysis yields

U sq
�k =

(
α1 β1
β2 α2

)
,

α j = [cos θ+
�k + i(−1) jn+

3�k sin θ+
�k ][cos θ−

�k + i(−1) jn−
3�k sin θ−

�k ] − n+
1�kn−

1�k sin θ+
�k sin θ−

�k ,

β j = −i{n+
1�k sin θ+

�k [cos θ−
�k + i(−1) jn−

3�k sin θ−
�k ] + n−

1�k sin θ−
�k [cos θ+

�k − i(−1) jn+
3�k sin θ+

�k ]},

n±
1�k = ��k

E±
�k

, n±
3�k = ±g0 − a3�k + iγ

E±
�k

, E±
�k =

√
(±g0 − a3�k + iγ )2 + �2

�k, θ±
�k = E±

�k T/(2h̄). (A3)
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Equation (A3) yields exact U�k for any drive frequency and
amplitude. Now we note that for large drive amplitude g0 �
a3�k,��k, γ , the off-diagonal terms of U�k (T, 0) vanish for spe-
cial drive frequencies g0/ω

∗
m = m where m ∈ Z . For these

frequencies, [τ3,U�k (T, 0)] = 0 (to leading order in 1/g0)

for all �k leading to approximate conservation which is vi-
olated only in subleading order in 1/g0. This violation is
hence small in the large g0 limit. This demonstrates the
presence of special frequencies for the square pulse drive
protocol.
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