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The low-frequency dynamical magnetic properties in paramagnetic diluted magnetic semiconductors are
addressed in the framework of the dynamical mean-field theory applied for the Kondo lattice model. In the
infinite-dimensional limit, a set of self-consistent equations is derived so the single-particle Green’s function
and its self-energy can be evaluated numerically. In terms of the Green’s function and self-energies, the local
dynamical spin susceptibility function and then the spin-relaxation rate are explicitly expressed based on the
Baym-Kadanoff approach. It is found that the spin fluctuations become dominated, indicated by the sharp peak
appearing at the low frequency of the spin dynamical susceptibility function in the case of large magnetic
coupling and temperature close to the paramagnetic-ferromagnetic transition point. The low-frequency spin
dynamic in the systems is also addressed in the signatures of the spin-relaxation process. In the case of large
temperature and small magnetic coupling, the spin-relaxation rate releases the scenario of the Korringa process
specifying the weak correlation systems likely normal metals. Otherwise, i.e., at small temperature and large
magnetic coupling, we find exponential behavior of the spin-relaxation rate versus temperature. Moreover, at
a temperature approaching the paramagnetic-ferromagnetic transition point, one finds sharp suppression of the
spin-relaxation rate or speeding up of the spin-relaxation time. These scenarios are attributed to the appearance
of the magnetic coherence bound state or the spin clusters in diluted magnetic semiconductors due to the strongly
magnetic correlations.
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I. INTRODUCTION

Spin dynamics in diluted magnetic semiconductors
(DMSs) is one of the most stimulating issues that attracts
much interest because of its potential to understand the na-
ture of magnetic signatures and prospective applications in
future spintronics [1,2]. In DMS materials, magnetic (e.g.,
Mn) ions are lightly doped into a semiconducting host. Ac-
cording to the chemical structure of the semiconducting host,
one categorizes II-VI or III-V Mn-based DMSs [3]. In II-VI
Mn-based DMSs, Mn is divalent with high spin configuration.
The spin-dependent hybridization between anion p and Mn
d states leads to superexchange, a short-range antiferromag-
netic coupling among the Mn moments [4]. The competition
between the ferromagnetic and antiferromagnetic interactions
may lead to the spin-glass phase [5]. Meanwhile, in the
III-V Mn-based DMSs, the antiferromagnetic superexchange
is overruled by carrier-mediated ferromagnetic interactions.
With the completely different signatures in the ground state,
the spin dynamic properties of the two categories of DMSs are
significantly different [1–3,6]. In the present study, we con-
sider the spin dynamics in III-V Mn-based DMS materials as
a pioneer work. In this aspect, the ferromagnetic (FM) state is
stabilized in the system if the temperature is sufficiently small
[7–12]. Increasing the temperature might fluctuate the mag-
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netic ordering and the system would be in the paramagnetic
(PM) state. The magnetic properties in the system could be
interpreted in the mechanism of the Zener kinetic exchange,
the s- f , p-d exchange, or the Kondo lattice model (KLM)
[1,2,6,7,13,14], and in the strong-coupling limit, that might
reduce to the double-exchange model usually applicable in
doped manganites [2,15]. The KLM was originally introduced
to model the heavy fermion systems [16] and it has been
widely applied to III-V Mn-based DMSs, sometimes referred
to as the ferromagnetic KLM describing the ferromagnetic
coupling between the itinerant carriers and localized magnetic
moments at certain lattice sites [15,17–19]. In the framework
of the ferromagnetic KLM we have addressed various aspects
of the spin dynamical properties in the III-V Mn-based DMSs
[20–22].

To understand the characteristics of the PM-FM transition
in DMSs, a formation of short-range magnetic order of bound
magnetic polarons has been proposed [9–12,21,23]. However,
in these studies, the dynamics properties of the system around
the transition points have not been mentioned. In the mean-
while, understanding the signatures of the spin fluctuations
in the PM state is essential in elucidating the mechanism of
the FM transition in a magnetic system. One of the most
typical processes possibly inspecting the spin fluctuations is
spin relaxation. The spin relaxation describes the relaxation of
a nonequilibrium spin population towards equilibrium, char-
acterized by a spin-lattice relaxation time T1, the time it takes
the longitudinal magnetization to reach equilibrium. In the
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discussion hereafter, T1 can be understood as the Korringa
relaxation time of nuclear spins [24,25]. The inverse of the
spin-relaxation time, 1/T1, is the so-called relaxation rate.
The spin-relaxation process is driven by spin-orbit and/or
spin-spin interactions. In the present study, we simplify the
problem by neglecting a feature of the orbital ordered state
in DMSs, and so only the spin relaxation caused due to the
spin-exchange interaction between localized magnetic ions
and carriers is taken into account. The later so-called Korringa
relaxation mechanism is applicable in metallic DMSs [26].
In experiment, probing the spin relaxation in CdMnTe DMS
has been performed a long time ago by using modulated
Faraday rotation or a time domain magnetic spectrometer
[27,28], or most recently, by utilizing the spin-flip Raman-
scattering technique applied for GaMnAs DMS [29,30]. The
observations release the dominant spin fluctuations of the hole
ensemble in the PM state. However, the experimental data for
the spin-relaxation process in DMSs up to now is still scarce.
Meanwhile, to probe the spin-relaxation rate in a strongly
correlated electron system, the nuclear magnetic resonance
(NMR) technique is also one of the most practicable choices
[31]. The Knight shift in NMR has revealed the Korringa con-
tribution to the width of the resonance line in a large number
of metallic DMSs (see Ref. [32], and references therein). In
theory, the local NMR relaxation rate has been considered
in a single-band Hubbard model by utilizing the dynamical
mean-field theory (DMFT) [31,33–36] or by using spin-wave
and random-phase approximation [37]. In all these studies,
the spin-relaxation rate is extracted from a signature of the
low-frequency dynamical spin susceptibility function and the
results express agreement with the experimental observations
[31]. For large magnetic coupling, a DMS is also one of
the strongly correlated electron systems [1,2,6]; analyzing the
dynamical spin susceptibility function thus is an applicable
way to examine the spin-relaxation process in DMSs.

In the present work, the spin-relaxation rate in DMSs
is analyzed in the signatures of the dynamical spin sus-
ceptibility function in the framework of the DMFT. The
DMFT has proven to be a prevailing method dealing with
strongly correlated electron systems [38]. Within the limit
of infinite-dimensional space, DMFT gives an exact solution
and for lower-dimensional cases such as for two- and three-
dimensional systems, it delivers a trustworthy approximate
result [38,39]. Indeed, experiments with cold atoms in optical
lattices have shown that the DMFT leads to reliable results
even for finite-dimensional systems [40]. In our present case,
the DMS, for instance GaMnAs, has an fcc-lattice structure.
In the case of three dimensions (d = 3), a number of nearest
neighbors of a lattice site is Z = 12. The parameter 1/Z thus
is quite small already and therefore results of the DMFT are
applicable for the real DMS systems. The DMFT has been
widely used in studying the magnetic properties in DMSs and
similar systems [8,21,41,42]. Based on the DMFT, the spin
relaxation has been investigated in a single-band Hubbard
model [31,33–36]. In our work, the spin-relaxation process
is addressed by means of the DMFT applied for the Kondo
lattice model. Indeed, the Kondo lattice model has proven
to be a consistent microscopic model used to investigate the
magnetic properties in DMSs [6]. In the infinite-dimensional
limit, we deliver an analytical expression of the dynamical

spin susceptibility function based on the Baym-Kadanoff ap-
proach [43,44]. Our results reveal that the spin-relaxation rate
displays the Korringa law in normal metals for small magnetic
coupling and/or in a half-filling impurity band situation. De-
viating from that situation, one finds a decrease and a power
dependence of the spin-relaxation rate, indicating that the
strong magnetic correlations build up even in the PM state.
Lowering the temperature decelerates the internal motion cor-
responding to increasing the spin-relaxation time.

The present paper is organized as follows: In Sec. II we
present a microscopic Hamiltonian describing the carrier cor-
relations in the DMSs and its DMFT solution. Section III
derives an analytical expression of the dynamical spin sus-
ceptibility function based on the Baym-Kadanoff approach.
Numerical results and discussions are given in Sec. IV. Fi-
nally, a summary and conclusion are outlined in the last
section.

II. MODEL AND METHOD

In order to examine the spin fluctuations in III-V Mn-based
DMSs, we use here the ferromagnetic KLM [6,15,17–19]. The
Hamiltonian of the ferromagnetic KLM describes the ferro-
magnetic coupling between the itinerant carriers and localized
magnetic moments on the same site that can be written as
follows:

H = − t
∑
〈i, j〉σ

c†
iσ c jσ + 2J

∑
i

αiSisi − μ
∑

i

ni, (1)

where c†
iσ (ciσ ) is the creation (annihilation) operator for an

itinerant carrier with spin σ at lattice site i. The first term in
the Hamiltonian (1) thus indicates the carrier hopping between
the nearest neighbors with amplitude t . In the case of large
dimensions d or large numbers of nearest neighbors of a
lattice site Z , the hopping term t is often scaled as t = t∗/

√
2Z

and t∗ = 1 is chosen as a unit of energy [44]. The second term
illustrates the Hund magnetic coupling between the spin of
itinerent carriers si = ∑

σσ ′ c†
iσ σσσ ′ciσ ′/2 (σ are the Pauli ma-

trices) and the impurity moment Si at lattice site i. Note here
that the itinerant carrier in the DMSs is the hole [45], hence the
ferromagnetic FKM specifies that the magnetic coupling must
be positive (J > 0) addressing a parallel alignment of itinerant
hole and localized spins. In the present study we consider
only the Ising type of magnetic coupling; the transversal x
and y spin components are ignored. The simplification does
not allow any spin-flip processes, which can be important
at low temperature where spin-wave excitations may govern
the thermodynamics of the system. However, in the present
study, spins of itinerant carriers align ferromagnetically with
the localized spins, hence the Ising part of the Hund coupling
plays a dominant role. Moreover, the essential features of
magnetic and electronic properties in DMSs do not depend on
whether the exchange is of Ising- or Heisenberg-type coupling
[41,46]. In our calculation below, the local moment spin op-
erator is considered as a quantum variable S with two typical
values S = ±1. In most DMSs, the magnitude of localized
spin might be larger, for instance |S| = 5/2 [2]. However, in
the DMFT calculation, the magnitude of the localized spins
could be merged with the magnetic coupling constant and
renormalized to the unity, i.e., |S| = 1. The Green’s function,
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its self-energy of carriers, and then the physical results are
thus unaffected except for a slight change of the magnetic
coupling amplitude [47–50]. In the last term, μ is the chemical
potential with ni = ∑

σ c†
iσ ciσ an occupation operator of the

itinerant carriers at lattice site i. In the Hamiltonian, a variable
αi is included to express the presence of the magnetic doping
at lattice site i, α = 1(0) if site i is occupied (unoccupied)
by a magnetic ion. If x is the doping number of the mag-
netic ions in DMSs, α satisfies a binary distribution function
P(α) = (1 − x)δ(α) + xδ(1 − α). In the case of αi = 1 for
all i, the Hamiltonian recovers the original Kondo lattice
model [8].

In the present work, the Green’s function of the itinerant
carrier described in Hamiltonian (1) is found by DMFT. In
the infinite-dimensional limitation, DMFT delivers an exact
solution for the Green’s function. We start with the expression
of the local one-particle Green’s function

Gσ (iωn) =
∫

dε ρ(ε)
1

iωn − ε + μ − �σ (iωn)
, (2)

where ωn = (2n + 1)πT is the Matsubara frequency at tem-
perature T . In the infinite dimensions, the self-energy �σ (iωn)
is momentum independent, and the noninteracting density of
states of the itinerant carriers ρ(ε) = exp(−ε2)/

√
π is chosen

for the hypercubic lattice case. This Green’s function can also
be determined by solving an effective single-site problem in
a dynamical mean field. Based on the Hamiltonian written in
Eq. (1), one finds the action for the effective problem

Seff(S, α) = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

σ

c†
σ (τ )G−1

σ (τ − τ ′)cσ (τ ′)

+
∫ β

0
dτ

∑
σ

[JSσα − μ]c†
σ (τ )cσ (τ ), (3)

with Gσ (τ ) the bare Green’s function of the Weiss effective
medium written in the imaginary time representation. Note
here that we have restricted ourselves to the quantum case
of the localized magnetic moment. In this consideration, the
magnetic coupling is of Ising type, i.e., only the z component
of the spins is of interest. The key idea of the DMFT is that
the local one-particle Green’s function must in Eq. (2) be
considered with one evaluated from the efflective single-site
problem, i.e., one has

Gσ (iωn) = ∂F
∂G−1

σ (iωn)
, (4)

where

F = −
∫

dα P(α) lnZeff(α) (5)

is the free energy of the system and Zeff(α) is the partition
function of the effective single impurity that can be calculated
from the effective action. From Eq. (3), one finds

Zeff (α) = 2
∑

s

exp

{∑
nσ

ln
G−1(iωn) − JSσα

iωn

}
. (6)

The local one-particle Green’s function thus can be explicitly
expressed as

Gσ (iωn) =
∑
αS

Wα,S

ZαS
σ (iωn)

. (7)

Here ZαS
σ (iωn) = G−1

σ (iωn) − JSσα and Wα,S (α = {0, 1}) act
as the weight factors, that explicitly read

W0,S = 2(1 − x)

Zeff(0)
exp

∑
nσ

ln
G−1

σ (iωn)

iωn
(8)

and

W1,S = 2x

Zeff(1)
exp

∑
nσ

ln
ZαS

σ (iωn)

iωn
. (9)

The weight factors here are not simply a number, they are
the functionals of the Green’s function. The self-consistency
might be closed by using the Dyson equation

G−1
σ (iωn) = G−1

σ (iωn) − �σ (iωn). (10)

Equations (2), (4), and (10) establish a set of self-consistent
equations; the local Green’s function of the itinerant carrier
and its self-energy might then be evaluated numerically.

III. DYNAMICAL SPIN SUSCEPTIBILITY AND
SPIN-LATTICE RELAXATION

In the paramagnetic phase, the spin correlation still plays
an important role in formulating the actual magnetic order
in the ground states. Considering the spin fluctuations in
the paramagnetic phase thus is essential. In this section, the
spin fluctuations are addressed in terms of the spin-lattice
relaxation time being established from the dynamical spin
susceptibility function. In this manner, the spin-relaxation rate
reads

1

T1
= lim

ωN →0

T

N

∑
q

|A(q)|2 Imχ (q, ωN )

ωN
, (11)

where T1 is the spin-relaxation time, χ (q, ω) is the dynamical
transverse spin susceptibility function depending on momen-
tum q in a system with N lattice sites, and ωN is the Larmor
frequency [38]. A(q) in Eq. (11) is a hyperfine interaction. In
the representation, 1/T1T measures the slope of the imaginary
part of the local spin susceptibility function χloc = χ (ω) =
(1/N )

∑
q χ (q, ω) in the zero-frequency limit [34]. Firstly,

we would start with a calculation of the general dynamical
transverse spin susceptibility that is defined as

χ (q, iωl ) =
∫ β

0
dτ eiωl τ

∑
j

eiqR j 〈T sz(R j, τ )sz(0, 0)〉, (12)

where ωl = 2πT l is a bosonic Matsubara frequency, T is the
imaginary time order operator, and

sz(Ri, τ ) = 1

2

∑
σ

c†
iσ (τ )σciσ (τ ) (13)

is the time dependence of the z component of the spin operator
at lattice site i. In the infinite-dimensional limit, the general
dynamical transverse spin susceptibility might be obtained
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from the ladder sum in a summation over frequencies [38],
such that

χ (q, iωl ) =
∑
nn′

χ̃q(iωn, iωn′ ; iωl ), (14)

where χ̃q(iωn, iωn′ ; iωl ) satisfies an equation

χ̃q(iωn, iωn′ iωl ) = χ̃0
q (iωn; iωl )δnn′

+ χ̃0
q (iωn; iωl )

1

β

∑
σσ ′n′′

�σσ ′
(iωn, iωn′′ ; iωl )

× χ̃q(iωn′′ , iωn′ ; iωl )σσ ′, (15)

in which χ̃0
q (iωn; iωl ) is the bare susceptibility in the contri-

bution of the elementary particle-hole bubble,

χ̃0
q (iωn; iωl ) = −

∑
k

G(k, iωn)G(k + q, iωn+l ), (16)

and �σσ ′
(iωn, iωn′′ ; iωl ) denotes the irreducible vertex func-

tion.
In the infinite-dimensional limit (d → ∞), the q depen-

dence of χ̃0
q (iωn; iωl ) in Eq. (16) is summarized in a single

parameter X = ∑
i cos qi/d [38,44], that reads

χ̃0
q (iωn; iωl ) ≡ χ̃0

X (iωn; iωl )

= −1√
1 − X 2

∫
dε ρ(ε)

zn − ε
F

(
zn+l − Xε√

1 − X 2

)
, (17)

where F (x) = ∫
dε ρ(ε)/(x − ε) is the Hilbert transform

of the noninteracting density of states and zn = iωn + μ −
�(iωn).

The calculation of the full susceptibility requires a re-
sult of the local irreducible vertex function. In the present
work, the irreducible vertex function is evaluated by using
the Baym-Kadanoff approach [43,51,52]. In that scheme, in
order to evaluate the spin susceptibility function, an external
time-dependent magnetic field hσ (τ ) is added to the action.
According to the presence of the external field, the Green’s
function and also its self-energy are not time-translation in-
variant in imaginary time. In other words, the self-energy and
the Green’s function now depend on two Matsubara frequen-
cies [43,44]. In the Baym-Kadanoff approach, the irreducible
vertex function is found as a differentiation of the self-energy
with respect to the Green’s function

�σσ ′
(iωn, iωn′ ; iωl ) = 1

T

δ�σ (iωn, iωn+l )

δGσ ′ (iωn′ , iωn′+l )
. (18)

Here, both the Green’s function and the self-energy depend on
two frequencies. In this sense, Eq. (12) might be rewritten to
express the two-frequency Green’s function Gσ (iωn, iωm) as
in a matrix form

Gσ (iωn, iωm) =
∑
αS

Wα,S
[
ZαS

σ

]−1

nm
, (19)

where [ZαS
σ ]nm = [Gσ (n, m)]−1 − JSσα. We shall restrict our

discussion to the case in which only one Fourier compo-
nent l 
= 0 of hσ (τ ) is nonzero. In this condition, the matrix
has a nonzero diagonal m = n and one nonzero off-diagonal
m + l = n. After some tedious calculations, one finds a simple

relation

�σ (iωn, iωn+l ) = �σ
n,l

�σ
n,l

Gσ (iωn, iωn+l ), (20)

where

�σ
n,l = �σ (iωn)

2Gσ (iωn+l )

[
G−1

σ (iωn) + G−1
σ (iωn+l )

]
− �σ (iωn+l )

[
G−1

σ (iωn+l )
]2

+ Aσ

2Gσ (iωn)Gσ (iωn+l )
+ J2�σ (iωn+l ) (21)

and

�σ
n,l = Gσ (iωn)�σ (iωn)

[
G−1

σ (iωn) + G−1
σ (iωn+l )

]
+ Aσ + Gσ (iωn)

{[
G−1

σ (iωn+l )
]2 − J2

}
, (22)

in which we have denoted

Aσ = (W1,−1 − W1,1)Jσ. (23)

From Eq. (20), one easily delivers a result of the irreducible
vertex function by means of Eq. (18):

�σσ ′
(iωn, iωn′ ; iωl ) = δσσ ′δnn′

1

T

δ�σ (iωn, iωn+l )

δGσ (iωn, iωn′+l )

= δσσ ′δnn′
1

T

�σ
n,l

�σ
n,l

. (24)

The correlation function χ̃q(iωn, iωn′ ; iωl ) in Eq. (15) and
then the dynamical transverse spin susceptibility function in
Eq. (20) are simply derived. One finds

χ (q, iωl ) = T
∑

n

�σ
n,l

�σ
n,l

[
χ̃0

q (iωn; iωl )
]−1 − �σ

n,l

. (25)

The susceptibility in Eq. (25) is expressed in the bosonic
Matsubara frequency. In order to be applicable in further dis-
cussion, hereafter we would rewrite the susceptibility function
in the real frequency by using the analytical continuous iωl →
ω + i0+ transformation [53]. The real frequency ω-dependent
susceptibility function then reads

χ (q, ω) =
∫

dε

2π i
[nF (ε) − nF (ε + ω)] f AR(ε, ε + ω)

−
∫

dε

2π i
[nF (ε) f RR(ε, ε + ω)

− nF (ε + ω) f AA(ε, ε + ω)], (26)

where nF (ε) is the Fermi-Dirac distribution function, and

f μν
q (ε, ε + ω)

= �σ (ε, ε + ω)

�σ (ε, ε + ω)
[
χ̃0

q (ε, ε + ω)
]−1 − �σ (ε, ε + ω)

,

(27)

with the subscripts μ, ν = {A, R} (A or R refers to the ad-
vanced or retarded Green’s function and self-energy) denoting
for the arguments corresponding to the frequency ε being μ
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and the left ones to the frequency ε + ω being ν. For instance,
the f AR

q (ε, ε + ω) in Eq. (27) is established with

�σ (ε, ε + ω)AR = GA
σ (ε)�A

σ (ε)
[
G−1

σ (ε)A + G−1
σ (ε + ω)R

]
+ Aσ + GA

σ (ε)
{[
G−1

σ (ε + ω)R
]2 − J2

}
,

(28)

�σ (ε, ε + ω)AR = �A
σ (ε)

2GR
σ (ε + ω)

[
G−1

σ (ε)A + G−1
σ (ε + ω)R

]
− �R

σ (ε + ω)
[
G−1

σ (ε + ω)R
]2

+ Aσ

2GA
σ (ε)GR

σ (ε + ω)
+ J2�R

σ (ε + ω),

(29)

and

χ̃0
q (ε, ε + ω)AR

= −1√
1 − X 2

∫
dε ρ(ε)

ε − i0+ + μ − �A(ε) − ε

× F

(
ε + ω + i0+ + μ − �R(ε + ω) − Xε√

1 − X 2

)
. (30)

For the low-frequency limit, the spin susceptibility func-
tion might be expanded to the first order of ω and by noting
that ( f AA

q )∗ = f RR
q , one would deliver a simple expression of

the susceptibility function

χ (q, ω) = ω

∫
dε

2π i

∂nF (ε)

∂ε

[
f AR
q (ε, ε) − f RR

q (ε, ε)
]
. (31)

In the infinite-dimensional limit d → ∞, the local dy-
namical spin susceptibility χ (ω) = ∑

q χ (q, ω)/N can be
evaluated as for the “generic” case, i.e., we have an identity
χ (ω) = χ (X = 0, ω) [38]. That leads us to a more simple ex-
pression to evaluate the spin-relaxation time. Indeed, Eq. (11)
can be rewritten in the following way:

1

T1T
= A2Im

∫
dε

2π i

∂nF (ε)

∂ε

[
f AR
loc (ε, ε) − f RR

loc (ε, ε)
]
, (32)

where f μν

loc (ε, ε) has been replaced for f μν
q (ε, ε) in Eq. (27) in

the case of the generic situation. In this case, the bare suscepti-
bility function simply reads χ̃0

X=0(ε, ε) = −Gσ (ε)Gσ (ε) [38].
The hyperfine interaction here has been considered as locally
A(q) ≡ A.

IV. NUMERICAL RESULTS

In order to analyze the spin-relaxation process in DMSs,
firstly we discuss the signatures of the dynamical spin sus-
ceptibility. By solving self-consistently the set of equations in
Eqs. (2), (4), and (10), one finds solutions to the local
Green’s function and its respective self-energy as functions
of frequency. The dynamical spin susceptibility is then easily
evaluated following Eq. (31).

In Fig. 1, we show the signatures of the imaginary part of
the local dynamical spin susceptibility function for different
carrier densities n at a given set of parameters with J = 4,
x = 0.1, and T = 0.1. In the set of parameters, the system
settles in the PM state. For a fixed value of the carrier den-
sity n, the susceptibility always shows a single peak at low

0 0.5 1 1.5 2
ω

0

0.005

0.01

0.015

0.02

0.025

Im
χ(
ω
)

n=0.01
n=0.03
n=0.05
n=0.07
n=0.09

FIG. 1. Imaginary part of the local dynamical spin susceptibility
for different carrier densities with J = 4 and x = 0.1 at T = 0.1.

frequency. The peak indicates the fluctuations of the local
moments in the PM state. As increasing the carrier density,
the peak shifts to a higher frequency; however, the height of
the peak becomes maximum at n = x/2 corresponding to the
half-filled impurity band situation. Indeed, in this case with
the large magnetic coupling, a critical temperature for the
PM-FM transition in the system becomes maximum [8,21].
That means, by lowering the temperature from the PM state,
the magnetic fluctuations in the case of the half-filled impurity
band become enlarged in comparison with others. Note here
that the resonance peak in the local dynamical spin suscepti-
bility also analyzes the magnetic coherence occurring in the
diluted systems and the quasiparticle lifetime is in the order
of the height of the peak. The magnetic coherence thus is the
most favored in this half-filled impurity band case. At low
carrier density, the magnetic coupling plays an important role
to all of the carriers that establish energetically the magnetic
bound state. Increasing the carrier density, on average, the car-
riers lose their magnetic correlations with the local moments.
The bound coherence energy thus is suppressed and the total
magnetic fluctuations in the systems are restrained. The peak
in the local dynamical spin susceptibility thus shifts to the
right with higher frequency as shown in Fig. 1.

To discuss in more detail the magnetic resonance in the
case of the half-filled impurity band, we show in Fig. 2 the
imaginary part of the local dynamical spin susceptibility func-
tion at J = 4, x = 0.1, and n = 0.05 for several temperatures.
Note here that, in the range of temperature, the system set-
tles in the PM state and the analytical calculation for the
local dynamical spin susceptibility function in Eq. (31) is
still applicable. At a given temperature, one always finds a
single low-frequency peak structure in the local dynamical
spin susceptibility function indicating the magnetic coherence
effect in the system. At a low temperature very close to the
PM-FM transition point, the local dynamical spin suscepti-
bility gets a sharp peak at low frequency. In this case, as
increasing the temperature, the thermal fluctuations destroy
the coherence effect resulting in height depression of the peak.
The thermal fluctuations, in addition, lose the magnetic bound
state between the carrier and the local moments. The peak
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FIG. 2. Imaginary part of the local dynamical spin susceptibility
at different temperatures with n = 0.05 and x = 0.1 at J = 4. The
inset shows the static spin susceptibility function versus temperature
for the same set of parameters in the main figure.

thus shifts to the right with higher frequency once increasing
the temperature. The behaviors of the local dynamical spin
susceptibility also address the possibility of the spin clusters at
low temperature with the characteristic size approximating to
the static spin susceptibility. That is indicated by the dramatic
increase of the dynamical spin susceptibility at low frequency
once the temperature reaches the critical temperature of the
PM-FM transition. In the inset of Fig. 2 we show the behavior
of the static susceptibility function χ established by the sum
rule for the imaginary part of the dynamical spin susceptibility
function:

∫
dω Imχ (ω)/(2πω) = χ [54,55]. Apparently, the

static susceptibility obeys the Curie law χ ∼ 1/T for large
temperature T [56].

To inspect in more detail the spin fluctuations, and espe-
cially, the spin-relaxation process, we address in Fig. 3 the
spin-relaxation rate 1/T1 depending on the temperature at
J = 4 for some values of n at x = 0.1. At a given carrier
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FIG. 3. Spin-lattice relaxation rate as a function of temperature
at J = 4 for some values of n at x = 0.1 in the unit of A2. The inset
shows the PM-FM transition temperature TC versus carrier density n
at J = 4 and x = 0.1 [21,22].

density n, one always finds a monotonous increase of the
spin-relaxation rate as increasing temperature. The increase
in the temperature is commonly associated with the ther-
mally activated acceleration of internal motion, decreasing
the correlation time under the fast motion due to the thermal
fluctuations. In a large temperature range, the spin-relaxation
rate is linearly proportional to the temperature indicating that
the strong thermal fluctuations have depressed the magnetic
correlations and the system behaviors as for the conventional
paramagnetic metals. In that condition, the spin-lattice relax-
ation is dominated by a Korringa process in which the relaxing
nuclear spin flips an electronic spin down. By lowering the
temperature the spin-relaxation rate slows down and the linear
dependence of the spin-relaxation rate versus temperature is
replaced by the exponential dependence. In this temperature
range, despite the likely metallic state, the system probably
returns to the unconventional metal due to reinforcing the
spin fluctuations. In such a region, with the development of
FM correlations upon cooling, the system generally generates
nonuniform magnetization, which causes a formation of the
spin clusters close to the PM-FM transition point. Approach-
ing the critical temperature from higher temperatures, the
FM coupling progressively develops and the FM ordering
strengthens, which facilitates the enhancement of the spin-
relaxation time or sharply suppresses the spin-relaxation rate
as shown in Fig. 3.

In DMSs, the conductance is achieved by the hole hop-
ping via the exchange-coupled localized spins, that carriers
make mediate the relaxation of the exchange-coupled lo-
calized moments to the lattice. By depressing the thermal
fluctuations, the mobility of the carriers is reduced resulting
in the localization of carriers. The formation of polarons with
the spin clusters in DMSs thus can be released in the sig-
natures of the spin-relaxation rates in our study. Increasing
the carrier density as discussed above, the carriers feel they
are losing magnetic correlations with the localized moments,
consequently reinforcing the mobility of the hole carriers. The
spin-relaxation rate thus rapidly increases as increasing the
carrier density in the large temperature regime, as expected
in Korringa scaling [24,57]. The scenario completely differs
in the lower temperatures, e.g., T < 0.4, in which the spin-
relaxation rate is not in the order of T due to the strongly
magnetic correlations. Indeed, the spin-relaxation rate in the
regime increases as increasing carrier density and then de-
creases if the impurity band deviates from the half-filling
case. By lowering the temperature, the thermal fluctuations
more and more play a less important role and the magnetic
correlations become dominated. The mobility of the hole
carriers is now primarily mediated by the magnetic coupling
between the carriers and the localized moments. With large
magnetic coupling, the mobility is largest at the half-filling
impurity band that dominates the spin-relaxation rate. The
spin-relaxation rate then diminishes once the filling of the
impurity band deviates from the half-filling case.

To discuss the magnetic coupling influence in the spin-
relaxation process in the case of the half-filling impurity band,
we present in Fig. 4 the spin-relaxation rate versus tempera-
ture for different values of J at x = 0.1 and n = 0.05. For a
fixed value of the magnetic coupling, one always finds the
linear dependence of the spin-relaxation rate if the tempera-
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FIG. 4. Spin-lattice relaxation rate 1/T1 as a function of tem-
perature for some values of J at x = 0.1 and n = 0.05 in the unit
of A2. The black dashed line addresses 1/T1 versus T for a three-
dimensional free electron gas with hyperfine coupling. The inset
shows the PM-FM transition temperature TC versus magnetic cou-
pling J at x = 0.1 and n = 0.05. The red dashed line in the inset
is TC as a function of J found in the standard MFT. It expresses
the J2 rule.

ture is sufficiently large. Once the magnetic coupling is small,
the linear behavior indicating the metallic-like state emerges
even at low temperatures. Specifically, for J = 0, i.e., a non-
interacting fermion system, the spin-relaxation rate versus
temperature shows approximately the linear behavior in the
whole temperature range. That evidence typifies the Korringa
process in normal metals driven only by hyperfine interaction
[24,25]. The exponential dependence of the spin-relaxation
rate on low temperature appears only if the magnetic cou-
pling is strong enough, e.g., J > 2. In this case, the impurity
band due to the magnetic doping starts separating to the main
band of the semiconductor. The separation becomes stabilized
once J � 3 [8,21,41]. In the case of the half-filling impurity
band, the mobility of the carriers is mediated by the magnetic
correlation that favors the magnetic coherence bound state or
the spin cluster formation for temperature approaching the
FM critical transition point with respect to the sharp sup-
pression of the spin-relaxation rate at low temperature in the
large magnetic coupling cases. The sharp suppression of the
spin-relaxation rate or the speeding up of the spin-relaxation
time can be attributed to the appearance of the magnetic co-
herence bound state or the spin clusters while approaching
the FM order. The FM correlation length in the PM phase
is enlarged as increasing the magnetic coupling as observed
in similar materials of doped manganites even well above
the PM-FM transition temperature [58,59]. To verify our the-
oretical study in describing the DMS magnetic properties,
we show in the inset of Fig. 4 the critical temperature TC

versus magnetic coupling J . The critical PM-FM transition
temperature is addressed both in the standard mean-field ap-
proximation (MFA) applied for the general Zener model (red
dashed line) [2,6,60] and the DMFT applied for the simplified
Hamiltonian in Eq. (1) (black solid line) for the same set of
parameters. Apparently, at low temperatures and small mag-
netic coupling, the correlations become less important and the

result of MFA converges to that evaluated by DMFT. In the
case of large magnetic coupling, the critical temperature eval-
uated by MFA becomes overestimated. The spin-relaxation
rate evaluated in a three-dimensional noninteracting electron
gas also well agrees with our result for J = 0 at least in
the very low temperature range (see black dashed line in
the main panel). For larger temperatures, the two results do
not fit each other. The discrepancy comes from the rough
assumption, as in the literature, that the Korringa relation
1/T1 ∼ |Aχ |2T is specified with the uniform susceptibility
χ ∼ ρ(EF ), where ρ(EF ) is the density of states at the Fermi
level estimated at zero temperature [24,25,61]. However, in
general, χ or the density of states is temperature dependent.
In our DMFT calculation, the nuclear spin-lattice relaxation
rate 1/T1 is evaluated originally from Eq. (11) even for J = 0,
so all temperature dependence is taken into account resulting
in the deviation of the spin-relaxation rate from its Korringa
law.

V. CONCLUSION

To conclude, we have discussed the low-frequency spin
dynamic scenario in paramagnetic diluted magnetic semi-
conductors within the dynamical mean field theory. In the
infinite-dimensional limit, we derive a set of self-consistent
equations so the single-particle Green’s function and its
self-energy of the Kondo lattice model can be evaluated nu-
merically. These results permit us to inspect the spin dynamic
properties in the system by analyzing the local dynamical spin
susceptibility function and the spin-relaxation rate. It is found
that the spin fluctuations become dominated, indicated by the
sharp peak appearing at a low frequency of the spin dynamical
susceptibility function in the case of large magnetic coupling
and temperature close to the paramagnetic-ferromagnetic
transition point. The low-frequency spin dynamics in the sys-
tems is also addressed in the signatures of the spin-relaxation
process. In the case of large temperature and small magnetic
coupling, the spin-relaxation rate releases the scenario of the
Korringa process specifying the weak correlation systems
likely normal metals. Otherwise, i.e., at small temperature
and large magnetic coupling, we find exponential behavior
of the spin-relaxation rate versus temperature. Moreover, at
a temperature approaching the paramagnetic-ferromagnetic
transition point, one finds the sharp suppression of the spin-
relaxation rate or the speeding up of the spin-relaxation
time. These scenarios are attributed to the appearance of
the magnetic coherence bound state or the spin clusters
in DMSs due to the strongly magnetic correlations. The
random distribution of magnetic ions actually reduces the
ferromagnetic-paramagnetic transition temperature in a doped
magnetic system. Studying the influence of the magnetic ran-
dom distribution to the spin-relaxation signatures in DMSs
thus is essential and will be left for near future studies.
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MacDonald, Rev. Mod. Phys. 78, 809 (2006).

[7] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,
Science 287, 1019 (2000).

[8] A. Chattopadhyay, S. Das Sarma, and A. J. Millis, Phys. Rev.
Lett. 87, 227202 (2001).

[9] A. Kaminski and S. Das Sarma, Phys. Rev. B 68, 235210
(2003).

[10] S. Das Sarma, E. H. Hwang, and A. Kaminski, Phys. Rev. B 67,
155201 (2003).

[11] V. M. Galitski, A. Kaminski, and S. Das Sarma, Phys. Rev. Lett.
92, 177203 (2004).

[12] A. Kaminski, V. M. Galitski, and S. Das Sarma, Phys. Rev. B
70, 115216 (2004).

[13] T. Dietl, Nat. Mater. 9, 965 (2010).
[14] W. Nolting, Phys. Status Solidi B 96, 11 (1979).
[15] G. Tang and W. Nolting, Phys. Rev. B 75, 024426 (2007).
[16] G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).
[17] W. Nolting, T. Hickel, A. Ramakanth, G. G. Reddy, and M.

Lipowczan, Phys. Rev. B 70, 075207 (2004).
[18] V. Bryksa and W. Nolting, Phys. Rev. B 78, 064417 (2008).
[19] A. Schwabe and W. Nolting, Phys. Rev. B 80, 214408 (2009).
[20] V.-N. Phan and M.-T. Tran, Phys. Rev. B 92, 155201 (2015).
[21] D.-H. Bui, Q.-H. Ninh, H.-N. Nguyen, and V.-N. Phan, Phys.

Rev. B 99, 045123 (2019).
[22] V.-N. Phan and H.-N. Nguyen, Phys. Rev. B 102, 125202

(2020).
[23] P. Nyhus, S. Yoon, M. Kauffman, S. L. Cooper, Z. Fisk, and J.

Sarrao, Phys. Rev. B 56, 2717 (1997).
[24] J. Korringa, Physica 16, 601 (1950).
[25] C. P. Slichter, Principles of Magnetic Resonance (Springer,

Berlin, 1990).
[26] E. Souto, O. Nunes, and A. Fonseca, Solid State Commun. 129,

605 (2004).
[27] D. Scalbert, Phys. Status Solidi B 193, 189 (1996).
[28] D. Scalbert, J. Cernogora, and C. A La Guillaume, Solid State

Commun. 66, 571 (1988).
[29] I. V. Krainov, V. F. Sapega, N. S. Averkiev, G. S. Dimitriev,

K. H. Ploog, and E. Lähderanta, Phys. Rev. B 92, 245201
(2015).

[30] I. V. Krainov, V. F. Sapega, G. S. Dimitriev, and N. S. Averkiev,
J. Phys.: Condens. Matter 33, 445802 (2021).

[31] T. Pruschke, M. Jarrell, and J. Freericks, Adv. Phys. 44, 187
(1995).

[32] T. Story, C. H. W. Swüste, P. J. T. Eggenkamp, H. J. M.
Swagten, and W. J. M. de Jonge, Phys. Rev. Lett. 77, 2802
(1996).

[33] M. Jarrell and T. Pruschke, Phys. Rev. B 49, 1458 (1994).
[34] R. Žitko, Ž. Osolin, and P. Jeglič, Phys. Rev. B 91, 155111
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