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Half-metal and other fractional metal phases in doped AB bilayer graphene
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We argue theoretically that, in doped AB bilayer graphene, electron-electron coupling can give rise to the
spontaneous formation of fractional metal phases. These states, being generalizations of a more common half-
metal, have a Fermi surface that is perfectly polarized not only in terms of a spin-related quantum number, but
also in terms of the valley index. The proposed mechanism assumes that the ground state of undoped bilayer
graphene is a spin-density-wave insulator, with a finite gap in the single-electron spectrum. Upon doping, the
insulator is destroyed and replaced by a fractional metal phase. As doping increases, transitions between various
types of fractional metal (half-metal, quarter-metal, etc.) are triggered. Our findings are consistent with recent
experiments on doped AB bilayer graphene, in which a cascade of phase transitions between different isospin
states was observed.
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I. INTRODUCTION

A usual metal demonstrates perfect symmetry with re-
gard to the carriers’ spin projection. This symmetry manifests
itself in the vanishing total spin magnetization and the
Fermi-surface spin degeneracy. Yet the symmetry can be
spontaneously destroyed by sufficiently strong electron-
electron interaction, which may result, for example, in the
formation of two nonidentical Fermi surfaces for the two spin
projections. In the extreme case of the so-called half-metals
(HMs), one of these projections is completely absent from
the Fermi surface, while all states at the Fermi energy have
identical spin quantum number [1–3]. Various rather dissim-
ilar materials with transition-metal atoms are found to be
half-metals [4–7]. Several papers [8–12] predicted the half-
metallicity in carbon-based systems as well. The existence of
spin-polarized currents in such systems makes them promis-
ing materials for applications in spintronics [3,13].

Graphene-based bilayer and multilayer systems possess
an additional quantum number, the valley index. In these
materials, besides the spin-related polarization, a many-body
state may demonstrate a valley polarization. Therefore, for
graphene-based materials, the notion of a HM can be gen-
eralized to include the possibility of a Fermi surface with
perfect valley polarization as well. Such a proposal was put
forward in Ref. [14], where the concept of a quarter-metal
(QM) was formulated. A Fermi surface of a QM state is
perfectly polarized both in valley- and in spin-related indices.
Furthermore, the latter paper explained that both a HM and a
QM should be viewed as specific instances of a more general
notion, “a fractional metal” (FraM). This many-body phase
may be realized in materials with degenerate Fermi surface.
The higher the degeneracy, the stronger fractionalization of
the Fermi surface can be achieved.

Since our publication [14] the experimental observation
of a QM state in graphene trilayer has been claimed [15].

The experimental data of Ref. [16] suggest that a QM and
FraM states can be stabilized in a sample of AB bilayer
graphene (AB-BLG). Given these experimental successes it
appears important to develop a microscopic theoretical frame-
work that can explain the existence of the FraM in the
AB-BLG. In this paper, a suitable mechanism is proposed and
discussed.

II. MODEL

An elementary unit cell of the AB-BLG consists of four
atoms (sublattices A and B, and layers 1 and 2) with the
distance between neighboring carbon atoms a0 ≈ 0.142 nm
and interlayer distance c0 ≈ 0.335 nm. The hopping ampli-
tude t connecting the nearest A and B sites in the layer is
2.5 eV � t � 3 eV. The hopping between the nearest sites in
different layers can be estimated as 0.3 eV � t0 � 0.4 eV. It
is possible to introduce additional, longer-range, hopping am-
plitudes into the model. We assume, however, that the effect
of these amplitudes is weak, and they are neglected.

The AB-BLG Brillouin zone is a regular hexagon, with two
nonequivalent Dirac points at

K1 = 2π

3
√

3a0

(
√

3, 1) and K2 = 2π

3
√

3a0

(
√

3,−1). (1)

It is convenient to measure momentum relative to the Dirac
points. Thus, we introduce q = k − K1,2.

The energy spectrum of undoped AB-BLG consists of four
bands, two electron and two hole bands. Since we are inter-
ested in the low-energy spectrum of AB-BLG, q � 2t0/3ta0,
we restrict our consideration to the effective two-band model.
It has one electron and one hole band, and both bands have
quadratic dispersion. The bands touch at the Fermi energy.
When the (small) trigonal warping terms are ignored, the
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Hamiltonian for a single-electron wave function reads [17–19]

H0 = − h̄2v2
F

t0

(
0 (iqx + ξqy)2

(iqx − ξqy)2 0

)
, (2)

where the graphene Fermi velocity is vF = 3a0t/2h̄ and ξ is
the valley index. The value ξ = 1 corresponds to K1 and ξ =
−1 corresponds to K2. In the second-quantization formalism
we can write

H0 =
∑
qσξ l

εqlγ
†
qlσξ

γqlσξ
, (3)

where the spin projection is denoted by σ , the index l labels
the electron (l = 1) or hole (l = 2) band, and γqlσξ is the cor-
responding second quantization operator. The eigenenergies
εql of the Hamiltonian (2) are

εql = (−1)l+1 h̄2v2
F

t0
q2. (4)

Next we include the electron-electron repulsion into the
model. The latter is a highly nontrivial task. Clearly, the
low-energy two-band effective model (2) is incompatible with
the bare Coulomb repulsion. Instead, an effective interaction
Hamiltonian must be derived. Unfortunately, a compact de-
scription of such an effective interaction remains an elusive
theoretical goal. Indeed, due to multiple factors affecting the
many-body physics in graphene and graphene-based systems,
an effective interaction term is quite complex, with multi-
ple coupling constants, whose nonuniversal values are poorly
known [20–24]. In this situation we prefer to adopt a semiphe-
nomenological approach, keeping only the terms that directly
contribute to the spin-density wave (SDW) ordering. It is
possible to identify three types of such terms. The first term
arises due to the forward-scattering

H f
int = VC

Nc

∑
kk′ ,ll′
σσ ′,ξξ ′

γ
†
klσξ

γk′lσξ
γ

†
k′l ′σ ′ξ ′γkl ′σ ′ξ ′ , (5)

where Nc is the number of unit cells in the sample, and
VC is an effective interaction constant whose value can be
potentially extracted from the low-temperature data [25–34]
on spontaneous symmetry breaking in AB-BLG. The forward
scattering is characterized by a small momentum transfer
|k − k′| � |K1 − K2|, and preserves the band indices l and
l ′ of the two participating electrons. Next, one can define the
backscattering term

Hb
int = V b

C

Nc

∑
kk′ ,ll′
σσ ′,ξ

γ
†
klσξ

γ
k′lσ ξ̄

γ
†
k′l ′σ ′ ξ̄ γkl ′σ ′ξ , (6)

where a bar on top of a binary-valued index implies the in-
version of the index value (for example, if ξ = 1 then ξ̄ =
−1). For Hb

int the transferred momentum is large |k − k′| ∼
|K1 − K2|, thus we can assume that V b

C � VC . Finally, the
umklapp-type interaction

Hu
int = V u

C

Nc

∑
kk′,

σσ ′,ξξ ′

γ
†
k1σξ γk′2σξ

γ
†
k′1σ ′ξ ′γk2σ ′ξ ′ + H.c. (7)

represents scattering events in which both electrons change
their bands. It accounts for the coupling between interlayer

dipole moments, which is also weaker than the coupling be-
tween charge densities represented by H f

int. In principle, there
is backscattering umklapp, which we do not consider due to it
being even weaker than Hu

int.

III. MEAN-FIELD APPROXIMATION

We consider a zero-temperature SDW instability of the
AB-BLG. This is characterized by the spontaneous generation
of staggered spin magnetization violating the spin-rotation
symmetry. The direction of this magnetization is not fixed
and there are several equivalent choices for a SDW order
parameter that differ by the spin-magnetization direction. It
is convenient to assume that 〈γ †

k1σξ γk2σ̄ ξ
〉 	= 0. This choice

corresponds to the magnetization in the xy plane. Note also
that the introduced order parameter accounts for the coupling
of single-electron states in the same valley ξ .

Now, assuming that the backscattering (6) and the umklapp
(7) are weak, we apply the mean-field approximation to H f

int:

HMF
int = −

∑
kσξ

�σξγ
†
k2σξ γk1σ̄ ξ

+ H.c. + B, (8)

where the order parameter �σξ and c number B are

�σξ = VC

Nc

∑
q

〈γ †
q1σξ γq2σ̄ ξ 〉�(qC − q), (9)

B =
∑
qσξ

�σξ 〈γ †
q2σξ γq1σ̄ ξ 〉�(qC − q) = Nc

VC

∑
σξ

|�σξ |2.

(10)

In these expressions, the momentum cutoff for the interaction
qC satisfies qC � |K1 − K2|.

The mean-field Hamiltonian (8) does not conserve spin
(spin-rotation symmetry is spontaneously broken for nonzero
�σξ ). However, quasimomentum q is conserved. In addition
to q, one can introduce valley and spin-flavor operators

Sf
q =

∑
σξ l

(−1)l+1σγ
†
qlσξ

γqlσξ
, Sv

q =
∑
σξ l

ξγ
†
qlσξ

γqlσξ
,

(11)

which commute with the Hamiltonian H0 + HMF
int and are good

quantum numbers. Thus, in this approximation all fermionic
degrees of freedom can be grouped into four uncoupled sec-
tors, each sector having its own values of spin-flavor index
(−1)l+1σ and valley index ξ . A sector is characterized by its
own order parameter �σξ , and single-particle spectrum

E1,2
qσξ = ±

√√√√
�2

σξ +
(

h̄2v2
F

t0

)2

q4. (12)

The thermodynamic grand potential 	 can be expressed as a
sum,

	 =
∑
σξ

	σξ + B, (13)
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where 	σξ are four partial grand potentials corresponding to
specific sectors. At zero temperature, these are

	σξ =
∑

ql

(
El

qσξ − μ
)
�

(
μ − El

qσξ

)
, (14)

where μ is the chemical potential.
Minimization of 	 over the order parameters allows us

to derive the following independent self-consistency equa-
tions for the order parameters in the four sectors

1 = VC

Nc

∑
|q|<qC

�
(
μ + E1

qσξ

) − �
(
μ − E1

qσξ

)
E1

qσξ

. (15)

Since the model is electron-hole symmetric, we can limit
our discussion to the μ > 0 case only. For positive chemical
potential: �(μ + E1

qσ ) − �(μ − E1
qσ ) = �(E1

qσ − μ). Intro-
ducing dimensionless variables

g = VCt0√
3πt2

, m = 4t0μ

9t2
, δσξ = 4t0�σξ

9t2
, (16)

we obtain from Eq. (15)

1 = 2g
∫ QC

Qm
σξ

QdQ√
δ2
σξ + Q4

, (17)

where

QC = a0qC, Qm
σξ = (

m2 − δ2
σξ

)1/4
. (18)

It is evident that the gap in the spectrum of electrons in the
sector (σ, ξ ) arises only if QC > Qm

σξ , that is, if the number of
the doped charge carriers in this sector is not too large. One
can perform the integration in Eq. (17) and obtain

1 = g ln

⎛
⎜⎝Q2

C +
√

δ2
σξ + Q4

C

m +
√

m2 − δ2
σξ

⎞
⎟⎠. (19)

In the weak-coupling limit, g � 1, we have δσξ � Q2
C . Con-

sequently,

�σξ =
√

�0(2μ − �0), (20)

where

�0 = 9t2

4t0
q2

Ca2
0e−1/g (21)

is the mean-field gap of undoped AB-BLG. Further defining

δ0 = 4t0�0

9t2
, (22)

we can express Eq. (20) in dimensionless form:

δσξ =
√

δ0(2m − δ0). (23)

For finite doping, Eq. (20) implies that the chemical potential
must satisfy μ � �σξ . Such a relation is naturally expected:
to start doping, the chemical potential must exceed the gap.

Since experiments are performed at fixed doping, we need
to connect the values of �σξ with doping. It is convenient to
introduce partial doping; that is, the number of electrons with

specific values of (−1)l+1σ and ξ :

xσξ = −∂	σξ

∂μ
= 2π

VBZ

∑
σξ

∫
kdk�

(
μ − E1

kσξ

)
. (24)

The total doping x is equal to

x =
∑
σξ

xσξ . (25)

If μ > �σξ , we obtain the relation between the partial doping
and the chemical potential in the form

xσξ = 3
√

3

8π

√
m2 − δ2

σξ . (26)

Otherwise, xσξ = 0. As a result, we derive in the case of
nonzero xσξ

m = δ0 − 8π

3
√

3
xσξ = δ0

(
1 − 2xσξ

x0

)
, (27)

δσξ = δ0

√
1 − 4xσξ

x0
, (28)

where

x0 = t0�0√
3πt2

. (29)

Equation (28) indicates that, for xσξ = x0/4, the order param-
eter in the sector vanishes. That is, for xσξ > x0/4 one has

�σξ (xσξ ) ≡ 0, m = 8π

3
√

3
xσξ = 2δ0

x0
xσξ . (30)

Note that the chemical potential, as given by Eqs. (27) and
(30), demonstrates nonmonotonic behavior as a function of
xσξ . Of particular importance is the fact that, for low doping,
μ = μ(xσξ ) is a decreasing function. This means that the
compressibility of the homogeneous phase is negative and
points to a possibility of the phase separation of the electronic
liquid. We will assume below that the long-range Coulomb
interaction is sufficiently strong to arrest the phase separation,
restoring the stability of homogeneous states.

IV. QUARTER METAL STATE OF DOPED AB-BLG

Disregarding the possibility of the phase separation, we use
Eqs. (27) and (28) to characterize the thermodynamics of the
system. To describe the doped state of the electronic liquid
for a specific x, one must determine partial dopings in all four
sectors. To achieve this goal, we calculate the free energy,

F (x) = F (0) +
∑
σξ

δF (xσξ ). (31)

In this formula F (0) is the free energy of the undoped system,
and δF (xσξ ) shows how much the sector (σ, ξ ) contributes
for given partial doping xσξ to the total free energy F (x). The
contribution δF (xσξ ) can be found with the help of the relation

δF (xσξ ) =
∫ xσξ

0
μ(x′)dx′, (32)
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FIG. 1. Fermi-surface structure of different metallic states. Filled (blue) hexagon is the Brillouin zone of AB-BLG. Dirac points K1 and
K2 are marked. Solid and dashed (red) arks near the Dirac points are the Fermi-surface segments. The segments with double degeneracy over
the spin-flavor index are shown as solid curves. Nondegenerate Fermi-surface sheets are represented by dashed arcs. Diagrams inside callouts
depict schematically the quasiparticle dispersion near a specific Dirac point. Horizontal (red) dashed line represents the chemical potential
level. Degenerate bands are shown by solid (blue) double curves. When this degeneracy is lifted, as in panels (b)–(d), the bands touching
or moving closer to one another are plotted by dotted (green) curve. Vertical arrows represent the spin-flavor index (−1)l+1σ . The ordinary
metallic state in panel (a) has a Fermi-surface sheet in both valleys. However, within the framework of our model, its energy is higher than
the energy of FraM states (at fixed doping). Panel (b) depicts the quarter-metal phase, which is stable at not-too-large doping. For this state,
the available Fermi surface is located in one valley only and is nondegenerate. Note that QM is nematic (violates rotation symmetry). A
specific example of a half-metal state is shown in panel (c). Here the Fermi surface is present in both valleys, but it is nondegenerate. Panel
(d) corresponds to 3/4-metal. The Fermi surface is in both valleys, however, in one valley the Fermi-surface sheet is degenerate, in the other it
is not. Because of this, this phase is nematic.

and Eqs. (27) and (30) that connect the chemical potential and
partial doping. Thus we derive

δF (xσξ ) =
⎧⎨
⎩

�0

(
xσξ − x2

σξ

x0

)
, if 0 � xσξ � x0

4

�0

(
x0
8 + x2

σξ

x0

)
, if xσξ > x0

4 .
(33)

The free energy (31) must be minimized over xσξ under the
constraint (25).

For a generic value of x, the particulars of such a mini-
mization procedure might be somewhat cumbersome. Yet for
small doping x < x0/4, calculations simplify significantly due
to all partial dopings being limited by x0/4 from above. In
this regime one can demonstrate that F is smallest when all
charges are placed into a single sector

xσξ = x, xσ ′ξ ′ = 0 for σ ′ 	= σ or ξ ′ 	= ξ . (34)

For the distribution (34), the doping-dependent part of the free
energy equals to

FQM = �0

(
x − x2

x0

)
. (35)

It is smaller, for example, than the free energy

Feq = �0

(
x − x2

4x0

)
(36)

calculated for an equal distribution of doping between all four
sectors (xσξ = x/4 for all σ and ξ ).

The state described by Eq. (34) is metallic, with a (almost)
circular Fermi surface whose radius kF = kF(x) is set by the
equation

a2
0k2

F = 8πx

3
√

3
. (37)

This Fermi surface, however, is quite unique: all single-
electronic states reaching the Fermi energy are perfectly
polarized in terms of Sf and Sv. In other words, they have
an identical value of (−1)l+1σ , and the Fermi surface is lo-
cated within a single valley Kξ . Since among four possible
Fermi-surface sheets of the noninteracting theory, only one
sheet emerges in the system, it is natural to designate such
a conducting state as a QM. To appreciate the difference
between a metal with equal distribution of charges between
the sectors on one side and a QM on the other side, one can
compare Fig. 1(a) with Fig. 1(b).

V. CASCADE OF PHASE TRANSITION BETWEEN
DIFFERENT SYMMETRY-BROKEN PHASES

The QM state described above remains stable only for
sufficiently low x: one sector cannot accommodate too much
doping. Indeed, when x = x0/2, Eq. (30) implies that μ = �0.
Doping a single sector beyond this point is impossible: adding
more charge to this sector increases the chemical potential
beyond �0, unavoidably placing charges into the remaining
sectors as well. As a result, a cascade of doping-driven phase
transitions emerges. The transitions connect different metallic
states, each state being characterized by a number of doped
sectors: 1, 2, 3, or 4 [paramagnetic (PM) state] sectors.

Let us briefly describe this cascade of transitions (see
Figs. 1 and 2). At zero doping the system is gapped with the
gap equal to �0 in all sectors. For small x, the system ab-
sorbs all extra charge carriers into a single sector [say, sector
(σ =↑, ξ = +1)]. This is a QM state [Fig. 1(b)]. The order
parameter in this sector gradually decreases with doping. At
the same time, the chemical potential decreases with doping
indicating the possibility of the phase separation. However,
we assume that the long-range Coulomb repulsion totally
arrests the phase separation and the electronic state remains
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FIG. 2. Cascade of the doping-driven phase transitions be-
tween different FraM states with different valley and/or spin-flavor
(isospin) polarizations. Only the region of electron doping is shown.
For hole doping the picture is identical up to a replacement x →
−x. Vertical solid (dashed) lines represent first-order (second-order)
transitions.

homogeneous. At x = x0/4, the order parameter in the doped
sector vanishes, and a second-order phase transition inside
the QM state takes place. This transition is characterized by
the complex order parameter and a presence of the developed
Fermi surface.

Beyond x = x0/4, order parameter �↑+1 is zero. Yet,
the QM state remains stable for x < x0/2. At higher doping,
the extra charge comes to some other sector [for definiteness,
we assign this to be (σ =↑, ξ = −1); other configurations are
equiprobable]. However, one can show that the state when the
order parameter of this sector is greater than 0 but less than �0

is a metastable one. The stable state corresponds to �↑−1 = 0.
As a result, there appears a first-order phase transition be-
tween QM state with �↑+1 = 0 (other sectors are gapped) and
HM state with �↑+1 = �↑−1 = 0 (other sectors are gapped)
[Fig. 1(c)]. It happens at x = x0/2. This critical doping is
found by comparison of the free energies of corresponding
states.

As x increases further, one reaches the point where the
HM energy becomes equal to that of a 3/4 metal ( 3

4 M)
state [Fig. 1(d)]. In such a state, three sectors [say, (σ =↑,
ξ = +1), (σ =↑, ξ = −1), and (σ =↓, ξ = +1)] are doped,
and the fourth sector, (σ =↓, ξ = −1), is gapped, with the
extra charge carriers being equally distributed among the three
doped sectors. Again, one can show that the state correspond-
ing to 0 < �↓+1 < �0 is metastable one. In the stable 3

4 M
state the order parameters in all three doped sectors vanish. As
a result, there appears a first-order phase transition between
HM and 3

4 M states. Comparing the free energies of these
two states, one finds the point of the transition. It appears at
x = √

3/4x0.
If doping is continued even further, the 3

4 M state is replaced
by the PM state [Fig. 1(a)]. This is yet another first-order
transition, and the last one in the transition cascade. It occurs
at x = √

3/2x0. The value of this doping is found by com-
parison of the free energies of 3

4 M and PM states. The phase
diagram of the system is shown in Fig. 2. In this figure only
the electron doping is shown. Due to electron-hole symmetry
of our model, the phase diagram at hole doping is equivalent
to that shown in Fig. 2 up to the replacement x → −x.

VI. DISCUSSION

We would like to stress here several important points.
One must remember that the HM state realized in our model
upon sufficiently strong doping is not the conventional HM
[1,2] whose Fermi surface demonstrates perfect spin polariza-
tion. Instead, we now have a spin-flavor HM [35–38], with
perfect spin-flavor polarization of the Fermi surface. This
means that the electron (hole) single-particle states reaching
the Fermi energy have their spin projection being equal to
σ (σ̄ ). (The related feature of the QM state was already
mentioned above.) In a model with electron-hole symmetry
a spin-flavor-polarized FraM state does not accumulate net
spin polarization. However, a finite spin polarization may
accompany a finite spin-flavor polarization [35] when such
a symmetry is absent. The spin polarization was indeed ob-
served in Ref. [16].

We argued above that the relative stability of various metal-
lic states is affected by doping, triggering the transitions
between them. Doping is not, however, the only factor that
influence the competition between the FraM phases. Particular
model’s ingredients favoring HM states are the umklapp and
backscattering interaction terms. Specifically, the umklapp
couples two sectors with unequal (−1)lσ , the backscattering,
on the other hand, connect the sectors with nonidentical values
of the ξ index. Thus, in the presence of either strong Hu

int
or strong Hb

int only two (not four) decoupled sectors of the
mean-field Hamiltonian can be defined, promoting the HM
phase over other FraMs. Therefore, in more realistic models,
the critical doping values are no longer proportional to x0,
with universal proportionality coefficients. Instead, they be-
come functions of the backscattering and umklapp coupling
constants. Finally, one must remember that our single-electron
Hamiltonian is based on the simplest effective model of AB-
BLG. It unavoidably ignores some details of the AB-BLG
band structure, such as the trigonal warping caused by a
longer-range hopping terms [17,18]. Specifically, the trigo-
nal warping acts to replace the parabolic dispersion of the
Hamiltonian (2) with four Dirac cones, depleting the den-
sity of states at the Dirac points. The latter, in turn, reduces
the transition temperature, making the transition itself even
more dependent on the strength of the interaction. Fortunately,
there is ample experimental evidence suggesting that electron-
electron interaction in AB-BLG is sufficiently strong to cause
low-temperature ordering. Thus, as the simple approximation,
these band effects can be ignored, and Hamiltonian (2) can be
used. Yet, for more detailed modeling of the transition cascade
a more accurate band description is necessary.

The qualitative agreement between the remarkable re-
cent experiments reported in Ref. [16] and our formalism is
very encouraging. The proposed theory can account for such
experimentally observed features as the cascade of phase tran-
sitions, magnetization, and valley polarizations. Yet one must
keep in mind that the experiments were performed at finite
electric field applied transverse to a sample. In our formalism,
this field is assumed to be zero. Further research is needed to
understand the role of this field.

To conclude, we proposed a mechanism responsible for the
formation of the FraM states in doped AB-BLG. We argue
that, as doping increases, this system demonstrates a cascade
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of phase transitions between various metallic phases that dif-
fer in terms of spin-flavor and valley polarizations of their

Fermi surfaces. Our theoretical findings compare favorably to
very recent experiments [16] on AB-BLG.
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