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Effective low-energy models for superconducting impurity systems
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We present two complementary methods to calculate the Andreev bound state energies of a single-level quan-
tum dot connected to superconducting leads described by the superconducting impurity Anderson model. The
first method, which is based on a mapping to a low-energy model, can be utilized to extract the Andreev bound
state energies from finite-temperature, imaginary-time quantum Monte Carlo data without the necessity of any
analytic continuation technique. The second method maps the full model on an exactly solvable superconducting
atomic limit with renormalized parameters. As such, it represents a fast and reliable method for a quick scan
of the parameter space. We demonstrate that after adding a simple band correction this method can provide
predictions for measurable quantities, including the Josephson current, that are in a solid quantitative agreement
with precise results obtained by the numerical renormalization group and quantum Monte Carlo.
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I. INTRODUCTION

Nanoscopic systems consisting of quantum dots coupled
to superconducting leads have attracted a lot of attention
over the last few decades due to their possible applica-
tions in quantum computing and sensor technologies (for
reviews, see [1–4]). Several types of their experimental re-
alizations are available. One of them are single atoms or
molecules deposited on the surface of a superconductor and
probed by (metallic or superconducting) scanning tunneling
microscope tip [5–7]. Another typical realizations involve
short semiconducting nanowires, e.g., InAs or InSb, con-
nected to bulk superconducting leads [8–10]. As a result of
the recent advances in fabrication techniques, these devices
allow for large control over the system parameters, e.g., via
different geometries of additional gates or by tuning the volt-
age gate and the superconducting phase difference. As such,
they present a rich playground allowing us to investigate a
multitude of physical phenomena including the supercurrent-
carrying Andreev bound states (ABS), which appear inside the
superconducting gap induced on the quantum dot.

Understanding the behavior of these states is crucial for
the description of such hybrid systems as they govern much
of the transport properties. In addition, the crossings of ABS
at the Fermi energy mark quantum phase transitions (QPT),
e.g., the 0 − π (singlet-doublet) transition known from single
quantum dot systems [11]. Considering the proposed applica-
tions, and with respect to future engineering, it is, therefore,
also crucial to develop practical and reliable methods for a
correct quantitative prediction of ABS.

Such superconducting hybrid systems are often reli-
ably described by the superconducting impurity Anderson
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model (SCIAM) [12], which represents single or multiple
correlated quantum levels coupled to one or several super-
conducting baths. For this model, a large variety of solvers
emerged over the years. They spread from mappings to
exactly solvable effective models, like the superconducting
atomic limit [13] or the zero-bandwidth model [10], through
various diagrammatic perturbation techniques including the
Hartree-Fock approximation, second-order perturbation the-
ory [14–16], noncrossing approximation [17,18] and various
advanced diagram resummation techniques [19], to heavy
numerical methods, especially the numerical renormalization
group (NRG) method [20–24] and the quantum Monte Carlo
(QMC) in its various flavors including the Hirsch-Fye method
[25], and the continuous-time interaction-expansion (CT-INT)
[12,26,27] and hybridization-expansion (CT-HYB) [28,29]
techniques.

Each of these methods has its advantages but also lim-
itations that restrict their applicability to certain regimes.
For example, the diagrammatic expansion techniques in the
Coulomb interaction strength U are fast, simple, and provide
a reasonable solution in the weak and intermediate interaction
regime, but they are bound to situations where the ground
state is a singlet [15,16,30]. This is because the U = 0 limit
is always a singlet. Consequently, the doublet state can not be
reached by an adiabatic switch on of the interaction as these
two states are separated by a QPT.

A clear advantage of NRG, often the method of choice for
SCIAM, is that it can provide an unbiased solution at zero and
low temperatures. However, its numerical complexity grows
exponentially with the number of channels (i.e., terminals).
Despite the recent advances [31,32], this still limits its appli-
cability in case of complex setups.

On the other hand, the QMC methods are able to provide
numerically exact solution of SCIAM even for complicated
devices, but they are bound to finite temperatures as they are
often formulated in the imaginary-time domain. Therefore,
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obtaining the spectral function and the ABS energies requires
performing an analytic continuation of stochastic imaginary-
time data to the real frequency domain, which is an ill-defined
problem [33]. While real-time implementations of QMC al-
gorithms like the inchworm method [34,35] emerged recently,
they have not yet been utilized to solve superconducting
models.

In this paper we introduce a method that allows us to
extract the ABS energies directly from imaginary-time (or
imaginary-frequency) QMC data by mapping the SCIAM on a
low-energy model. That way the ill-defined analytic continu-
ation can be avoided. The method is built on an older idea,
which provides the microscopic basis for the Fermi liquid
theory [36]. In addition, we present a simple and reliable
method based on the superconducting atomic limit called the
generalized atomic limit (GAL). This method was originally
utilized just to obtain the phase boundary between the 0 and
π phases in a single quantum dot system. However, it is also
able to provide the ABS energies with reasonable accuracy in
a large part of the model parameter space, while being orders
of magnitude less computationally expensive than NRG or
QMC. Here we focus on the simple case of a single quantum
dot connected to two superconducting leads and show how
GAL can be improved even further by introducing a simple
band correction. GAL for more complicated setups is pre-
sented elsewhere [37].

The paper is organized as follows. In Sec. II we present
the SCIAM and the basic methods, which we later employ.
We summarize the most important features of the supercon-
ducting atomic limit as they will prove to be useful in the
next parts. Then we introduce the mapping on the low-energy
model, which allows us to extract the ABS energies from
imaginary-time QMC calculation without the need of analytic
continuation. We also present a recipe on how to obtain GAL
using a similar mapping. Although this recipe is far from
rigorous derivation and it is guided mostly by comparison
with numerically exact techniques, it provides a fast and
simple method to study the behavior of SCIAM. In Sec. III
we present results of the two methods compared to NRG
data for a simple case of a single quantum dot connected to
two superconducting leads. We study the reliability of these
methods by investigating the dependence of various proper-
ties on the interaction strength, temperature, phase difference,
and the local energy level. We also discuss the fate of the
second pair of ABS, which may be present in the π phase
of the model. Finally, in Sec. IV we summarize the results
and provide an outlook on the applicability for more complex
setups. Furthermore, we discuss in Appendices A and B some
technical details of the methods, which are omitted in the main
text for the sake of readability.

II. MODEL AND METHOD

The SCIAM Hamiltonian of a single quantum dot con-
nected to two superconducting BCS leads reads

H = Hd + HU +
∑

α

(
Hα

c + Hα
hyb

)
, α = L, R. (1)

The quantum dot is described as a single spinful atomic level,

Hd = ε
∑

σ

d†
σ dσ , (2)

with a local Coulomb interaction term that reads

HU = U

(
d†

↑d↑ − 1

2

)(
d†

↓d↓ − 1

2

)
. (3)

Here d†
σ creates an electron with spin σ and energy ε = εd +

U/2 on the quantum dot, εd is the local energy level, and U is
the repulsive on-site Coulomb interaction. Hamiltonian of the
superconducting lead α reads

Hα
c =

∑
kσ

εkc†
αkσ c

αkσ
− �

∑
k

(eiϕα c†
αk↑c†

α−k↓ + H.c.), (4)

where c†
αkσ creates an electron with spin σ and energy εk

in lead α, �eiϕα = g〈c
α−k↓c

αk↑〉 is the BCS superconducting
order parameter with amplitude � and phase ϕ and g is the
attractive interaction strength in the leads. We assume that the
dispersion relation εk and the amplitude � is the same for
both leads (i.e., they are made from the same material), but
the superconducting phases ϕα can differ. Finally, the coupling
between the dot and the lead α is described by

Hα
hyb = −

∑
kσ

(Vαkc†
αkσ dασ + H.c.), (5)

where Vαk is the tunneling matrix element.
We define Nambu spinors for impurity and lead electrons,

D† = (d†
↑, d↓), C†

αk = (c†
αk↑, c

α−k↓) and matrices

Eαk =
(

εk −�eiϕα

−�e−iϕα −ε−k

)
,

E =
(

ε 0
0 −ε

)
,

Vαk =
(

Vαk 0
0 −Vα−k

)
. (6)

The SCIAM Hamiltonian can be then rewritten, up to a con-
stant term, as

H = D†ED + HU +
∑
αk

C†
αkEαkCαk −

∑
αk

(C†
αkVαkD + H.c.).

(7)
Our main object of interest is the impurity Green function

G(τ ) = −〈Tτ [D(τ )D†(0)]〉, where Tτ is the imaginary-time
ordering operator. As the superconducting correlations are
already treated on the BCS level, the lead degrees of free-
dom can be integrated out. To avoid the complicated analytic
structure of the Green function for a gapped system, we resort
to Matsubara (imaginary) frequency formalism for now. We
denote the noninteracting (U = 0) Green function as G0. It
reads

G0(iωn) =
∫ β

0
dτeiωnτ G0(τ ) =

[
iωnI2 − E−

∑
α

�α (iωn)

]−1

,

(8)

where ωn = (2n + 1)πkBT is the nth fermionic Matsubara
frequency at temperature T , I2 is the 2 × 2 unit matrix and
�α (iωn) is the hybridization function between the lead α and
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the dot. It describes the hopping from the impurity to the lead,
the propagation through the lead, and the hopping back to the
impurity and can be written as

�α (iωn) =
∑

k

V ∗
αkGαk(iωn)Vαk, (9)

where Gαk(iωn) = [iωnI2 − Eαk]−1 is the Green function of
lead α. If we assume constant density of states in the band
of half-width W , ρ(ε) = 
(ε2 − W 2)/2W , we can transform
the momentum summation into an integral over energies. The
hybridization function reads

�α (iωn) = − �αw(iωn)√
ω2

n + �2

(
iωn �eiϕα

�e−iϕα iωn

)
, (10)

where we defined the tunneling rates �α = π |Vα|2/(2W ) and

w(iωn) = 2

π
arctan

(
W√

ω2
n + �2

)
(11)

is the correction to finite bandwidth that approaches unity for
W → ∞. The noninteracting impurity Green function then
reads

G−1
0 (iωn) =

(
iωn[1 + s(iωn)] − ε �ϕ (iωn)

�∗
ϕ (iωn) iωn[1 + s(iωn)] + ε

)
.

(12)

Here we denoted

s(iωn) = �w(iωn)√
�2 + ω2

n

, �ϕ (iωn) = ��ϕw(iωn)√
�2 + ω2

n

, (13)

� = �L + �R and �ϕ = �LeiϕL + �ReiϕR . We emphasize that,
due to the gauge invariance, all physical observables can de-
pend only on the phase difference ϕ = ϕL − ϕR and not on
the values of the individual phases [3]. This property can be
utilized to keep the off-diagonal term �ϕ real by a proper
shift of both superconducting phases, ϕα → ϕα + ϕs. We also
note that any setup with asymmetric coupling �L 	= �R can
be easily transformed to the symmetric case [38], for which
�ϕ = � cos(ϕ/2).

The noninteracting Green function can be straightfor-
wardly continued to real frequencies, iωn → ω ± i0. The
frequency-dependent factors in Eq. (13) then read [15]

s(ω ± i0) = �x(ω ± i0),

�ϕ (ω ± i0) = ��ϕx(ω ± i0),
(14)

where

x(ω ± i0) = ± i sgn ω√
ω2 − �2

, |ω| > �,

x(ω ± i0) = 1√
�2 − ω2

, |ω| < �. (15)

Finally, the correction to finite bandwidth reads

w(ω ± i0) = 2

π
arctan[W x(ω ± i0)]. (16)

For the sake of simplicity we drop this factor from the equa-
tions. It can be reintroduced later, if needed, by scaling � →
�w(ω) and �ϕ → �ϕw(ω) in the final expressions.

The symmetry relations for the diagonal (normal) and off-
diagonal (anomalous) elements of the Green function in the
real frequency domain read

G22(ω + i0) = −G11(−ω − i0) = −G∗
11(−ω + i0),

G21(ω + i0) = G12(−ω − i0) = G∗
12(−ω + i0). (17)

They reduce the number of independent elements to
two, which we mark Gn ≡ G11 and Ga ≡ G12. Moreover,
for real �ϕ the anomalous elements are even functions
of the frequency and therefore G12(ω + i0) = G21(ω + i0)
≡ Ga(ω + i0).

The knowledge of the anomalous part of the impurity
Green function also allows us to calculate the equilibrium,
dc Josephson current driven by the phase difference ϕ. It
can be derived from the Heisenberg equation of motion and
reads [3]

Jα = J0

β

∑
n

�α√
�2 + ω2

n

Im[Ga(iωn)e−iϕα ], (18)

where α = L, R marks the direction of the current and J0 =
e�/h̄. The analytic continuation of this formula to the real
frequency axis can be found, e.g., in Ref. [31].

A. Superconducting atomic limit

The basic properties of SCIAM can be illustrated on the
analytically solvable case of � → ∞. This regime is usually
called the superconducting atomic limit and in order to obtain
a nontrivial atomic model, the limit of W → ∞ must be
taken first otherwise the proximity effect would be lost. The
noninteracting Green function then reads

G−1
∞0(ω) =

(
ω − ε �ϕ

�ϕ ω + ε

)
(19)

and SCIAM reduces to a local atomic model with off-diagonal
on-site term [13]. The Hamiltonian in this case reads

H∞ = Hd + HU − (�ϕd†
↑d†

↓ + H.c.). (20)

This limit was already abundantly discussed in literature
[14,19,22,39,40] so we just briefly summarize the results im-
portant for this paper.

The behavior of ABS and the basic physics behind the
0 − π QPT can be demonstrated on the energy spectrum of
the atomic model. The eigenspectrum of this model consists
of a Kramers doublet with energy εd and a pair of singlets with

energies E± = ε ± R, where we introduced R =
√

�2
ϕ + ε2.

The number of states in the excitation spectrum then depends
on the parity of the ground state. For singlet ground state
the excitation spectrum consists of two ABS that correspond
to transitions between the lower singlet E− and the doublet
E0 = ±(−U/2 + R). The singlet-singlet transition violates
the �sz = ±1/2 selection rule and does not contribute to
the single-particle spectrum. For the doublet ground state we
obtain two pairs of energies E0+ = ±(U/2 + R) and E0− =
±(U/2 − R).
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The normal and anomalous elements of the atomic Green
function G∞(ω) in the singlet phase read

Gsn(ω) = 1

2R

(
R − ε

ω + E0
+ R + ε

ω − E0

)
,

Gsa(ω) = �ϕ

2R

(
1

ω + E0
− 1

ω − E0

)
. (21)

Note that at half filling (ε = 0), all weights of the ABS
equal 1/2. The electron density n = ∑

σ 〈d†
σ dσ 〉 and the in-

duced pairing ν = 〈d↓d↑〉 are at zero temperature given by the
weight of the state below the Fermi energy, n = 1 − ε/R and
ν = �ϕ/(2R).

In the doublet phase the elements of the Green function
read

Gdn(ω)

= 1

4R

(
R + ε

ω + E0−
+ R − ε

ω + E0+
+ R + ε

ω − E0+
+ R − ε

ω − E0−

)
,

Gda(ω)

= �ϕ

4R

(
1

ω + E0−
− 1

ω + E0+
+ 1

ω − E0+
− 1

ω − E0−

)
,

(22)

from which we obtain that n = 1 and ν = 0 at zero tempera-
ture for all parameters as the two contributions to the induced
pairing cancel each other out.

The formula for the zero-temperature Josephson current
(18) reduces in the atomic limit to J = (2e/h̄)∂Eg/∂ϕ, where
Eg is the energy of the ground state [3]. If we assume �L =
�R = �/2, it reads J = J0�

2 sin ϕ/(2R) in the 0 phase and
J = 0 in the π phase as its ground state energy Eg = εd is
independent of the phase difference.

The boundary between the 0 phase with singlet ground
state and the π phase with doublet ground state is marked by
the crossing of ABS at the Fermi energy and therefore it is
given by the condition E = 0, i.e., R = U/2. As for R > U/2

the system is in the 0 phase, the noninteracting case is always
a singlet (except for ε = 0 and ϕ = π , which is a transition
point).

We can also formally define the self-energy in the super-
conducting atomic limit, �∞(ω) = G−1

∞0(ω) − G−1
∞ (ω). In the

0 phase both the noninteracting and the interacting Green
function have two poles and the self-energy is a simple
real shift of the energies, which resembles the Hartree-Fock
solution,

�sn = Un

2
, �sa = Uν. (23)

For the π phase the situation is more complicated as the non-
interacting and the interacting Green functions have different
numbers of poles. The self-energy then also has two poles at
±R and reads

�dn(ω) = U

2
+ U 2

8R

[
R − ε

ω + R
+ R + ε

ω − R

]
= U

2
+ U 2

4
Gsn,0(ω),

�da(ω) = U 2�ϕ

8R

[
1

ω + R
− 1

ω − R

]
= U 2

4
Gsa,0(ω), (24)

where Gsn,0 and Gsa,0 are the normal and anomalous elements
of G∞0. Note that the term U/2 in the normal part just com-
pensates for the definition of the energy level ε = εd + U/2
in the noninteracting Green function and the nontrivial part of
the self-energy is of second order in the interaction strength.

B. Low-energy model

The superconducting atomic limit provides a qualitatively
correct solution, including the behavior around the 0 − π

QPT, but fails to provide quantitatively reasonable results due
to the missing band contributions. This hints that most of the
physical properties are governed by the behavior of the ABS
while the incoherent band states above � cause the renor-
malization of the energy. Therefore, we separate the Green
function into the low- and high-energy parts. We can write the
exact impurity Green function as

G−1(ω) = G−1
0 (ω) − �(ω) =

(
ω[1+s(ω)] − ε − �n(ω) �ϕ (ω) − �a(ω)

�ϕ (ω) − �a(ω) ω[1+s(ω)] + ε + �∗
n (−ω)

)
, (25)

where �(ω) is the exact self-energy in Nambu formalism,

�(ω) =
(

�n(ω) �a(ω)

�a(ω) −�∗
n (−ω)

)
. (26)

The expansion around ω = 0 of the frequency-dependent
terms reads

s(ω) = �

�
+ �

2�3
ω2 + O(ω4),

�ϕ (ω) = �ϕ + �ϕ

2�2
ω2 + O(ω4), (27)

� j (ω) = � j (0) + ω
∂� j

∂ω

∣∣∣
0
+ ω2 1

2

∂2� j

∂ω2

∣∣∣
0
+ O(ω3),

j = n, a. The first derivative of the anomalous part ∂�a/∂ω|0
is always zero due to symmetry reasons. The Green function

can be thus written in a form

G−1(ω) = Z−1

(
ω − ε̃ − �̃n(0) �̃ϕ − �̃a(0)

�̃ϕ − �̃a(0) ω + ε̃ + �̃∗
n (0)

)

+ C(ω) = Z−1[G̃−1(ω) + C̃(ω)], (28)

where

Z−1 = 1 + �

�
− ∂�n

∂ω

∣∣∣
0

(29)

is the renormalization factor, ε̃ = Zε, �̃ϕ = Z�ϕ , �̃ = Z�,
C̃ = ZC, and C is the correction, which contains all the
higher-order contributions to s(ω), �ϕ (ω), and �(ω), includ-
ing the incoherent band states.
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The low-energy part resembles the noninteracting Green
function in the atomic limit, Eq. (19), with renormalized pa-
rameters. As the ground state in the noninteracting case is
always a singlet, this model can describe only one pair of
ABS even in the π phase. If we neglect the correction C,
we get simple formulas for the ABS energies as zeros of the
determinant Det[G̃−1(ω)], which read

E0 = ±
√

[ε̃ + �̃n(0)]2 + [�̃ϕ − �̃a(0)]2

= ±Z
√

[ε + �n(0)]2 + [�ϕ − �a(0)]2.

(30)

Nevertheless, including the correction C leads to a better
approximation. In the exact limit it should contain all the
higher-order contributions to the self-energy �(ω), which are
generally not known. If we neglect these contributions, the
noninteracting part of the correction reads

C(ω) = p(ω)

(
�ω/� �ϕ

�ϕ �ω/�

)
, (31)

where p(ω) = �/x(ω) − 1 with x(ω) given by Eq. (15). This
correction is most important in the weakly interacting regime
U < �, where the behavior of the system is governed mostly
by the hybridization function and for large values of the ABS
energy approaching the gap edge � where the low-energy
model naturally fails.

As such correction vanishes at ω = 0, it has no effect on the
position of the QPT, which can be obtained from Eq. (30) as
the zero of the right-hand side. This means it depends solely
on the model parameters and the value of the self-energy at
zero frequency. The equation E0 = 0 has two solutions and
reads

�ϕ − �a(0) = ±[ε + �n(0)]. (32)

The existence of two solutions reflects the electron-hole sym-
metry, which implies that if there is a QPT at ε = εc there is
also a QPT at ε = −εc.

It is possible to further, systematically improve the result
of this method by considering more terms of the frequency
expansion (27), which is useful in the case of strong Coulomb
interaction. Including the second term in the expansion we
obtain

ZG−1
n = − �̃′′

n (0)

2
ω2 + ω − ε̃ − �̃n(0),

ZG−1
a = 1

2

(
�̃ϕ

�2
− �̃′′

a (0)

)
ω2 + �̃ϕ − �̃a(0),

(33)

where we marked the first and second frequency derivatives
of the self-energy at zero as �′

j (0) and �′′
j (0). There are

four zeros of the determinant in this case, which represent
four bound states. This approach, however, does not solve the
above-mentioned problem with the missing ABS in the π

phase as the two additional solutions lie always above the gap
edge � as we discuss later.

This low-energy model is useful to overcome the noto-
rious disadvantage of the imaginary-time QMC methods in
which the spectral function can be obtained only via analytic
continuation of the imaginary-time or imaginary-frequency
stochastic data, which is a known ill-defined problem due to

−0.6

−0.4

−0.2

0

0.2

0.4

−10 −5 0 5 10

(a)

−0.2

−0.1

0

0.1

0.2

−10 −5 0 5 10

(b)

ω/Δ

ReΣn

ReΣa

ImΣn

ImΣa

ωn/Δ

FIG. 1. Normal and anomalous components of the self-energy
calculated using the second-order perturbation theory for U = 4�,
� = 2�, ε = 2�, ϕ = 0, and T = 0 along the real (a) and imaginary
frequency axis (b).

the exponential nature of the transformation kernel [33]. On
the other hand, the values � j (0) and the first few derivatives
can be obtained from imaginary-frequency data using the
Cauchy-Riemann equations. For T → 0 and z = ω + iωn we
obtain

∂ Re � j (z)

∂ω
= ∂ Im � j (z)

∂ωn
,

∂ Re � j (z)

∂ωn
= −∂ Im � j (z)

∂ω
.

(34)
A similar approach was already utilized to obtain the Fermi

liquid parameters from QMC simulations of metallic systems
[41]. The formula for the second derivative of the real part
reads

∂2 Re � j (z)

∂ω2
= −∂2 Re � j (z)

∂ω2
n

. (35)

At finite temperatures the derivatives can be approximated by
finite differences, �′(0) ≈ �(iω0)/ω0 where ω0 = πkBT is
the first positive Matsubara frequency. Similarly, the second
derivative can be calculated from the first two positive fre-
quencies.

To better illustrate relations (34) and (35), we plotted in
Fig. 1 the self-energy in both real and Matsubara frequency
domain calculated at zero-temperature using the second-order
perturbation theory [15] for U = 4�, � = 2�, ε = 2� and
ϕ = 0. Panel (a) shows the normal and the anomalous self-
energy along the real frequency axis. Both imaginary parts
contain a gap around the Fermi energy. As a result, the values
and all derivatives at ω = 0 are real. The first derivative �′

n(0)
is always nonpositive (zero only for U = 0) while �′

a(0) = 0
for symmetry reasons. The second derivative �′′

n (0) is nega-
tive (positive) for ε > 0 (ε < 0) and zero at half-filling, while
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�′′
a (0) � 0 for all parameters (zero only for � = 0). Panel

(b) shows the same functions along the imaginary frequency
axis. Here the derivative �′

n(0) is pure imaginary and matches
the value of the derivative of the real part along the real
axis according to Eq. (34), while both values of the second
derivatives along the imaginary axis are real and match the
second derivatives along real axis but with opposite signs as
given by (35).

C. GAL

The GAL was introduced in Ref. [15] as a simple for-
mula for the position of the 0 − π transition, which gives a
remarkably good agreement with the NRG in the vicinity of
half-filling. It was derived from the Hartree-Fock result for
the 0 phase by neglecting the continuous band contribution
to the Green function, which is largely overestimated in the
Hartree-Fock treatment. This method was later modified for
situations away from half filling by fitting the NRG data [42].

Here we present an approach motivated by the above-
mentioned low-energy construction, which results in the same
formula for the 0 − π transition as GAL and also provides
ABS energies as well as other model parameters. The re-
sulting formulas then represent a fast and reliable solver for
SCIAM, which can be used to scan the parameter space of the
model before the computationally more expensive methods
like QMC or NRG are employed.

As the starting point we calculate the low-energy limit of
the noninteracting Green function (12) to obtain the appropri-
ate scaling of the model parameters,

G−1
0 (ω) ≈ q−1

(
ω − ε̃μ �̃ϕ

�̃ϕ ω + ε̃μ

)
+ C(ω)

= q−1G̃−1
0 (ω) + C(ω), (36)

where q = (1 + �/�)−1 � 1 is a renormalization factor to
the finite gap � [43], C is the band correction given by
Eq. (31), ε̃μ = qεμ, �̃ϕ = q�ϕ , εμ = εd−µs, and µs is a a
yet arbitrary shift of the chemical potential, which guarantees
that ε̃μ = 0 corresponds to the electron-hole symmetric case
as we discuss later. The Green function G̃0 has the same
structure as in the superconducting atomic limit and hence it
corresponds to an auxiliary noninteracting problem described
by a Hamiltonian, which reads

H̃∞0 =
∑

σ

ε̃μd̃†
σ d̃σ − (�̃ϕ d̃†

↑d̃†
↓ + H.c.). (37)

Now we utilize our knowledge of the solution of the inter-
acting problem in the superconducting atomic limit, which is
described by Hamiltonian

H̃∞ = H̃∞0 + Ũ

(
d̃†

↑d̃↑ − 1

2

)(
d̃†

↓d̃↓ − 1

2

)
(38)

and we replace the exact impurity Green function with the
Green function in the atomic limit with scaled parameters.
The approximation we made here is that we replaced the exact
self-energy �(ω) in the full impurity Green function (25) by
the scaled self-energy in the atomic limit �∞(ω) given by
Eqs. (23) and (24),

�(ω; �,ϕ, ε, �,U ) ≈ q−1�∞(ω; �,ϕ, ε̃, �̃, Ũ ). (39)

Note that we did not yet specify the relation between Ũ and
U . The impurity Green function now reads

G−1(ω) = G−1
0 (ω) − �(ω)

≈ q−1[G̃−1
0 (ω) − �̃∞(ω) + C̃(ω)]

= q−1[G̃−1(ω) + C̃(ω)],

(40)

where �̃∞ = q�∞, C̃ = qC and G0 is the noninteracting
Green function given by Eq. (12). Note that we ignored the
frequency dependence of the self-energy while defining q.
This approach is therefore well justified only in the 0 phase
where the self-energy is static.

Let us note that, similarly to the case of the Landau
Fermi liquid, the Green function (40) without the correction
C does not describe a whole particle. The leading order in
asymptotic expansion of the diagonal element reads Gn(ω) ∼
q/ω and hence it describes a quasiparticle with noncanonical
anticommutation relation [dσ , d†

σ ′ ]+ = qδσσ ′ . Therefore, the
concept of a half-filled band is misleading and µs 	= −U/2
in the electron-hole symmetric case. On the other hand, the
Green function G̃(ω) = [G̃−1

0 (ω) − �̃∞(ω)]−1 has the correct
asymptotics as it corresponds to the atomic model (38).

We still need to specify the values of Ũ and µs. They can
be both obtained from the exact form of self-energy in the
atomic limit in the 0 phase, Eq. (23), as discussed in detail in
Appendix A. We obtain

Ũ = q2U, μs = −qU/2. (41)

The scaling of the energy levels follows

ε̃μ = qεμ = q

(
εd + qU

2

)
= ε̃d + Ũ

2
(42)

and we drop the subscript µ from now on.
An alternative way to obtain the scaling of the interaction

strength is to formally redefine the creation and annihila-
tion operators, d̃α = √

qdα and d̃†
α = √

qd†
α so they obey

standard anticommutation relations. Inserting them into the
Hamiltonian in the superconducting atomic limit, Eq. (20), we
obtain the Hamiltonian of the auxiliary problem (38), with the
same scaling of the parameters as before, ε̃ = qε, �̃ϕ = q�ϕ ,
and Ũ = q2U .

Nevertheless, comparison of GAL results with NRG show
good agreement only in the vicinity of half filling. Detailed
analysis of the data show that a much better agreement can
be obtained by introducing an additional scaling of the local
energy level, which follows [42]

ε̃ → q

√
1 + 2�̃

Ũ
ε̃. (43)

This scaling was obtained by fitting the NRG data for ϕ = 0
and later proven to work for arbitrary value of the phase
difference. We denote this modified method as modified GAL
(MGAL). Unfortunately, the microscopic origin of this mod-
ification is still unknown and its derivation would require
a more rigorous treatment of the interaction part of the
Hamiltonian than the one we present in this paper.
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FIG. 2. The ABS energy E0/� (top) and the induced pairing ν (bottom) as functions of the interaction strength U calculated for ε = 0
(half-filling), ϕ = 0 and two values of the coupling strength � = � [panels (a) and (b)] and � = 2� [panels (c) and (d)]. Black bullets represent
the NRG solution at T = 0, orange dashed line is the GAL + C result. Blue and red bullets in panels (a) and (c) represent CT-HYB solution
calculated at kBT = 0.05� using just the first derivative (blue) and first two derivatives (red) of the self-energy. Green and red bullets in panels
(b) and (d) are the CT-HYB solution calculated at kBT = 0.1� (green) and 0.05� (red). Lines are splines of CT-HYB data and serve only as
guides for the eye. QMC error bars are smaller than the symbol size.

III. RESULTS

All CT-HYB calculations were performed using the
TRIQS/CTHYB 3.0.1 solver [44]. We set W = 100� and
the cutoff in Matsubara frequencies ωmax = 200�. As the
SCIAM Hamiltonian, Eq. (1), is nonconserving, we perform
a canonical electron-hole transformation in the spin-down
segment of the Hilbert space to transform SCIAM into the
standard impurity Anderson model with negative interaction
strength U , as explained in detail in, e.g., Ref. [28]. Calcu-
lations were performed using 288 CPU cores, 2 × 106 − 107

QMC measurements per core. We encountered no fermionic
sign problem during the calculations. The total charge n and
the induced pairing ν were evaluated by measuring the im-
purity density matrix. The self-energy �(iωn) was obtained
from the measured impurity Green function via the Dyson
equation. Most of the data were calculated at temperature
kBT = 0.05�, which, e.g., for an aluminum electrode with
� ≈ 150µeV corresponds to T ≈ 77 mK. All calculations in-
cluded the band correction C.

GAL calculations were performed using a Python code
based on the exact diagonalization solver for the atomic
problem as implemented in the TRIQS libraries [45]. The
calculations were performed on a standard PC as a single data
point can be calculated within a few seconds. Two versions
of this method were employed, one that ignores the effects
of the band correction C (GAL) and one that includes the
correction (GAL + C). The effects of C are discussed in detail
in Appendix B.

Both zero-temperature and finite-temperature NRG data
were used as a benchmark for our results. All NRG results

were calculated via the NRG Ljubljana package [46] for W =
100�. In the case of single channel calculations (ϕ = 0) a
logarithmic discretization parameter λ = 2 or lower was used,
the SPSU2 symmetry was utilized with minimal number of
kept states set to 2000. In the case of two channel calculations
(ϕ 	= 0) we used λ = 4.

A. Effect of interaction strength

The Coulomb interaction strength U is usually the domi-
nant energy scale in realistic superconducting quantum dots
and its value dictates much of their behavior. In particular,
large values of U prohibit the double occupancy of the impu-
rity level and can drive the system into the π phase with the
doublet ground state.

In Fig. 2(a) we plotted the positive ABS energy E0/�

together with the induced pairing ν as functions of the inter-
action strength U at half-filling and ϕ = 0 for two values of
the tunneling rate � = � and � = 2�. Panels (a) and (c) show
the comparison of the ABS energy calculated using NRG,
CT-HYB and GAL + C. Blue and red bullets represent CT-
HYB solution at finite temperature kBT = 0.05� calculated
using only the first derivative of the self-energy (blue) and the
first two derivatives (red), respectively. The agreement with
the NRG result calculated at T = 0 is almost perfect in the
0 phase and in the vicinity of the QPT. The effect of the
second derivative of � is visible only in the π phase at higher
values of U where the system becomes more correlated. Even
there the low-energy model provides us with a very good
result already at finite temperature and by using only the first
two terms in the expansion series (27), for which we need to
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know the self-energy only at the first two positive Matsubara
frequencies ω0 = πkBT and ω1 = 3πkBT .

Panels (b) and (d) show the behavior of the induced pairing
ν. The green and red bullets represent the CT-HYB result cal-
culated from the impurity density matrix at two temperatures
kBT = 0.1� and 0.05�. These values converge to the NRG
result with decreasing temperature, but more slowly than the
ABS energy, still showing sizable differences at kBT = 0.05�

in the vicinity of the transition point, while the ABS energy is
already in good agreement.

In all panels of Fig. 2 the GAL + C result at T = 0 (orange
dashed lines) are shown as well. Its agreement with the NRG
ABS energies is, considering the simplicity of the GAL ef-
fective model, reasonable. In general the GAL + C provides
better predictions for lower values of the tunneling rate �.
This is understandable taking into account the atomic nature
of GAL, which becomes exact in the limit � → 0. On the
other hand, panels (b) and (d) show that the GAL + C value
of the induced gap ν is not reliable at larger values of U and
�. The reason behind this is that the atomic limit gives only
a trivial result on the induced pairing, which is at half filling
either 1/2 in the 0 phase or zero in the π phase, independent
of the model parameters. Therefore, its dependence on U
is given only indirectly by the effect of the band correction
C on the total Green function. Nonetheless, the induced gap
cannot be measured directly in experiments and, as we discuss
in the next subsection, the experimentally relevant Josephson
current is captured correctly. Therefore, the incorrect predic-
tions of the induced gap do not diminish the usefulness of the
GAL + C approximation.

B. Effect of temperature

The CT-HYB is an inherently finite-temperature method
with rather unfavorable scaling of the computational time
with decreasing temperature as tc ∼ T −2, which prohibits us
from accessing the low-temperatures regime. Therefore, it is
viable to assess how strong is the effect of the temperature
on the ABS energy extracted using the presented low-energy
model, i.e., how low temperatures are needed for a sufficiently
precise extraction of ABS. To illustrate this, we plotted in
Fig. 3 the temperature dependence of the ABS energy to-
gether with the induced pairing calculated using CT-HYB and
finite-temperature NRG for � = 2�, ε = 0, ϕ = 0 [same as in
Fig. 2(c)] and two values of the interaction strength U = 6�

(0 phase) and U = 14� (π phase).
The ABS energy extracted from the CT-HYB in the 0 phase

is practically stable below kBT ≈ 0.1� showing only a slight
increase with increasing temperature. Above this temperature
the value starts to change more rapidly. We observe an oppo-
site trend in the π phase. There is a slight decrease of the ABS
energy below kBT ≈ 0.1� followed by a more significant
drop for larger temperatures. The observed increase in the
0 phase and decrease in the π phase is qualitatively consistent
with previous studies of the evolution of the subgap states,
e.g., the NRG results for a Kondo impurity in superconducting
medium [47] or the perturbation theory results for SCIAM
[48]. However, as already discussed, the low temperature
(kBT � 0.1�) CT-HYB results show only a very weak tem-
perature dependence. In this respect the low-energy model

FIG. 3. The ABS energy E0/� and the induced pairing ν as func-
tions of the temperature calculated for � = 2�, ε = 0 (half-filling),
ϕ = 0 and two values of the interaction strength U = 6� (0 phase)
and U = 14� (π phase) using CT-HYB and NRG. Blue (red) bullets
in panels (a) and (c) represent the CT-HYB solution, which utilizes
the first (first two) derivatives of the self-energy, black dashed line
is the finite-temperature NRG solution. QMC error bars are smaller
than the symbol size. The CT-HYB values of E0 are not plotted for
the lowest temperatures as the accuracy of the calculated derivatives
of the self-energy is too low.

is in agreement with finite-temperature NRG calculations.
These predict an ABS energy practically independent of the
temperature in the whole investigated range in agreement with
previous NRG results of Žitko in Ref. [24]. As a result, the
ABS energies extracted from CT-HYB data for kBT = 0.05�

plotted in Fig. 2 are already in a very good agreement with
the zero-temperature NRG results. Consequently, for practical
purposes there is no need to perform a computationally much
expensive calculation at lower temperatures.

Still, the ABS energy from CT-HYB shows at low temper-
atures a small offset (less than 2%) compared to the NRG.
This is partially due to the missing contributions from higher-
order derivatives of the self-energy, but we cannot rule out
a small systematic discrepancy between the methods. This is
surprising as the induced gap, plotted in panels (b) and (d),
matches the NRG value up to four decimal places, showing
a remarkable agreement between the two methods over the
whole temperature range.
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FIG. 4. ABS energy E0/� (a) and normalized Josephson current
J/J0 (J0 = e�/h̄) (b) as functions of phase difference ϕ for � = 2�

at half filling and two values of the interaction strength U = 4�

and U = 9� calculated using NRG (black bullets), GAL without the
band correction C (dashed lines) and GAL with the correction (solid
lines). The current calculated without the correction is independent
of the interaction strength in the 0 phase and is zero in the π phase.
Both these drawbacks are cured by the band correction.

We also note that while our low-energy model always gives
sharp ABS, in reality the subgap peaks in the spectral function
have nonzero width and also asymmetric shape at finite tem-
peratures. This is due to intraband transitions above the gap
edge �, which form a broader peak around the ABS energy
as discussed in detail in Ref. [24]. Such intraband transitions
are beyond the realm of our atomic-like low-energy model,
which always predicts sharp ABS. However, they might con-
tribute to the observed shift of the ABS energy with increasing
temperature as they have an effect on the CT-HYB self-energy.
This skews the results of the low-energy model and limits its
usability to lower temperatures kBT � 0.1�.

C. Current-phase relation

In contrast to the interaction strength, which is a mate-
rial property, phase difference can be tuned in generalized
SQUID setups by applied magnetic field [27,49]. The nonzero
phase difference is then the source of the equilibrium, dc
Josephson current J flowing between the two superconducting
leads. The current-phase relation J (ϕ) is an important and ex-
perimentally accessible characteristic of any superconducting
junction [50].

In Fig. 4 we plotted the positive ABS energy E0/� and
the dc Josephson current J/J0 as functions of the phase

difference ϕ for ε = 0, � = 2�, and two values of the interac-
tion strength, U = 4� and U = 9�. As the CT-HYB results
on the Josephson current were already discussed elsewhere
[42,51], we plot only the result of the GAL, calculated both
with and without the band correction C, compared to the NRG
result. Panel (a) shows that the band correction causes only
a slight shift of the ABS energies as discussed in detail in
Appendix B, which are in both cases in a rather good agree-
ment with the NRG.

The effect of the band correction is much more pronounced
in panel (b), which shows the current-phase relation J (ϕ).
The dashed lines represent the bare GAL solution without
band correction C. Because the bare GAL is basically just
the atomic limit with scaled parameters, we can illustrate on
these results some of the more serious qualitative problems
of the superconducting atomic limit when compared to the
precise NRG solution. As already mentioned in Sec. II, the
Josephson current in this limit can be calculated as a derivative
of the ground state energy with respect to the phase differ-

ence. In 0 phase it reads J = J0�̃
2 sin(ϕ)/(2

√
�̃2

ϕ + ε̃2) and is

independent of the interaction strength U . Furthermore, as the
ground state energy in the π phase is independent of the phase
difference, the current there is trivially zero.

The GAL + C results (solid lines) were calculated using
formula (18), which correctly incorporates the effects of the
bands. They show that the band correction C is a sufficient
remedy for both qualitative problems. It reintroduces the U
dependence of the current in the 0 phase and is also the source
of the negative current in the π phase. Moreover, the current is
also in quantitative agreement with the NRG results, the only
clear distinctions being the shift of the position of the QPT
for larger U as already seen in the ABS profile. The im-
portance of such band corrections to the supercurrent were
already discussed in literature for Josephson junctions with
metallic (SNS) and insulating (SIS) barriers [52,53]. Our anal-
ysis proves their importance also for functionalized, S-QD-S
junctions, i.e., calculating the current only from the behavior
of the ABS energies can lead to incorrect results.

Moreover, besides being a fast and reliable approximation,
the GAL + C also provides important insight into the proper-
ties of the SCIAM. Clearly, the negative current in the π phase
is solely a result of the band correction C as GAL without this
correction gives zero current. Considering the almost perfect
agreement of GAL + C with the NRG in this phase, we can
assume that this scenario is not different in the full numerical
solution. In other words, the total contribution of the ABS to
the current in the π -phase is negligible as for nonzero phase
difference there are always two ABS states in this regime and
their contributions cancel each other out.

D. Effect of local energy level

So far we have discussed only the half-filled case. Now
we turn our attention to the effect of the local energy level.
To address its influence is important because this parameter
can be easily tuned in experimental setups by gate voltage.
In Fig. 5(a) we show the dependence of the positive ABS
energy E0 on the local energy level ε for U = 6�, � = �,
and ϕ = 0. Here we compare the NRG results at T = 0 (solid
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FIG. 5. The ABS energy E0/� (a), renormalization factor Z (b), total charge n (c), and the induced pairing ν (d) as functions of the local
energy level ε = εd + U/2 calculated using NRG at T = 0 (solid black lines), CT-HYB at kBT = 0.1� (blue bullets), 0.05� (green bullets),
and 0.033� (red bullets) and MGAL + C at T = 0 (orange dashed lines). The inset shows the difference between the ABS energy calculated
by CT-HYB at kBT = 0.05� using only the first derivative (blue) and using two derivatives (red) of the self-energy compared to NRG (black).
The parameters are U = 6�, � = �, and ϕ = 0. Lines are splines of CT-HYB data and serve only as guides for the eye. QMC error bars are
smaller than the symbol size.

black line) with the CT-HYB results at three different temper-
atures kBT = 0.1� (blue), 0.05� (green), and 0.033� (red)
to further assess the convergence with the decreasing tempera-
ture. The CT-HYB calculations utilize the first two derivatives
of the self-energy. The inset shows for kBT = 0.033� the
comparison with the simplified method (blue circles), which
takes into account only the first derivative. The system is
in π phase at half filling, with increasing ε both NRG and
CT-HYB predict the QPT at ε ≈ 1.60�. Above this value,
i.e., in the 0 phase, the agreement between CT-HYB and NRG
is almost perfect no matter the temperature. In the π phase
there are obvious difference; however, the CT-HYB results
clearly converge to the NRG with the decreasing tempera-
ture. The relative difference between these two methods is
for kBT = 0.05� within 5% and for kBT = 0.033� it drops
below 0.5%. For completeness, we also provide the result of
the MGAL + C method result at T = 0 (dashed orange line).
It provides a reasonable quantitative estimate of the ABS with
critical point located at ε ≈ 1.75�.

In panel (b) we show the value of the renormalization factor
Z = [1 + �/� − �′(0)]−1 from CT-HYB together with the
value of q from MGAL to illustrate the effect of the first
derivative of the self-energy. The renormalization is strongest
at half-filling and decreases rapidly in the vicinity of the tran-
sition point. The derivative �′

n(0) is very small in the 0 phase,
similarly to the solution in the atomic limit. For ε → ∞ then
Z approaches the MGAL value q = (1 + �/�)−1 = 1/2.

Panels (c) and (d) illustrate the effect of the position of the
energy level on the total charge n and the induced pairing ν.
The CT-HYB results approach the NRG result with decreasing

temperature as expected. The MGAL also provides a reason-
able estimate of the total charge n. On the other hand, the value
of the induced pairing is again off as it is much lower than
the exact result, for reasons already explained in the previous
section.

We note that the lines calculated using CT-HYB at different
temperatures cross at the same point, which coincides with the
position of the T = 0 QPT. This behavior can be understood
by a mapping of SCIAM to a two-level model, which proves
that at low enough temperatures (ca. kBT < 0.1�) all physi-
cal observables become temperature-independent at the QPT,
as explained in detail in Refs. [29,42]. This feature can be
utilized to locate the transition point from finite-temperature
QMC or experimental data.

E. The fate of the second pair of ABS

The main disadvantage of the low-energy model (28) is its
inability to provide results on the second pair of ABS, which
may be present in the π phase. Even the extended model (33),
which takes two energy derivatives into consideration, always
predicts a second state well above the gap edge �. Here we
show that this limitation is not severe as the region of the pa-
rameter space where the spectral function contains two pairs
of ABS and simultaneously the second ABS is recognizable
in practical realizations is small.

In Figs. 6(a) and 6(b) we show the positive ABS energy
E0 as function of the interaction strength U calculated using
NRG and GAL + C at T = 0 and CT-HYB at kBT = 0.05�

at half-filling, � = 0.6� and two values of phase difference
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FIG. 6. (a) ABS energies as functions of the interaction strength
for � = 0.6� at half-filling and ϕ = 0 calculated using NRG at T =
0 (black bullets), CT-HYB at kBT = 0.05� (red bullets) and GAL at
T = 0 (dashed lines). (b) Same plot for ϕ = π/2. (c) Phase diagram
of SCIAM at zero temperature and half-filling in the � − U plane for
ϕ = 0 and ϕ = π/2. Black solid lines represent the phase boundary
calculated using NRG, black dashed line is the interaction strength
U2 at which the second ABS vanishes from the spectral function for
ϕ = 0. Orange lines represent the GAL result.

ϕ = 0 and ϕ = π/2. The main difference between the case of
zero and nonzero phase difference is the fate of the outer ABS
with increasing interaction strength. For zero phase differ-
ence, both NRG and GAL + C results project that the second
ABS will vanish into the continuum above some interaction
strength. In particular, for ϕ = 0 the NRG predicts the sec-
ond ABS to emerge at the phase transition point (Uc ≈ 2.05)
and to enter the continuum at U2 ≈ 2.85. The nonzero phase
difference promotes the π phase and the phase boundary is
shifted to lower values, for ϕ = π/2 we get Uc ≈ 1.40. More

importantly, the second ABS does not vanish from the gap
but continuously approaches the gap edge, until it becomes
indistinguishable from the continuum [54].

GAL + C provides a good quantitative estimate of the de-
velopment of both states as the chosen value of the tunneling
rate is rather small. CT-HYB, on the other hand, fails to rec-
ognize the second ABS. The agreement between CT-HYB and
NRG also worsens as we enter deeper into the π phase where
the effects of the higher order derivatives of the self-energy
become significant.

Figure 6(c) shows the phase diagram of SCIAM at zero
temperature and half-filling in the � − U plane for ϕ = 0 and
ϕ = π/2. Solid lines represent the phase boundary Uc at ϕ =
0 and the dashed lines mark the value U2 where the second
ABS vanishes for ϕ = 0. We see that for ϕ = 0 the existence
of the second ABS is bound to low values of the interac-
tion strength, far below the experimental range of U/� ∼ 10.
Therefore, the inability of the low-energy model to recognize
its presence is not relevant for real-world systems. In case of
nonzero phase difference the second ABS does not vanish but
quickly becomes indistinguishable from the band.

IV. CONCLUSIONS

Understanding the behavior of ABS in complex nanos-
tructures involving correlated quantum dots connected to
superconducting electrodes is a crucial step towards their
future applications. Here we presented two methods, which
can be used for this purpose. While we tested them on the
simplest setup of a single quantum dot with two superconduct-
ing leads, both methods can be straightforwardly generalized
to multilevel systems. The CT-HYB calculation is computa-
tionally demanding, however it can provide unbiased results
on the occupation numbers and the Josephson current up to
large interaction strengths. The applicability of the presented
mapping to the low-energy model, which is used to extract
the ABS energies, is for now limited to the intermediate
interaction strengths. The main reason is the truncation of
frequency expansion of the self-energy at the second order
while the higher orders become more relevant with increasing
interaction strength. Here, the technical issue is that extracting
higher-order derivatives from stochastic QMC data can be
unreliable as evaluating the self-energy from the Dyson equa-
tion requires calculating the difference between the inverses
of two Green functions, a procedure highly susceptible to the
numerical noise. While it is possible to obtain better results
by measuring higher-order correlation functions, which are
related to the self-energy by the equation of motion [55], this
option is not implemented in the TRIQS solver. Another pos-
sibility would be to utilize alternative representations of the
Green function, e.g., the expansion in the basis of Legendre
polynomials [56], which act as an effective noise filter. Yet,
we would like to stress that the truncation to the second order
is already able to give sufficiently precise predictions for the
position of the ABS for experimentally relevant parameters,
especially, when compared to the finite accuracy of a typical
experiment.

On the other hand the GAL method with here intro-
duced band corrections is computationally inexpensive. Its
main limitation is that it is based on the mapping to the
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superconducting atomic limit, which largely ignores the pres-
ence of the leads. Therefore, GAL is bound to lower values
of the dot-lead coupling. However, in this regime it gives
surprisingly good estimates of any relevant measurable quan-
tities and provides important insight into the properties of
the SCIAM. Therefore, even the “hand-waving” derivation of
GAL as presented in our paper gives a very simple and fast
solver for the SCIAM, which can deliver reliable results to the
experimentally relevant range of parameters within seconds
on a standard PC. As such, it can replace other simple methods
like the second-order perturbation theory, which cannot be
employed for degenerate ground states [15].

Yet, strictly speaking, the method still lacks a proper formal
derivation. We believe that it could be performed by the anal-
ysis of the analytical structure of the two-particle functions,
similarly to the case of the Fermi liquid theory [57,58]. Such
calculation could shed light on the peculiar MGAL scaling of
the local energy level as well as provide solid argumentation
on the scaling of the interaction strength. Its importance can
be stressed by the fact that we have already utilized GAL to
treat multilevel systems [37] and that GAL is considered as
a fast approximate solver for the superconducting dynamical
mean-field theory.

We also discussed some nontrivial insights into the physics
of SCIAM, which were obtained using the two methods. The
low-energy model shows a temperature dependence where the
ABS energy is increasing in the 0 phase and decreasing in
the π phase with increasing temperature. This is consistent
with results of some other theoretical works [47,48] but it is
in disagreement with the NRG results [24]. We also proved
that the negative Josephson current in the π phase is a result
of the presence of the bands as the contributions from the
two pairs of ABS cancel each other out in this phase. The
behavior of the second pair of ABS in the π phase was also
studied, showing that their existence for zero phase difference
is bound to low values of the tunneling rate and the interaction
strength, while for nonzero phase difference they become
almost indistinguishable from the band at realistic values of
the interaction strength.

To summarize, we have presented two low-energy models
that have proven efficient for calculating ABS energies of
superconducting impurity systems. GAL provides a fast and
reasonably accurate approximative solution of the SCIAM
and is suited for extensive parameter scans, e.g., for an ini-
tial analysis of experimental data or as a starting point of
more elaborated calculations. On the other hand, the effective
mapping to a low-energy model that allows the extraction of
the Andreev bound state energies from unbiased imaginary-
time quantum Monte Carlo simulations can be employed to
obtain precise results for realistic setups. Together, these tech-
niques represent an efficient toolbox for modeling realistic
nanoscopic superconducting devices.
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APPENDIX A: SCALING OF THE INTERACTION
STRENGTH IN THE GAL SCHEME

Here we provide the derivation of the scaling of the inter-
action strength U and the value of the shift of the chemical
potential in the GAL scheme, Eq. (41). For sake of simplicity
we neglect the band correction C as it does not change the
result. The relation between the GAL self-energy and the
atomic self-energy from the auxiliary atomic problem (38)
reads �(ω) = q−1�̃∞(ω). In the 0 phase the self-energy in
the atomic limit is static and its normal and anomalous com-
ponents follow Eq. (23), from which we obtain a pair of
equations reading

Un + μs = q−1Ũ (ñ − 1/2), Uν = q−1Ũ ν̃. (A1)

The electron density and the induced pairing can be calculated
from the respective Green functions as

n = − 2

π

∫ ∞

−∞
dω f (ω) Im Gn(ω + i0),

ν = − 1

π

∫ ∞

−∞
dω f (ω) Im Ga(ω + i0),

(A2)

where f (ω) = [eω/kBT + 1]−1 is the Fermi-Dirac distribution.
Similar relations bind the quantities ñ and ν̃ to the normal and
anomalous elements of the auxiliary Green function G̃(ω).
The relation between the two Green functions is given by
Eq. (40), G(ω) = qG̃(ω), from which we obtain the relations
between the occupation numbers, ν = qν̃ and n = qñ. This
also illustrates the problem of the missing spectral weight
in GAL without the band correction: The auxiliary atomic
problem at half-filling (ñ = 1) corresponds to GAL at filling
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n = q < 1. Inserting these relations in Eq. (A1) we obtain
Ũ = q2U and µs= −qU/2.

While this scaling was derived only for the 0 phase, we use
the same scaling also in the π phase, where such simple ar-
gumentation is not possible due to the frequency dependence
of the self-energy. The reason for this is that using differ-
ent scaling in the two phases would result in disagreement
about the position of the QPT while approaching it from each
phase.

APPENDIX B: EFFECTS OF THE BAND CORRECTION

Let us discuss further the importance of the band cor-
rection C, Eq. (31). As the correction is the same in both
presented methods, we resort to GAL results only. In Fig. 7 we

plotted the positive ABS energy as a function of the in-
teraction strength U for the same parameters as in Fig. 2.
Solid red (dashed blue) lines represent the GAL solution
with (without) the correction, compared to the NRG re-
sult (black bullets). As the correction vanishes for ω → 0,
it cannot change the position of the QPT, which is given
solely by the zero of the right-hand side of Eq. (30). Its
effects become stronger with increasing values of E0/� where
it prevents the ABS from entering the continuum, keeping
its energy below �. It also guarantees that GAL becomes
exact in the noninteracting (U = 0) limit. Furthermore, it
corrects the high-frequency asymptotics of the GAL Green
function, as already mentioned in Sec. II C and it has an im-
portant contribution to the Josephson current as discussed in
Sec. III B.
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