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Recursive relations and quantum eigensolver algorithms within modified Schrieffer-Wolff
transformations for the Hubbard dimer
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We derive recursive relations for the Schrieffer-Wolff (SW) transformation applied to the half-filled Hubbard
dimer. While the standard SW transformation is set to block-diagonalize the transformed Hamiltonian solely
at the first order of perturbation, we infer from recursive relations two types of modifications, variational or
iterative, that approximate, or even enforce for the homogeneous case, the desired block-diagonalization at
infinite order of perturbation. The modified SW unitary transformations are then used to design an test quantum
algorithms adapted to the noisy and fault-tolerant era. This work paves the way toward the design of alternative
quantum algorithms for the general Hubbard Hamiltonian.
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I. INTRODUCTION

By describing the competition between kinetically induced
electron delocalization and electron localization due to the
Coulomb repulsion, the nontrivial Hubbard model remains
one of the most challenging systems in condensed matter
physics [1]. Indeed, despite its simplicity, no general and
analytic solution exists. Besides exact results at certain limits
such as the Nagaoka theorem [2] close to half-band filling or
the Bethe ansatz [3] in one dimension, different approxima-
tions, strategies, and numerical algorithms have been designed
to solve this cornerstone problem on classical computers.
More precisely, one could mention density functional [4,5]
or Green’s functions–based [6–8] theories, renormalization
methods [9], or, more recently, divide and conquer strategies
[10,11], to cite but a few.

In that context, the emergence of quantum computers has
revived the hope of obtaining accurate physically relevant
quantities for any dimension, size, regime, and filling. Indeed,
a growing interest on developing quantum algorithms to solve
the Hubbard model emerges from the literature [12–28]. On
the one hand, most of the proposed algorithms targets noisy
intermediate scale quantum (NISQ) devices and relies mainly
on hybrid classical/quantum strategies such as the variational
quantum eigensolver (VQE) [29,30]. Roughly speaking, it
consists of applying a parameterized unitary transformation
on an easy-to-prepare initial state, generally the Hartree-Fock
state, on the quantum device while the variational parameters
are optimized on a classical computer. Several types of ansatz
have been proposed to design this unitary transformation, ei-
ther physically motivated such as the variational Hamiltonian
ansatz [13–21] and the unitary coupled cluster ansatz [22] or
hardware efficient ones [23–25]. Most of these approaches,
as they are based on an initial Hartree-Fock state, are par-
ticularly relevant for the weakly correlated regime [18,20].
In any case, a compromise between the desired accuracy
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and the computational cost has to be reached. It depends in
particular on the ansatz circuit depth, the number of CNOT
gates, and the number of variational parameters, for which the
development of improved or new types of ansatz is needed.
On the other hand, some algorithms target long-term ex-
pected fault-tolerant devices [26–28] and rely for instance on
Hamiltonian propagation for which the associated quantum
circuits are much deeper than those devoted to the NISQ era.

Concerning the application of a unitary transformation
onto a easy-to-prepare known state, the unitary Van-Vleck
(VV) similarity transformation, developed in the framework
of many-body perturbation theory [31–37], appears relevant
to serve as a basis for new quantum algorithms. In few words,
given an Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 is called the
unperturbed Hamiltonian whose eigenstates are known, and
V̂ is a perturbation, the VV similarity transformation aims
to design perturbatively a unitary transformation Û = eŜVV

,
where ŜVV is called the generator, that leads to an effective
Hamiltonian H̄eff in the low-energy subspace of Ĥ0. Ul-
timately, at infinite order of perturbation, the transformed
Hamiltonian H̄ = Û ĤÛ † is block-diagonal and is reduced to
H̄eff in the low-energy subspace of Ĥ0, such that the eigen-
values of H̄eff strictly match the lowest eigenvalues of Ĥ . It
follows that a straightforward quantum algorithm for which
the ground state (or excited states) of a given Hamiltonian
can be prepared on a quantum computer by applying eŜVV

on
the known ground state (or excited states) of the unperturbed
Hamiltonian Ĥ0. However, an explicit expression for ŜVV is
in general unknown and truncation of the perturbative order
or approximations are mandatory. Considering the noninter-
acting Hamiltonian as Ĥ0 and the electron-electron Coulomb
repulsion as the perturbation, the VV similarity transforma-
tion is closely related to the unitary coupled cluster ansatz
[38]. On the other limit where Ĥ0 is the Coulomb repulsion
operator and V̂ is the noninteracting Hamiltonian, Schrieffer
and Wolff (SW) derived an analytic form of ŜVV, such that
H̄ is block-diagonal at the first-order of perturbation [39].
Moreover, they showed that at the limit of small perturbation,
the Kondo model corresponds to the effective low-energy
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approximation of the Anderson model. Following the work of
SW, the Heisenberg model was also shown to be the effective
Hamiltonian of the Hubbard model at half-band filling for
large Coulomb repulsion strength [40,41]. Yet improvements
of the SW approximation can fairly serve as a basis to approx-
imate ŜVV and construct an efficient and hopefully accurate
quantum algorithm for the Hubbard model. In that context,
Zhang et al. proposed two quantum algorithms devoted to
finding the VV unitary transformation in the context of spin
chains [42]. The first one is a quantum phase estimation–based
algorithm that provides the exact transformation but which
is only realizable in the fault-tolerant era. The second one,
more adapted to the NISQ era, is an hybrid quantum-classical
algorithm based on a variational approach where the unitary
transformation (ansatz) is built from the exponentiation of
the commutator [Ĥ0, V̂ ], expressed as a linear combination of
Pauli operators.

In this contribution, we derive recursive relations to the
perturbative expansion of H̄ within the standard SW generator
for the Hubbard dimer. Following these relations, we propose
two modifications of this generator, one variational with a
single parameter thanks to the recursive relations, and the
other iterative in the spirit of the Foldy-Wouthuysen transfor-
mation [33]. Both modified SW transformations are shown to
approximate, or even perform for the homogeneous case, the
desired block-diagonalization at infinite order of perturbation,
as the VV generator would provide. As a proof of concept, we
introduce two quantum algorithms associated to the modified
SW transformations on the Hubbard dimer. Finally, in light
of our findings, we discuss the perspective of generalizing
our approach to larger Hubbard systems that is left for future
investigations. In particular, we show that in contrast to most
of the currently proposed ansatz, our strategies are relevant
close to the strongly interacting regime.

II. VAN-VLECK SIMILARITY AND STANDARD
SCHRIEFFER-WOLFF TRANSFORMATIONS

Let us first recall the Van-Vleck canonical perturbation
theory following Shavitt and Redmon [36]. Consider a Hamil-
tonian Ĥ with (unknown) orthonormal eigenvectors {|�i〉}
such that

Ĥ |�i〉 = Ei|�i〉, (1)

and another orthonormal basis set {|�i〉}, eigenvectors of an-
other Hamiltonian Ĥ0 with the same dimension than Ĥ , that
is related to {|�i〉} by a unitary transformation,

|�i〉 = Û †|�i〉 =
∑

j

|� j〉〈� j |Û †|�i〉 =
∑

j

|� j〉U †
i j . (2)

The eigenvalues of Ĥ can be inferred as the elements of the
diagonal representation of the similar Hamiltonian,

H̄VV = Û ĤÛ †, (3)

in the orthonormal basis {|�i〉}. Thus, solving the eigenvalue
problem in Eq. (1) is equivalent to searching for a unitary
transformation Û such that H̄VV = Û ĤÛ † is diagonal in a
given basis set {|�i〉}. The reasoning remains equivalent,
though less restrictive, if solely a block-diagonalization in
a target subspace is desired. In other words, we are looking

for an unknown Hamiltonian H̄VV with eigenvectors |�i〉
that shares the same eigenvalues than Ĥ . If one focuses
on the ground state |�0〉, then it is enough to only block-
diagonalize H̄ ,

〈�i|Û ĤÛ †|�0〉 = 〈�0|Û †ĤÛ |�i〉 = 0 ∀i �= 0, (4)

〈�0|Û ĤÛ †|�0〉 = E0. (5)

Many Û fulfill these conditions up to a unitary transformation
acting only on the subspace of {|�i〉} with i �= 0.

Let us now consider the following decomposition of the
Hamiltonian:

Ĥ = Ĥ0 + V̂ , (6)

where Ĥ0 is diagonal in the {|�i〉} basis set, i.e.,
〈�i|Ĥ0|� j〉 = E0

i δi j . If one wants to block-diagonalize H̄
with respect to a given subspace �, for instance the one that
contains all degenerate ground states of Ĥ0, then one can
define the operator

P̂ =
∑
i∈�

|�i〉〈�i| (7)

that projects onto �, and its complementary projector

Q̂ = 1̂ − P̂ =
∑
i/∈�

|�i〉〈�i|. (8)

We note ÔD = P̂ÔP̂ + Q̂ÔQ̂ the block-diagonal projection
of an operator Ô and its complementary off-block-diagonal
part ÔX = P̂ÔQ̂ + Q̂ÔP̂. Adopting the exponential form of
the unitary transformation Û = eĜ, Ĝ being an anti-Hermitian
generator with Ĝ = ĜX and ĜD = 0, we seek conditions for
Ĝ such that H̄VV is block-diagonal, i.e., H̄VV

X = 0̂. Within the
superoperator formalism [34], H̄VV reads:

H̄VV = eĜĤe−Ĝ = Ĥ + [Ĝ, Ĥ ] + 1

2
[Ĝ, [Ĝ, Ĥ ]] + . . .

=
∞∑

n=0

1

n!
Gn(Ĥ ) = eG (Ĥ ), (9)

where G(X̂ ) = [Ĝ, X̂ ]. By decomposing eG (Ĥ ) =
coshG(Ĥ ) + sinhG(Ĥ), it follows that the condition H̄VV

X = 0̂
is fulfilled for

[Ĝ, Ĥ0] = −[Ĝ, V̂D] −
∞∑

n=0

cnG2n(V̂X ), (10)

where cn = 22nB2n/(2n)! are functions of Bernoulli numbers
B2n. Equation (10) is the central equation of the VV canonical
perturbation theory that defines the generator Ĝ such that H̄VV

is block-diagonal, thus expressing the eigenstates of Ĥ in
terms of eigenstates of Ĥ0 through Ĝ. Using an order-by-order
expansion of Ĝ, i.e., Ĝ = ∑

n=1 Ĝ(n), conditions to cancel H̄X

can be obtained at each order as

[Ĝ(1), Ĥ0] = −V̂X , (11)

[Ĝ(2), Ĥ0] = −[Ĝ(1), V̂D], (12)

[Ĝ(3), Ĥ0] = −[Ĝ(2), V̂D] − 1
3 [Ĝ(1), [Ĝ(1), V̂X ]], (13)

. . .
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It follows that H̄VV can also be expressed order by order as

H̄VV = Ĥ0 + V̂D +
∞∑

n=0

tnG2n+1(V̂X ), (14)

with tn = 2(22n+2 − 1)B2n+2/(2n + 2)!. As mentioned in Ref.
[36], the Van-Vleck perturbation theory equations (10) and
(14) are expressed in the domain of a Lie algebra, thus al-
lowing an equivalent diagrammatic expansion. Note that the
convergence of perturbative series and the diagrammatic ex-
pansion has been thoroughly investigated in Ref. [37], which
also provides recursive relations to obtain the nth order term
Ĝ(n) of the VV generator Ĝ as a function of the previous n − 1
terms.

In practice, finding both an analytic and a numerical form
of Ĝ for a given Ĥ0 and V̂ remains challenging, at least
equivalent as the explicit diagonalization of Ĥ . From the
perspective of developing quantum algorithms based on the
VV formalism, one realizes that the number of terms in the
generator drastically increases order by order, thus leading to
deeper circuits and, consequently, to an increase in complexity
and sensibility to noise of quantum algorithms. To overcome
this issue, we explore an alternative approach which consists
in using a truncated generator, the Schrieffer-Wolff generator,
that is later modified by adding a variational parameter or by
using an iterative process to compensate the resulting trunca-
tion error.

First, following Ref. [39], let us recall the Schrieffer-Wolff
transformation in the context of the half-filled Hubbard model
that we decompose as in Eq. (6) into a local part,

Ĥ0 =
∑

iσ

μin̂iσ +
∑

i

Uin̂i↑n̂i↓, (15)

and a nonlocal (kinetic) part,

V̂ = −1

2

∑
i �= j,σ

ti j (γ̂i jσ + γ̂ jiσ ), (16)

with n̂iσ = ĉ†
iσ ĉiσ and γ̂i jσ = ĉ†

iσ ĉ jσ and ĉ†
iσ (ĉiσ ) the creation

(annihilation) operator of an electron of spin σ = {↑,↓} in
site i. This decomposition contrasts with the usual decompo-
sition between the noninteracting part for which the solution
is easily accessible and the nontrivial canonical (interact-
ing) part. Indeed, the ground state of Ĥ0 is degenerate at
half filling for U > 0 and consists in a superposition of all
states having no double occupation (spanning the so-called
Heisenberg subspace in this paper). Starting from the atomic
limit (U/t → ∞), Schrieffer and Wolff have proposed, in
the original context of an Anderson Hamiltonian, to use the
unitary transformation Û = eŜ such that

H̄SW = eŜHe−Ŝ, (17)

which we denote simply as H̄ in the following to sim-
plify notations, is block-diagonalized at first order of
perturbation, i.e.,

[Ŝ, Ĥ0] = −V̂ . (18)

We highlight that the above equation corresponds to the first
order of perturbation of the VV relations, Eq. (11), i.e., that
the SW generator Ŝ block-diagonalizes the Hamiltonian only
at first order, contrary to the VV generator Ĝ.

Note that V̂X = V̂ when the operator P̂ projects onto the
Heisenberg subspace. It can be shown that under the SW
condition (18), Ŝ takes the following form:

Ŝ = 1

2

∑
i �= j,σ

p̂i jσ̄ (γ̂i jσ − γ̂ jiσ ), (19)

with p̂i jσ defined as

p̂i jσ =
3∑

x=0

λi jσ,x p̂i jσ,x, (20)

where p̂i jσ,0 = (1 − n̂iσ )(1 − n̂ jσ ), p̂i jσ,1 = n̂iσ (1 − n̂ jσ ), and
p̂i jσ,2 = (1 − n̂iσ )n̂ jσ , p̂i jσ,3 = n̂iσ n̂ jσ are projectors, i.e.,∑3

x=0 p̂i jσ,x = 1̂, and

λi jσ,0 = − ti j

	μi j
if 	μi j �= 0; λi jσ,0 = 0 else, (21)

λi jσ,1 = − ti j

	μi j + Ui
if 	μi j + Ui �= 0; λi jσ,1 = 0 else, (22)

λi jσ,2 = − ti j

	μi j − Uj
if 	μi j − Uj �= 0; λi jσ,2 = 0 else, (23)

λi jσ,3 = − ti j

	μi j + 	Ui j
if 	μi j + 	Ui j �= 0; λi jσ,3 = 0 else, (24)

with 	μi j = μi − μ j and 	Ui j = Ui − Uj . Within the SW
transformation, we obtain

H̄ = Ĥ0 +
∞∑

n=2

n − 1

n!
Sn−1(V̂ ) = Ĥ0 +

∞∑
n=2

H̄ (n), (25)

where S is the superoperator defined as S (X̂ ) = [Ŝ, X̂ ] and
H̄ (n) = n−1

n! Sn−1(V̂ ).

Since Ŝ consists in a truncated form of Ĝ, H̄ is not expected
to be block-diagonal anymore, i.e., H̄X �= 0̂. In the following,
we propose recursive relations between Sn(V̂ ) and Sn−1(V̂ ),
derived for the Hubbard dimer, that provide an explicit ex-
pression for H̄ and in particular for H̄X in terms of two- and
three-body operators. These relations are further exploited
to develop two modifications of Ŝ, one variational and the
other iterative, designed to minimize or even cancel H̄X while
conserving the same complexity as Ŝ.
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III. MODIFIED SCHRIEFFER-WOLFF
TRANSFORMATIONS

A. Recursive relations

We establish recursive relations for each order of Eq. (25),
where details are provided in Appendix A. More precisely, we
find that even orders are block-diagonal, i.e., H̄ (2n)

D = H̄ (2n)

and read as follows:

H̄ (2n) = 2n − 1

2(2n)!

∑
i �= j
σ

3∑
x=0

K (2n−1)
i jσ,x p̂i jσ̄ ,x(n̂iσ − n̂ jσ )

+ 2n − 1

2(2n)!

∑
i �= j
σ

J (2n−1)
i jσ (γ̂i jσ γ̂ jiσ̄ + γ̂ jiσ γ̂i jσ̄ )

+ 2n − 1

2(2n)!

∑
i �= j
σ

L(2n−1)
i jσ (γ̂i jσ γ̂i jσ̄ + γ̂ jiσ γ̂ jiσ̄ ), (26)

while odd orders are found to be off-block-diagonal, i.e.,
H̄ (2n+1)

X = H̄ (2n+1), and take the following expression:

H̄ (2n+1) = 2n

2(2n + 1)!

∑
i �= jσ

3∑
x=0

T (2n)
i jσ,x p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ )

(27)

and where only the expression of interaction integrals I (k)
i jσ,x

(I = J, K, L, or T ) depend on the order k. Explicit formulas
for the interaction integrals I (k)

i jσ,x are given in Appendix A. By
summing over all orders, H̄ takes exactly the following form:

H̄ = H0 +
∞∑

n=2

H̄ (n) = H̄D + H̄X , (28)

with H̄D = Ĥ0 + ∑∞
n=1 H̄ (2n) and H̄X = ∑∞

n=1 H̄ (2n+1).
Specifically, the non-block-diagonal contribution H̄X couples
states from the Heisenberg subspace to states from its
complementary subspace and reads explicitly as

H̄X = 1

2

∑
i �= j
σ

3∑
x=0

Ti jσ,x p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ ), (29)

where the interaction integrals Ti jσ,x are obtained by summing
over all orders as

Ti jσ,x =
∞∑

n=1

2n

(2n + 1)!
T (2n)

i jσ,x. (30)

For the homogeneous case, the associated integrals are simply
given by

Ti jσ,0 = Ti jσ,3 = 0, (31)

and

Ti jσ,1 = Ti jσ,2 = −ti j[cos (4t/U ) − sinc (4t/U )]. (32)

Explicit forms of the block-diagonal contributions and rela-
tions for the inhomogeneous Hubbard dimer are derived in
Appendix A.

Heisenberg
Sub-space

in its eigen-vector basis set

obtained with the standard SW transformation

obtained with the modified SW transformations

FIG. 1. Schematic representation of the action of the different
operators H̄ in the Hilbert space of the half-filled Hubbard dimer.

At this stage, we have established recursive relations to
obtain the similar Hamiltonian H̄ within the standard SW
transformation (SWT) at infinite order of perturbation. How-
ever, given the definition of Ŝ in Eq. (18), the standard SW
transformation at infinite order does not lead to a block-
diagonal representation of H̄ with respect to the Heisenberg
subspace since H̄X �= 0̂, see Fig. 1. Based on the previous re-
cursive relations, in the following subsections we present two
strategies, denoted as modified SW (MSW) transformations,
one variational and the other iterative, to fully perform the
desired block-diagonalization.

B. Variational Schrieffer-Wolff transformation

We propose to introduce a variational scaling parameter θ

to the unitary transformation,

Û (θ ) = eθ Ŝ, (33)

such that one recovers the standard SW transformation Û =
eŜ for θ = 1, and the identity operator Û = 1̂ for θ = 0.
Within this unitary transformation, the similar Hamiltonian

155110-4
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H̄ (θ ) reads

H̄ (θ ) = eθ ŜĤe−θ Ŝ,

= Ĥ0 + V̂ (1 − θ ) +
∞∑

n=2

θn−1(n − θ )

n!
Sn−1(V̂ ). (34)

Using the previously established recursive relations and after
summation to infinite order, see Appendix B, it can be decom-
posed as follows, similarly as in Eq. (28):

H̄ (θ ) = H̄D(θ ) + H̄X (θ ), (35)

where the θ dependence lies in the renormalized interaction
integrals that read for the non-block-diagonal contribution in
the homogeneous case,

Ti jσ,0(θ ) = Ti jσ,3(θ ) = 0, (36)

and

Ti jσ,1(θ ) = Ti jσ,2(θ ) = −t[cos (4tθ/U ) − θsinc (4tθ/U )].

(37)

The scaling parameter θ can be optimized to minimize the
contributions from the coupling operator H̄X (θ ), which is
shown to cancel out for the homogeneous case at

θ = U

4t
tan−1 4t

U
, (38)

leading to an exact block-diagonalization of H̄ (θ ). More pre-
cisely, we demonstrate in Appendix B that in this case and
at the saddle point, the variational generator fulfills the VV
condition in Eq. (10). Relations become more complex for the
inhomogeneous cases and the variational process has to be
done numerically, see Appendix B. In this case, the cancel-
lation of H̄X (θ ) cannot always be reached. Alternatively, one
can minimize the energy of H̄ (θ ) restricted to the Heisenberg
subspace, which is equivalent to maximizing the overlap be-
tween the minimizing state and the exact ground state |�0〉.
The difference between the two optimization schemes is dis-
cussed in Appendix D.

C. Iterative Schrieffer-Wolff transformation

Alternatively to the variational approach, one can take
advantage of the similarity between the coupling terms in
Eq. (A35) and the perturbation V̂ in Eq. (A9). In the spirit
of the Foldy-Wouthuysen transformation [33], we propose the
following iterative scheme:

(1) Initialize the iterative process by applying the standard
SW transformation on the original problem to obtain H̄ (s=0).

(2) At the iteration s = s + 1, define the new problem
H̄0(s) = H̄ (s) − V̄ (s) and V̄ (s) = H̄ (s−1)

X .
(3) Find the corresponding generator Ŝ(s) such that

[H̄0(s), Ŝ(s)] = V̄ (s).
(4) Use the recursive relations derived in Appendix C to

obtain the new H̄ (s).
(5) Repeat steps 2 to 4 until convergence is reached, i.e.,

H̄ (s)
X → 0̂.

After Ns iterations, the iterative unitary transformation and
the similar Hamiltonian are given by

Û (Ns ) =
Ns−1∏
s=0

eŜ(s)
, (39)

and

H̄ (Ns ) = Û (Ns )ĤÛ (Ns )†
, (40)

respectively. The amplitudes of the resulting coupling terms
for large U/t behave asymptotically in (t2/U )Ns for Ns

iterations, such that the iterative algorithm converges expo-
nentially to a precise decoupling.

D. Perspectives for larger Hubbard rings

The iterative and variational MSW transformations are
shown to perform exact (quasi-) block-diagonalization for the
homogeneous (inhomogeneous) Hubbard dimer, respectively,
thanks to the recursive properties in Eqs. (26) and (27). Before
investigating the quantum algorithms associated to the pre-
sented MSW transformation applied to the Hubbard dimer, we
discuss possible extensions to larger systems. First, note that
the recursive relations obtained in Eqs. (26) and (27) are not
valid for larger systems, where additional terms giving rise to
interactions among more than two sites emerge. Nonetheless,
for the purposes of this study, we neglect these terms, meaning
that VV perturbation condition in Eq. (10) is not satisfied, but
the SW condition in Eq. (18) (i.e., first order) still is. In this
section, the truncation error is assessed on a classical com-
puter for homogeneous nearest neighbor (NN) Hubbard rings
of up to N = 10 sites. To do so we apply the unitary trans-
formation Û †(θ ) = e−θ Ŝ to the ground state |�Heis〉 of the NN
antiferromagnetic Heisenberg model J

∑
i j ŝi ŝ j , where ŝi de-

notes the spin operator on site i and J > 0 is the spin-coupling
element, which corresponds to the strongly correlated limit
of the NN Hubbard model [39]. We follow the variational
scheme presented in Sec. III B, where θ is optimized to min-
imize the expectation value E (θ ) = 〈�Heis|H̄ (θ )|�Heis〉 with
H̄ (θ ) = U (θ )ĤU †(θ ), which is equivalent to maximize the
overlap of U †(θ )|�Heis〉 with the exact ground state |�0〉.

In Fig. 2 we show, as a function of the number of sites
N and for different values of the Coulomb repulsion strength
U/t , the relative error (in %) of E (θ ) with respect to the
exact ground-state energy. Results are provided for θ = 1,
corresponding to the standard SWT, and for the optimal value
θ∗. As N increases the relative error increases and appears to
converge to what would correspond to the truncation error.
As expected, the truncation error increases as U/t decreases,
i.e., ∼1% (1%), ∼5% (7%), and ∼11% (30%) for U/t = 20,
8, 4 and θ = θ∗ (θ = 1), respectively. The introduction of
a single and variational parameter systematically and dras-
tically improves over the standard SWT. Consequently, the
variational extension to the SW approximation, that is exact
for the homogeneous half-filled Hubbard dimer, remains a
good approximation for larger system sizes in the intermediate
to strongly correlated regime. Straightforward improvements
can be envisioned by considering higher-order contributions
from the generator, following the recursive relations proposed
in Ref. [37], for instance. However, the implementation of the
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FIG. 2. Relative errors in the ground-state energy calculated for
homogeneous half-filled Hubbard rings with respect to the number
of sites. Results are given for the variational MSW transformation
(solid lines) and the standard SWT (θ = 1, dashed lines). Lines are a
guide for the eye.

MSW transformations on classical computers is computation-
ally intractable for systems beyond ∼16 orbitals, in analogy
with the unitary coupled cluster ansatz [43]. This is also the
case for the construction of the trial state |�Heis〉 for large
system’s size, which we disregard in the following by investi-
gating quantum algorithms applied to the Hubbard dimer, for
which |�Heis〉 is easy to prepare.

IV. MODIFIED SW TRANSFORMATIONS APPLIED ON
QUANTUM COMPUTERS

At this stage, we investigate the relevance of the aforemen-
tioned MSW transformations, H̄MSW = H̄ (θ ) and H̄MSW =
H̄ (Ns ) in Secs. III B and III C, respectively, for the design of
new quantum algorithms.

In both cases, H̄MSW is block-diagonal for the homoge-
neous case, so that ground or excited states can easily be
constructed as linear combination of two basis vectors for the
Hubbard dimer, see Fig. 1. For the homogeneous half-filled
Hubbard dimer, relevant trial eigenstates of H̄MSW consist
in the Heisenberg state |�Heis〉 = (|↑↓〉 + |↓↑〉)/

√
2 and the

ionic state |�α
Ionic〉 = cos(α)|↑↓·〉 + sin(α)| · ↑↓〉. Indeed, eŜ

preserving the spin symmetry, triplet states |↑↑〉 and |↓↓〉 are
discarded. The eigenstates of Ĥ can then be constructed from
the trial eigenstates of H̄MSW by applying the transformation
Û MSW, which refers to the variational [see Eq. (33)] or to
the iterative [see Eq. (39)] MSW transformation. It appears
clear that both the variational or iterative MSW approaches
are adapted to the design of quantum algorithms, as they

are both formulated as a unitary transformation applied to an
easy-to-prepare initial state.

As a proof of concept, we have implemented both quan-
tum algorithms to treat the homogeneous and inhomogeneous
Hubbard dimer, using Qiskit [44] to construct the quantum
circuits. We use the one-to-one correspondence between the
states of the qubits and the occupation of the spin-orbitals
of the Hubbard dimer to map our states onto qubits, with
even-numbered qubits corresponding to spin-up orbitals and
odd-numbered qubits to spin-down orbitals. The fermionic
creation and annihilation operators are mapped onto Pauli
strings P̂i using the Jordan-Wigner (JW) transformation [45].
To implement the unitary transformation on quantum circuits,
the first-order Trotter-Suzuki approximation is used, i.e., the
exponential of the sum of Pauli strings is decomposed into a
product of exponential of a single Pauli string,

eθ Ŝ JW−→ eθ
∑

i ξiP̂i ≈
∏

i

eθξiP̂i , (41)

for which the associated circuit is known [see Fig. 3(c)], and
{ξi} are the coefficients that are functions of the SW generator
parameters {λ} obtained after the JW transformation. The trial
Heisenberg and ionic states can be easily prepared on the
quantum computer, as shown in Figs. 3(a) and 3(b). Finally,
we simulate our variational MSW transformation using a
noise model built on Qiskit. This noise model consists in a
depolarizing quantum error channel applied on every one- and
two-qubit gates, with depolarizing error parameters of λ1 =
0.0001 and λ2 = 0.001, respectively. Note that the four-qubit
circuit resulting from the variational MSW transformation is
composed of 32 one-qubit gates and 35 CNOT gates and that
no readout error is considered. Sampling noise is also added
to this noise model by considering nshots = 8192 for the esti-
mation of the expectation value of each Pauli string. The vari-
ational parameter was optimized by using the SPSA optimizer
with a maximum of 1000 iterations. Then, the optimal param-
eter θ∗ is calculated as the mean of the last 25 iterations, and
the expectation values of H̄ (θ∗) with respect to the Heisenberg
and ionic states are estimated as the mean of another 100
noisy simulations (with fixed parameter θ∗). The noisy results
are then compared to the exact references obtained by exact
diagonalization, as well as to the noiseless state-vector sim-
ulation, without considering any quantum or sampling noise
and for which the L-BFGS-B optimizer was used to update the
variational parameter. For the iterative MSW transformation,
only state-vector simulations is performed.

FIG. 3. (a) Quantum circuit corresponding to the Heisenberg state |�Heis〉 = (|↑↓〉 − |↓↑〉)/
√

2 = (|1001〉 − |0110〉)/
√

2. (b) Quantum
circuit corresponding to the linear combination of the ionic states |�α

Ionic〉 = cos(α)|↑↓·〉 + sin(α)|·↑↓〉 = cos(α)|1100〉 + sin(α)|0011〉.
(c) Quantum circuit corresponding to the implementation of eξX0Z1Y2Z3 .
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FIG. 4. Energies of the half-filled Hubbard dimer for 	μ = 0
with respect to the repulsion strength, using the variational SW
method to minimize the energy 〈�Heis|H̄ (θ )|�Heis〉.

A. Variational approach

The variational approach described in Sec. III B consists
in finding the optimal parameter θX of the unitary in Eq. (33)
such that the couplings H̄X (θX ) are minimized, thus enforcing
the block-diagonalization of H̄ (θX ). Compared to the strategy
of Zhang and coworkers [42], our minimization process im-
plies only a single variational parameter rather than a number
of parameters that would correspond to the number of Pauli
strings composing the generator [i.e., each ξi in Eq. (41)].
Minimizing the couplings H̄X (θX ) requires the estimation of
the off-diagonal matrix elements of H̄ such as done in Ref.
[42]. However, this is not straightforward on quantum com-
puters in contrast to the measurement of expectation values,
although one can note some improvements in the literature
[46,47]. Consequently, in this work, in analogy with the VQE
algorithm, we minimize the energy 〈�Û (θ )|Ĥ |Û †(θ )�〉 mea-
sured on the quantum device rather than minimizing the norm
of H̄X . Note that the two strategies are equivalent when the
initial trial state |�〉 is indeed the ground state of H̄ (θ ). Other-
wise, it does not lead to the expected block-diagonalization of
the Hamiltonian, as discussed in more details in Appendix D.

Let us start with the homogeneous Hubbard dimer (	μ =
0). In this case, analytical expressions for the variational SW
transformation can be derived as shown in Sec. III B. As
readily seen in Fig. 4, the energy obtained by minimizing
〈�Heis|H̄ (θ )|�Heis〉 matches exactly the ground-state energy
of Ĥ , and the minimizing parameter, denoted by θHeis, is
exactly the same as the analytical expression in Eq. (38) (not
shown). In addition, using the exact same unitary Û (θHeis)
but on the equiweighted ionic state |�α=π/4

Ionic 〉, one recovers
the first-excited singlet energy of Ĥ . Thus, our variationally
optimized SW transformation has indeed block-diagonalized
Ĥ exactly for any repulsion strength U/t , with the Heisenberg
subspace containing the singlet ground state and the triplet
states. Looking at the energies obtained from the noisy simu-
lation, they follow closely the noiseless results, especially for
the first-excited state energy for which the relative error does
not exceed 1.5%. We note also an increase of around 0.03 in
the expectation value of the spin operator Ŝ2 due to the noise,
showing that the final state is not a pure singlet state anymore.

FIG. 5. Energies of the half-filled Hubbard dimer for 	μ/t = 2
(top panel) with respect to the repulsion strength, using the vari-
ational SW method to minimize the energies 〈�Heis|H̄ (θ )|�Heis〉
(orange markers, shown for U > 	μ) and 〈�α=0

Ionic|H̄ (θ )|�α=0
Ionic〉 (blue

markers, shown for U < 	μ). The associated minimizing parame-
ters θHeis and θIonic are shown on the bottom panel, respectively. The
vertical dotted line corresponds to U = 	μ.

Turning to the inhomogeneous Hubbard dimer with
	μ/t = 2, no analytical expressions are known for the op-
timal parameter θ . In contrast to the homogeneous case,
minimizing the energy 〈�Heis|H̄ (θ )|�Heis〉 does not lead to
a block-diagonal H̄ (θHeis) in the entire range of interaction
but only for U � 	μ as shown in Fig. 5. In the other case,
the ground state does not belong to the Heisenberg sub-
space such that H̄ (θHeis) is not block-diagonal. Hence, the
Heisenberg state is not an eigenstate of H̄ (θHeis) and neither
is the ionic state (see Appendix D for more details). How-
ever, rather than minimizing the energy with respect to the
Heisenberg state, one can prepare a different initial trial state
corresponding to the ground state (or a good approximation
of it) that belongs to the other subspace. In the case of the
Hubbard dimer, this is the ionic subspace which ground state
is a linear combination of the ionic states [see Fig. 1 and
Fig. 3(b)]. As 	μ/t = 2, the optimal α value of |�α

Ionic〉
is not trivial and we approximate it as 0, i.e., |�α=0

Ionic〉 =
|↑↓·〉. Minimizing 〈�α=0

Ionic|H̄ (θ )|�α=0
Ionic〉 now leads to an op-

timal θIonic that approximately block-diagonalizes H̄ (θIonic).
More precisely, one recovers the correct ground-state
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and first-excited-state singlet energies for U � 	μ by mea-
suring the expectation values 〈�α=0

Ionic|H̄ (θIonic)|�α=0
Ionic〉 and

〈�Heis|H̄ (θIonic)|�Heis〉, where θIonic is defined as the optimal
parameter that minimizes 〈�α=0

Ionic|H̄ (θ )|�α=0
Ionic〉. Interestingly,

the Heisenberg state now belongs to the subspace which
contains the first-excited singlet state, as opposed to the cor-
relation regime U � 	μ. Note that in the strictly correlated
(or atomic) limit U/t → ∞, θHeis tends to 1 (see bottom panel
of Fig. 5), which is expected as the variational SW transfor-
mation tends to the standard SW transformation that is exact
in this limit. Moving from this limit, the value of the optimal
parameter θHeis decreases to compensate the error from apply-
ing the MSW transformation in the nonatomic limit. Finally,
the noisy simulations show a relatively good agreement with
the noiseless results. In analogy with the homogeneous model
on Fig. 4, the expectation value of Ŝ2 also increases from 0 to
around 0.05, and the deviation in energy is more significant on
the ground-state energy and when U/t increases. According to
the bottom panel of Fig. 5, it seems that the optimized param-
eter obtained from the noisy simulation deviates significantly
from the exact one for large U/t values (last blue circle on the
curve), thus indicating that the classical optimization for large
U/t values is more challenging in the noisy environment. This
could be mitigated by employing error mitigation strategies
that are outside of the scope of this paper [48].

B. Iterative approach

The steps 1 to 5 of the iterative approach described in
Sec. III C can all be performed on a classical computer by
using the recursive relations derived in Appendix B, such that
only the preparation of the final state U (Ns )†|�〉 and the mea-
surement of Ĥ are done on the quantum device. Let us start
with the homogeneous dimer in Fig. 6. Interestingly, and in
contrast to the variational approach, the ground state does not
always belong to the Heisenberg subspace. Indeed, the ground
and second-excited singlet states of H̄ (Ns ) oscillate between
the Heisenberg and the equiweighted (α = π/4) ionic states.
This can be rationalized by analyzing the behavior of the ex-
change integrals. Indeed, the analytical function in Eq. (A37)
at iteration 0 (corresponding to the standard SW transforma-
tion) shows that the exchange integrals oscillate and change
sign for different correlation strength (not shown). The itera-
tive process strongly sharpens these oscillations (though the
function remains continuous and infinitely differentiable for
all U/t > 0), as shown by the solid blue lines in Fig. 6. The
change of sign of the exchange integrals indicates a change in
the ground state of H̄ (Ns ). If they are negative, then the ground
state belongs to the Heisenberg subspace, while it belongs to
the ionic subspace if they are positive. One can also verify
that the energy required to go from the Heisenberg state to
the equiweighted ionic state is of 4J (Ns )

01σ , where J (Ns )
01σ are the

couplings terms obtained after Ns iterations. Finally, note that
the first-excited singlet state energy of Ĥ is actually exactly
recovered from the |�α=−π/4

Ionic 〉 state that is an eigenstate of
H̄ (Ns ) (not shown).

Turning to the inhomogeneous dimer with 	μ/t = 2 in
Fig. 7, one observes a similar behavior than for the varia-
tional approach in Fig. 5, i.e., the ground state belongs to the
Heisenberg subspace for U � 	μ and to the ionic subspace

FIG. 6. Energies of the half-filled Hubbard dimer for 	μ = 0
with respect to the repulsion strength, using the iterative SW trans-
formation applied on the Heisenberg state (orange triangles) and the
equiweighted ionic state (blue crosses). The exchange integrals J (Ns )

01σ

obtained at convergence are also represented.

for U � 	μ. However, the values around the transition U ∼
	μ (top panel of Fig. 7) are much less accurate than for the
variational method. This can be rationalized by comparing
the energies obtained with and without trotterizing the SW
transformation (top and bottom panels of Fig. 7, respectively).
Indeed, H̄ (Ns ) obtained without trotterization is block-diagonal
(apart from some small deviation for a few points), although
there are some interchanges between the nature of the ground
state around the transition U ∼ 	μ in contrast to the varia-
tional approach. Trotterizing the iterative SW transformation
does lead to significant errors and to a non-block-diagonalized
H̄ (Ns ), such that the Heisenberg and the ionic states are not
eigenstates of H̄ (Ns ) anymore. Such trotterization errors are
much more pronounced within the iterative method than the
variational one for two reasons. On the one hand, the succes-
sive applications of more than one (most of the time, three
iterations in this work) unitary transformation does multiply
the number of operators that have to be trotterized. On the
other hand, it is known that the variational optimization of
the parameters in VQE-based algorithms does compensate the
trotter errors [49].

C. Variational versus iterative approach: Numerical efficiency

In contrast to the variational approach, the iterative ap-
proach leads to a fully quantum (parameter-free) algorithm
as it simply consists in applying the unitary transformation
of Eq. (39) on a prepared eigenstate of H̄MSW = H̄ (Ns ). How-
ever, the associated quantum circuit is much deeper than
for the variational approach, which applies a single unitary
transformation only. In terms of gate complexity, the num-
ber of CNOTs required to implement a single SW unitary
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FIG. 7. Energies of the half-filled Hubbard dimer for 	μ/t = 2
with respect to the repulsion strength. The iterative SW transforma-
tion is applied on the Heisenberg state (orange triangles) and on the
pure ionic state (blue crosses), with (top panel) and without (bottom
panel) trotterization error. The vertical dotted line corresponds to
U = 	μ.

transformation scales with the number of Pauli terms in the
SW generator, as well as with the number of qubits as shown
by the cascade of CNOTs in Fig. 3(c). To evaluate the rele-
vance of our approach to more complex systems, we extrapo-
late the computational scaling for an N-sites Hubbard model.
As the operators of the SW generator only acts on nearest-
neighbor sites, the number of Pauli terms scales as O(N ). For
the iterative approach, one has to multiply by the number of
iterations Ns. Hence, the number of CNOTs scales as O(N2)
and O(NsN2) for the variational and the iterative approaches,
respectively. Although the variational approach is more attrac-
tive in the NISQ era due to its shallower circuit depth, it is at
the expense of much more measurements as it has to be mul-
tiplied at least by the number of iterations dictated by the type
of cost function and the method used for the classical opti-
mization of the circuit parameters. Note that while the iterative
approach appears less adapted to NISQ computers, its asso-
ciated circuit depth still remains far shallower than quantum
phase estimation–based approaches, such as the fault-tolerant
one proposed in Ref. [42]. Which method is the most efficient
will depend on the ability of the considered quantum com-
puter to afford deep quantum circuit. Within a noisy quantum

computer, the variational approach appears more suitable,
while the iterative method can be used on fault-tolerant
devices.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we derived recursive relations for the
Schrieffer-Wolff transformation applied on the half-filled
Hubbard dimer. Based on these findings, we proposed a
variational and an iterative modification of the standard SW
transformation to approach, or even to perform for homoge-
neous case, a block-diagonalization of the Hamiltonian. These
modified Schrieffer-Wolff transformations have been used to
design two quantum algorithms that have been implemented
and compared on the half-filled Hubbard dimer. Regarding
the extension of this work to design efficient and alternative
quantum algorithms for the general Hubbard model, or even
for other models or ab initio Hamiltonian, several challenges
have to be addressed.

At this stage, one could directly, and without modifica-
tion, use the variational SW ansatz [Eq. (33)], the iterative
ansatz [Eq. (39)], or a combination of both to evaluate the
ground-state energy of a given Hubbard model. In addition
to the fact that it consists in a serious approximation, as
additional terms in the perturbative expansion will implicitly
be neglected for Hubbard models larger than two sites, it also
requires us to prepare a relevant trial state |�〉 that generalizes
the Heisenberg state used for the Hubbard dimer. If no trivial
and easy-to-prepare trial eigenstates of Ĥ0 are known, then
this step could be performed variationally using the VQE
algorithm, for instance. Within this strategy, one can expect
valuable results for the regime of large U/t values and close
to half-filling. Alternatively, one could apply the modified
SW transformations on a few relevant and easy-to-prepare
states that we know belong to the low-energy subspace we
are interested in, thus forming a basis on which all the
Hamiltonian matrix elements are measured on the quantum
computer, followed by a classically diagonalization in the
same spirit of the quantum subspace diagonalization methods
[50–52].

Finally, the generalization of this work to any filled
Hubbard model or to the quantum chemistry Hamiltonian
probably requires us to improve the generator. This could be
done, for instance, in the spirit of coupled cluster approaches
by introducing more complex terms or more variational pa-
rameters. All the aforementioned developments are beyond
the scope of this paper and are left for future work.
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APPENDIX A: RECURSIVE RELATIONS FOR THE
STANDARD SCHRIEFFER-WOLFF TRANSFORMATION

As originally presented by SW, defining Ŝ with the SW
condition (18) is relevant to construct a low energy effective
Hamiltonian close to the atomic limit U/t → ∞. However,
as shown in the following, the use of the generator Ŝ rapidly
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leads to off-block-diagonal terms in the perturbative expan-
sion that are far from negligible, even at intermediate values of
U/t . More precisely, second-order (n = 2) contributions read

H̄ (2) = 1
2S (V̂ ) = 1

2 [Ŝ, V̂ ] = H̄ (2),dia + H̄ (2),ex + H̄ (2),de,

(A1)

where

H̄ (2),dia = 1

2

∑
i �= j
σ

3∑
x=0

K (1)
i jσ,x p̂i jσ̄ ,x(n̂iσ − n̂ jσ ) (A2)

corresponds to diagonal contributions with K (1)
i jσ,x =

−2ti jλi jσ,x and

H̄ (2),ex = 1

2

∑
i �= j
σ

J (1)
i jσ (γ̂i jσ γ̂ jiσ̄ + γ̂ jiσ γ̂i jσ̄ ) (A3)

corresponds to exchange terms, couples spins of different
sites, and acts solely in the Heisenberg subspace with J (1)

i jσ =
ti j (λi jσ,1 − λi jσ,2). Finally,

H̄ (2),de = 1

2

∑
i �= j
σ

L(1)
i jσ (γ̂i jσ γ̂i jσ̄ + γ̂ jiσ γ̂ jiσ̄ ) (A4)

creates and annihilates double occupations, with L(1)
i jσ =

−ti j (λi jσ,1 − λi jσ,2), and thus does not act on the Heisenberg
subspace at half band filling. At this stage, the perturbed
Hamiltonian is stable through the Heisenberg space. The
third-order contributions lead to

H̄ (3) = 1
3S

2(V̂ ) = 1
3 [Ŝ, [Ŝ, V̂ ]] = H̄ (3),cpl, (A5)

where

H̄ (3),cpl = 1

2

∑
i �= j
σ

3∑
x=0

T (2)
i jσ,x p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ ), (A6)

with

T (2)
i jσ,0 = 4ti jλ

2
i jσ,0,

T (2)
i jσ,1 = 2ti j[λi jσ,1(2λi jσ,1 + (λi jσ,1 − λi jσ,2))

+ (λi jσ,1 − λi jσ,2)2],

T (2)
i jσ,2 = 2ti j[λi jσ,2(2λi jσ,2 + (λi jσ,2 − λi jσ,1))

+ (λi jσ,2 − λi jσ,1)2], (A7)

and

T (2)
i jσ,3 = 4ti jλ

2
i jσ,3. (A8)

Obviously, H̄ (3),cpl couples states from the Heisenberg sub-
space to the other states belonging to the complementary
subspace. Hence, already by truncating at the third order,
the similar Hamiltonian H̄ = H0 + ∑3

n=2 H̄ (n) is not block-
diagonal (i.e., stable) anymore with respect to the Heisenberg
subspace, as one can expect since the SW generator Ŝ is
designed to keep H̄ block-diagonal at first order only, see
Fig. 1.

Interestingly, the form of H̄ (3),cpl in Eq. (A6) is analogous
to the original V̂ which can be rewritten as

V̂ = 1

2

∑
i j

3∑
x=0

ti jσ,x p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ ), (A9)

with ti jσ,x = −ti j , ∀0 � x � 3. Given the SW generator, see
Eq. (19),

Ŝ = 1

2

∑
i �= j,σ

3∑
x=0

λi jσ,x p̂i jσ̄ ,x(γ̂i jσ − γ̂ jiσ ), (A10)

where the coefficients λi jσ,x are defined in Eqs. (21)–(24), the
definition Ĥ = Ĥ0 + V̂ and the unitary transformation eŜ , one
obtains the transformed Hamiltonian

H̄ = eŜĤe−Ŝ

=
(∑

n

Ŝn

n!

)
Ĥ

(∑
n

(−1)nŜn

n!

)

= Ĥ0 +
∞∑

n=2

n − 1

n!
Sn−1(V̂ ), (A11)

where S (X̂ ) = [Ŝ, X̂ ] is a superoperator that transforms X̂ into
another operator acting in the same Hilbert space [34]. Within
the previous definition of Ŝ and V̂ , it can be shown that even
orders of Eq. (A11) take the following form:

S2n(V̂ ) = 1

2

∑
i �= jσ

3∑
x=0

T (2n)
i jσ,x p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ ), (A12)

while odd orders are written as

S2n+1(V̂ ) = 1

2

∑
i �= j
σ

3∑
x=0

K (2n+1)
i jσ,x p̂i jσ̄ ,x(n̂iσ − n̂ jσ )

+ 1

2

∑
i �= j
σ

J (2n+1)
i jσ (γ̂i jσ γ̂ jiσ̄ + γ̂ jiσ γ̂i jσ̄ )

+ 1

2

∑
i �= j
σ

L(2n+1)
i jσ (γ̂i jσ γ̂i jσ̄ + γ̂ jiσ γ̂ jiσ̄ ). (A13)

Moreover, interaction integrals in Eqs. (A12) and (A13) can
be recursively obtained as follows:

K (2n+1)
i jσ,x = 2λi jσ,xT (2n)

i jσ,x, (A14)

J (2n+1)
i jσ = 1

2

(
K2n+1

i jσ,2 − K (2n+1)
i jσ,1

)
, (A15)

L(2n+1)
i jσ = 1

2

(
K (2n+1)

i jσ,2 β − K (2n+1)
i jσ,1

/
β
)
, (A16)

T (2n)
i jσ,0 =−2λi jσ,0K (2n−1)

i jσ,0 = −4λ2
i jσ,0T (2n−2)

i jσ,0

T (2n)
i jσ,0 = (−1)nti jσ,0(2λi jσ,0)2n, (A17)

T (2n)
i jσ,1 = −λi jσ,1

(
3K (2n−1)

i jσ,1 − K (2n−1)
i jσ,2 − 2J (2n−1)

i jσ

)
+ 2λi jσ,2L(2n−1)

i jσ , (A18)
T (2n)

i jσ,2 = −λi jσ,2
(
3K (2n−1)

i jσ,2 − K (2n−1)
i jσ,1 + 2J (2n−1)

i jσ

)
− 2λi jσ,1L(2n−1)

i jσ , (A19)
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and, finally,

T (2n)
i jσ,3 = −2λi jσ,3K (2n−1)

i jσ,3 = −4λ2
i jσ,3T (2n−2)

i jσ,3

= (−1)nti jσ,3(2λi jσ,3)2n, (A20)

with βi jσ = λi jσ,1/λi jσ,2 and the initial condition T (0)
i jσ,x =

ti jσ,x.
We uncouple Eqs. (A18) and (A19) by introducing the

following geometric series:

W (2n)
1 = λi jσ,2T (2n)

i jσ,1 + λi jσ,1T (2n)
i jσ,2

= W (0)
1 (−1)n(2α)2n, (A21)

and

W (2n)
2 = λi jσ,1T (2n)

i jσ,1 − λi jσ,2T (2n)
i jσ,2

= W (0)
2 (−1)n(4α)2n, (A22)

with α2 = (λ2
i jσ,1 + λ2

i jσ,2)/2 and the initial conditions W (0)
1 =

λi jσ,2ti jσ,1 + λi jσ,1ti jσ,2 and W (0)
2 = λi jσ,1ti jσ,1 − λi jσ,2ti jσ,2,

thus leading to

T (2n)
i jσ,1 = (−1)n

λi jσ,2(1 + β2)

[
W (0)

1 (2α)2n + W (0)
2 (4α)2nβ

]
,

(A23)

and

T (2n)
i jσ,2 = (−1)n

λi jσ,2(1 + 1/β2)

[
W (0)

1 (2α)2n − W (0)
2 (4α)2n/β

]
.

(A24)

Summing all odd and even contributions at the infinite order
allows us to recover Eq. (28) to Eq. (29). The values of the
different interaction integrals at infinite order can be obtained
using the recursive relations, for instance for Ti jσ,0,

Ti jσ,0 =
∞∑

n=0

2n

(2n + 1)!
T (2n)

i jσ,0

= ti jσ,0

∞∑
n=0

2n(−1)n

(2n + 1)!
(2λi jσ,0)2n

= ti jσ,0

∞∑
n=0

(−1)n

(2n)!
(2λi jσ,0)2n

− ti jσ,0

λi jσ,0

∞∑
n=0

(−1)n

(2n + 1)!
(2λi jσ,0)2n+1

= ti jσ,0[cos(2λi jσ,0) − sinc(2λi jσ,0)]. (A25)

The other integrals are similarly obtained and read, for the
electronic integrals T corresponding to the coupling between
the Heisenberg subspace and its complementary subspace, as
follows:

Ti jσ,1 = W (0)
1

λi jσ,2
(
1 + β2

i jσ

) [cos(2α) − sinc(2α)]

+ W (0)
2

λi jσ,1
(
1 + 1/β2

i jσ

) [cos(4α) − sinc(4α)], (A26)

Ti jσ,2 = W (0)
1

λi jσ,1
(
1 + 1/β2

i jσ

) [cos(2α) − sinc(2α)]

− W (0)
2

λi jσ,2
(
1 + β2

i jσ

) [cos(4α) − sinc(4α)], (A27)

Ti jσ,3 = ti jσ,3[cos(2λi jσ,3) − sinc(2λi jσ,3)], (A28)

for the electronic integrals K associated to operators that act
diagonally on each subspace,

Ki jσ,0 = ti jσ,0[sin(2λi jσ,0) − λi jσ,0 sinc2(λi jσ,0)], (A29)

Ki jσ,1 = W (0)
1

βi jσ + 1/βi jσ
[2 sinc(2α) − sinc2(α)]

× W (0)
2

1 + 1/β2
i jσ

[2 sinc(4α) − sinc2(2α)], (A30)

Ki jσ,2 = W (0)
1

βi jσ + 1/βi jσ
[2 sinc(2α) − sinc2(α)]

− W (0)
2

1 + β2
i jσ

[2 sinc(4α) − sinc2(2α)], (A31)

Ki jσ,3 = ti jσ,3[sin(2λi jσ,3) − λi jσ,3 sinc2(λi jσ,3)], (A32)

for the electronic integrals J associated to the operator which
couples spins,

Ji jσ = 1

2
(Ki jσ,1 − Ki jσ,2), (A33)

and, finally, for the electronic integrals L associated to the
operator which creates and annihilates double occupations,

Li jσ = 1

2
(Ki jσ,1/βi jσ − βi jσ Ki jσ,2), (A34)

respectively. For the homogeneous case, the associated inte-
grals are simply given by

Ti jσ,0 = Ti jσ,3 = Ki jσ,0 = Ki jσ,3 = 0, (A35)

Ti jσ,1 = Ti jσ,2 = −t[cos (4t/U ) − sinc (4t/U )], (A36)

and

Ji jσ = Ki jσ,1 = −Ki jσ,2 = −Li jσ

= −t[sin (4t/U ) − 2t

U
sinc2 (2t/U )]/2. (A37)
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APPENDIX B: RECURSIVE RELATIONS FOR THE
VARIATIONAL SCHRIEFFER-WOLFF

TRANSFORMATION

The variational SW transformation given in Eq. (33) leads
to the following transformed Hamiltonian:

H̄ (θ ) = eθ ŜĤe−θ Ŝ

= Ĥ0 + V̂ (1 − θ ) +
∞∑

n=2

θn−1(n − θ )

n!
Sn−1(V̂ ). (B1)

Interestingly, Eqs. (A12) and (A13) still hold in this case,
such that a strategy similar to the one introduced in
Appendix A can be used to obtain interaction integrals at each
order, recursively. The summation to the infinite order is then
possible, thus leading to Eq. (35) with the electronic integrals
T (θ ) corresponding to the coupling between the Heisenberg
subspace and its complementary subspace,

Ti jσ,0(θ ) = ti jσ,0[cos(2θλi jσ,0) − θsinc(2θλi jσ,0)], (B2)

Ti jσ,1(θ ) = W (0)
1

λi jσ,2
(
1 + β2

i jσ

) [cos(2θα) − θsinc(2θα)]

+ W (0)
2

λi jσ,1
(
1 + 1/β2

i jσ

) [cos(4θα) − θsinc(4θα)],

(B3)

Ti jσ,2(θ ) = W (0)
1

λi jσ,1
(
1 + 1/β2

i jσ

) [cos(2θα) − θsinc(2θα)]

− W (0)
2

λi jσ,2
(
1 + β2

i jσ

) [cos(4θα) − θsinc(4θα)],

(B4)

Ti jσ,3(θ ) = ti jσ,3[cos(2θλi jσ,3) − θsinc(2θλi jσ,3)], (B5)

the electronic integrals K (θ ) associated to operators that acts
diagonally on each subspace,

Ki jσ,0(θ ) = ti jσ,0[sin(2θλi jσ,0) − λi jσ,0θ
2 sinc2(θλi jσ,0)],

(B6)

Ki jσ,1(θ ) = W (0)
1 θ

βi jσ + 1/βi jσ
[2 sinc(2θα) − θsinc2(θα)]

× W (0)
2 θ

1 + 1/β2
i jσ

[2 sinc(4θα) − θsinc2(2θα)]

(B7)

Ki jσ,2(θ ) = W (0)
1 θ

βi jσ + 1/βi jσ
[2 sinc(2θα) − θsinc2(θα)]

− W (0)
2 θ

1 + β2
i jσ

[2 sinc(4θα) − θsinc2(2θα)] (B8)

Ki jσ,3(θ ) = ti jσ,3[sin(2θλi jσ,3) − λi jσ,3θ
2 sinc2(θλi jσ,3)],

(B9)

and finally, the electronic integrals J (θ ) and L(θ ) associated
to spin-spin operators and doubly occupied empty sites oper-

ators,

Ji jσ (θ ) = 1

2
(Ki jσ,1(θ ) − Ki jσ,2(θ )), (B10)

and

Li jσ (θ ) = 1

2
(Ki jσ,1(θ )/βi jσ − βi jσ Ki jσ,2(θ )), (B11)

respectively.
In the following we show that for the homogenous case and

at the saddle point, the variational SW transformation with
generator Ĝ = θ Ŝ fulfills the VV condition in Eq. (10). More
precisely, in this case, Eq. (10) reads

[θ Ŝ, Ĥ0] = −V̂ −
∞∑

n=1

cnθ
2nS2n(V̂ ),

θV̂ = V̂ +
∞∑

n=1

cnθ
2nS2n(V̂ ). (B12)

Inserting Eq. (A12) on the right-hand side of Eq. (B12) with
T (2n)

i jσ,0 = T (2n)
i jσ,3 = 0 and T (2n)

i jσ,1 = −T (2n)
i jσ,2 = (−1)n4t/U for the

homogeneous case [see Eqs. (A17), (A20), (A23), and (A24)]
leads to

θV̂ =
[

1 +
∞∑

n=1

cn(−1)n

(
4tθ

U

)2n
]

V̂ . (B13)

Using cn = B2n22n/(2n)! = (−1)n−1|B2n|22n/(2n)!, we
obtain

θ = 1 −
∞∑

n=1

|B2n|22n

(2n)!

(
4tθ

U

)2n

, (B14)

θ = 4tθ

U
cotan

(
4tθ

U

)
, (B15)

or, equivalently, θ = (U/4t ) tan−1 (4t/U ), which is the ana-
lytical expression of the minimizing variational parameter in
Eq. (38).

APPENDIX C: ITERATIVE GENERATOR

In this section, we detail the construction of the iterative
transformation, in the spirit of the Foldy-Wouthuysen trans-
formation [33]:

U (Ns ) =
Ns−1∏
s=0

eŜ(s)
. (C1)

At each iteration, the generator takes the form

Ŝ(s) = 1

2

∑
i �= j,σ

∑
x

λ
(s)
i jσ,x p̂i jσ̄ ,x(γ̂i jσ − γ̂ jiσ ), (C2)

and the iteration s = 0 refers to the standard SW transforma-
tion at infinite order, for which λ

(0)
i jσ,x parameters are set to

satisfy Eq. (11), i.e.,

[Ĥ0, Ŝ(0)] = V̂X . (C3)

This equation can be rewritten as follows:

∑
i �= j,σ

3∑
x=0

(
f (0)
i jσ,x

(
λ

(0)
i jσ,x

) − ti jσ,x
)
p̂i jσ̄ ,x(γ̂i jσ + γ̂ jiσ ) = 0̂,

(C4)
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with

f (0)
i jσ,0 = λ

(0)
i jσ,0	μi j/2,

f (0)
i jσ,1 = λ

(0)
i jσ,1(	μi j + Ui )/2,

f (0)
i jσ,2 = λ

(0)
i jσ,2(	μi j − Uj )/2,

f (0)
i jσ,3 = λ

(0)
i jσ,x(	μi j + 	Ui j )/2 (C5)

thus leading to Eqs. (21)–(24).
Through the recursive relations, we established that

H̄0 = eŜ(0)
Ĥe−Ŝ(0)

is given by Eq. (28) where H̄ cpl is
off-block-diagonal. The iterative process consists in
repeating SW-type unitary transformation, providing that
Ĥ0 + H̄dia(s) + H̄ ex(s) + H̄de(s) → Ĥ0(s+1) and H̄ cpl(s) →
V̂ (s+1). Equation (C3) then defines the (s + 1) SW generator,

[Ĥ0(s+1), Ŝ(s+1)] = V̂ (s+1),

[Ĥ0 + H̄dia(s) + H̄ ex(s) + H̄de(s), Ŝ(s+1)] = H̄ cpl(s), (C6)

that, similarly to Eq. (C4), reduces a set of linearly coupled
equations,

f (s+1)
i jσ,x − T (s)

i jσ,x = 0, (C7)

FIG. 8. Energies of the half-filled Hubbard dimer for 	μ/t = 2
(top panel) with respect to the repulsion strength, using the varia-
tional MSW transformation method to minimize the matrix elements
of |H̄X (θ )|. The minimizing parameter θX is shown in the bottom
panel. The vertical dotted line corresponds to U = 	μ.

or, with more details,

f (s+1)
i jσ,0 = λ

(s+1)
i jσ,0

(
	μi j + 2K (s)

i jσ,0

)
,

f (s+1)
i jσ,1 = 2λ

(s+1)
i jσ,2 L(s)

i j + λ
(s+1)
i jσ,1

× (
	μi j + Ui + 3K (s)

i jσ,1 − K (s)
i jσ,2 + 2J (s)

i j

)
,

f (s+1)
i jσ,2 = −2λ

(s+1)
i jσ,1 L(s)

i jσ + λ
(s+1)
i jσ,2

× (
	μi j − Uj + 3K (s)

i jσ,2 − K (s)
i jσ,1 − 2J (s)

i j

)
,

and, finally,

f (s+1)
i jσ,3 = λ

(s+1)
i jσ,3

(
	μi j + 	Ui j + 2K (s)

i jσ,3

)
.

It follows straightforwardly that

λ
(s+1)
i jσ,0 = T (s)

i jσ,0/(	μi j + 2K (s)
i jσ,0), (C8)

λ
(s+1)
i jσ,1 = 2T (s)

i jσ,2L(s)
i jσ + T (s)

i jσ,1B(s)
2,i jσ

4L(s)
i jσ L(s)

i jσ + B(s)
1,i jσ B(s)

2,i jσ

, (C9)

λ
(s+1)
i jσ,2 = −2T (s)

i jσ,1L(s)
i jσ + T (s)

i jσ,2B(s)
1,i jσ

4L(s)
i jσ L(s)

i jσ + B(s)
1,i jσ B(s)

2,i jσ

, (C10)

and
λ

(s+1)
i jσ,3 = T (s)

i jσ,3

/(
	μi j + 	Ui j + 2K (s)

i jσ,3

)
, (C11)

FIG. 9. Top panel: Energies of the half-filled Hubbard dimer for
	μ/t = 2 with respect to the repulsion strength, using the variational
SW method to minimize the energy 〈�Heis|H̄ (θ )|�Heis〉 (orange
triangles) or 〈�α=0

Ionic|H̄ (θ )|�α=0
Ionic〉 (blue crosses). Bottom panel: Min-

imizing parameter θHeis (yellow crosses) and θIonic (blue dots). The
vertical dotted line corresponds to U = 	μ.
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with B(s)
1,i jσ = 	μi j + Ui + 3K (s)

i jσ,1 − K (s)
i jσ,2 + 2J (s)

i jσ and

B(s)
2,i jσ = 	μi j − Uj + 3K (s)

i jσ,2 − K (s)
i jσ,1 − 2J (s)

i jσ .

APPENDIX D: COST FUNCTIONS

In the variational approach described in Sec. III B, one can
optimize the scaling parameter θ to minimize the contribu-
tions from the coupling operator H̄X (θ ) or to minimize the
energy of H̄ (θ ) restricted to the Heisenberg subspace. In this
section, we investigate the difference of the two strategies.

The first one requires us to minimize the Frobenius norm
||H̄X (θ )||F , for which the saddle point θX gives the transfor-
mation that maximally decouples the Heisenberg subspace
� from the complementary subspace, without any warranty
that the low-energy ground state belongs to �. On a quantum
computer, it requires the estimation of off-diagonal elements
〈�i|H̄ (θ )|� j〉, i belonging to � and j to the complementary
subspace, which is generally nontrivial, although one can note
some recent improvements made in Refs. [46] and [47]. Zhang
and coworkers [42] used a similar cost function, evaluated
using only the estimation of off-diagonal terms over states
belonging to �. In Fig. 8, we plot the minimizing θX and

the energies associated to the rotated states U †(θX )|�Heis〉 and
U †(θX )|�Ionic〉.

The other method consists in minimizing the energy
〈�Heis|U (θ )HU †(θ )|�Heis〉 (〈�Ionic|U (θ )HU †(θ )|�Ionic〉)
with respect to θ and is analog to the VQE algorithm.
The saddle point obtained is denoted as θHeis (θIonic) and
gives the transformation that maximally overlaps the rotated
Heisenberg (Ionic) state with the exact ground state. Results
are shown in Fig. 9.

Comparing Fig. 8 to Fig. 9, one can directly see that min-
imizing the energy with respect to the Heisenberg state does
work for U � 	μ only, where θHeis � θX , while minimizing
the energy with respect to the ionic state works only for
U � 	μ, where θionic � θX . Note that in virtue of the vari-
ational principle, the energies of the states U †(θHeis)|�Heis〉
and U †(θIonic)|�Ionic〉 are always below U †(θX )|�Heis〉 and
U †(θX )|�Ionic〉, respectively, for the entire range of correlation
regime. Therefore, minimizing ||H̄X (θ )||F gives the rotation
that maximally satisfies the VV conditions [Eq. (10)] but, in
contrast to the VQE-like algorithm, it does not ensure that
the Heisenberg space � maximally overlaps with the low-
effective subspace.
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4, 023190 (2022).

[21] S. Stanisic, J. L. Bosse, F. M. Gambetta, R. A. Santos, W.
Mruczkiewicz, T. E. O’Brien, E. Ostby, and A. Montanaro, Nat.
Commun. 13, 5743 (2022).

[22] P.-L. Dallaire-Demers, J. Romero, L. Veis, S. Sim, and A.
Aspuru-Guzik, Quant. Sci. Technol. 4, 045005 (2019).

[23] P.-L. Dallaire-Demers, M. Stȩchły, J. F. Gonthier, N. T.
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