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We theoretically investigate an intrinsic nonlinear anomalous Hall effect (INAHE) in space-time (PT )
symmetric antiferromagnetic metals. The INAHE is characterized by an asymmetric and nondissipative part
of the second-order electric conductivity tensor in the clean limit in contrast to the Drude-type symmetric
conductivity tensor with dissipation. By introducing a multipole description, we show that the emergence of
the INAHE is due to active odd-parity magnetic quadrupoles or magnetic toroidal dipoles under magnetic
orderings. In order to clarify the microscopic origin of the INAHE, we specifically consider a fundamental
tight-binding model of a three-dimensional tetragonal system. We demonstrate that the INAHE arises from the
effective coupling between magnetic ordering and antisymmetric spin-orbit interaction. We also discuss essential
electron hopping paths driving the INAHE.
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I. INTRODUCTION

Intrinsic properties of transport phenomena are important
to investigate the functional properties inherent in materials.
One of the prominent examples is the anomalous linear Hall
effect [1–6], whose intrinsic property is accounted for by the
Berry curvature in the absence of time-reversal T symmetry.
The study of transport phenomena has been extended into the
second-order nonlinear regime, where the breaking of spatial
inversion P symmetry rather than T symmetry is necessary
[7]. In the T -symmetric system, the nonlinear conductivity
is closely related to the Berry curvature dipole (BCD) [8],
while it is related to an asymmetric band deformation and a
quantum metric (QM) tensor in the T -broken system [9–12].
Among them, the nonlinear conductivity induced by the QM
tensor is intrinsic and independent of the relaxation rate in the
clean limit, which might help identify the direction of the Néel
vector in antiferromagnetic (AFM) metals [11,12].

According to the nonlinear response theory based on the
Kubo formula, there are mainly three contributions to the
second-order electric conductivity: the Drude, BCD, and
intrinsic terms [13–15]. The Drude term contributes to a sym-
metric tensor, whereas the BCD and intrinsic terms contribute
to an asymmetric tensor and are the origin of the nonlin-
ear Hall effect. In particular, the latter intrinsic term leads
to the intrinsic nonlinear anomalous Hall effect (INAHE)
without dissipation. Through the microscopic model analyses,
the key ingredients to cause the Drude-type and BCD-type
conductivity have been revealed; the former is induced by
an asymmetric band modulation arising from an effective
coupling between magnetic ordering and antisymmetric spin-
orbit interactions (ASOIs) [13,16] or hopping modulations
due to an alignment of the local scalar chirality [17,18],
whereas the latter is induced by asymmetric hopping paths
causing nonzero BCD in momentum space [8,15,19]. Mean-
while, the microscopic mechanism for intrinsic nonlinear

conductivity, including the INAHE, has yet to be fully
elucidated.

This paper investigates the INAHE based on symmetry and
model analyses. First, by performing the symmetry analysis,
we show that the INAHE is related to the emergence of the
magnetic quadrupole and magnetic toroidal dipole, which
corresponds to the rank-2 axial and rank-1 polar tensors,
respectively. The former multipole induces the pure INAHE
without the Drude-type contribution. Next, we discuss the
microscopic mechanism of the INAHE by analyzing a min-
imal model in a three-dimensional four-sublattice tetragonal
system. By taking into account electron hoppings and ASOI
under two types of noncollinear magnetic orderings accom-
panying the magnetic quadrupole or magnetic toroidal dipole,
we obtain two important ingredients to cause the INAHE: One
is the effective coupling between magnetic order and ASOI,
and the other is the closed paths consisting of the nearest-
neighbor and further-neighbor hoppings. We also discuss the
difference in the model parameter dependence in the INAHE
between the magnetic orderings with magnetic quadrupole
and magnetic toroidal dipole.

The organization of this paper is as follows. Section II in-
troduces the second-order nonlinear conductivity based on the
Kubo formula. To discuss the gauge-invariant quantities, we
separate the conductivity tensor into the Ohmic and Hall parts
discussed in Ref. [20]. From the symmetry viewpoint, we also
clarify the relationship between the Ohmic/Hall parts and
activated multipoles. Section III analyzes a minimum model
on a layered four-sublattice tetragonal structure under AFM
orderings with magnetic quadrupole and magnetic toroidal
dipole. By studying the model parameter dependence and
comparing them with the numerical results in each ordered
state, we obtain the crucial model parameters and the effective
closed paths contributing to the INAHE. Section IV summa-
rizes this paper and lists the candidate materials to encourage
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the observations of the pure INAHE based on the magnetic
point groups (MPGs).

II. SECOND-ORDER CONDUCTIVITY

A. Definition from the second-order Kubo formula

We first briefly introduce the expression of the nonlinear
conductivity to make the present paper self-contained, al-
though its derivation has already been given in the previous
literature [13,15]. The second-order nonlinear conductivity
tensor σμ;αβ defined as jμ = σμ;αβEαEβ with μ, α, β = x, y, z
can be derived from the nonlinear Kubo formula. In the clean
and static limit, the second-order conductivity is classified
according to the order of the phenomenological relaxation
time τ as

σμ;αβ = σ D
μ;αβ + σ BCD

μ;αβ + σ int
μ;αβ, (1)

where

σ D
μ;αβ = − e3τ 2

2h̄3V

∑
kn

fnk∂μ∂α∂βεnk, (2a)

σ BCD
μ;αβ = e3τ

2h̄2V

∑
kn

fnkεμακDβκ
n (k) + (α ↔ β ), (2b)

σ int
μ;αβ = e3

h̄V

∑
k

εn �=εm∑
n,m

[
1

2

fnk − fmk

(εnk − εmk)2
gnm

αβ (k)∂μεnk

+ 2

(
−∂ fnk

∂εnk

)
∂αεnk

gnm
μβ (k)

εnk − εmk

]
+ (α ↔ β ). (2c)

We here adopt a symmetric gauge as σμ;αβ = σμ;βα . The first
term in Eq. (1) represents the Drude term proportional to τ 2,
where εnk and fnk are a band energy and a Fermi distribution
function with wave vector k and band index n, respectively.
e, h̄, and V are the elementary charge, the reduced Planck
constant, and the system volume, respectively. The second
term in Eq. (1) represents the BCD term proportional to τ ,
where εμακ is the Levi-Civita tensor and Dβκ

n (k) = ∂β
κ
n (k)

is the BCD with the Berry curvature 
κ
n (k) given by


κ
n (k) = ih̄2

∑
m �=n

εκαβ

vα,nm(k)vβ,mn(k)

(εnk − εmk)2
. (3)

vα,nm(k) is a Bloch representation for the velocity operator
v̂α (k) = ∂α ĥ(k)/h̄ [ĥ(k) is the k-resolved Hamiltonian] de-
fined by

vα,nm(k) ≡ 〈nk|v̂α (k)|mk〉 (4)

with the eigenstates |nk〉 and |mk〉. The expressions for the
Drude and BCD terms coincide with those obtained by the
semi-classical Boltzmann formalism [8,21].

The third term in Eq. (1) that we focus on in the present
study represents the intrinsic term independent of τ , where
gnm

αβ (k) is referred to as a QM tensor [9]. The expression of
gnm

αβ (k) is given by

gnm
αβ (k) = h̄2

2

vα,nm(k)vβ,mn(k) + vβ,nm(k)vα,mn(k)

(εnk − εmk)2
. (5)

The first term in the square bracket in Eq. (2c) indicates the
Fermi sea term, while the second term is the Fermi surface
term.

The different terms in Eq. (1) are distinguished by sym-
metry. In terms of T symmetry, the Drude and intrinsic terms
are T -odd, while the BCD is T -even. Thus σ D

μ;αβ and σ int
μ;αβ

become nonzero in magnetic ordered states, while σ BCD
μ;αβ be-

comes nonzero even in the paramagnetic state. In addition, as
all the terms are P-odd, σ BCD

μ;αβ vanishes for the PT -symmetric
systems as found in the AFM systems.

Their transformation property concerning the point-group
symmetry is also different from each other. To demonstrate
that, we decompose σμ;αβ into an Ohmic part (σ O

μ;αβ) and a
Hall part (σ H

μ;αβ) as follows [20]:

σμ;αβ = σ O
μ;αβ + σ H

μ;αβ, (6)

where σ O
μ;αβ is the symmetric tensor for the interchange of

(μ ↔ α, β ) represented by

σ O
μ;αβ = σ O

α;μβ = σ O
β;αμ. (7)

On the other hand, σ H
μ;αβ is asymmetric under such an inter-

change. Compared to the expressions derived from the Kubo
formula in Eqs. (2), one obtains

σ O
μ;αβ = σ D

μ;αβ + σ int,O
μ;αβ ,

σ H
μ;αβ = σ BCD

μ;αβ + σ int,H
μ;αβ . (8)

Thus σ D
μ;αβ (σ BCD

μ;αβ ) contributes to the Ohmic (Hall) part, while

σ int
μ;αβ contributes to both parts, where we denote as σ int,O

μ;αβ

and σ int,H
μ;αβ . Among them, σ int,H

μ;αβ corresponds to the INAHE.

To focus on the behavior of σ int,H
μ;αβ , we suppose the PT -

symmetric AFMs in the following discussion, i.e., σ BCD
μ;αβ = 0

and σ int,H
μ;αβ �= 0.

Let us decompose σ int
μ;αβ in Eq. (2c) into σ int,O

μ;αβ and σ int,H
μ;αβ . In

the PT -symmetric AFMs, two spin-degenerate bands appear,
i.e., εnk = εmk for a pair of n �= m. To simplify the expression,
we replace the band index n, m as ν, ν̄ which satisfies ν �= ν̄

and ενk �= εν̄k. Then, the summation over n, m is rewritten as

εn �=εm∑
n,m

→
∑
ν,ν̄

∑
n∈ν

∑
m∈ν̄

.

We thereby obtain

σ int
μ;αβ = e3

V

∑
k

∑
ν,ν̄

[
fνk − fν̄k

(ενk − εν̄k)2
vν

μ(k)gνν̄
αβ (k)

+2

(
−∂ fνk

∂ενk

)
vν

β (k)gνν̄
μα (k) + vν

α (k)gνν̄
μβ (k)

ενk − εν̄k

]
, (9)

where we introduce an interband QM tensor for the bands ν, ν̄

as

gνν̄
αβ (k) ≡

∑
n∈ν

∑
m∈ν̄

gnm
αβ (k) (10)
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and vν
μ(k) = ∂μενk/h̄. Finally, σ int

μ;αβ in Eq. (9) is decomposed
into

σ int,O
μ;αβ = e3

3V

∑
k

∑
ν,ν̄

[
fνk − fν̄k

ενk − εν̄k
+ 4

(
−∂ fνk

∂ενk

)]

× vν
μ(k)gνν̄

αβ (k) + vν
α (k)gνν̄

μβ (k) + vν
β (k)gνν̄

μα (k)

ενk − εν̄k
,

σ int,H
μ;αβ = e3

3V

∑
k

∑
ν,ν̄

[
fνk − fν̄k

ενk − εν̄k
− 2

(
−∂ fνk

∂ενk

)]

× 2vν
μ(k)gνν̄

αβ (k) − vν
α (k)gνν̄

μβ (k) − vν
β (k)gνν̄

μα (k)

ενk − εν̄k
.

(11)
We evaluate these expressions for the microscopic lattice
model in Sec. III.

B. Relation with multipoles

To discuss the relation with the microscopic electronic
degrees of freedom in the intrinsic term, we introduce the
augmented multipole description [22,23]. As the transfor-
mation properties of σ O

μ;αβ and σ H
μ;αβ are different, their

corresponding multipoles are different. Since σμ;αβ is the
time-reversal-odd axial rank-3 tensor, the relevant multi-
poles are the rank-1–3 multipoles: the rank-1 magnetic
toroidal dipole (Tx, Ty, Tz ), the rank-2 magnetic quadrupole
(Mu, Mv, Myz, Mzx, Mxy), and the rank-3 magnetic toroidal
octupole (T α

x , T α
y , T α

z , T β
x , T β

y , T β
z , Txyz ). The correspondence

between the components of σ O, σ H and multipole is given by

σ O =

⎡
⎢⎢⎢⎢⎢⎢⎣

3T ′
x + 2T α

x T ′
y − T α

y − T β
y T ′

z − T α
z + T β

z

T ′
x − T α

x + T β
x 3T ′

y + 2T α
y T ′

z − T α
z − T β

z

T ′
x − T α

x − T β
x T ′

y − T α
y + T β

y 3T ′
z + 2T α

z

Txyz T ′
z − T α

z − T β
z T ′

y − T α
y + T β

y

T ′
z − T α

z + T β
z Txyz T ′

x − T α
x − T β

x
T ′

y − T α
y − T β

y T ′
x − T α

x + T β
x Txyz

⎤
⎥⎥⎥⎥⎥⎥⎦

T

,

(12a)

σ H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2(Ty − Mzx ) 2(Tz + Mxy)
2(Tx + Myz ) 0 2(Tz − Mxy)
2(Tx − Myz ) 2(Ty + Mzx ) 0

Mu + Mv −(Tz − Mxy) −(Ty + Mzx )
−(Tz + Mxy) −Mu + Mv −(Tx − Myz )
−(Ty − Mzx ) −(Tx + Myz ) −2Mv

⎤
⎥⎥⎥⎥⎥⎥⎦

T

, (12b)

where the matrix representation of the conductivity tensor σ

has been expressed as

σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σx;xx σy;xx σz;xx

σx;yy σy;yy σz;yy

σx;zz σy;zz σz;zz

σx;yz σy;yz σz;yz

σx;zx σy;zx σz;zx

σx;xy σy;xy σz;xy

⎤
⎥⎥⎥⎥⎥⎥⎦

T

,

(Tx, Ty, Tz ) and (T ′
x , T ′

y , T ′
z ) stand for the independent mag-

netic toroidal dipoles and T means the transpose of a matrix.
The magnetic quadrupole (magnetic toroidal octupole) ap-
pears only in σ H (σ O), while the magnetic toroidal dipole

TABLE I. The relation between the Ohmic/Hall part of the
second-order conductivity tensor and the activated multipoles. M and
MT multipoles represent magnetic and magnetic toroidal multipoles,
respectively.

Multipole Ohmic Hall

MT dipole
√ √

M quardupole –
√

MT octupole
√

–

appears in both conductivity. Thus the pure INAHE is ex-
pected when the magnetic quadrupole is activated under
magnetic orderings. We present the relation between the σμ;αβ

and the multipoles in Table I.

III. MODEL CALCULATIONS

As discussed in the previous section, the INAHE occurs
when either a magnetic quadrupole or magnetic toroidal
dipole is activated. In this section, we evaluate the INAHE
based on the microscopic lattice model to examine the key
ingredients for the INAHE from the viewpoint of the elec-
tronic degrees of freedom. First, we construct a minimal
model under the four-sublattice layered tetragonal structure,
where the PT -symmetric noncollinear AFM structures can
accompany the magnetic quadrupole and magnetic toroidal
dipole in Sec. III A. Next, we show the numerical results for
the INAHE in the model in Sec. III B. Then, we discuss the
important contributions to the INAHE of the model parame-
ters in Sec. III C.

A. Hamiltonian

To examine the behavior of the INAHE, we construct a
minimal lattice model, as shown in Fig. 1; the lattice structure
consists of the four-sublattice layered tetragonal structure,
whose point group belongs to D4h (4/mmm1′). The lattice
constant is set to be a + b = 2 (a = b = 1) and c = 1 for

FIG. 1. The four-sublattice layered tetragonal structure with the
hopping parameters (ta, tb, t ′

a, t ′
b, tc ) and g vector denoted as the blue

arrows in our model in Eq. (13). a, b, and c are the lattice constants.
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FIG. 2. The noncollinear spin configurations to accompany
(a) the magnetic quadrupole and (b) the magnetic toroidal dipole. The
red arrows represent the spin moments. We also show the magnetic
point groups and irreducible representations in D4h.

simplicity. The tight-binding Hamiltonian is given by

H =
∑

k

∑
γ ,γ ′

∑
σ,σ ′

ĉ†
kγ σ

hγ γ ′
σσ ′ (k)ĉkγ ′σ ′ , (13)

where ĉ†
kγ σ

and ĉkγ σ are the fermionic creation and an-
nihilation operators of the wave number k, the sublattice
γ = A–D and the spin σ =↑,↓. The Hamiltonian matrix
[ĥ(k)](γ σ ),(γ ′σ ′ ) ≡ hγ γ ′

σσ ′ (k) consists of three parts as follows:

ĥ(k) = ĥhop(k) + ĥASOI(k) + ĥmf . (14)

The first term ĥhop(k) represents the hopping term including
the hoppings along the x or y direction (z direction), ta and
tb (tc), and the hoppings along the in-plane diagonal direction,
t ′
a and t ′

b, as shown in Fig. 1. The second term ĥASOI(k)
represents the sublattice-dependent ASOI, which originates
from relativistic spin-orbit coupling under the lack of local
inversion symmetry at each lattice site. We here take into
account the ASOI along the out-of-plane direction, which is
represented by

ĥASOI(k) = δγ γ ′gγ (k) · (σ)σσ ′

= δγ γ ′α1 sin kz{ẑ · [eγ × (σ)σσ ′]}, (15)

where eA = (−1,−1, 0), eB = (1, 1, 0), eC = (1,−1, 0),
eD = (−1, 1, 0), ẑ = (0, 0, 1), and σ = (σx, σy, σz ) is the vec-
tor of the Pauli matrix in spin space. gγ (k) is the so-called
(sublattice-dependent) g vector, and its direction in each sub-
lattice is presented in Fig. 1, which forms the vortex structure
to satisfy fourfold rotational symmetry [24–27]. It is noted
that

∑
γ gγ (k) = 0 owing to the presence of global inversion

symmetry.
The third term ĥmf stands for the molecular field (MF)

corresponding to the magnetic order, which arises from the
MF approximation to the Coulomb interaction. We consider
two types of noncollinear magnetic textures with magnetic
quadrupole Mu and magnetic toroidal dipole Tz as shown in
Figs. 2(a) and 2(b), respectively. The expression of the MF
Hamiltonian matrix is given by

ĥmf =
{

hAFδγ γ ′eγ · (σ)σσ ′

hAFδγ γ ′ ẑ · [eγ × (σ)σσ ′]
(16)

with the magnitude of the MF hAF. The first row corresponds
to the MF for the magnetic quadrupole Mu, while the second
row corresponds to that for the magnetic toroidal dipole Tz. In
the case of Mu (Tz ), the MPG reduces to 4/m′m′m′ (4/m′mm)

[28]; P symmetry is broken while keeping PT symmetry in
both cases. These odd-parity multipoles have been recently
discussed in AFM metals since they give rise to unconven-
tional off-diagonal responses and quantum transports, such as
the magnetoelectric effect [29–33], nonlinear Hall effect [34],
and nonreciprocal spin transport [35].

For later discussion in Sec. III C, we introduce the multi-
pole description for the Hamiltonian in Eq. (14). By using the
symmetry-adapted multipole basis [36–38], the Hamiltonian
can be expressed as the product form of the cluster and bond
degrees of freedom (denoted as cluster multipole and bond
multipole, respectively) and the spin degree of freedom. For
example, the onsite degrees of freedom in the Hamiltonian
matrix is described by the cluster electric multipole Q(c), while
the off-site degrees of freedom are described by the bond
electric multipole Q(bn) and bond magnetic toroidal multipole
T (bn), where the superscript n represents the index for the
bond. The matrix representation of the relevant multipoles is
given in Appendix A.

Then, the hopping Hamiltonian ĥhop(k) can be expressed
as follows:

ĥhop(k) = ĥ1(k) + ĥ2(k) + ĥz(k),

ĥ1(k) = (ta + tb)(cx + cy)Q(b1)
0 − (ta + tb)(cx − cy)Q(b1)

v

+ (ta − tb)sxT (b1)
x + (ta − tb)syT (b1)

y ,

ĥ2(k) = (t ′
a + t ′

b)cxcyQ(b2)
0 − (t ′

a + t ′
b)sxsyQ(b2)

xy

+ (t ′
a − t ′

b)sxcyT (b2)
x + (t ′

a − t ′
b)cxsyT (b2)

y ,

ĥz(k) = 2tcczQ
(c)
0 , (17)

where the abbreviation as sα = sin kα, cα = cos kα for α =
x, y, z is used for notational simplicity. The superscript (c) in
the multipole matrices represents the cluster multipole, while
(b1) and (b2) represent the bond multipole in ĥ1(k) and ĥ2(k),
respectively. Similarly, the ASOI and MF terms are expressed
as

ĥASOI(k) = α1sz
(
Q(c)

y σx − Q(c)
x σy

) ≡ α1szT
(c)

z , (18)

and

ĥmf =
{

hAF
(
Q(c)

x σx + Q(c)
y σy

) ≡ hAFM (c)
u

hAF
(
Q(c)

y σx − Q(c)
x σy

) ≡ hAFT (c)
z

. (19)

We summarize the correspondence between multipoles in-
cluded in the Hamiltonian and their irreducible representa-
tions in Table II. It is noted that the multipole degree of
freedom belonging to the B+

1g (B+
2g) representation appears

only in ĥ1(k) [ĥ2(k)].

B. Numerical results

First, we show the band structure under the noncollinear
AFM orderings for hAF �= 0 in Figs. 3(a) and 3(b), where the
model parameters are set as

ta = 1, tb = 0.9, t ′
a = 0.5, t ′

b = 0.3, tc = 1,

α1 = 0.5, hAF = 2. (20)

There are two characteristic features in the band structures:
One is the asymmetric band modulation along the kz line with
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TABLE II. The correspondence between multipoles included in
the Hamiltonian and irreducible representations (IRs) in D4h. The
superscript ± of the irreducible representation denotes the parity with
respect to T operation.

Hamiltonian Multipole IR

ĥ1(k) Q(b1)
0 A+

1g

Q(b1)
v B+

1g

T (b1)
x , T (b1)

y E−
u

ĥ2(k) Q(b2)
0 A+

1g

Q(b2)
xy B+

2g

T (b2)
x , T (b2)

y E−
u

ĥz(k) Q(c)
0 A+

1g

ĥASOI(k) T (c)
z A−

2u

ĥmf M (c)
u A−

1u

T (c)
z A−

2u

respect to the origin (kx, ky, kz ) = (0, 0, 0) for the AFM state
with Tz, as shown in Fig. 3(b). Meanwhile, the band structure
is symmetric in the case of the AFM state with Mu, as shown
in Fig. 3(a). The appearance of the asymmetric band structure
in the AFM state with Tz is owing to a parallel alignment of
the spin moment and the g vector at each sublattice, which
leads to an effective coupling [24,39,40]. The other is the
line-node Dirac-type band dispersion with a narrow gap along
the kz line at (kx, ky) = (π/2, π/2), as denoted by the circles
in Figs. 3(a) and 3(b). This is attributed to the fact that the
noncollinear spin textures in Figs. 2(a) and 2(b) are related to
the π -flux state in the case of ta = tb and t ′

a = t ′
b [41,42]; the

narrow gap structure is owing to the breathing property of the
lattice structure.

Next, we numerically evaluate the intrinsic term in Eq. (11)
to investigate the INAHE. We set e = h̄ = 1, the tempera-
ture T = 0.01 and choose the k mesh N = 22V/(a + b)2c

as 1752 × 1000. In the AFM state with Mu, σ H
x;yz = −σ H

y;zx
becomes nonzero from Eq. (12) since only Mu is activated
among the relevant multipoles under 4/m′m′m′. Meanwhile,
σ O vanishes owing to the absence of the magnetic toroidal
dipole and octupole. Thus the pure INAHE is expected in this
case.

The red dots in Fig. 4(a) show the chemical potential
μ dependence of σ int,H

x;yz by using the model parameters in
Eq. (20). As expected from the MPG symmetry in the pres-
ence of Mu, the system exhibits nonzero σ int,H

x;yz irrespective of
μ; there are roughly four peak structures at μ  −5,−1,+1,
and +5. Since the band structure in this case is symmetric,
the microscopic origin of σ int,H

x;yz is different from that of the
Drude-type conductivity σ D, which arises from the asym-
metric band modulation. We find that these peak structures
correspond well to the narrow gap region at the band edges,
as shown in Fig. 4(b), where the black dotted lines represent
their correspondence. Such a correspondence is reasonable in
terms of the expression in Eq. (11); the narrow gap leading
to a small denominator yields a large σ int,H

x;yz . We find that the
dominant contribution arises from the Dirac-type band disper-
sion in the kx–ky plane in Fig. 4(b), which means that the QM
dipole vν

x (k)gνν̄
yz (k) = −vν

y (k′)gνν̄
zx (k′) with k′ ≡ (−ky, kx, kz )

becomes important for σ int,H
x;yz . This behavior coincides with the

semiclassical analysis [11,12]. In addition, the contributions
of the Fermi sea and Fermi surface terms are comparable to
each other, as discussed in Appendix B. We also discuss the
results for the case of a large MF in Appendix B, where we
confirm that the main contribution comes from near the Dirac
point as well in this case. When we turn off the ASOI, the QM
dipole vν

x (k)gνν̄
yz (k) completely vanishes, which indicates that

the ASOI is important for the INAHE.
The above situation qualitatively changes when different

hopping parameters are set. For example, σ int,H
x;yz vanishes by

setting t ′
a = t ′

b = 0 while the other parameters remain the
same, as shown by the blue dots in Fig. 4(a). This result
indicates that the diagonal hopping is necessary to induce

FIG. 3. Band structures for the magnetic orderings with (a) Mu under the magnetic point group (MPG) 4/m′m′m′ and (b) Tz under the MPG
4/m′mm. In each panel, the wave number (kx, ky, kz ) dependence is as follows: (kx, ky, kz ) = (0, 0, 2s) in [001], (s, s, 0) in [110], and (s, s, 2s)
in [111] with 0 � s � π . The circles indicate the narrow band gap region.
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FIG. 4. (a) Chemical potential μ dependence of σ int,H
x;yz evaluated by Eq. (11) with (red) and without (blue) the diagonal hoppings t ′

aand t ′
b

at T = 0.01. (b) Band structure along with the kx = ky = π/2 line. The black dotted lines represent the correspondence between the region of
the narrow band gap at the band edges and the conductivity peak structures.

σ int,H
x;yz , which is not accounted for by the symmetry argument

and the geometry of the band structure. We will discuss this
point in Sec. III C.

Let us discuss the other AFM state with Tz in Fig. 2(b),
where the MPG reduces to 4/m′mm. Since the relevant active
multipoles are Tz and T α

z in this case, there are three indepen-
dent tensor components in σμ;αβ : σ O

z;zz, σ O
z;xx = σ O

z;yy = σ O
x;zx =

σ O
y;yz, and σ H

z;xx = σ H
z;yy = −2σ H

x;zx = −2σ H
y;yz in Eq. (12). In

other words, not only σ H but also σ O are expected to be
nonzero in contrast to the Mu case. We ignore the contribution
from the Drude term in order to focus on the behavior of σ int

μ;αβ

[13,16], although it can also be finite owing to the asymmetric
band structure in Fig. 3(b).

Figure 5(a) shows the μ dependence of σ int,H
x;zx under the

AFM with Tz, where the same hopping and ASOI parameters
are used as those with Mu. Similar to the case with Mu, σ int,H

x;zx
becomes nonzero, which exhibits the peak or dip structures

at the band edges with a narrow gap, as shown by the dot-
ted black lines in Figs. 5(a) and 5(b). Thus the narrow gap
structure in the band dispersion plays an important role in
enhancing σ int,H

x;zx . The complicated μ dependence of σ int,H
x;zx for

−4 � μ � 4 compared to σ int,H
x;yz in the case of Mu is attributed

to the contributions between the middle two bands. Indeed,
similar μ dependence to the Mu case is obtained for a large
MF, as shown in Appendix B. It is noted that σ int,H

x;zx vanishes
in the absence of the ASOI, as vν

z (k)gνν̄
xx (k) cancels out with

vν̄
z (k)gν̄ν

xx (k).
On the other hand, there are two qualitative differences

from the result with Mu. One is the model parameter depen-
dence; σ int,H

x;zx remains nonzero values even for t ′
a = t ′

b = 0,
as shown in Fig. 5(a). This indicates the difference in the
microscopic origin of the INAHE for the magnetic quadrupole
and magnetic toroidal dipole, which will be discussed in
Sec. III C.

FIG. 5. (a) Chemical potential μ dependence of σ int,H
x;zx evaluated by Eq. (11) with (red) and without (blue) the diagonal hoppings t ′

a and t ′
b

at T = 0.01. (b) Band structure along with the kx = ky = π/2 line. The black dotted lines represent the correspondence between the region of
the narrow band gap at the band edges and the conductivity peak structures. (c) μ dependence of the Ohmic (blue) and Hall (red) part in σ int

x;zx .
(d) Results for the total intrinsic conductivity σ int

x;zx = σ int,O
x;zx + σ int,H

x;zx (blue) and σ int
z;xx = σ int,O

z;xx + σ int,H
z;xx = σ int,O

x;zx − 2σ int,H
x;zx (red).
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Another is the additional contribution to σ int
x;zx from the

Ohmic part σ int,O
x;zx in measurements. Figure 5(c) shows the μ

dependence of σ int,O
x;zx with the result for σ int,H

x;zx in Fig. 5(a) for
reference. Compared to both results, one finds that σ int,O

x;zx has
a similar μ dependence as σ int,H

x;zx so as to enhance the total
contribution σ int

x;zx = σ int,O
x;zx + σ int,H

x;zx , as shown by the blue dots
in Fig. 5(d). On the other hand, it is noted that there can be
a cancellation depending on the tensor components. For ex-
ample, the result for σ int

z;xx = σ int,O
z;xx + σ int,H

z;xx = σ int,O
x;zx − 2σ int,H

x;zx
is presented by the red dots in Fig. 5(d), where the absolute
values tend to be smaller than those in σ int

x;zx.

C. Effective closed path

In the previous section, the numerical result indicates the
characteristic hopping parameter dependence in the intrinsic
term in σμ;αβ for the AFM state with Mu. In this section, we
elucidate the essential model parameters for the INAHE in
both AFM cases. For that purpose, we evaluate the following
quantity:

�
i jk
μ;α,β =

∑
k

Tr[v̂μ(k)ĥi(k)v̂α (k)ĥ j (k)v̂β (k)ĥk (k)], (21)

which was obtained by the expansion of the nonlinear con-
ductivity tensor [15]; the order of the expansion is i + j + k,
where i, j, k are integers. The real part of �

i jk
μ;α,β contributes to

the INAHE.
Let us consider the conditions for nonzero �

i jk
μ;α,β in

Eq. (21). As the INAHE is induced by the onset of the AFM
ordering, �

i jk
μ;α,β must include the contribution of hAF; other-

wise, �i jk
μ;α,β = 0. In addition, its hAF dependence should be an

odd function since the AFM state with the different domain
leads to the opposite sign of σ int

μ;αβ . In this situation, the trace
in Eq. (21) should include other spin-dependent terms to make
the trace, at least in spin space, nonzero. In the present model
in Eq. (14), such a term corresponds to the ASOI in Eq. (18).
The remaining condition for nonzero �

i jk
μ;α,β depends on the

hopping elements in Eq. (17) so that the trace in sublattice
space becomes nonzero.

From the symmetry viewpoint, the trace can become
nonzero when the irreducible representation of the direct
product in the trace belongs to the totally symmetric repre-
sentation, i.e., A+

1g. The direct product representation of the
ASOI and MF terms is given by A−

2u ⊗ A−
1u = A+

2g in the case
of the AFM order with Mu and A−

2u ⊗ A−
2u = A+

1g in the case
of that with Tz (see Table II). In order to construct the A+

2g
representation in the former, the irreducible representation
consisting of the hoppings should include both B+

1g and B+
2g.

Thus one notices that the Q(b2)
xy -type hopping corresponding to

B+
2g in ĥ2 is essential to construct the A+

1g representation for
the AFM state with Mu. In this way, the diagonal hopping is
necessary to obtain nonzero σ int,H

μ;αβ in the AFM state with Mu,
which is consistent with the numerical results in Fig. 4(a).
Meanwhile, there is no such a constraint for the AFM state
with Tz, as it needs just the A+

1g, which is usually included in
any hoppings.

FIG. 6. The closed paths contributing to the INAHE. As a rep-
resentative, we show the paths starting from sublattice A. (a), (b),
and (c) correspond to Eqs. (23), (24), and (26), respectively. The red
(blue) arrows represent the spin moments (g vectors). The signs on
the bonds indicate the phase of each hopping.

Based on the above symmetry analysis, we directly evalu-
ate �

i jk
x;y,z to find the important model parameters for σ int,H

x;yz . In
the case of the AFM state with Mu, the lowest-order contribu-
tion to σ int,H

x;yz arises at (i, j, k) = (0, 2, 1), where �021
x;y,z is given

by

�021
x;y,z =

∑
k

Tr
[
v̂x(k)v̂y(k)ĥ2(k)v̂z(k)ĥ(k)

]
= 32hAFα1tc

(
t2
a t ′

a + t2
b t ′

b

)
. (22)

This expression indicates that nonzero σ int,H
x;yz is obtained when

hAF �= 0, α1 �= 0, and t ′
a, t ′

b �= 0, as expected in the above
symmetry argument. Moreover, one finds that tc �= 0 is also
important to cause nonzero σ int,H

x;yz . Such a relation holds for

higher-order contributions of �
i jk
x;y,z.

To further understand the microscopic process contributing
to σ int,H

x;yz , we investigate the important hopping paths in real
space. By analyzing the expression in Eq. (22), one finds one
of the contributing closed paths, which is given by

Tr
[
Q(b1)

v Q(b2)
xy T (c)

z Q(b1)
0 Q(c)

0 M (c)
u

] �= 0, (23)

where there is a following correspondence: v̂x(k) ↔ Q(b1)
v ,

v̂y(k) ↔ Q(b2)
xy , ĥ2(k) ↔ T (c)

z Q(b1)
0 , v̂z(k) ↔ Q(c)

0 , and ĥ(k) ↔
M (c)

u . We pictorially plot this process in Fig. 6(a) starting at the
sublattice A. It is noted that an order of the multipole matrices
is important; for example, a different sequence like

Tr
[
Q(b1)

v Q(b2)
xy Q(c)

0 Q(b1)
0 T (c)

z M (c)
u

]
(24)

gives no contribution to σ int,H
x;yz . The closed path in this case

is shown in Fig. 6(b). By closely looking at the difference
between Eqs. (23) and (24), one finds that the relation of the
spin and the g vector is different from each other. In the former
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TABLE III. Magnetic point group (MPG) and candidate materials to exhibit the pure INAHE of σ int,H
x;yz = −σ int,H

y;zx except for 1̄′. Each row is
classified by the existence or absence of Drude and BCD terms for other tensor components based on Ref. [11].

MPG Intrinsic Drude BCD Materials

4/m′m′m′ © × × GdB4 [44], Fe2TeO6 [45], UPt2Si2 [46], Bi2CuO4 [47], UBi2 [48], UGeSe [49]
6̄′m′2 RbFeCl3 [50], UNiGa [51], TmAgGe [52]
6/m′m′m′

4m′m′ © × © CeCoGe3 [53], CeIrGe3 [54]
6m′m′ ScMnO3 [55], HoMnO3 [56], LuFeO3 [57], Nd15Ge9C0.39 [58], Mn2Mo3O8 [59],

YbMnO3 [60], Yb0.42Sc0.58FeO3 [61]
4/m′ © © × (K,Rb)yFe2−xSe2 [62], TlFe1.6Se2 [63], K0.8Fe1.8Se2 [64], NdB4 [65]
3̄′ MnTiO3 [66], MnGeO3 [67], MgMnO3 [68], Yb3Pt4 [69]
3̄′m′ Cr2O3 [70], (Co,Mn)4Nb2O9 [71–75], Mn4Ta2O9 [76,77], U2N2(S,Se) [78], AgRuO3 [79],

Na2MnTeO6 [80]
6̄′ Cu0.82Mn1.18As [81], Tb14Ag51 [82]
6/m′ U14Au51 [83]
3m′ © © © U3(P,As)4 [84], GaV4S8 [85], CaBaCo2Fe2O7 [86], Tb(DCO2)3 [87], CrSe [88]

case, the spin moment and g vector are coupled in parallel (or
antiparallel), which gives a totally symmetric representation,
i.e., σ 2

x = σ 2
y = σ0 in spin space (σ0 is the unit matrix in

spin space). On the other hand, they are orthogonal in the
latter case, which leads to the off-diagonal component in spin
space and results in Tr[· · · ] = 0. Thus the effective coupling
between the spin moment and g vector in the innerproduct
form is important to lead to the INAHE.

A similar statement can be applied to the AFM state with
Tz. The lowest-order contribution to σ int,H

z;xx arises at (i, j, k) =
(0, 1, 1), where �011

z;x,x is given by

�011
z;x,x = −16hAFtcα1

(
t2
a + t2

b + 4t ′2
a + 4t ′2

b

)
. (25)

Similar to the AFM state with Mu, the conditions of hAF �= 0,
α1 �= 0, and tc �= 0 are necessary to induce the INAHE. Mean-
while, the diagonal hopping is not required in contrast to the
case with Mu. Reflecting such a difference, the contributions
of the closed path to �011

z;x,x are distinct, one of which is given
by

Tr
[
T (c)

z Q(b1)
0 Q(c)

0 Q(b1)
0 T (c)

z

] �= 0. (26)

In the case of the AFM state with Tz, one finds that the
coupling between the spin moment and g vector at the same
sublattice plays an important role, as schematically shown in
Fig. 6(c), so as to have its nonzero innerproduct.

IV. SUMMARY AND DISCUSSION

In summary, we have investigated the INAHE in PT -
symmetric noncollinear AFMs. We have shown that the
magnetic toroidal dipole, magnetic quadrupole, and magnetic
toroidal octupole contribute to intrinsic nonlinear conductiv-
ity. Especially, we clarified that its Hall part, i.e., INAHE,
is accounted for by the emergence of the magnetic toroidal
dipole and magnetic quadrupole; the former gives rise to

both Ohmic and Hall parts, while the latter induces the pure
Hall part. Based on the microscopic model analysis for the
three-dimensional tetragonal lattice models with Mu and Tz,
we found two important factors to cause the INAHE: One is
the effective coupling between the magnetic order and ASOI
and the other is the hopping paths.

Although we have analyzed a specific model in the tetrag-
onal system to demonstrate the INAHE, our result can be
straightforwardly applied to other models under different lat-
tice structures once the tight-binding Hamiltonian is provided.
Furthermore, the effective coupling between the magnetic or-
der and ASOI is a general feature to induce the INAHE in
other cases because of the nature of closed paths in Eq. (21).

Finally, we list candidate materials to have nonzero pure
σ int,H

μ;αβ in accordance with the MPG. The materials are referred
from MAGNDATA [43], magnetic structure database, in Ta-
ble III. In the listed materials, the origin of σμ;αβ is identified
as the pure INAHE when σ int,H

μ;αβ �= 0 but σ int,O
μ;αβ = σ D

μ;αβ =
σ BCD

μ;αβ = 0 for a specific component μ, α, β. Such a situation
is satisfied for the MPGs where the magnetic quadrupole Mu

belongs to the totally symmetric irreducible representation.
It is noted that some MPGs exhibit other contributions from
the Drude and BCD terms for different tensor components.
For example, let us suppose the 4m′m′, where the BCD term
contributes to the conductivity. In this case, the electric dipole
Qz is induced in addition to Mu [28], but it contributes to
only σ H

z;xx and σ H
x;zx, which does not affect σ int,H

x;yz . Among
the candidate materials, the materials with large spin-orbit
coupling and the hybridization between orbitals with different
parity are promising, since the ASOI is qualitatively related
to them.
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APPENDIX A: MATRIX ELEMENT OF MULTIPOLES

We show the matrix elements of the multipoles in the Hamiltonian (17), (18), and (19). The onsite and real bond degrees
of freedom are described by Q(c) and Q(bn) and the imaginary bond degrees of freedom are described by T (bn). For the basis
{|Aσ 〉 , |Bσ 〉 , |Cσ 〉 , |Dσ 〉}, the relevant matrix elements of the multipoles are given by

Q(c)
0 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠σ0, Q(c)

x =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠σ0, Q(c)

y =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎟⎠σ0,

Q(b1)
0 = 1

2

⎛
⎜⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠σ0, Q(b1)

v = 1

2

⎛
⎜⎜⎝

0 0 −1 1
0 0 1 −1

−1 1 0 0
1 −1 0 0

⎞
⎟⎟⎠σ0, Q(b2)

0 =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠σ0,

Q(b2)
xy =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞
⎟⎟⎠σ0, T (b1)

x =

⎛
⎜⎜⎝

0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠σ0, T (b1)

y =

⎛
⎜⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎟⎠σ0,

T (b2)
x =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠σ0, T (b2)

y =

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎞
⎟⎟⎠σ0, (A1)

where σ0 represents the unit matrix in spin space. The multipole matrices are orthogonal with each other, i.e., Tr[XpXq] ∝ δpq

for X = Q or T . The subscript 0, (x, y), and (v, xy) represent the monopole, dipole, and quadrupole components, respectively.

APPENDIX B: COMPARISON OF FERMI SEA AND FERMI
SURFACE TERMS

We compare the contributions from the Fermi sea and
Fermi surface terms in Eq. (2c). In the expression of σ int,H

μ;αβ in
Eq. (11), the Fermi sea (surface) term corresponds to the first
(second) term in the square bracket. In contrast to the linear
anomalous Hall effect, there is no obvious way to transform
the Fermi sea term into the Fermi surface term. On the other
hand, the Fermi surface term can be transformed into the

Fermi sea term such as

1

V

∑
k

(
−∂ fνk

∂ενk

)
vν

μ(k)gνν̄
αβ (k)

ενk − εν̄k
= − 1

h̄V

∑
k

∂μ fνk
gνν̄

αβ (k)

ενk − εν̄k

= 1

h̄V

∑
k

fνk∂μ

(
gνν̄

αβ (k)

ενk − εν̄k

)
.

Figure 7 shows the μ dependence of σ int,H. In both cases
for the AFMs with Mu [Fig. 7(a)] and Tz [Fig. 7(b)], the

FIG. 7. Contributions from the Fermi sea and Fermi surface terms under the AFM states with (a) Mu and (b) Tz at T = 0.01. We set the
same model parameters as Eq. (20).
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FIG. 8. Contributions from the Fermi sea and Fermi surface terms under AFM states with (a) Mu under the magnetic point group (MPG)
4/m′m′m′ and (c) Tz under the MPG 4/m′m′m′ at hAF = 10 and T = 0.01. Other parameters are used in Eq. (20). (b) and (d) show the band
structures in each state. The circles indicate the narrow band gap region.

behaviors of σ int,H, such as the order of the magnitude and
their sign dependence, are similar. Thus both terms contribute
to the INAHE at the same order. A sudden change of σ int,H

is found in the Fermi surface term compared to the Fermi sea
term, since the former is more sensitive to the change of the
Fermi-surface topology.

We also show the results for a large MF by taking hAF = 10
in Fig. 8. As shown in Figs. 8(b) and 8(d), the four bands

are completely separated into pairs of two bands. In this
case, the contributions from the upper (lower) two bands in
σ int,H can be neglected when the Fermi surface is in the
lower (upper) two bands in both orderings. Indeed, compar-
ing Fig. 8(c) with Fig. 7(b), the μ dependence of σ int,H

x;zx at
hAF = 10 is simpler than that of hAF = 2. The INAHE van-
ishes at a half-filled region for −10 � μ � 10 in Figs. 8(a)
and 8(c).
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colinear magnetic structure of U3P4 and U3As4, Solid State
Commun. 39, 745 (1981).

[85] S. J. R. Holt, C. Ritter, M. R. Lees, and G. Balakrishnan,
Investigation of the magnetic ground state of GaV4S8

using powder neutron diffraction, J. Phys.: Condens. Matter 33,
255802 (2021).

[86] J. D. Reim, E. Rosén, O. Zaharko, M. Mostovoy, J. Robert, M.
Valldor, and W. Schweika, Neutron diffraction study and the-
oretical analysis of the antiferromagnetic order and the diffuse
scattering in the layered kagome system CaBaCo2Fe2O7, Phys.
Rev. B 97, 144402 (2018).

[87] P. J. Saines, J. A. M. Paddison, P. M. M. Thygesen, and M. G.
Tucker, Searching beyond Gd for magnetocaloric frameworks:
magnetic properties and interactions of the Ln(HCO2)3 series,
Mater. Horiz. 2, 528 (2015).

[88] L. M. Corliss, N. Elliott, J. M. Hastings, and R. L. Sass, Mag-
netic structure of chromium selenide, Phys. Rev. 122, 1402
(1961).

155109-13

https://doi.org/10.1107/S205252062200124X
https://doi.org/10.1088/0953-8984/9/22/023
https://doi.org/10.1016/0038-1098(81)90449-X
https://doi.org/10.1088/1361-648X/abf9bb
https://doi.org/10.1103/PhysRevB.97.144402
https://doi.org/10.1039/C5MH00113G
https://doi.org/10.1103/PhysRev.122.1402

