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We study the interplay between symmetry representations of the physical and virtual space on the class of
tensor network states for critical spins systems known as field tensor network states (fTNSs). These are by
construction infinite-dimensional tensor networks whose virtual space is described by a conformal field theory
(CFT). We can represent a symmetry on the physical index as a commutator with the corresponding CFT current
on the virtual space. By then studying this virtual space representation we can learn about the critical symmetry-
protected topological properties of the state, akin to the classification of symmetry-protected topological order
for matrix product states. We use this to analytically derive the critical symmetry-protected topological properties
of the two ground states of the Majumdar-Ghosh point with respect to the previously defined symmetries.
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I. INTRODUCTION

Many-body systems are inherently hard to solve numeri-
cally due to the exponential size of their Hilbert space, and
analytical solutions are not always available. In such situations
one usually relies on suitable ansätze that capture the most
relevant physics and symmetries of the system. One such
class of states are tensor network states (TNSs), which have
been established as one of the most relevant tools to describe
low-energy states of many nontrivial systems in different spa-
tial dimensions [1,2]. In this description, physical degrees of
freedom are associated with elementary tensors, connected
into a network via auxiliary legs whose dimension (the bond
dimension) bounds the amount of entanglement present in the
system. TNSs have several interesting built-in properties, such
as the area law of entanglement [3], and they bring to the
table a plethora of numerical methods, such as the celebrated
density matrix renormalization group (DMRG) [4]. On the
analytical side, the interplay between the representation of
symmetries in the virtual and physical degrees of freedom
has also shed light on the classification of quantum phases
of matter [5–9]. This classification was shown to fully char-
acterize symmetry-protected topological (SPT) order for the
class of the most basic one-dimensional (1D) tensor network,
matrix product states (MPSs) [10–13], and to also characterize
topological order in two dimensions for projected entangled
pair States (PEPSs) [14,15].
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In recent years, there has been an extensive effort to apply
TNS techniques to both lattice gauge theories (LGTs) [16]
and quantum field theories (QFTs) [17–21]. While the first
approach mostly relies on using numeric techniques from
TNSs to compute quantities in a discretized space, the latter is
based on extending the ansatz of TNSs to the continuum limit.
The first generalization of MPSs in one dimension is known
as a continuous MPS (cMPS) [19] and has been applied
to continuous bosonic systems in Ref. [22] and relativistic
(1 + 1)-dimensional quantum field theories in Refs. [21,23].
Generalizations to higher dimensions were brought forth in
Ref. [18] and were given the name of continuous TNSs
(cTNSs), and they have so far seen success in describing
Gaussian QFT states [24].

The fact that tensor network states, such as MPSs, obey
the area law of entanglement by construction prevents them
from exactly describing systems whose entanglement entropy
scales logarithmically in the size of the system, a situation that
arises at critical points associated with phase transitions. As
was shown by Vidal et al. [25] and Cardy and Calabrese [26],
the entanglement entropy of the ground state of a generic crit-
ical one-dimensional system scales as S� ∼ cln� for a block of
size � in an infinite system, where c is the central charge of the
corresponding conformal field theory (CFT). While it would
be impossible for a standard MPS to exactly describe this
situation, TNSs that go beyond the area law and accurately
describe such systems have been constructed, their prime
example being the multiscale entanglement renormalization
ansatz (MERA) [27].

This motivates the introduction of another notion of a con-
tinuum for TNSs, where the physical space remains discrete
(spins) but the auxiliary space becomes continuous. This cor-
responds to describing the state of the discrete spin system
by means of a correlator of operators of an underlying CFT
[28,29]. This correlator can then be brought in the form of a
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path integral generalization of a TNS, which was denoted a
field TNS (fTNS) in Ref. [30]. A natural question then arises:
How much of what we know from the structure of discrete
TNSs applies to their field theory equivalents? In particular,
how are symmetries represented in the CFT virtual space
connected to the physical ones?

In this paper we approach this question and seek to under-
stand the SPT properties of the SU(2)1 Wess-Zumino-Witten
(WZW) fTNSs, which include the critical one-dimensional
ground states of the Haldane-Shastry model [31,32], by fol-
lowing a similar approach to that used with MPS techniques.
In MPSs, one finds that the representation of the symmetry
on the physical degrees of freedom can be mapped to the
action of the symmetry on the corresponding discrete virtual
space. The projective representation of the symmetry on the
virtual space in turn classifies SPT order for one-dimensional
systems [33]. We wish to establish an analogous statement for
the case of fTNSs, where the physical degree of freedom is
discrete, and the virtual space corresponds to a CFT. In order
to do so, we establish a relation between the SU(2) symmetry
present in the physical space of the Haldane-Shastry model
and the ŝu(2)1 conformal currents on the virtual space. We
then find that the representation in the virtual space is in
general projective and thus that fTNSs can host critical SPT
order.

This paper is organized as follows. In Sec. II we briefly
review the fTNS construction. In Sec. III we first briefly
recap how the symmetries of discrete tensor networks provide
insights into the topological properties of states, identify the
relevant symmetries of the free-boson fTNSs, and then show
how we can relate the symmetries of the physical index to the
virtual space. In Sec. IV we then use this result to analyze
the two possible ground states of the Majumdar-Ghosh model
and find that we can distinguish them with our symmetry
arguments.

II. FTNSs IN ONE DIMENSION

We start by reviewing the construction of field tensor net-
work states (fTNSs) as presented in Ref. [30]. We emphasize
throughout this section the connection of fTNSs with standard
TNSs, as our results are naturally understood as analogous
to those equivalent for TNSs. We then provide the main ex-
pressions for the one-dimensional fTNSs of the WZW SU(2)1

fTNSs.
We start by considering a system of N d-dimensional spins,

and we write their wave function as

|ψ〉 =
d∑

s1···sN =1

cs1,...,sN |s1 · · · sN 〉. (1)

A natural ansatz would be to represent the coefficients
cs1,...,sN ∈ C as a translationally invariant MPS

cs1,...,sN =
D∑

n1,...,nN =1

As1
n1,n2

As2
n2,n3

· · · AsN
nN ,n1

, (2)

where the matrices Asi
ni,ni+1

are a set of d complex matrices
of dimension D × D and the parameter D is known as the
bond dimension. fTNSs can be intuitively understood as a

FIG. 1. (a) Diagrammatic representation of the functional
Asi

fi, fi+1
. The upper and lower boundaries of the strip are the support

of the boundary functions which serve as indices for the functional,
analogous to the left and right virtual legs of an MPS. (b) and
(c) Sewing condition of two strips and the closing condition, along-
side their MPS equivalent operation. The operation depicted in
(b) consists of the contraction of a virtual index, while the one in
(c) corresponds to the complete contraction of the tensor network to
obtain the physical coefficient of the wave function.

generalization of MPSs where the matrices are promoted to
operators acting on one-dimensional quantum field states as
in Eq. (2)

cs1,...,sN =
∫

D[ f1] · · ·D[ fN ]As1
f1, f2

· · ·AsN
fN , f1

. (3)

This replaces the previously discrete indices of the matrices
with functions fi : R → R ∈ L2(R) ∪ K, where K denotes
the set of constant functions and the sum over indices gets
replaced by a path integral. Thus, for every value of the spin
si, Asi

fi, fi+1
is a functional of both fi and fi+1 making this a

generalization that takes finite matrices to functionals and dis-
crete sums to path integrals over the space of square-integrable
functions.

Similarly to the contraction of the virtual indices in stan-
dard TNS theory, we define the “sewing condition” by

As1···sm
f1, fm+1

=
∫

D[ f2] · · ·D[ fm]As1
f1, f2

· · ·Asm
fm, fm+1

, (4)

for m < N , which consists of the contraction of m functionals
out of the N total that make the complete wave function. To
recover the complete wave function, we hence need to mul-
tiply all N functionals and, for periodic boundary conditions,
integrate over the remaining free indices

cs1,...,sN =
∫

D fAs1,...,sN
f , f , (5)

which we call the “closing condition.” We can illustrate all of
these operations diagrammatically with strips as in Fig. 1.

Of particular interest are those wave functions whose co-
efficients can be written in terms of correlators of a 2D CFT
with a local action, since its inherent power-law correlations
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FIG. 2. Visual representation of the splitting of the functional
integral of Eq. (10).

prevent an MPS description with finite bond dimension [28].
In this paper we focus our attention on the free massless
boson, which is one of the simplest CFTs and can be also
understood as the WZW SU(2)1 CFT upon choosing the ra-
dius of compactification for the boson field to be R = √

2,
equivalent to the choice of α = 1

2 for the usual vertex operator
of the free-boson CFT. The coefficients for this state can be
written as

cs1,...,sN ∝ 〈
χs1 : eis1

√
αφ(z1 ) : · · ·χsN : eisN

√
αφ(zN ) :

〉
0, (6)

where χsi is a phase factor that can depend on si, “: :” de-
notes normal ordering, φ(zi ) is the chiral real massless scalar
field, and the subscript 0 denotes that the correlator is taken
with respect to the CFT vacuum. The chiral vertex operators
: eisi

√
αφ(zi ) : with α = 1

2 are the spin- 1
2 primary fields of the

WZW SU(2)1 theory. This family of coefficients includes the
ground state of the Haldane-Shastry model [31,32] which is
defined by the long-range Hamiltonian

HHS = −
∑
i 	= j

ziz j

(zi − z j )2
(Pi j − 1), (7)

where zi are the positions of the spin and Pi j is the spin per-
mutation operator. This is a paradigmatic model of criticality,
and its ground state can be obtained from the state defined
in Eq. (6) by choosing si = ±1, α = 1

2 , and χsm = eimπ (sm−1)/2

and defining the CFT to be on a cylinder of circumference πN
[34]. The latter choice yields the power-law-like coefficients

cs1,...,sN ∝ δ∑
n sn,0

∏
n

χsn

∏
n>m

(
sin

[
π (n − m)

N

]) snsm
2

(8)

when the spins are located in the cylinder at positions zn =
e

2π in
N , which correspond to the positions from Eq. (6) of the

vertex operator insertions. We quickly outline how to con-
struct the corresponding fTNS for CFTs with a local solvable
action with the aforementioned free boson.

The first step in identifying the corresponding fTNS is
to write the correlator of Eq. (6) in the functional integral

representation as

cs1,...,sN ∝
∫

D[φ]e−SE e−i
∑N

n=1 sn
√

αφ(zn )
∏

n

χsn , (9)

where SE is the Euclidean action of the free massless boson
φ : R → R defined on the cylinder of length πN . We can now
split this functional integral into different regions as∫

D[φ] =
∫

D[ f1] · · ·D[ fN ]
∫ ′

D[φ1] · · ·
∫ ′

D[φN ], (10)

where the functions fi correspond to the boundary conditions
between neighboring regions and the notation

∫ ′ is explained
in the following paragraph. After the splitting, the scalar fields
φi are defined only within their respective strips as shown
in Fig. 2. Note here that we place the cuts so that each of
the resulting strips encloses only one of the vertex operators
of (6).

The integrals with a prime must respect the field boundary
conditions given by

φ(z+
i ) = fi+1(x),

φ(z−
i ) = fi(x), (11)

where z±
i are the corresponding positions of the boundaries of

the ith strip and x is the coordinate along the boundary.
Finally, one identifies the functional Asi

fi, fi+1
with the value

of the ith strip given by

Asi
fi, fi+1

=
∫ ′

D[φi]e
−Se−isi

√
αφi (zi )χsi . (12)

In Ref. [30], the complete derivation of this functional was
done by means of Green’s function techniques, and their
sewing and closing conditions were computed. To recover the
coefficients of Eq. (8) with fTNSs, it is necessary to truncate
the functional only to its chiral component, similar to how the
correlator in Eq. (6) is computed using only the chiral sector
of the corresponding CFT. At the same time, in order to obtain
the condition δ∑N

n=1 sn,0
that arises from the zero mode of the

boson field, the set of square-integrable functions alone is not
enough, which is why the set of constant functions was needed
for the set of possible strip boundary functions.

The free-boson fTNS was studied in depth in Ref. [30], and
we recover here the explicit expressions for clarity. Each of the
functionals is defined on a strip M	 j = R × iπ [a j, b j] with
width 	 j = b j − a j . We denote the functionals Asi

fi, fi+1
=

A	i [ f0, fi, fi+1, {zi, si}], as we wish to make more explicit the
dependence of the functionals on the boundary functions and
physical degrees of freedom, where zi ∈ M	i is the position
of the ith spin and f0 is the zero mode, which is assumed to
be the same for all functionals. The expression for a single
functional is then given by

A	i [ f0, f+, f−, {zi, si}] = e f0
si√

2 e−R	i [ f+, f−,{zi,si}],

R	i [ f+, f−, {zi, si}] = s2
i

4
ln	i + 1

2

∫ ∞

0
dk

(
ω+,	i (k) ω−,	i (k)
ω−,	i (k) ω+,	i (k)

)(
f̂ ∗
+(k)

f̂ ∗
−(k)

)

− i

2
√

2
si

∫
R

dk
eikzi

sinh (πk	i )
(eπkbi f̂+(k) − eπkai f̂−(k)), (13)
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with ω+,	i = k coth (πk	i ) and ω−,	i = −k sech(πk	i ) and with f̂±(k) : R → R being the Fourier transform of the corre-
sponding lower and upper boundary functions f±(x). With these expressions the sewing condition reads∫

[dg]A	1 [ f0, f+, g, {z1, s1}]A	2 [ f0, g, f−, {z2, s2}] = A	1∪	2 [ f0, f+, f−, {zi, si}i=1,2], (14)

where now the exponent of the sewn strips is given by

R	1∪	2 [ f+, f−, {zi, si}i=1,2] = s2
1

4
ln	 f + s2

2

4
ln	 f + 1

2

∫ ∞

0
dk

(
ω+,	 f (k) ω−,	 f (k)
ω−,	 f (k) ω+,	 f (k)

)(
f̂ ∗
+(k)

f̂ ∗
−(k)

)

− i

2
√

2

∫
R

dk

∑
i=1,2 eikzi si

sinh (πk	 f )
(eπkb2 f̂+(k) − eπka1 f̂−(k)) − s1s2

2
ln

(
μ sinh

(
z2 − z1

2	 f

))
, (15)

where 	 f = 	1 + 	2 and μ = −2i. These are the main
expressions that will be used in the upcoming sections to
study the symmetry properties of the states defined by this
functional.

III. SYMMETRY RELATIONS FOR MPSs AND FTNSs

We now turn our attention to the study of the symmetries
of the functional A	[ f0, f+, f−, {zi, si}], where from now on
the zero mode f0 will be omitted as it does not participate in
the computation of the properties that we wish to explore. We
draw our intuition from the results of standard MPS theory
and thus briefly recall them now. When a state is symmetric
under a representation Ug of a symmetry group G and can be
represented by an injective MPS in canonical form [2], then
the following relation holds:

(16)

where the representation on the virtual space Vg can in general
be a projective representation [8,13]. In equation form,∑

s j

(Ug)si,s j A
s j
n,m =

∑
k,l

(Vg)n,kAsi
k,l (V

†
g )l,m, (17)

which holds, for instance, when G is a Lie group and we
can use the exponential map to write Ug(θ ) = eiθg, where g

is an element of the corresponding Lie algebra. Projective
representations differ from linear ones in that they fulfill the
more general composition rule

VgVh = eiω(g,h)Vgh, (18)

where the extra phase factor is known as the cocycle ω(g, h) ∈
H2(G, U(1)), which in turn is known to fully classify SPT
order in one dimension [2,11–13]. Equation (18) is the main
relation that we wish to establish in the context of fTNSs. We
first start by identifying the relevant symmetries and how they
are represented on both the discrete physical index and the
continuous functional space.

The physical symmetry of interest is the SU(2) symmetry
that is present in the Haldane-Shastry model, whose critical
point is accurately described by the compactified massless
free boson [28] with radius R = √

2. On the one hand, the
symmetry on the physical indices is simply the one corre-
sponding to a discrete two-dimensional spin, and it is thus
represented by the usual Pauli matrices that generate SU(2).
On the other hand, the virtual space of the fTNS is given by
a CFT, specifically the SU(2)1 WZW model. For this CFT,
the symmetry is represented by the conformal charges of the
currents corresponding to the affine simple Lie algebra of the
model. As presented in Ref. [34], the conformal currents that
generate ŝu(2)1 are given in terms of fields as

H(z) =: i∂φ(z) :,

E±(z) =: e±i
√

2φ(z) :, (19)

where φ(z) is the chiral part of the free massless boson, “: :”
denotes normal ordering, and we can think of H and E± as
analogous to σ z and σ±, respectively, of the more familiar
su(2) algebra.

In order to represent these currents as functionals, we need
to recall that the primary fields of the theory of the massless
boson are given, in the chiral sector, by the vertex oper-

ators: e±i 1√
2
φ(z) : with conformal dimension h = 1

4 . We can
thus represent each of them by the corresponding fTNS func-
tionals A	i [ f+, f−, {zi,± 1√

2
}]. Thanks to the state-operator

correspondence, we can think of these operators as the ones
generating the states corresponding to the eigenvectors of σz

in the usual two-dimensional spin picture [34]. That is, the

operator product expansion (OPE) of : e±i 1√
2
φ(z) : with E±(w)

has no singular terms in z − w, which results in no contribu-
tion upon computing the contour integral corresponding to the
commutator in the CFT picture. This means that in the usual
spin picture, E±(z) is the equivalent of the ladder operator σ±.
Similarly to how we have represented a vertex operator as a
functional A	i , we must also write the currents as functionals
as well. The U(1) current of the algebra is defined by the
functional

H (z)	 =
√

2 lim
q→0

1

q
∂zA	[ f+, f−, {z, q}], (20)
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while the SU(2) currents are

E±(z)	 = −μ

2
A	[ f0, f+, f−, {z,±

√
2}]. (21)

It is important to notice that since all conformal currents
have conformal dimension h = 1, the limit of 	 → 0 must be
taken, but this limit can only be taken after they have been
applied to another functional representing a state. This is a
testament to the fact that these operators are in fact defined
as distributions and hence they must be understood in terms
of how they act on a set of test functionals, in our case the
vertex operator functionals. To more physically understand
this limit, let us think of the effect of adding a symmetry
charge inside of a correlator of total length L. Upon sewing
and closing all the strips, we would end up with a system
that has length L + 	, and thus to recover back the original
physical length of the system, we need to take the limit of the
width of operators to zero, that is, 	 → 0, in both Eq. (20) and
Eq. (21).

At this point, the representation of the symmetry in terms
of conformal currents J (z) is not yet complete, as the cor-
responding symmetry operators on the virtual space of the
fTNS must be identified with the conformal charges given
by Q = 1

2π i

∮
dzJ (z), where the contour encircles the origin

of the complex plane. However, this identification is not yet
completely correct as we must take into account that the
functional A	 is defined on a strip, and not the whole complex
plane as in usual CFT. Such a manifold with boundaries can
only be mapped to the upper half part of the complex plane
(UHP) because of the Riemann mapping theorem (see the
Supplemental Material of Ref. [30]). This means that we must
define the charges to be contained in the UHP as well by
means of the method of images, as is done in the setting of
boundary CFT [34], which reads

Q = 1

2π i

∮
dzJ (z) = 1

2π i

∫
�

dz(J (z) − J (z̄)). (22)

As is usual in Lie group theory, parametrizing the unitaries
in Eq. (16) in terms of a small angle θ and differentiating
on both sides, one can obtain the equivalent relation for the
algebra, which for fTNSs reads

(23)
where 	q is the width associated with the symmetry func-
tional which is then taken to be 	q → 0 and the red line
indicates the current integration. We want to emphasize that
on the left-hand side of Eq. (23) the symmetry is represented
by a finite 2 × 2 matrix acting on the physical spin, which is
denoted by σ as, while on the right-hand side it is represented
by the commutation with a conformal charge, which is essen-
tially an infinite-dimensional functional. It is then shown in
Appendix A that the result of acting with the physical algebra
via their action through the virtual space, that is, Eq. (23), is

given by

σ z
ss′A	

[
z,

s′
√

2

]
= sA	

[
z,

s√
2

]
,

σ±
ss′A	

[
z,

s′
√

2

]
=

{
0 (s = ±1)
A	

[
z, s√

2
± √

2
]

(s = ∓1), (24)

where the functionals with s = ±1 are the two primary fields
of the model, which are equivalent to the two possible spin
projections, and we have dropped the argument of the bound-
ary functions for simplicity. This shows how the action of
the symmetry through the virtual space is equivalent to the
one we would expect when acting on the physical discrete
index. The first equation in (24) is analogous to the action of
the usual matrix σ z on its own eigenstates, while the second
equation in (24) corresponds to the action of the usual raising
(lowering) matrix σ+ (σ−) on the σ z eigenstates. This can
only be zero when we act with σ+ (σ−) on the eigenstate
with eigenvalue +1 (−1), or the opposite eigenvalue when
σ+ (σ−) acts on the eigenstates with eigenvalue −1 (+1).
These results agree with what one would get from the same
computation by means of the CFT formalism by comput-
ing the OPE between the different currents and states. It is
worth noting that it is possible to identify Eq. (23) with the
contour integral present in most of the aforementioned CFT
computations.

Not only can we compute Eq. (23) for all elements of the
algebra, but also we can compute each of the individual terms
of this equation separately, which is very important in order
to be able to compute the algebra relations, and hence the
cocycle. The complete set of relations [see Eqs. (A34)–(A42)
in Appendix A] is given by

(25)

(26)

(27)

where the right-hand side strip is always aligned with the
physical strip of the left-hand side onto which the charge
is applied, as otherwise we would be comparing strips on
different coordinate systems. As shown in Appendix A, we
have taken the upper and lower limits of the strip to be at ±π	

2 ,
and the functional representing the action of σ x is computed
from σ x = 1

2 (σ+ + σ−) and similarly for σ y. Due to the limit
of the charge strip width going to zero, in order to compute
the algebraic relations between the different charges we must
apply all of them to a test functional. With this set of rules
we can then compute the group commutator to extract the
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cocycle, which we can write as

(28)

where the negative sign in front confirms that we have a
projective representation. It is important to point out that in
Eq. (28), or whenever we encounter terms that consist of more
than two strips being sewn, one must be consistent in the order
in which the sewings take place. As shown in Appendix A, we
have used a bottom-to-top order, and as long as one remains
consistent, the end result is independent of the specific order
chosen. With all these relations, we can also prove the SU(2)
symmetry of the original state in this picture, as shown in
Appendix B.

To summarize, we have represented the relevant conformal
charges as functional strips, computed their action on their
corresponding fTNSs, and, furthermore, evaluated their group
commutator to conclude that they indeed form a projective
representation. With this toolbox in hand we can now study
how the positions zi of the different spin insertions affect the
symmetries of the functionals and hence the properties of the
state.

IV. DISTINCT SPT GROUND STATES
OF THE MAJUMDAR-GHOSH POINT

Ansätze based on vertex operators were used in Ref. [28]
to study the properties of several models whose critical points
were accurately described by a c = 1 CFT. The positions of
the vertex operator insertions were treated as the variational
parameters in order to maximize the overlap with the real
ground state. Can we use the positions of the spins in fTNSs
to change the physical properties of the state they describe?
We investigate this question by studying different limits for
the spin insertions and take a look at the SU(2) representation
of the virtual space to identify the corresponding phase of the
system.

First we consider the limit in which two spins are placed
very close together as shown in the left panel of Fig. 3, which
in the CFT literature is the limit that one must consider to
compute OPEs [34]. We know from the CFT literature [34,35]
that for the WZW SU(2)1 model, the fusion rules for the
two primary fields φ 1

2
are φ 1

2
× φ 1

2
= φ0. This means that

whenever two spins are very close, CFT tells us that the
dominant term in the expansion should be the identity. By
taking the limit z2 → z1 in Eq. (15), similar to the one taken
when performing an OPE, the expression for a strip with two

FIG. 3. The two limits of interest for a pair of spin insertions.
The left strip corresponds to the trivial representation, while the right
strip belongs to the nontrivial one.

spins in this limit becomes

lim
z1→z2

A	[ f+, f−, {z1, s1, z2, s2}]

∼ μ
s1s2

2 δs1,−s2

√
2	√

z1 − z2
A	[ f+, f−, {z1, 0}]

=
√

2δs1,−s2

μ
√

z1 − z2
I	[ f+, f−], (29)

where δs1,−s2 ensures that the spins have opposite value and
“∼” means that we have omitted subleading terms in z1 − z2.
Remarkably, whenever two insertions get close to each other,
the functional is greatly simplified and becomes an identity
in the virtual space. The decoupling of the virtual space from
the physical space is a phenomenon one encounters as well
when considering dimerized states in MPS theory [10]. To
mimic the results of MPSs, we are interested in seeing how the
symmetry is represented in this limit. We can see by applying
rules (25)–(27) on the identity that since it corresponds to
a strip with s = 0, the outcome is always 0. This is akin to
how the monomial representation of su(2) acts on the j = 0
element. The main point to take away is that this limit forces
the virtual space to be on the trivial representation j = 0
of SU(2), making all the symmetry operators be simply the
identity.

To obtain the j = 1
2 representation, we consider the oppo-

site limit, in which two spins are placed as far apart from one
another as possible as shown in the right panel of Fig. 3. Be-
cause of the inherent long-range interaction of the strips, we
can only clearly understand the virtual space representation of
any of the two boundaries when we take the limit 	 → ∞.
Let us first study this limit for a single spin, in which we can
approach the limit in different ways. We could send the upper
(lower) boundary of the strip to the ∞ (−∞) limit, or both of
them at the same time. In either case, whenever the spin is not
located exactly at the boundary, the functional simplifies to

lim
	→∞

A	[ f+, f−, {z, s}] = 1

	
s2
4

I∞[ f+, f−], (30)

where I∞[ f+, f−] stands for the corresponding identity on vir-
tual space for an infinitely wide strip. However, whenever the
spin is sitting exactly at one of the boundaries being taken to
infinity, the virtual space does not fully trivialize and instead
remains within the corresponding spin representation, and we
denote this limit by

lim
	→∞

A	[ f+, f−, {zb, s}] = 1

	
s2
4

A∞[ f+, f−, {zb, s}], (31)
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where zb is iπb (iπa) for the upper (lower) boundary. The
explicit expression corresponding to Eq. (30) is

I∞[ f+, f−] = e−R∞[ f+, f−],

R∞[ f+, f−] = +1

2

∫ ∞

0
dk

(
k 0
0 k

)(
f̂ ∗
+(k)

f̂ ∗
−(k)

)
, (32)

and the one for Eq. (31) is

A∞[ f+, f−, {zb, s}] = e−R∞[ f+, f−,{zb,s}],

R∞[ f+, f−, {zb, s}] = +1

2

∫ ∞

0
dk

(
k 0
0 k

)(
f̂ ∗
+(k)

f̂ ∗
−(k)

)

− i

2
√

2
s
∫
R

dk f̂b(k), (33)

where the contribution of the zero mode has been omitted and
f̂b(k) is the corresponding boundary function of whichever
boundary the spin is located at. We can then apply rules
(25)–(27), which were derived in a 	-independent fashion, to
conclude that the boundary of the strip at which the spin sits
remains in s = 1

2 . Similar expressions are obtained whenever
we have several spins within the strip, the only contributions
surviving the infinite-width limit being the boundary ones. We
can hence see that in this limit the virtual space representation
is completely dominated by whichever spin is located exactly
at the boundary and is hence nontrivial.

When we consider the case of finite 	, we can detect when
one representation is favored by parametrizing the spin inser-
tions by their distance away from the translation-symmetric
configuration. Let us take the case of two insertions, whose
positions are parametrized by z1 = iπa − iπ	

4 ∓ iπδ and z2 =
iπa + iπ	

4 ± iπδ, where the term iπa is there to ensure that
our choice of coordinate axis for the insertions does not mat-
ter. With these explicit positions, the two-spin functional reads

(
iμ√

2

) s1s2
2

(
cos

(
δπ

	

)
± sin

(
δπ

	

)) s1s2
2

A∗
	, (34)

where by A∗
	 we mean the two-strip functional without the

interaction term between the spins, that is, without the last
line of Eq. (14). We can then check which values of δ max-
imize this expression and how these relate to the different
phases. We can see that whenever the spins have opposite
value s1s2

2 = −1, expression (34) diverges for δ = ±	
4 , which

exactly corresponds to the configuration presented in Eq. (29).
These positions correspond to the spins meeting at the center
of the system, and as we have seen, this situation corresponds
to the virtual space trivializing. Once we close the strip, the
charge-neutrality condition prevents the strip with s1s2

2 = +1
from contributing; however, we can still see which represen-
tations are favored in this case. We find that the maximum
happens as well for δ = ±	

4 , in which case the functional
simply inherits the representation of the spin closest to each
boundary, as that is the dominant term as we take the 	 → ∞
limit. We thus see that as soon as the insertions depart from the
perfect spacing, immediately one of the two representations
becomes favored depending on which pairing is encouraged.

We can now take the spin configuration in the left panel
of Fig. 3 a step further for the case in which we have more

than two spins. Let us start with four spins and consider the
limit z1 → z2 and z3 → z4, which corresponds to a situation
like that in Eq. (29). If the distance between any two spins is
denoted by zi − z j = zi j , in the limit where z12, z34 → 0 the
four-spin functional becomes

2δs1,−s2δs3,−s4

μ
√

z12
√

z34
I	[ f+, f−]

+ δs1,s2δs3,s4δs1,−s3μ
√

z12
√

z34

2
A	[ f+, f−, {z∗

i , 2s∗
i }2

i=1],

(35)

where z∗
i are the positions at which the different pairs of spins

meet and s∗
i is the value of any of the two original spins of the

pair. We see that the dominant term is the expected identity
on the virtual space as it arises from the charge-neutrality
condition. However, having two pairs allows for the individual
pairs to not have opposite spin value, but for the different pairs
to compensate each other’s sign, and thus a new subleading
term can arise. This subleading term corresponds exactly to
a strip containing two spins of higher value, and thus a state
constructed out of this term falls into a higher SU(2) repre-
sentation from the original one.

The different limits explored in this section are useful as
they also correspond to the two distinct topological ground
states of the Majumdar-Ghosh point [36] of the J1-J2 Heisen-
berg model on N sites, defined by

HJ1,J2 =
N∑

i=1

(J1 �Si · �Si+1 + J2 �Si · �Si+2), (36)

where �Si is the spin operator on the ith site. This model
hosts an exactly solvable point at J2

J1
= 0.5 in which it

is known that the exact ground states are the two dimer
states. In Ref. [28] the connection between fTNSs and
this model was established, and with our results we can
now tell apart the two dimerized ground states based only
on symmetry considerations, analogous to the treatment of
the Affleck-Kennedy-Lieb-Tasaki (AKLT) model with MPSs
[8,13]. Indeed, the first dimerized configuration corresponds
to the left panel of Fig. 3 but for N pairs of spins, in which
we have seen that the dominant contribution carries the trivial
representation on its virtual space. On the other hand, the
opposite dimerized configuration, corresponding to the oppo-
site pairing, will host a pair of spins on the edges that will
carry a nontrivial representation which we identify with the
topologically inequivalent ground state.

Before concluding, we should elaborate on what we mean
by two fTNSs corresponding to different critical SPT phases.
While we can check which SU(2) representation lies on the
virtual space, a priori it could be possible that by redefining
the parameters of the fTNS, such as the boundary functions
f+(k), f−(k) or its width 	, we could map to a different
representation. A redefinition of the boundary functions alone
is not enough to change the representation, since the new
functions f̃+(k), f̃−(k) must still be square integrable. If we
take a look at the last term of Eq. (13), we note that the
spin representation is determined by the term sieikzi . In order
to change the representation, the new function would need
to change this term, and since it is an exponential, it would
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be impossible for it to remain in L2(R). The only way in
which this term could be absorbed would be if the width of
the strip after the map 	̃ were to be such that the function
remained integrable or if it simply changed the si directly.
However, there is no way to redefine the functions in a way
that simultaneously keeps the boundary functions in L2(R)
and keeps the sewing condition (4) intact. Thus the only way
in which a fTNS can change its representation is with the
value and position of the spin that it represents. Consequently,
we call inequivalent two fTNSs which describe different spin
representations as they cannot be mapped into one another by
a redefinition of the virtual space.

V. CONCLUSIONS

In this paper we have derived the relation between the
finite representation of SU(2) on the physical index of a fTNS
and its corresponding representation as functional conformal
charges on the virtual space. We have used this construction
to identify the different topological properties of the two
distinct ground states of the Majumdar-Ghosh point of the
J1-J2 model. Our results are heavily inspired by the physics
of the well-known MPS description of SPT phases which
are analogous to our system. Several open directions can be
taken now that this result is established. The construction of a
conformal charge allows one to generate new models based on
spin projectors, similar to Ref. [35] for higher spins. It would
also be possible to add new terms to the free-boson action
that would respect conformal symmetry in order to generate
a new class of fTNSs which would be the ground state to a
different critical Hamiltonian. Generalization of this result to
the two-dimensional case presented in Ref. [30] would also
be of high interest, given that the Kalmeyer-Laughlin state
[37] is a prime example of chiral topological order, a state that

has proven elusive for an exact description in terms of PEPSs
[38,39] and a study in terms of its virtual symmetries would
be a great step towards having an exact tensor-network-like
description of gapped chiral 2D topological order. Another
direction would be to study other simple CFTs, such as the
massless Majorana field of c = 1

2 or the ghost systems within
the fTNS formalism, leading to yet another description of
critical ground states and Hamiltonians and more connec-
tions with MPS theory. Understanding the exact connection
between MERA and fTNSs would also be of great interest.
In general, deriving the exact connection between the CFT
Hilbert space and fTNSs would be an interesting task given
that then one could study all the minimal models and other
exactly solvable CFTs using tensor network techniques. The
connection between fTNSs and cTNSs would also be an inter-
esting direction, with the former being a potential boundary
theory for the latter in the limit in which the spins become
dense in space, thus providing a potential example beyond
Gaussianity for cTNSs.
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APPENDIX A: PROOF OF THE INFINITESIMAL SYMMETRY ACTION

In this Appendix we derive the rules of action for the conformal currents on a single strip of a fTNS, which would correspond
to one of the two terms of (23), where we are using that q = s√

2
. We start by the action of the H (z) current, whose charge is

denoted by Q0. First and foremost we need to choose a convention for the order in which we sew strips in situations in which
we have more than two: In this paper we choose to always sew from the lower boundary first, and then move upwards. In strip
form, what we need to compute is

(A1)

In equation form, Eq. (A1) is written as

(a) =
∫

[dg]
1

2π i

∫
R

dz1A	[ f+, g, {z, q}] lim
q1→0

√
2

q1

(
∂z1A	1 [g, f−, {z1, q1}] − (z1 ⇔ z̄1)

)
, (A2)

where
∫
R dz means the integration over R of the real part of z1. Performing the sewing integral (15), one finds

(a) = 1

2π i

∫
R

dz1 lim
q1→0

√
2

q1

[
∂z1A	 f [ f+, f−, {z, q, z1, q1}] − (z1 ⇔ z̄1)

]
, (A3)
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where 	 f = 	 + 	1. Performing the derivative, one obtains

(a) = 1

2π i

∫
R

dz1 lim
q1→0

√
2

q1

[
i

2

∫
R

dk
ikq1eikz1

sinh (πk	 f )
(eπkb f f+(k) − eπka f f−(k))

− qq1

2	 f
coth

(
z1 − z

2	 f

)(
μ sinh

(
z1 − z

2	 f

))qq1
]
A	 f [ f+, f−, {z, q, z1, q1}] − (z1 ⇔ z̄1), (A4)

and we next treat both terms separately. Let us start with the first line, that is, the integral

1

2π i

∫
R

dz1
i√
2

∫
R

dk
ikeikz1

sinh (πk	 f )
(eπkb f f+(k) − eπka f f−(k)). (A5)

We first swap the order of integration, that is, we first perform the z1 integral and then the k integral. To be able to perform this
change, it is enough to guarantee that the k integral is convergent. We start by analyzing the behavior of the integrand in the
k → ±∞ limits {

k → +∞ ∝ keikz1−πk(	 f −b f ) f+(k) − eikz1−πk(	 f −a f ) f−(k) → 0

k → −∞ ∝ keikz1+πk(	 f +b f ) f+(k) − eikz1+πk(	 f +a f ) f−(k) → 0,
(A6)

where the decay to 0 in the limit is guaranteed because Im(z1) < 	 f = b f − a f and f±(k) are square-integrable functions. The
other potentially dangerous point is k = 0, but the divergence is tamed by the power of k in the numerator. We can thus exchange
the order of integrals and use the Dirac delta distribution to obtain

i√
2

∫
R

dk
kδ(k)e−πkIm(z1 )

sinh (πk	 f )
(eπkb f f+(k) − eπka f f−(k)). (A7)

All that is left is hence the evaluation of the k integral by means of the Dirac distribution. In this case we must evaluate the limit
k → 0

lim
k→0

ke−πkIm(z1 )

sinh (πk	 f )
(eπkb f f+(k) − eπka f f−(k)) = 1

π	 f
( f+(0) − f−(0)) = 0, (A8)

where the last equality follows from the fact that the zero mode is chosen to be the same amongst all the different sewing points
on a state, as explained in Ref. [30]. Thus we have simplified (A4) down to

(a) = 1

2π i

∫
R

dz1 lim
q1→0

√
2

q1

[
qq1

2	 f
coth

(
z1 − z

2	 f

)(
μ sinh

(
z1 − z

2	 f

))qq1
]
A	 f [ f+, f−, {z, q, z1, q1}] − (z1 ⇔ z̄1). (A9)

Now we can take the limit q1 → 0 obtaining

(a) = A	 f [ f+, f−, {z, q}] q√
2	 f

1

2π i

∫
R

dz1

[
coth

(
z1 − z

2	 f

)
− coth

(
z̄1 − z

2	 f

)]
, (A10)

where the limit removed the z1 contribution of the functional A	 f and thus allows us to take it out of the integral. The remaining
integral can be computed by residue calculus, and it yields

(a) =
√

2qIm(z1)

π	 f
A	 f [ f+, f−, {z, q}]. (A11)

Finally, we take the limit 	1 → 0 to ensure the conformal dimension of the current, which in turn forces Im(z1) to be at the edge
of the original strip, in this case the upper edge Im(z1) = πb. This concludes this computation yielding

(a) =
√

2qb

	
A	 f [ f+, f−, {z, q}]. (A12)

To conclude the computation of the commutator (27), we now need to compute

(A13)

which is a computation that follows alongside the one we have just done. To see this, we can take a look at (A4) to see what the
effect of sewing from the lower end would be. The main difference is that all the terms that depend on z1 − z will now go as
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z − z1 as well as the sign in front will change because of the derivative. Since the cotangent is an odd function, we recover (A10)
at the end of the day. With this result, the commutator with Q0 (30) becomes

(a) − (b) =
√

2qb

	
A	 f [ f+, f−, {z, q}] −

√
2qa

	
A	 f [ f+, f−, {z, q}] =

√
2qA	 f [ f+, f−, {z, q}], (A14)

since 	 = b − a. This is the expected action on a single spin with the usual σz operator, given that the charge is chosen to be
q = s√

2
. In strip form, this equality reads

(A15)

We now turn our attention to the action of the lowering and raising currents J±(z), whose charges we will denote as Q±. As
before, we start by the action on the upper edge of a strip, which in strip form reads

(A16)

or in equation form,

(c) =
∫

[dg]
1

2π i

(
−μ

2

) ∫
R

dz1A	[ f+, g, {z, q}]A	1 [g, f−, {z1,±
√

2}] − (z1 ⇔ z̄1), (A17)

where −μ

2 ensures proper normalization at the end of the computation. We then perform the sewing and factorize what does not
depend on z1 outside of the integral to obtain

(c) = A	[ f+, f−, {z, q}]	− q2
1
2

1

2π i

(
−μ

2

) ∫
R

dz1

(
μ sinh

(
z1 − z

2	 f

))±√
2q

exp

(
i

2

∫
R

dk
±√

2eikz1

sinh (πk	 f )
C(k)

)
− (z1 ⇔ z̄1),

(A18)
where C(k) = (eπkb f f̂+(k) − eπka f f̂−(k)) is a shorthand notation for the functional part of the boundary term. To tackle this
integral, we start by Taylor-expanding the second exponential as

exp

(
i

2

∫
R

dk
±√

2eikz1

sinh (πk	 f )
C(k)

)
=

∞∑
n=0

∫
R

dk1 · · · dkn

(
i

2

)n

(±
√

2)n
n∏

m=1

C(km)

sinh (πkm	 f )
eiωz1 , (A19)

where ω = ∑m
l=1 kl . We can then again exchange the order of integration as both integrals are finite as we showed in the previous

computation. Then,

(c) = A	[ f+, f−, {z, q}]	− q2
1
2

1

2π i

(
−μ

2

) ∞∑
n=0

∫
R

dk1 · · · dkn

(
i

2

)n

(±
√

2)n
n∏

m=1

C(km)

sinh (πkm	 f )

∫
R

dz1

(
μ sinh

(
z1 − z

2	 f

))±√
2q

× eiωz1 − (z1 ⇔ z̄1), (A20)

and thus we can apply residue calculus to the integral∫
R

dz1

(
μ sinh

(
z1 − z

2	 f

))±√
2q

eiωz1 −
(

μ sinh

(
z̄1 − z

2	 f

))±√
2q

eiωz̄1 . (A21)

In order to evaluate these integrals, we need to make a choice for both q = s√
2

and the sign of the current J±(z). We can start by

first considering the case when we choose J±(z) and q = ± 1√
2
, which corresponds to the case of annihilating the state by acting

with the raising (lowering) operator on a state that is already the highest (lowest) element of the spin multiplet. In both of these
cases the integral reads

μ

∫
R

dz1 sinh

(
z1 − z

2	 f

)
eiωz1 − sinh

(
z̄1 − z

2	 f

)
eiωz̄1 , (A22)
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and then we shall compute it by turning this integral into a contour integral. We start by more explicitly writing z1 = x + iy and
expanding the hyperbolic sines into exponentials as

μ

2

∫
R

dxe
x(iω+1)+y(i−ω)−z

2	 f − e
x(iω−1)−y(i+ω)+z

2	 f − e
x(iω+1)−y(i−ω)−z

2	 f + e
x(iω−1)+y(i+ω)+z

2	 f , (A23)

which yields

μ

∫
R

dx sinh

(
y(i − ω)

2	 f

)
e

x(iω+1)−z
2	 f + sinh

(
y(i + ω)

2	 f

)
e

x(iω−1)+z
2	 f . (A24)

In order to ensure the convergence of these integrals, for ω > 0 we must extend the contour with a semicircle above the real axis,
while for ω < 0 we must do so below the real axis. Special attention is required for the case ω = 0, where the integral reads

μ sinh

(
iy

2	 f

) ∫
R

dx cosh

(
x − z

2	 f

)
, (A25)

which is clearly divergent. However, this divergence gets exactly canceled once the second term of the commutator is subtracted.
We can thus write

�(ω)μ
∮

UHP
dx sinh

(
y(i − ω)

2	 f

)
e

x(iω+1)−z
2	 f + sinh

(
y(i + ω)

2	 f

)
e

x(iω−1)+z
2	 f

+ �(−ω)μ
∮

LHP
dx sinh

(
y(i − ω)

2	 f

)
e

x(iω+1)−z
2	 f + sinh

(
y(i + ω)

2	 f

)
e

x(iω−1)+z
2	 f = 0, (A26)

where UHP (LHP) stands for the sunrise contour going along the upper (lower) half plane and �(ω) is the step function.
However, since these contours encircle no poles whatsoever, as the integrand has none, the result of this integral is simply zero.
We thus find that acting with the raising (lowering) current on the highest (lowest) states of a multiplet correctly sends them to
zero. Of course, a sewing from below yields the same result.

We can now go back to (A21) and consider the case of J∓(z) and s = ±, which is the case in which we go from the higher to
the lower state of the multiplet or vice versa. In this case, (A21) reads

1

μ

∫
R

dz1csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1 , (A27)

and performing a similar analysis as the previous one, we can write the contour integrals as

�(ω)
1

μ

∮
UHP

dz1csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1 + �(−ω)

1

μ

∮
LHP

dz1csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1 .

(A28)

Let us focus our attention first on the first line of (A28). If we write z1 = x + iy as previously, then the poles of the first term are
located at x = z − iy + 2π in	 f and the ones of the second term at x = z + iy + 2π in	 f for n ∈ Z. These are infinite towers
of poles sitting in the imaginary axis, and the UHP contour encircles the poles corresponding to n ∈ [1,∞) for the first term
and n ∈ [0,∞) for the second term since z < iy as we are sewing from the upper edge. We thus evaluate this integral using the
residue theorem as

�(ω)
1

μ

∮
UHP

dz1

[
csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1

]

= �(ω)
1

μ
2π i

[ ∞∑
n=1

2	 f (−1)neiωz+2	 f πωn −
∞∑

n=0

2	 f (−1)neiωz+2	 f πωn

]
= −�(ω)

1

μ
2π i2	 f eiωz. (A29)

Similarly for the second of line of (A28), the LHP contour encircles the poles corresponding to n ∈ [0,−∞) for the first term
and to n ∈ [−1,−∞) for the second term for n ∈ Z. Similarly, but with the contour now being counterclockwise, the integral
reads

�(−ω)
1

μ

∮
LHP

dz1csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1

= �(−ω)
1

μ
(−2π i)

[−∞∑
n=0

2	 f (−1)neiωz+2	 f πωn −
−∞∑
n=1

2	 f (−1)neiωz+2	 f πωn

]
= −�(−ω)

1

μ
2π i2	 f eiωz. (A30)

Collecting all the results, we conclude that

1

μ

∫
R

dz1csch

(
z1 − z

2	 f

)
eiωz1 − csch

(
z̄1 − z

2	 f

)
eiωz̄1 = −2π i

μ
2	 f eiωz. (A31)
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Inserting this result back into (A20) yields

(c) = A	[ f+, f−, {z, q}] 1

	 f

1

2π i

(
−μ

2

) ∞∑
n=0

∫
R

dk1 · · · dkn

(
± i

2

√
2

)n n∏
m=1

C(km)

sinh (πkm	 f )

(
−2π i

μ

)
2	 f eiωz, (A32)

which allows us to collect the sum back into an exponential to finally write, after taking the 	1 → 0 limit,

(c) = 1
2A	[ f+, f−, {z, q ±

√
2}]δq,∓ 1√

2
. (A33)

As before, sewing from the lower edge of the strip would again simply change the sign of the terms depending on z1 − z, and
thus only change an overall minus sign. This allows us to finally reach rules (25)–(27) provided in the main text. Equation (25)
reads, in strip notation,

(A34)

or, in equation form,

lim
	Q→0

∫
[Dg]Qx

	Q
[ f+, g]A	

[
g, f−,

{
z,± s√

2

}]
= 1

2
A	

[
f+, f−,

{
z,∓ s√

2

}]
, (A35)

lim
	Q→0

∫
[Dg]A	

[
f+, g,

{
z,± s√

2

}]
Qx

	Q
[g, f−] = −1

2
A	

[
f+, f−,

{
z,∓ s√

2

}]
. (A36)

Analogously, Eq. (26) reads, in strip form,

(A37)

or, in equation form,

lim
	Q→0

∫
[Dg]Qy

	Q
[ f+, g]A	

[
g, f−,

{
z,± s√

2

}]
= ± i

2
A	

[
f+, f−,

{
z,∓ s√

2

}]
, (A38)

lim
	Q→0

∫
[Dg]A	

[
f+, g,

{
z,± s√

2

}]
Qy

	Q
[g, f−] = ∓ i

2
A	

[
f+, f−,

{
z,∓ s√

2

}]
. (A39)

Finally, Eq. (27) reads, in strip form,

(A40)

or, in equation form,

lim
	Q→0

∫
[Dg]Qz

	Q
[ f+, g]A	

[
g, f−,

{
z,± s√

2

}]
= ± s

2
A	

[
f+, f−,

{
z,± s√

2

}]
, (A41)

lim
	Q→0

∫
[Dg]A	

[
f+, g,

{
z,± s√

2

}]
Qz

	Q
[g, f−] = ∓ s

2
A	

[
f+, f−,

{
z,± s√

2

}]
, (A42)

where if we compare this last equation with Eq. (A12) we see that we choose the limits of the strip to be a = −	
2 and b = 	

2 .

APPENDIX B: PROOF OF STATE INVARIANCE UNDER THE GROUP ACTION

In this Appendix we prove that a state that is described by a fTNS is invariant under the group action corresponding to the
infinitesimal actions derived in Appendix A. If we draw intuition from the usual SU(2) Lie group theory, the goal is to show
that the state is invariant under a full rotation with angle θ , and not only invariant with respect to the generators of said rotation.
To prove this statement, the main formula of use is the following version of the renowned Baker-Campbell-Hausdorff (BCH)
formula:

e−iθXYeiθX = Y + iθ [Y, X ] + (iθ )2

2
[X, [X,Y ]] + · · · . (B1)
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Since we have computed all the commutators in Appendix A, it is easy to see the action of the whole exponential on a single
strip, and they perfectly mirror the well-known results for SU(2). If we write a state described by a field tensor network (fTN) as

|ψ〉 =
∑

s1···sN =±1

∫
D[ f1] · · ·D[ fN ]As1

f1, f2
· · ·AsN

fN , f1
|s1 · · · sN 〉 (B2)

and we act with the unitary matrix corresponding to a rotation around any of the axes α = x, y, z, U α
i (θ ) = exp (iθσα

i ) on the ith
spin, we can translate the action of this unitary onto the strip with the previously derived rules and the BCH formula. By moving
the action to the virtual space we have

U α
i (θ )|ψ〉 =

d∑
s1···sN =1

∫
D[ f1] · · ·D[ fN ]As1

f1, f2
· · ·AsN

fN , f1
U α

i (θ )|s1 · · · sN 〉

=
d∑

s1···sN =1

∫
D[ f1] · · ·D[ fN ]As1

f1, f2
· AU α

i (θ )si

fi, fi+1
· AsN

fN , f1
|s1 · · · sN 〉, (B3)

where what is meant by AU α
i (θ )si

fi, fi+1
is that the unitary acts on the physical data of the ith strip, and thus it can be moved onto the

virtual space by means of (16). Mathematically, what we mean is

AU α
i (θ )si

fi, fi+1
=

∫
D[g]D[ f ] exp (iθQα[ fi, f ])Asi

f ,g exp (−iθQα[g, fi+1]), (B4)

where now the BCH formula can be used to rewrite this in terms of commutators as

AU α
i (θ )si

fi, fi+1
= Asi

fi, fi+1
+ iθ [Qα,Asi ] fi, fi+1

+ · · · . (B5)

Before we proceed any further, it is important to recall that the common zero mode enforces the charge-neutrality condition upon
the closing of the fTNS, which means that any term of the superposition (B2) fulfills

∑N
i=1 si = 0. We start by considering the

charge Qz associated with the current H (z), whose commutator acts as [Qz,Asi ] = siAsi
fi, fi+1

. Accordingly, the charges associated

with the other generators act as [Qx,A±si ] = A∓si
fi, fi+1

and [Qy,A±si ] = ±iA∓si
fi, fi+1

, where all of these relations have been derived
by repeated usage of the rules proved in Appendix A. We can then resum the commutator expansion, similar to how one does it
for Pauli matrices, and obtain

AU z
i (θ )si

fi, fi+1
= eiθsiAsi

fi, fi+1
,

AU x
i (θ )(±si )

fi, fi+1
= cos

(
θ

2

)
A±si

fi, fi+1
+ i sin

(
θ

2

)
A∓si

fi, fi+1
,

AU y
i (θ )(±si )

fi, fi+1
= cos

(
θ

2

)
A±si

fi, fi+1
∓ sin

(
θ

2

)
A∓si

fi, fi+1
.

(B6)

Once we know the action of a full rotation on a strip, we can tackle the question of whether the full state is invariant under these
operations. Clearly, (B2) is not invariant under the action of a single unitary on a site, but only invariant under a unitary that acts
on all spins simultaneously. We can easily see the invariance under rotations around the z axis since

U z
1 (θ ) ⊗ · · ·U z

N (θ )|ψ〉 =
∑

s1···sN =±1

∫
D[ f1] · · ·D[ fN ]AU z

1 (θ )s1

f1, f2
· · ·AU z

N (θ )sN

fN , f1
|s1 · · · sN 〉

=
∑

s1...sN =±1

eiθ
∑

i si

∫
D[ f1] · · ·D[ fN ]As1

f1, f2
· · ·AsN

fN , f1
|s1...sN 〉 = |ψ〉, (B7)

where the last equality follows from charge neutrality. For our concrete example of fTNs, the phase factors χsi present in (8) are
known collectively as the Marshall sign, which counts the number of “down” spins on odd sites and gives a phase accordingly.
This sign is the key to show invariance under rotations under any of the other two axes, and we show it for the x axis by induction.
Let us assume that U x

1 (θ ) ⊗ · · · ⊗ U x
2n(θ )|ψ〉 = |ψ〉 for a state consisting of n pairs of spins. Then, for a state consisting of n + 1

pairs,

U x
1 (θ ) ⊗ · · · ⊗ U x

2n(θ ) ⊗ U x
2n+1(θ ) ⊗ U x

2n+2(θ )|ψ〉

= U x
1 (θ ) ⊗ · · · ⊗ U x

2n(θ )
∑

s1···s2n=±1

∑
s2n+1,s2n+2=±1

∫
D[ f1] · · ·D[ f2n+2]As1

f1, f2
· · ·As2n

f2n, f1
AU x

2n+1(θ )s2n+1

f2n+1, f2n+2
AU x

2n+2(θ )s2n+2

f2n+2, f1
|s1 · · · s2n+2〉,

(B8)
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where we simply acted with the unitaries corresponding to the last pair. The action of these two unitaries yields

AU x
2n+1(θ )±s2n+1

f2n+1, f2n+2
AU x

2n+2(θ )s2n+2

f2n+2, f1
=

(
cos

(
θ

2

)
A±s2n+1

f2n+1, f2n+2
+ i sin

(
θ

2

)
A∓s2n+1

f2n+1, f2n+2

)(
cos

(
θ

2

)
A±s2n+2

f2n+2, f1
+ i sin

(
θ

2

)
A∓s2n+2

f2n+2, f1

)
, (B9)

on the two functionals alone. Since the charge-neutrality condition must be obeyed by all the terms of the superposition of spins,
only configurations that preserve it are able to contribute to the sum. This means that for every term of the sum with fixed spin
values s1 · · · s2n, the two remaining spins are only able to either flip its value or remain the same together. That means that we
can then simplify (B9) to

cos

(
θ

2

)2

A±s2n+1

f2n+1, f2n+2
A±s2n+2

f2n+2, f1
− sin

(
θ

2

)2

A∓s2n+1

f2n+1, f2n+2
A∓s2n+2

f2n+2, f1
= A±s2n+1

f2n+1, f2n+2
A±s2n+2

f2n+2, f1
, (B10)

where the last equality follows from the fact that the first and second terms are related by the Marshall sign. The Marshall sign
always changes when two neighboring spins swap values together, as that operation can only change the number of “down”
spins that are siting at odd sites. This shows that we recover back the same state when we add an extra pair, as well as showing
the invariance of a single pair, thus concluding the proof.
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