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We study the hydrodynamics of superconductors within the framework of Schwinger-Keldysh effective field
theory (EFT). We show that in the vicinity of the superconducting phase transition the most general leading-order
EFT satisfying the local Kubo-Martin-Schwinger condition is described by a version of the time-dependent
Ginzburg-Landau (TDGL) equations augmented with stochastic terms. This version of TDGL is applicable
in the gapless regime independent of any microscopic details. Within this approach, it is possible to include
systematically the effects of nonuniform temperature and heat conductivity, as well as explicit or spontaneous
breaking of time reversal. We also introduce a thermal version of the Josephson relation and use it to construct
an exotic hydrodynamics describing a phase of matter where heat can flow without dissipation.
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I. INTRODUCTION

The celebrated Ginzburg-Landau theory [1] is extremely
successful at explaining equilibrium macroscopic and meso-
scopic properties of superconductors. Near T = Tc, this
success is explained by the observation that the Ginzburg-
Landau theory is a universal effective field theory (EFT)
of a phase transition to a phase which spontaneously
breaks U (1) symmetry. In this regime it can also be de-
rived from the microscopic BCS theory [2]. Away from
Tc, Ginzburg-Landau theory is a useful phenomenological
model.

To describe transport and other nonequilibrium properties
of superconductors, time-dependent versions of the Ginzburg-
Landau theory (TDGL) are widely used. There exists a
large body of work devoted to the derivation of TDGL
from the microscopic theory. While early derivations [3,4]
have been criticized by Gor’kov and Eliashberg [5], the lat-
ter authors showed that for gapless dirty superconductors
a variant of TDGL follows from BCS theory. Later more
complicated versions of TDGL theory have been deduced
from BCS theory under weaker or different assumptions;
see, e.g., Refs. [6–10]. None of the proposed derivations
appear to include the effects of finite heat conductivity.1 It
is also unclear if TDGL applies to superconductors whose
microscopic description is not given by the standard BCS
theory. In addition, the “improved” versions of TDGL are
not controlled expansions in a small parameter in the spirit

1While there are many studies of thermoelectric effects in su-
perconductors which make use of TDGL, see, e.g., Refs. [11–15],
they typically avoid dealing with inhomogeneous temperature by
appealing to Onsager reciprocity. For example, instead of the Nernst
effect, one computes its reciprocal (the Ettingshausen effect), etc.
In Ref. [16] the effects of superconducting fluctuations on heat
conductivity are studied using the phenomenological “Model C” of
Ref. [17].

of effective field theory. For all these reasons, the original
TDGL equations of Refs. [3–5] remain a popular tool, but
are often viewed as a phenomenological model rather than
a controlled approximation with a well-defined region of
validity.

In this paper we reexamine the theoretical status of TDGL
theory from the point of view of effective field theory. Our
goal is to derive the most general description of supercon-
ductors which are in local thermodynamic equilibrium. In
other words, we study the hydrodynamics of superconduc-
tors. The hydrodynamic description applies whenever the
coherence length is larger than the inelastic scattering length
(this regime is usually referred to as “gapless superconduc-
tivity”). In particular, it applies right above T = Tc, where
TDGL is traditionally used to study fluctuation effects in
superconductors.

Recently, a much better understanding of general princi-
ples constraining hydrodynamic equations has been achieved
[18–25]. These developments build on an old observation
that the stochastic dynamics of classical dissipative sys-
tems can be described using the path-integral formalism
with a doubled number of variables. Such a theory can be
thought of as a version of the Schwinger-Keldysh (SK) for-
malism, which is used to describe quantum dynamics of
arbitrary mixed states. To obtain an effective long-distance
low-frequency description, one needs to impose all the rel-
evant symmetries and to Taylor expand the SK action in
the number of spatial and time derivatives. The key new
observation is that the requirement of local thermal equi-
librium is equivalent to a certain Z2 symmetry of the SK
action called the Kubo-Martin-Schwinger (KMS) symmetry
[23–25] (see [26] for a pedagogical review). Imposing KMS
symmetry ensures that the theory satisfies the usual physi-
cal requirements: the existence of the local entropy function
and entropy current, Onsager reciprocity, and the fluctuation-
dissipation theorem. Positivity of the entropy production is
equivalent to the positivity of the imaginary part of the SK
action.
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We derive a stochastic hydrodynamic theory of super-
conductors relying only on such general principles. In fact,
we describe two different stochastic superconducting EFTs.
EFT-I is a version of TDGL theory and applies near T = Tc.
At leading order in the derivative expansion and after drop-
ping stochastic terms and particle-hole symmetry-breaking
terms, it agrees with the Gor’kov-Eliashberg equations. This
is rather remarkable, since the microscopic derivation of the
Gor’kov-Eliashberg equations requires a number of assump-
tions, including the applicability of the “dirty limit.”2 We also
show that at leading order in the derivative expansion there is
a unique nondissipative coupling which violates particle-hole
symmetry.

EFT-II is appropriate in the London limit, where Abrikosov
vortices are either absent or pinned. Neglecting fluctuations,
this EFT is a slight generalization of the transport equa-
tions written down by Luttinger [28]. The main advantage of
the Schwinger-Keldysh approach is that the first and second
laws of thermodynamics and the fluctuation-dissipation theo-
rem are built in.

In our approach it is straightforward to continue the ex-
pansion to higher orders in derivatives (and in the case of
EFT-I, to higher orders in T − Tc). It is also possible, although
less straightforward, to include the effects of a nonuniform
temperature. Within the Schwinger-Keldysh formalism, one
needs to introduce a dynamical field τ whose time derivative
is the local temperature, T = ∂0τ . This is a thermal analog
of the Josephson relation μ + a0 = ∂0φ between the local
electrochemical potential μ + a0 and the condensate phase
φ. The thermal Josephson relation has other interesting uses.
As discussed below, it plays a key role in “superthermal”
hydrodynamic theories describing exotic phases of matter
where heat can flow without dissipation. It also allows one to
sharpen the well-known analogy between classical mechanics
and thermodynamics.

The content of the paper is as follows. In Sec. II we review
the SK formalism and illustrate it by deriving a simple two-
fluid model for a superconductor. In Sec. III we derive EFT-I
which applies near T = Tc (but without including the effects
of nonuniform temperature). In Sec. IV we derive EFT-II
which applies in the London limit. This EFT includes heat
conductivity and thermoelectric effects. We also show how
to include such effects in EFT-I. In Sec. V we outline how
to incorporate the effects of spontaneous or explicit breaking
of time reversal into the Schwinger-Keldysh formalism. We
compare our results with the existing literature in Sec. VI. In
particular, we argue that in clean superconductors the effects
of particle-hole symmetry breaking can be much larger than
previously believed. In Appendix A we describe some details
of the derivation of EFT-I, including a brief discussion of next-
to-leading order terms in the expansion. In Appendix B we
show how the thermal Josephson relation clarifies the analogy
between thermodynamics and mechanics. In Appendix C we
construct a hydrodynamic description of an exotic “superther-
mal” phase.

2Although it has been proposed in [27] that the assumption of local
equilibrium should suffice.

II. SCHWINGER-KELDYSH EFT AND THE KMS
SYMMETRY

Within the Schwinger-Keldysh formalism (see [26] for a
review), each physical degree of freedom ϕ(t ) gives rise to
two variables in the path integral—the forward-propagating
ϕ1(t ) and the backward-propagating ϕ2(t ). The global sym-
metry group G is doubled too, so that the total symmetry
group is G1 × G2, where Gi, i = 1, 2, is isomorphic to G and
acts only on ϕi. In the classical limit ϕ1(t ) � ϕ2(t ), and it is
more convenient to work with the average ϕ = 1

2 (ϕ1 + ϕ2)
and the “noise” variable � = ϕ1 − ϕ2. Accordingly, the sym-
metry contains the diagonal subgroup GD which consists of
elements of the form (g, g) ∈ G1 × G2, g ∈ G. If G is Abelian
(as will be the case in this paper), then there is also an an-
tidiagonal subgroup GA consisting of symmetries of the form
(g, g−1).

The action I[ϕ,�] for a Schwinger-Keldysh EFT must
satisfy the following requirements [26]: (1) I∗[ϕ,�] =
−I[ϕ,−�]; (2) I[ϕ,� = 0] = 0; (3) Im I[ϕ,�] � 0; (4)
I[ϕ,�] is invariant under G1 × G2.

In the classical limit where � is small it is sufficient to ex-
pand I[ϕ,�] to quadratic order in �. Then conditions (1) and
(2) say that the part linear in � is real while the quadratic part
is imaginary. Condition (3) in addition requires the quadratic
part to be i times a positive expression.

If the system is in a local thermal equilibrium, the real and
imaginary parts of I are related by the fluctuation-dissipation
theorem. If a time-reversal symmetry is present, this condition
can be formulated as invariance of I under a Z2 symmetry
known as KMS symmetry [23–25]. Let T be the time-reversal
transformation. Then the KMS symmetry acts as follows:

RKMS(ϕ) = T (ϕ), (2.1)

RKMS(�) = T
(
� + iT −1

0 ∂0ϕ
)
. (2.2)

Here T0 is the temperature which for now is assumed to be
constant.

Since the KMS symmetry is a Z2 symmetry, construct-
ing KMS-invariant actions seems straightforward: for any
X (ϕ,�), the expression Y (ϕ,�) = 1

2 [X + RKMS(X )] is KMS
invariant. However, Y does not necessarily satisfy condi-
tion (2). One can try to fix this by replacing Y (ϕ,�) with
Z (ϕ,�) = Y (ϕ,�) − Y (ϕ, 0), but this might destroy KMS
invariance.

To analyze this issue, we will assume that ϕ and � trans-
form linearly and in the same way under T (this is true in
all examples of which we are aware). We have Y (ϕ, 0) =
1
2 X [T (ϕ),T (iT −1

0 ∂0ϕ)]. Note also that ∂0ϕ transforms under
T with an additional minus sign compared to �. Thus if X is
linear in � and T even, then Y (ϕ, 0) is T odd and thus is not
KMS invariant. On the other hand, if X is T odd, then Y (ϕ, 0)
is T even and KMS invariant, but then Y (ϕ,�) is indepen-
dent of � and therefore Z = 0. We conclude that this approach
for constructing KMS-invariant actions works only if the seed
expression X is quadratic in � and T even. The resulting
action Id [ϕ,�] = ∫

d4x Z (ϕ,�) contains both quadratic and
linear in � terms whose coefficients are correlated, ensuring
the fluctuation-dissipation theorem. We will refer to an action
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Id constructed in this manner as the dissipative term. The most
general SK action is a sum of Id and a nondissipative term Ind .

There is another type of term satisfying the requirements
(1)–(4) as well as KMS invariance. Let S[ϕ] be any real T -
invariant action. Then

Ind [ϕ,�] =
∫

d4x �(x)
δS

δϕ(x)
(2.3)

clearly satisfies the conditions (1)–(4). It is also easy to check
that it is KMS invariant up to a total derivative. We will
refer to such terms as nondissipative, since they are real and
their equations of motion are simply the Euler-Lagrange equa-
tions for S[ϕ].

To illustrate how this procedure works in practice, let us
derive a simple Schwinger-Keldysh EFT for superconductors
in the London limit where the only degree of freedom is a pe-
riodic scalar φ which is proportional to the phase of the BCS
condensate. We normalize it so that under an electromagnetic
U (1) transformation it transforms as ϕ �→ ϕ + α. Let � be
its SK partner field. The temperature is assumed constant for
simplicity (this assumption will be relaxed in Sec. III). The
diagonal U (1) transformations are

φ �→ φ + α, � �→ �, (2.4)

and the antidiagonal U (1) transformations are

φ �→ φ, � �→ � + α′. (2.5)

Under the conventional time-reversal symmetry, both φ

and � are T odd. More precisely, T (φ) = −T (φ), where
T is the operator acting on a function of x0 which negates
the argument x0: T ( f )(x0) = f (−x0). Therefore, the KMS
transformations are

φ �→ −T (φ), � �→ −T
(
� + iT −1

0 ∂0φ
)
. (2.6)

In accordance with the Josephson relations, we identify μ =
∂0ϕ as the local chemical potential.

The nondissipative terms are constructed from a real
U (1)-invariant T -even action function S[φ] = − ∫

	[φ]d4x.
Expanding in the number of spatial derivatives we have

	[φ] = 	0(μ) + 1
2γ jk (μ)∂ jφ∂kφ + · · · , (2.7)

where 	0(μ) is an arbitrary function and dots denote terms
with more than two derivatives. The term linear in spatial
derivatives of φ does not appear because it is T odd.

The dissipative terms are constructed from the seed expres-
sion X = iT0σ jk (μ)∂ j�∂k�, which gives

Z = −σ jk (μ)∂ j�∂kμ + iT0σ jk (μ)∂ j�∂k�. (2.8)

The complete SK Lagrangian is

LSK =
(

n0(μ) − 1

2

∂γ jk

∂μ
∂ jφ∂kφ

)
∂0� − γ jk∂ j�∂kφ

− σ jk∂ j�∂kμ + iT0σ jk∂ j�∂k�. (2.9)

Here n0(μ) = − ∂	0
∂μ

. The conditions (1)–(4) are satisfied pro-
vided the matrix σ is positive.

The physical meaning of γ jk and σ jk is revealed when one
writes down the equations of motion for �:

∂0

(
n0 − 1

2

∂γ jk

∂μ
∂ jφ∂kφ

)
= −∂ jJ j, (2.10)

where

Jj = −γ jk∂kφ − σ jk∂kμ + 2iT0σ jk∂k�. (2.11)

Equation (2.10) has the form of a local conservation law and
expresses the conservation of particle number. The particle
density is

J0 = n0 − 1

2

∂γ jk

∂μ
∂ jφ∂kφ, (2.12)

while Jj is the current. The expression for Jj contains the
nondissipative London term −γ jk∂kφ, the diffusive term
−σ jk∂kμ, and the noise term proportional to the noise field
�. Thus γ jk is the superfluid density tensor, while σ jk is the
Ohmic conductivity tensor. The noise term is imaginary, but
can be made real by redefining � to be imaginary.3

Note that the seed we used to generate the dissipative
terms in the action does not contain time derivatives of �.
While such terms are allowed, they are of higher order in the
derivative expansion compared to the ones we included. For
example, including a term (∂0�)2 in the seed would give a
contribution to J0 which is proportional to ∂0μ.

The particle number density and the particle number cur-
rent can be obtained from LSK as

J0 = ∂LSK

∂ (∂0�)
, Jj = ∂LSK

∂ (∂ j�)
. (2.13)

That is, the physical charge and current are the Noether charge
and current for the antidiagonal symmetry. This is a general
feature of the Schwinger-Keldysh formalism [26].

The normal phase hydrodynamics is obtained by setting
γ jk = 0. Equivalently, in the normal phase the SK action is
allowed to depend on φ only through μ = ∂0φ. In the nor-
mal phase J0 = n0 = − ∂	0

∂μ
. This is the usual thermodynamic

relation between particle number density and the “grand po-
tential” 	0 = F − μn0, where F is Helmholtz free energy per
unit volume.4 In the superconducting phase, one can rewrite
Eq. (2.12) in a similar manner:

J0 = −∂	

∂μ
, (2.14)

but for a grand potential that depends also on ∇φ:

	(μ,∇φ) = 	0(μ) + 1
2γ jk (μ)∂ jφ∂kφ. (2.15)

Stability requires 	 to be minimized at equilibrium; therefore,
γ jk must be positive. Unlike the positivity of σ jk , this does not
follow from the conditions (1)–(4).

To include a background electromagnetic field, we promote
U (1)D and U (1)A to gauge symmetries, so that α, α′ become
arbitrary functions of (x0, x). The U (1)D gauge field (a0, a)
is the physical electromagnetic field and transforms as usual:
a0 �→ a0 + ∂0α, a �→ a + ∇α. The U (1)A gauge field (A0, A)
is the SK partner of the physical electromagnetic field. Even
though it is a background field, one cannot set it to zero

3Within classical theory, it is natural to redefine � �→ −i� from
the start. Then both the action and the KMS transformations become
real.

4	 is sometimes called the Landau potential.
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at the outset, because this choice is not preserved by KMS
symmetry. Indeed, the standard KMS transformations are

a0 �→ T (a0), A0 �→ T
(
A0 + iT −1

0 ∂0a0
)
, (2.16)

a �→ −T (a), A �→ −T
(
A + iT −1

0 ∂0a
)
. (2.17)

These transformations do not commute with the physical
U (1)D gauge symmetry, but this can be rectified by defining a
new KMS symmetry which is the composition of the standard
KMS symmetry and a U (1)A gauge transformation with a
parameter α′ = −iT −1

0 a0. The resulting KMS transformation
is U (1)D covariant:

a0 �→ T (a0), A0 �→ T (A0), (2.18)

a �→ −T (a), A �→ −T
(
A + iT −1

0 e
)
, (2.19)

where e = −∇a0 + ∂0a is the physical electric field. We see
that we can consistently set A0 = 0, but to ensure KMS invari-
ance one must allow A to be arbitrary.

The above redefinition also affects the KMS transforma-
tions of other fields by making them U (1)D covariant:

φ �→ −T (φ), � �→ −T
(
� + iT −1

0 D0φ
)
, (2.20)

where D0φ = ∂0φ − a0. Note that ∂0φ is now interpreted as
the local electrochemical potential per unit charge, while the
gauge-invariant quantity μ = D0φ is the local chemical po-
tential.

The nondissipative part of the Schwinger-Keldysh action is
given by

Ind = −
∫

d4x

[
Dj�

∂	[φ]

∂ (Djφ)
+ D0�

∂	[φ]

∂ (D0φ)

]
, (2.21)

where 	[φ] is assumed to be invariant under U (1)D gauge
transformations and the covariant derivatives are defined by

Dμφ = ∂μφ − aμ, Dμ� = ∂μ� − Aμ. (2.22)

Then it is easy to see that Ind is invariant under U (1)D × U (1)A

gauge symmetry. Under KMS symmetry Ind changes by a total
derivative (provided one also transforms the background fields
aμ, Aμ). To leading order in spatial derivatives 	[φ] has the
form

	(μ, Djφ) = 	0(μ) + 1
2γ jk (μ)DjφDkφ. (2.23)

The dissipative part of the Schwinger-Keldysh action is
obtained from a “seed”

X = iT0σ jk (μ)Dj�Dk�. (2.24)

This gives

Z = −σ jk (μ)Dj�(∂kμ − ek ) + iT0σ jk (μ)Dj�Dk�. (2.25)

The complete SK Lagrangian is

LSK =
(

n0(μ) − 1

2

∂γ jk

∂μ
DjφDkφ

)
D0� − γ jkD j�Dkφ

− σ jkD j�(∂kμ − ek ) + iT0σ jkD j�Dk�. (2.26)

At this stage one may set the U (1)A gauge fields to zero
and replace Dμ� with ∂μ� throughout. The particle number

density and current are

J0 = n0(μ) − 1

2

∂γ jk

∂μ
DjφDkφ,

Jj = −γ jkDkφ + σ jk (ek − ∂kμ) + 2iT0σ jk∂k�. (2.27)

Note that the dissipative part of the current is proportional
to the effective electric field ẽk = ek − ∂kμ, ensuring that the
Einstein relation is satisfied. The correct combination of ek

and ∂kμ arises from imposing the KMS symmetry.
If the background fields are time independent, any action

satisfying the conditions (1)–(4) results in equations of motion
which respect the local second law [24]. That is, there exists
an entropy density s0 and an entropy current s j satisfying

∂μsμ = ∂0s0 + ∂ j s j � 0. (2.28)

For the model we are considering, they are

s0 = − 1

T0

(
	 − (μ + a0)

∂	

∂μ

)
, (2.29)

s j = − 1

T0
(μ + a0)Jj . (2.30)

The positive-definite entropy production rate is

∂μsμ = 1

T0
σ jk (∂ jμ − e j )(∂kμ − ek ). (2.31)

Note that only the electric conductivity tensor σ contributes
to entropy production.

The SK Lagrangian (2.26) is equivalent to a stochastic PDE
with a Gaussian noise (the Langevin equation). To see this, we
introduce a new field �̂ and replace the last term in (2.26) with

−2T0σ jk∂ j�∂k�̂ + iT0σ jk∂ j�̂∂k�̂.

Integrating out �̂ gives back the original SK action, so this
replacement does not affect the physics. On the other hand, �

now enters linearly and integrating it out gives a differential
equation for φ:

∂0J0 = −∂ j (Jj − 2T0σ jk∂k�̂),

where the second term in parentheses can be interpreted as
a stochastic contribution to the current. The noise �̂ has a
Gaussian distribution, with the two-point function

〈�̂(x, t )�̂(x′, t ′)〉 = δ(t − t ′)
2T0

(−σlm∂l∂m)−1(x, x′). (2.32)

Taking into account the form of Jj (2.27), one can also inter-
pret the stochastic term as arising from a randomly fluctuating
electric field êk , with the two-point function

〈ê j (x, t )êk (x′, t ′)〉 = −2T0δ(t − t ′)∂ j∂k (−σlm∂l∂m)−1(x, x′).

In the one-dimensional case, this is a slightly disguised ver-
sion of the Nyquist formula.

III. EFT-I: GINZBURG-LANDAU HYDRODYNAMICS

In this section we construct EFT-I: a Schwinger-Keldysh
EFT for superconductors which applies near T = Tc. It can
be viewed as a generalization of both the normal phase
SK-EFT briefly discussed in Sec. II and the static Ginzburg-
Landau theory. Thus it includes both a real scalar φ(x0, x)

144514-4
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(which describes quasiparticle excitations) and the complex
Ginzburg-Landau order parameter ψ (x0, x). There are also
their SK partners � and 
. We will assume that ψ,
 have
charge q (the physical value being q = 2). The temperature
T0 is still assumed to be constant (we will discuss in the next
section how to remove this restriction). Let us list the trans-
formation properties of the fields under all the symmetries of
interest. U (1)D acts in an obvious manner:

δDaμ = ∂μα, δDAμ = 0, (3.1)

δDφ = α, δD� = 0, (3.2)

δDψ = iqαψ, δD
 = iqα
, (3.3)

δDψ∗ = −iqαψ∗, δD
∗ = −iqα
∗. (3.4)

The action of U (1)A is derived in Appendix A:

δAaμ = 0, δAAμ = ∂μα′, (3.5)

δAφ = 0, δA� = α′, (3.6)

δAψ = 0, δA
 = iqα′ψ, (3.7)

δAψ∗ = 0, δA
∗ = −iqα′ψ∗. (3.8)

The covariant derivatives are

Dμφ = ∂μφ − aμ, Dμ� = ∂μ� − Aμ, (3.9)

Dμψ = ∂μψ − iqaμψ, Dμ
 = ∂μ
 − iqaμ
 − iqAμψ,

(3.10)

Dμψ∗ = ∂μψ∗ + iqaμψ∗,

Dμ
∗ = ∂μ
∗ + iqaμ
∗ + iqAμψ∗. (3.11)

The covariant derivatives of φ and � are gauge invariant,
while the covariant derivatives of the fields ψ,ψ∗, 
,
∗
transform as the respective fields. The KMS symmetry is (see
Appendix A for details)

a0 �→ T (a0), A0 �→ T (A0), (3.12)

a �→ −T (a), A �→ −T
(
A + iT −1

0 e
)
, (3.13)

φ �→ −T (φ), � �→ −T
(
� + iT −1

0 D0φ
)
, (3.14)

ψ �→ T (ψ∗), 
 �→ T
(

∗ + iT −1

0 D0ψ
∗), (3.15)

ψ∗ �→ T (ψ ), 
∗ �→ T (
 + iT −1
0 D0ψ

)
. (3.16)

The Schwinger-Keldysh action has the form Id + Ind . The
nondissipative term Ind is linear in the fluctuating fields

,
∗,� and arises from an action S[ψ,ψ∗, μ]. More ex-
plicitly, assuming S = − ∫

d4x 	 depends only on the first
derivatives of ψ,ψ∗ and only on the time derivatives5 of φ,

5Allowing L to depend on spatial derivatives of φ would mean
that there there are more superfluid degrees of freedom than those
described by the Ginzburg-Landau field ψ . Such a situation is the-
oretically possible if there are several kinds of particles which form
Cooper pairs or Bose condense at different temperatures.

we have

Ind = −
∫

d4x

[(



∂	

∂ψ
+ D0


∂	

∂ (D0ψ )

+Dj

∂	

∂ (Djψ )
+ c.c.

)
+ D0�

∂	

∂μ

]
. (3.17)

If 	 is invariant under δD, then it is easy to see that Ind is
invariant under both δD and δA. As for the KMS symmetry, Ind

is invariant up to a total time derivative:

Ind �→ Ind − i

T0

∫
d4x ∂0	[ψ,ψ∗, μ]. (3.18)

Near the phase transition, we can expand 	 in powers
of ψ,ψ∗, μ and their derivatives. To make this precise, we
define a suitable power-counting scheme by assigning weights
to fields and derivatives. The fields ψ , ψ∗ and the spatial
derivative ∇ have weight 1, so that both |ψ |4 and |∇ψ |2 have
weight 4. The term |ψ |2 has weight 2, so a consistent power-
counting scheme which treats |ψ |2 and |ψ |4 in L as being
comparable requires us to assign weight 2 to the coefficient α

of |ψ |2. This reflects the fact that in Ginzburg-Landau theory
α � a · (T0 − Tc) and we assume |T0 − Tc| � T0. Then the
leading (weight 4) terms in 	 are

	 = − i�2

2
(ψ∗D0ψ − ψD0ψ

∗) + 1

2
λ jkD jψ

∗Dkψ + α|ψ |2

+ β

2
|ψ |4 − 1

2
ζμ2. (3.19)

The coefficients �2, λ jk, α, β, ζ are real constants. Since the
normalization of the field ψ is not physical, one may let β = 1
without a loss of generality. The corresponding contribution to
the Schwinger-Keldysh action is

Ind =
∫

d4x

[
i�2

2
(
∗D0ψ − 
D0ψ

∗)

− i�2

2
(ψD0


∗ − ψ∗D0
 ) − 1

2
λ jkD j


∗Dkψ

− 1

2
λ jkD j
Dkψ

∗ − α(
∗ψ + ψ∗
)

−β(
∗ψ + ψ∗
)|ψ |2 + ζμD0�

]
. (3.20)

The dissipative term Id is constructed from a “seed” X
which is i times a positive-definite homogeneous quadratic
function of 
,
∗,� invariant under T and U (1)D × U (1)A.
At leading order in the power counting it is easy to see that
the most general such expression is a sum of two terms:

X = 2iT0�1|
 − iq�ψ |2 + iT0σ jkD j�Dk�, (3.21)

where �1 > 0 and σ jk is a positive-definite matrix. Thus there
are two dissipative transport coefficients at this order. The
corresponding contribution to the SK action is

Id = −�1

∫
d4x[(
∗ + iq�ψ∗)(D0ψ − iqμψ )

+ (
 − iq�ψ )(D0ψ
∗ + iqμψ∗)

− 2iT0|
 − iq�ψ |2] − σ jk

∫
d4x[Dj�(∂kμ − ek )

− iT0Dj�Dk�]. (3.22)

At this stage we can set Aμ = 0.
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To convert the theory to the standard “Langevin” form,
we introduce new fields 
̂, 
̂∗, �̂ and replace the terms in
Id which are quadratic in the fields 
,
∗,� with∫

d4x[−2T0�1((
∗ + iq�ψ∗)
̂ + 
̂∗(
 − iq�ψ ))

+ 2iT0�1
̂
∗
̂ − 2T0σ jk∂ j�∂k�̂ + iT0σ jk∂ j�̂∂k�̂].

Since integrating out 
̂, 
̂∗, �̂ gives back the original action,
this does not change the physical content of the theory. Now
the fields 
,
∗ enter linearly and integrating them out gives
Langevin equations for ψ,ψ∗, φ. They read

�1(D0ψ − iqμψ ) − i�2D0ψ

= 1
2λ jkD jDkψ − αψ − βψ |ψ |2 − 2T0�1
̂, (3.23)

�1(D0ψ
∗ + iqμψ∗) + i�2D0ψ

∗

= 1
2λ jkD jDkψ

∗ − αψ∗ − βψ∗|ψ |2 − 2T0�1
̂
∗, (3.24)

ζ∂0μ = −q�1[iψ∗(D0ψ − iqμψ ) + c.c.] + σ jk∂ j (∂kμ − ek )

+ 2T0σ jk∂ j∂k�̂ − 2iqT0�1(ψ∗
̂ − 
̂∗ψ ). (3.25)

Using the first two equations, the last one can be rewritten as
a conservation equation:

∂0(ζμ − q�2|ψ |2) = −∂ jJ j, (3.26)

where the particle number current is

Jj = qλ jk
i

2
(ψ∗Dkψ − ψDkψ

∗) + σ jk (ek − ∂kμ)

− 2T0σ jk∂k�̂. (3.27)

Thus the particle number density is J0 = ζμ − q�2|ψ |2 and
the parameter ζ can be identified with the charge compress-
ibility of the normal component of the conducting “fluid.” The
three terms in the current (3.27) are the superfluid contribu-
tion, the quasiparticle contribution, and the Nyquist-Johnson
noise. The noise field �̂ is Gaussian and has the two-point
function (2.32); the noise fields 
̂, 
̂∗ are also Gaussian, with
the two-point function

〈
̂(x, t )
̂(x′, t ′)〉 = 1

2T0�1
δ(t − t ′)δ3(x − x′).

Let us compare this with TDGL equations. For simplicity,
we set the noise fields 
̂, 
̂∗, �̂ to zero. Then it is easy to
see that Eqs. (3.24)–(3.27) reduce to the Schmid-Gor’kov-
Eliashberg equations if we set �2 = 0. In fact, it was noticed
in [4] (see also [15]) that the parameter �1 can be complex-
ified. Here we see that simply replacing �1 with a complex
parameter �1 − i�2 does not give the correct equations.

In the SK formalism the existence of the entropy density
and entropy current with a positive entropy production is
automatic. The entropy density and current are

s0 = 1

T0

(
−	 + (μ + a0)

∂	

∂μ
+ (D0ψ + iqa0ψ )

∂	

∂ (D0ψ )
+ (D0ψ

∗ − iqa0ψ
∗)

∂	

∂ (D0ψ∗)

)

= − 1

T0

(
qμ�2|ψ |2 + 1

2
λ jkD jψDkψ

∗ + α|ψ |2 + β

2
|ψ |4 − 1

2
ζμ2 + (μ + a0)J0

)
, (3.28)

s j = 1

T0

(
− (μ + a0)

∂Ld

∂ (Dj�)
+ (D0ψ + iqa0ψ )

∂	

∂ (Djψ )
+ (D0ψ

∗ − iqa0ψ
∗)

∂	

∂ (Djψ∗)

)

= 1

T0

(
1

2
λ jk[(D0ψ − iqμψ )Dkψ

∗ + (D0ψ
∗ + iqμψ∗)Dkψ] − (μ + a0)Jj

)
. (3.29)

Then the entropy production rate is

∂μsμ = 1

T0
2�1(D0ψ − iqμψ )(D0ψ

∗ + iqμψ∗)

+ 1

T0
σ jk (∂ jμ − e j )(∂kμ − ek ). (3.30)

A similar calculation was performed by Schmid [4] in the
special case �2 = 0.

We stress that the expressions for entropy density and cur-
rent are valid only when the background fields aμ are time
independent. Only in this case is the entropy production rate
∂μsμ positive definite and hence the local second law follows
from KMS invariance.

In Appendix A, we perform the hydrodynamic expansion
to the next-to-leading order. Apart from obvious modifica-
tions, such as a term |ψ |6 in the potential energy and the
dependence of various linear order coefficients on μ and |ψ |2,
we find exactly one new dissipative transport coefficient. The

corresponding modification of the TDGL equations appeared
in [4,29].

IV. EFT-II AND EFFECTS OF INHOMOGENEOUS
TEMPERATURE

In this section we show how to include nonuniform tem-
perature and heat conduction into the SK-EFT formalism. The
first step is to promote the parameter T0 to a dynamical field
T (x0, x), which takes values in positive real numbers [30].
Then the KMS transformations of a generic field ϕ and its
SK-partner � become

RKMS(ϕ) = T (ϕ), (4.1)

RKMS(�) = T (� + iT −1D0ϕ). (4.2)

A covariant derivative appears on the right-hand side because
we allowed for background gauge fields. However, after such
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a replacement our recipe for constructing a KMS-invariant
nondissipative action no longer works.

A natural way around this difficulty is to define a new
dynamical field τ (x0, x) = ∫ x0 T (u, x)du so that T = ∂0τ .
Since T is assumed positive, for a fixed x the map x0 �→ τ

is one to one and one can invert the relation between x0 and
τ . Let us denote the inverse function θ (τ, x). Fields like ϕ

and � can then be regarded as functions of τ, x. Their KMS
transformations take the form

RKMS(ϕ) = T (ϕ), (4.3)

RKMS(�) = T (� + iDτ ϕ), (4.4)

which allow us to use the recipe from Sec. II to construct a
KMS-invariant nondissipative action. Here we make use of the
definition aτ = T −1a0 so that Dτ ϕ = ∂τϕ − aτ = T −1D0ϕ.
Along with the field θ (τ, x), one needs to introduce its SK
partner �(τ, x). Their KMS transformations have the standard
form

θ �→ −T (θ ), � �→ −T (� + i∂τ θ ). (4.5)

In what follows we will refer to τ as a “proper time” to
distinguish it from the coordinate time x0. For the purposes of
this paper, using τ instead of x0 as the time variable may be
regarded as a mathematical trick which helps one to construct
KMS-invariant actions. Once the action has been constructed,
we will change the variables back. However, the ability to use
either x0 or τ as an independent time variable has a physical
significance which is discussed further in Appendix B. Here
we just make two remarks. First, treating the coordinate time
x0 as a dynamical field is similar to the “Lagrangian” method
in ordinary hydrodynamics where the spatial coordinates x j

are regarded as functions of the “reference” coordinates σ j

labeling material particles. At any fixed time, the map between
x j and σ j is one to one, so one can equally well regard σ j

as functions of x j . In ordinary hydrodynamics this is referred
to as the “Eulerian” method. In relativistic hydrodynamics,
it is very natural (although not necessary) to supplement the
spatial labels σ j with a proper time label τ , in effect equipping
each material particle with a clock. Here we see that a proper
time variable is also very natural from the viewpoint of the
Schwinger-Keldysh formalism, if one wants to include the
effects of nonuniform temperature. For this reason we will
refer to the usual approach where x0 is an independent variable
as the Eulerian picture, while treating τ as an independent
variable and x0 = θ (τ, x) as a dynamical field will be called
the Lagrangian picture.

The second remark concerns time-translation symmetry
which is present if the background fields are time independent.
In the Lagrangian picture a constant shift of the coordinate
time θ (τ, x) is still a symmetry, but now it also has an SK-
partner symmetry which shifts �. Therefore, we expect that
the equation of motion for � will enforce local energy conser-
vation, assuming the background fields are time independent.

In accordance with Sec. II, the general form of the nondis-
sipative action in the Lagrangian picture is

Ind =
∫

dτ d3x

(
�

δS

δϕ
+ �

δS

δθ
+ Aj

δS

δa j

)
, (4.6)

where S is a local functional of ϕ, θ, and aμ, which is in-
variant under time reversal, gauge symmetry, and constant
shifts of θ . To make contact with the usual transport theory,
it is more convenient to rewrite Ind in the Eulerian picture.
Assuming that S depends only on the first derivatives of ϕ and
θ , after some rather elaborate algebra we obtain

Ind = −
∫

d4x

[
�

∂	

∂ϕ
+ D0�

∂	

∂ (∂0ϕ)

+ ∂0�

(
	 − T

∂	

∂T
− ∂0ϕ

∂	

∂ (∂0ϕ)

)
+ Dj�

∂	

∂ (Djϕ)

−∂ j�

(
∂0ϕ

∂	

∂ (∂ jϕ)
+ T

∂	

∂ (∂ jτ )

)]
. (4.7)

Here 	 is defined by S = − ∫
d4x 	. In the Eulerian picture,

it is a function of ϕ,�, τ,� and their derivatives with respect
to x0 and x j . We also recall that T = ∂0τ .

Ignoring for now the dissipative part of the action, we note
that the equation of motion for � is a conservation law, as
expected:

∂0JE
0 = −∂ jJ

E
j , (4.8)

where

JE
0 = 	 − T

∂	

∂T
− ∂0ϕ

∂	

∂ (∂0ϕ)
,

JE
j = −∂0ϕ

∂	

∂ (∂ jϕ)
− T

∂	

∂ (∂ jτ )
. (4.9)

These expressions are completely general and apply to an
arbitrary hydrodynamic EFT. In particular, if τ is the only dy-
namical field, the expression for the energy density appears to
be the usual thermodynamic relation u = 	 − T ∂	

∂T between
the (density of the) grand potential 	 and the (density of the)
internal energy u. However, this formal similarity hides an
important subtlety: in our formalism 	 is allowed to depend
not only on T = ∂0τ , but also on ∂ jτ . This is hard to interpret
within the usual thermodynamics. The appearance of ∂ jτ in
the grand potential is analogous to the appearance of ∂ jφ

in the toy model of superconductivity considered in Sec. II.
It signals that one is dealing with a phase of matter where
heat can flow nondissipatively, just like electric current in a
superconductor. Since such phases of matter have not been
observed in nature, in the rest of the paper we will assume that
	 does not depend on the spatial derivatives of τ . If one allows
such a dependence, one obtains an exotic hydrodynamics. It is
discussed further in Appendix C.

Let us use this formalism to derive the fluctuating hydrody-
namics of superconductors in the London limit while allowing
for a nonuniform temperature. We will call it EFT-II. The
only dynamical fields here are φ, �, θ, and �. Their KMS
transformations are given by (4.5) and

φ �→ −T (φ), � �→ −T (� + i∂τφ). (4.10)

The grand potential 	 may depend only on the derivatives of
φ (both spatial and temporal) and T = ∂0τ . To quadratic order
in spatial derivatives 	 must have the form

	(μ, T, Djφ) = 	0(μ, T ) + 1
2γ jk (μ, T )DjφDkφ. (4.11)

The matrix γ is required to be positive by thermodynamic
stability.
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The dissipative part of the Schwinger-Keldysh Lagrangian is constructed from a seed expression which is i times a general
positive quadratic function of derivatives of � and � (symmetries do not allow a dependence on � or � without derivatives).
To leading order in spatial derivatives we can write the seed expression as

X (φ,�, τ,�) = iT σ jk[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�] (4.12)

+ iT 2κ jk∂ j�∂k� − 2iT η jk[Dj� − (μ + a0)∂ j�]∂k�. (4.13)

Here σ jk, κ jk, η jk are real functions of μ, T such that the matrix function(
σ η

ηt T κ

)
(4.14)

is symmetric and positive definite.
Putting the dissipative and nondissipative terms together, we get the complete Schwinger-Keldysh action for EFT-II, which

applies in the London limit:

I =
∫

d4x

{
−

[
u0 + 1

2

(
γ jk − (μ + a0)

∂γ jk

∂μ
− T

∂γ jk

∂T

)
DjφDkφ

]
∂0�

+
(

n0 − 1

2

∂γ jk

∂μ
DjφDkφ

)
D0� − γ jk[Dj� − (μ + a0)∂ j�]Dkφ

+ σ jk[Dj� − (μ + a0)∂ j�](ek − ∂kμ) + κ jk∂ j�∂kT − η jk∂k�(e j − ∂ jμ)

− 1

T
η jk[Dj� − (μ + a0)∂ j�]∂kT + iT σ jk[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�]

+ iT 2κ jk∂ j�∂k� − 2iT η jk[Dj� − (μ + a0)∂ j�]∂k�

}
. (4.15)

Here

n0(μ, T ) = −∂	0

∂μ
,

u0(μ, T ) = 	0 − T
∂	0

∂T
− (μ + a0)

∂	0

∂μ
. (4.16)

The tensors γ jk, σ jk, η jk, κ jk are arbitrary real functions of
μ and T . In addition, γ jk is symmetric and positive defi-
nite, while the matrix coefficients σ, κ, η are such that the
matrix (4.14) is symmetric and positive definite. Note that
the leading-order SK action still has an accidental symmetry
under spatial inversion x �→ −x. In general, this symmetry
will be broken by higher-derivative terms. We will see below
that once time-reversal symmetry is dropped, spatial inversion
is no longer automatic at leading order in the derivative expan-
sion.

The equations of motion of EFT-II are conservation
laws

∂0n = −∂ jJ
j, ∂0u = −∂ jJ

E
j , (4.17)

where

n = n0(μ, T ) − 1

2

∂γ jk

∂μ
DjφDkφ,

u = u0(μ, T ) + 1

2

(
γ jk − (μ + a0)

∂γ jk

∂μ
− T

∂γ jk

∂T

)
DjφDkφ,

(4.18)

and the particle and energy currents are

Jj = ∂LSK

∂ (∂ j�)
= −γ jkDkφ + σ jk (ek − ∂kμ)

− 1

T
η jk∂kT + 2iT σ jk (Dk� − μ∂k�) − 2iT η jk∂k�,

(4.19)

JE
j = − ∂LSK

∂ (∂ j�)
= (μ + a0)Jj − κ jk∂kT + η jk (ek − ∂kμ)

− 2iT 2κ jk∂k� + 2iT η jk (Dk� − μ∂k�). (4.20)

Apart from the “noise” terms proportional to derivatives of
� and �, these are the expressions for the transport currents
written down by Luttinger [28]. The above derivation shows
that the dependence of n and u on the superfluid velocity
∇φ is determined by the coefficient γ jk and that the second
law of thermodynamics is equivalent to the positivity of the
matrix (4.14). The case of the normal phase is obtained by
setting γ = 0, in which case σ is the conductivity, κ is the
heat conductivity, and η is the thermoelectric tensor.

We can also derive the expressions for the entropy,
entropy current, and entropy production rate in the super-
conducting phase, valid for time-independent background
fields,

s0 = −∂	

∂T
, (4.21)

s j = 1

T

[
JE

j − (μ + a0)Jj
]
, (4.22)
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∂μsμ = 1

T
σ jk (e j − ∂ jμ)(ek − ∂kμ) + 1

T 2
κ jk∂ jT ∂kT

− 2
1

T 2
η jk∂ jT (ek − ∂kμ). (4.23)

One can include the effects of inhomogeneous temperature
into EFT-I in a similar way. The general expression (4.6) still
applies, but now ϕ is a collective name for any of the fields
ψ,ψ∗, φ, and � is a collective name for any of the fields

,
∗,�. The grand potential 	 can be an arbitrary function
of ϕ, T and their derivatives invariant under U (1)D gauge

symmetry. To leading order in our power counting, it has the
form

	 = − i�2

2
(ψ∗D0ψ − ψD0ψ

∗) + 1

2
λ jkD jψ

∗Dkψ

+ a(T − Tc)|ψ |2 + β

2
|ψ |4 − 1

2
ζμ2 − 1

2
BT 2. (4.24)

Here B is a new constant related to specific heat at T = Tc (see
below).

The “seed” for the dissipative part of the action now con-
tains additional terms:

X = 2iT �1|
 − iq�ψ |2 + iT σ jk[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�]

+ iT 2κ jk∂ j�∂k� − 2iT η jk[Dj� − (μ + a0)∂ j�]∂k�. (4.25)

The corresponding dissipative part of the SK action is

Id =
∫

d4x Ld

= −�1

∫
d4x[(
∗ + iq�ψ∗)(D0ψ − iqμψ ) + (
 − iq�ψ )(D0ψ

∗ + iqμψ∗) − 2iT |
 − iq�ψ |2]

+
∫

d4x

[
σ jk[Dj� − (μ + a0)∂ j�](ek − ∂kμ) + κ jk∂ j�∂kT + η jk (∂ jμ − e j )∂k�

− 1

T
η jk[Dj� − (μ + a0)∂ j�]∂kT + iT σ jk[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�]

+iT 2κ jk∂ j�∂k� − 2iT η jk[Dj� − (μ + a0)∂ j�]∂k�

]
. (4.26)

Equations (3.23) and (3.24) are unaffected except that a constant T0 is replaced with with a function T and α = a · (T − Tc). The
particle number conservation equation is modified by the presence of a thermoelectric coefficient η so that the particle number
current is

Jj = σ jk (ek − ∂kμ) − η jk
1

T
∂kT + qλ jk

i

2
(ψ∗Dkψ− ψDkψ

∗) + 2iT σ jk (Dk� − μ∂k�) − 2iT η jk∂k� (4.27)

and the particle number density J0 = ζμ − q�2|ψ |2 is unaffected. There is also a new equation obtained by varying �. It
expresses conservation of energy and has the form

∂0JE
0 = −∂ jJ

E
j , (4.28)

where

JE
0 = 	 − T

∂	

∂T
− (μ + a0)

∂	

∂μ
− (D0ψ + iqa0ψ )

∂	

∂ (D0ψ )
− (D0ψ

∗ − iqa0ψ
∗)

∂	

∂ (D0ψ∗)

= 1

2
λ jkD jψDkψ

∗ − aTc|ψ |2 + 1

2
β|ψ |4 + 1

2
ζμ2 + 1

2
BT 2 + a0J0, (4.29)

JE
j = (μ + a0)Jj − κ jk∂kT + η jk (ek − ∂kμ) − 1

2
λ jk[(D0ψ − iqμψ )Dkψ

∗ + (D0ψ
∗ + iqμψ∗)Dkψ] − 2iT 2κ jk∂k�. (4.30)

In particular, ζ is again identified as charge compressibility and BTc is the specific heat at T = Tc. The coefficients β, ζ , B and
the matrix λ jk must be positive by thermodynamic stability.

Note that the dominant (weight 3) terms in the energy current are the heat conductivity term and the thermoelectric term. If
the thermoelectric coefficient is small (as is usually the case), when solving for T (x0, x) it is justifiable to neglect all other terms
and get the usual heat conduction equation. The resulting T (x0, x) can be plugged into the equations for ψ and μ.

The entropy density, current, and production rate, with time-independent background fields, are

s0 = −∂	

∂T
= −a|ψ |2 + BT, (4.31)

s j = 1

T

(
JE

j − (μ + a0)
∂Ld

∂ (Dj�)
+ (D0ψ + iqa0ψ )

∂	

∂ (Djψ )
+ (D0ψ

∗ − iqa0ψ
∗)

∂	

∂ (Djψ∗)

)
= 1

T
[−κ jk∂kT + η jk (ek − ∂kμ)],

(4.32)

∂μsμ = 1

T
2�1(D0ψ − iqμψ )(D0ψ

∗ + iqμψ∗) + 1

T
σ jk (e j − ∂ jμ)(ek − ∂kμ) + 1

T 2
κ jk∂ jT ∂kT + 2

1

T 2
η jk (∂ jμ − e j )∂kT .

(4.33)
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The positivity of the entropy production is ensured by �1 � 0
and the usual inequalities on the tensors σ, κ, η.

V. BROKEN TIME-REVERSAL INVARIANCE

The local KMS condition can be formulated as a KMS
symmetry only if the system is invariant under time reversal.
To deal with the case of explicit or spontaneous breaking of
time reversal, one can use a simple trick: stack the system
of interest with its image under time reversal. The variables
of the time-reversed system will be distinguished with a
prime. The composite has a time-reversal symmetry which
exchanges the primed and unprimed variables. This allows
one to apply the usual recipe for constructing hydrodynamic
actions. There is no interaction between primed and unprimed
variables, so afterwards one can simply discard the primed
variables.

To illustrate how this works, let us consider EFT-II, which
describes superconducting hydrodynamics in the London
limit. Given that the action of time reversal is to swap primed
and unprimed variables, we take the KMS transformations to
be

φ �→ −T (φ′), φ′ �→ −T (φ), (5.1)

τ �→ −T (τ ′), τ ′ �→ −T (τ ), (5.2)

� �→ −T [�′ + i(T ′)−1], �′ �→ −T (� + iT −1), (5.3)

� �→ −T [�′ + i(T ′)−1μ′], �′ �→ −T (� + iT −1μ),
(5.4)

a0 �→ T (a′
0), a′

0 �→ T (a0), (5.5)

a �→ −T (a), a′ �→ −T (a), (5.6)

A �→ −T [A′ + i(T ′)−1e′], A′ �→ −T (A + iT −1e). (5.7)

The nondissipative action is constructed in exactly the same
manner as before. The grand potential can be written as a sum

	T = 	 + 	′, (5.8)

where 	 depends only on unprimed variables and 	′ depends
only on primed variables. To quadratic order in spatial deriva-

tives, the grand potential for the unprimed system takes the
form

	 = 	0(μ, T ) + 1
2γ jk (μ, T )[Djφ − l j (μ, T, e)]

× [Dkφ − lk (μ, T, e)] − σ A
jk (μ, T )Djφ(∂kμ − ek )

− κA
jk (μ, T )∂ jτ∂kT + 1

2 T −1[ηk j (μ, T )

− T ν jk (μ, T )]Djφ∂kT, (5.9)

where l j is an arbitrary vector-valued function of μ, T , and the
electric field e called the Lifshitz coupling. For any fixed μ

and T it can be removed by a redefinition of φ up to boundary
effects [31], but if μ or T are nonuniform, then the Lifshitz
coupling can have bulk effects. Note that the Lifshitz coupling
breaks spatial inversion. We have included a linear combina-
tion of two tensors η and ν in the last term in order to make the
parallel with transport theory more clear when we write down
the energy and charge currents. Only the antisymmetric parts
of σ A and κA contribute nontrivially to the action—hence the
“A” superscript.

The grand potential for the primed system 	′ takes the
same form as 	 except that we substitute the quantities
	0, γ , σ A, κA, l, η, ν with independent quantities labeled by a
prime 	′

0, γ
′, σ ′A, κ ′A, l ′, η′, ν ′. Our procedure for generating

a KMS invariant action requires that the full grand potential
	T = 	 + 	′ is time-reversal invariant. This imposes the
following constraints:

	0(μ, T ) = 	′
0(μ, T ),

γ jk (μ, T ) = γ ′
jk (μ, T ),

σ A
jk (μ, T ) = −σ ′A

jk (μ, T ),

κA
jk (μ, T ) = −κ ′A

jk (μ, T ),

ηk j (μ, T ) − T ν jk (μ, T ) = −η′
k j (μ, T ) + T ν ′

jk (μ, T ),

lk (μ, T ) = −l ′
k (μ, T ). (5.10)

To construct the dissipative part of the action, we need
to start with the “seed” that is i times a positive expression
which is quadratic in �,�,�′,�′ and an arbitrary function
of φ, τ, φ′, τ ′:

X (φ,�, τ,�) = iT σ ′S
jk (μ, T )[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�] + iT 2κ ′S

jk (μ, T )∂ j�∂k� − iT [η′
k j (μ, T )

+ T ν ′
jk (μ, T )][Dj� − (μ + a0)∂ j�]∂k� + iT ′σ S

jk (μ′, T ′)[Dj�
′ − (μ′ + a′

0)∂ j�
′][Dk�

′ − (μ′ + a′
0)∂k�

′]

+ iT ′2κS
jk (μ′, T ′)∂ j�

′∂k�
′ − iT ′[ηk j (μ

′, T ′) + T ′ν jk (μ′, T ′)][Dj�
′ − (μ′ + a′

0)∂ j�
′]∂k�

′.

Here the tensors σ S, κS, σ ′S, κ ′S are given an “S” superscript to emphasize that only their symmetric parts contribute to the
action, as was the case in Sec. IV when we studied EFT-II with time-reversal invariance. Our procedure for generating a KMS
invariant action requires that the seed is T even. This condition relates primed and unprimed coefficients:

σ S
jk (μ, T ) = σ ′S

jk (μ, T ), κS
jk (μ, T ) = κ ′S

jk (μ, T ), (5.11)

ηk j (μ, T ) + T ν jk (μ, T ) = η′
k j (μ, T ) + T ν ′

jk (μ, T ). (5.12)

Combining the constraints (5.10) and (5.11), (5.12), we find the usual Onsager relations between thermoelectric coefficients of
the system and its time reversal:

η jk (μ, T ) = T ν ′
k j (μ, T ), T ν jk (μ, T ) = η′

k j (μ, T ). (5.13)
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The full action IT with nondissipative and dissipative parts is generated by the usual procedure and can be written as a sum

IT = I + I ′, (5.14)

where I depends only on unprimed variables and I ′ depends only on primed variables. The action for the unprimed system takes
the form

I =
∫

d4x{nD0� − u∂0� − γ jk[Dj� − (μ + a0)∂ j�](Dkφ − lk ) + σ jk[Dj� − (μ + a0)∂ j�](ek − ∂kμ) + κ jk∂ j�∂kT

− η jk∂k�(e j − ∂ jμ) − ν jk[Dj� − (μ + a0)∂ j�]∂kT + iT σ jk[Dj� − (μ + a0)∂ j�][Dk� − (μ + a0)∂k�]

+ iT 2κ jk∂ j�∂k� − iT (ηk j + T ν jk )[Dj� − (μ + a0)∂ j�]∂k�}. (5.15)

The number and energy densities are defined as in Sec. IV,

n = −∂	

∂μ
, u = 	 − (μ + a0)

∂	

∂μ
− T

∂	

∂T
, (5.16)

using the grand potential defined by (5.9). The electric con-
ductivity tensor is the sum of a symmetric and antisymmetric
part σ = σ S + σ A, where σ S

jk = σ S
k j and σ A

jk = −σ A
k j . The

thermal conductivity similarly is the sum of a symmetric and
an antisymmetric part κ = κS + κA. Note that the thermo-
electric transport tensors η and ν are independent, whereas
previously time-reversal required η = T νt . SK constraints re-
quire that the 6 × 6 dissipative transport coefficient matrix(

σ 1
2 (η + T νt )

1
2 (ηt + T ν) T κ

)
(5.17)

is positive definite.
If we now consider the unprimed system in isolation, we

have a generalization of EFT-II with broken time-reversal
invariance. In this model the inversion symmetry x → −x
is no longer automatic due to the presence of the Lifshitz
coupling l j . The equations of motion are conservation laws
∂0n = −∂ jJ j and ∂0u = −∂ jJE

j , as before, with number and
energy densities given by (5.16). The number and energy
currents are

Jj = −γ jk (Dkφ − lk ) − σ jk (∂kμ − ek )

− 1

T
ν jk∂kT + 2iT σ jk[Dk� − (μ + a0)∂k�]

+ iT (ηk j + T ν jk )∂k�, (5.18)

JE
j = (μ + a0)Jj − κ jk∂kT − ηk j (∂kμ − ek ) − 2iT 2κ jk∂k�

+ iT (ηk j + T ν jk )[Dk� − (μ + a0)∂k�]. (5.19)

We see that η and ν are the familiar thermoelectric coefficients
from transport theory and the Hall effect and the thermal Hall
effect are a consequence of σ A and κA being nonzero. The
Onsager reciprocity relations are not enforced in the absence
of time reversal invariance and are replaced with the rela-
tions (5.10) and (5.11) which are of no physical consequence
when the unprimed system is considered in isolation. The
entropy density and current take the usual form (valid for
time-independent background fields)

s0 = −∂	

∂T
, s j = 1

T

[
JE

j − (μ + a0)Jj
]
. (5.20)

The entropy production rate

∂μsμ = 1

T
σ jk (∂ jμ − e j )(∂kμ − ek ) + 1

T 2
κ jk∂ jT ∂kT

+ 1

T 2
(ηk j + T ν jk )(∂ jμ − e j )∂kT (5.21)

is altered accordingly. The positivity of the entropy production
rate is guaranteed by the positivity of (5.17) as a consequence
of SK constraints. The Hall conductivities σ A and κA drop out
and do not contribute to entropy growth.

The same procedure can be applied to EFT-I to study bro-
ken time reversal in Ginzburg-Landau hydrodynamics. The
nondissipative Ind and dissipative Id contributions to the action
take the same form as in (4.7) and (4.26) with the appropriate
terms included proportional to the Hall conductivities σ A and
κA, distinct theromelectric coefficients η and ν, and a Lifshitz
coupling. Transport coefficients are constrained relative to
their primed partners as in (5.10) and (5.11). KMS invariance
provides an additional constraint on the dissipative coefficient

�1 = �′
1. (5.22)

There is no new behavior at leading order for broken time
reversal in EFT-I apart from the Hall effect and thermal Hall
effect due to σ A and κA.

VI. DISCUSSION AND CONCLUSIONS

The main result of the paper is a derivation of the fluctuat-
ing hydrodynamics of a superconductor near T = Tc entirely
from symmetries and the requirement of local thermodynamic
equilibrium. We showed that at leading order in the hydrody-
namic expansion (which is simultaneously the leading order
in T − Tc) the equations of motion are a version of TDGL
equations with stochastic terms. If one omits the stochastic
terms and sets the nondissipative coupling �2 to zero, our
TDGL equations reduce to the equations derived by Gork’kov
and Eliashberg [5] from a microscopic theory of dirty super-
conductors.

It is interesting to compare our version of TDGL equa-
tions (3.23), (3.24), (3.26), and (3.27) to other versions in
literature. One difference is the presence of the nondissipative
coupling �2. This coupling is often neglected because it vi-
olates the particle-hole symmetry (PHS) ψ ↔ ψ∗ and within
BCS theory such effects are suppressed by Tc/EF , where EF is
the Fermi energy. Nevertheless, it is important to include �2 if
one is interested in phenomena which arise entirely from PHS
violation, such as thermoelectricity. In addition, PHS is badly
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broken in the vicinity of electronic topological transitions (for
example, in some layered cuprates near optimal doping [15]).
Our analysis shows that at leading order in the hydrodynamic
expansion �2 is the only source of PHS violation (besides the
usual thermoelectric coefficients of the normal component).

We emphasize that naive complexification of �1 (i.e., re-
placing �1 with �1 + i�2) does not give the correct TDGL
equations. Naive complexification is often assumed in the
TDGL literature (see, e.g., Refs. [6,32,33]), but it may lead
to incorrect conclusions. For example, Ref. [33] uses naive
complexification to argue that �2 is proportional to ∂Tc

∂μ
.

Our results show that at leading order in the hydrodynamic
expansion Tc is independent of μ regardless of the value
of �2.

A closely related issue is the treatment of quasiparticle
degrees of freedom. Both here and in [5], they are represented
by a separate dynamical field φ or its covariant time deriva-
tive μ = D0φ (in Ref. [5] the noncovariant time derivative
∂0φ is denoted ψ). The field μ can be regarded as the elec-
trochemical potential for quasiparticles. At leading order in
the hydrodynamic expansion, the interaction betwen μ and
the Ginzburg-Landau field ψ is completely fixed by KMS
symmetry and U (1) gauge symmetry. In most discussions
of TDGL μ is set to zero by an implicit appeal to approxi-
mate charge neutrality imposed by the long-range Coulomb
interaction and an additional equation ∇ · J = 0 is imposed.
However, as shown above, this procedure is justified only if
�2 = 0. In general, the charge neutrality condition is ζμ =
�2|ψ |2, where ζ is charge compressibility. Substituting this
back into the equation for ψ and the expression for the current
leads to new PHS-violating effects whose relative size is set
not by the ratio �2/�1, but by �2/ζβ and �2σ/ζλ. The latter
ratio is of order �/pF ξ 2

0 , where � is the mean free path, ξ0 is
the zero-temperature coherence length, and pF is the Fermi
momentum. In a clean superconductor it can be much larger
than �2/�1 ∼ Tc/EF .

Finally, we derived the version of the TDGL equations ap-
plicable to thermally isolated systems where the temperature
may be inhomogeneous. As mentioned in the Introduction,
a microscopic derivation of such equations has been lack-
ing and various phenomenological models have been used
instead. Comparing our equations with those existing in the
literature, we see that Model C of Ref. [17] does not lead
to the correct expression for the energy current, while the
expressions used in [11–14] are correct only if one neglects
PHS-violating effects (i.e., sets �2 = 0). In view of this,
it would be interesting to reexamine fluctuation contribu-
tions to thermal conductivity and thermoelectric coefficients
near T = Tc.
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APPENDIX A: MORE ON THE GINZBURG-LANDAU
HYDRODYNAMICS

Here we provide some additional details on EFT-I. First,
let us derive Eqs. (3.5)–(3.8). Recall that in the SK for-
malism there are two copies of every field. Thus the
Ginzburg-Landau ψ becomes a pair of complex fields ψ1, ψ2

which have charge q under two independent symmetries
U (1)1,U (2)2 with parameters α1, α2. In the classical limit
(which is formally the same as the T0 → ∞ limit) we
have ψ1 = ψ2 + O(1/T0); therefore, it is convenient to in-
troduce ψ = 1

2 (ψ1 + ψ2) and 
 = ψ1 − ψ2 satisfying ψ =
O(1) and 
 = O(1/T0). Similarly, the fields φ,� are ex-
pressed as φ = 1

2 (φ1 + φ2),� = φ1 − φ2, and � = O(1/T0).
To enforce the correct scaling of the fields one may define
O(1) fields 
̃ = T0
, �̃ = T0�. The SK action expressed
in terms of ψ, φ, 
̃, �̃ depends on T0 only through an
overall factor T0, which can be absorbed into the Planck con-
stant. After such a redefinition, none of the symmetries can
involve T0.

The diagonal symmetry U (1)D is the subgroup defined by
α1 = α2, and ψ and 
 have charge q with respect to it. The
U (1)A symmetry has α1 = −α2 = α′. Under this symmetry
the fields transform as follows:

δAψ = iqT −1
0 α′
̃, δA
̃ = iqT0α

′ψ,

δAφ = 0, δA�̃ = T0α
′. (A1)

For the limit T0 → ∞ to exist, we need to rescale α′ �→
α′T −1

0 . Then in the T0 → ∞ limit we get

δAψ = 0, δA
 ′ = iqα′ψ, δφ = 0, δA�′ = α′. (A2)

This is equivalent to (3.6)–(3.8) with α̃ = T −1
0 α′. Equa-

tions (3.5) are standard U (1) gauge transformations.
Second, let us derive the KMS transformations (3.12)–

(3.16). The conventional time-reversal symmetry acts on
the background electromagnetic field via a0 �→ τ (a0),
a �→ −τ (a). Thus the covariant derivative ∂0 − ia0 maps
to −[∂0 + iτ (a0)], while ∂ j − ia j maps to ∂ j + iτ (a j ).
In other words, T changes the sign of U (1) charge
and thus must map ψ,
 to τ (ψ∗), τ (
∗), respec-
tively. The general formula (2.1) together with the co-
variantization explained around Eqs. (2.18)–(2.20) then
implies (3.12)–(3.16).

Finally, let us discuss the construction of the dissipative
action Id for the Ginzburg-Landau hydrodynamics. In ac-
cordance with the general considerations in Sec. II, Id is
constructed from a seed expression X (ψ,
, φ,�) which is i
times a positive-definite quadratic expression in 
,�, which
is furthermore T even and invariant under U (1)D × U (1)A.
Such a quadratic expression must have weight �2. It is easy
to see that the only expression which depends linearly on

 and is U (1)A invariant is 
 − q�ψ . Therefore, the only
T -even and U (1)D × U (1)A-invariant expression of weight
2 which involves 
 is i|
 − q�ψ |2. If only � is involved,
then the only invariant expression of weight 2 is iσ jkD j�Dk�

for some positive-definite matrix σ jk . Thus the leading order
“seed” must be given by (3.21).
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It is easy to see that there are no weight-3 invariant “seeds.”
On the other hand, there are five weight-4 “seeds,” namely

iμ|
 − q�ψ |2, i|ψ |2|
 − q�ψ |2, iμDj�Dk�,

i|ψ |2Dj�Dk�, i|
∗ψ + 
ψ∗|2. (A3)

Thus at next-to-leading order there appear five new dissipative
coefficients (three scalar ones and two tensor ones). The effect
of the first four is to allow �1 and σ jk to depend linearly on μ

and |ψ |2. The effect of the fifth one is to add a term of the form
ψ∂0|ψ |2 to the equation of motion (3.23). Such a correction
to the “vanilla” TDGL equations has been previously obtained
from microscopic considerations; see [7,29].

APPENDIX B: LAGRANGIAN PICTURE AND THE
ANALOGY BETWEEN CLASSICAL MECHANICS

AND THERMODYNAMICS

It is well appreciated that many formulas in equilibrium
thermodynamics and classical mechanics look similar. Here
we explain how to sharpen this similarity by making thermo-
dynamics a special case of classical mechanics. The key is to
introduce a proper time variable τ such that a Josephson-like
relation T = ∂0τ is satisfied. Then, if one uses Eulerian vari-
ables, entropy and proper time become canonically conjugate
variables. On the other hand, if one uses Lagrangian variables,
then energy and coordinate time become canonically conju-
gate variables.

Consider a homogeneous system whose only symmetries
are particle number conservation and energy conservation.
Its equilibrium properties can be characterized by a grand
potential 	(μ, T ). The particle number N and entropy S are
given by

N = −∂	

∂μ
, S = −∂	

∂T
. (B1)

To interpret these relations in mechanical terms, we introduce
dynamical variables φ(x0) and τ (x0) such that the Josephson
relations μ = ∂0φ and T = ∂0τ hold and consider an action
S = − ∫

dx0 	(∂0φ, ∂0τ ). Since S is invariant under shifts
of φ and τ by constants, the corresponding Euler-Lagrange
equations are conservation equations:

∂0N = 0, ∂0S = 0, (B2)

where N and S are given by (B1). N and S are now interpreted
as momenta canonically conjugate to φ and τ , respectively,
with the nontrivial Poisson brackets

{φ, N} = 1, {τ, S} = 1. (B3)

The Hamiltonian corresponding to the action S is U (N, S) =
μN + ST + 	, which is precisely the internal energy as de-
fined in thermodynamics. Here it is viewed as a function of
N, S. Since φ is a periodic variable, upon quantization N
becomes an operator with integral eigenvalues. On the other
hand, since S is not supposed to be integral, the variable τ is
not periodically identified. The identification of the entropy
as the variable conjugate to proper time is well known in the
action-based approach to ideal hydrodynamics.

Since T > 0, the map between x0 and τ is one to one.
Therefore, it is possible to switch to the Lagrangian picture

by inverting the function τ (x0). Now τ is viewed as an inde-
pendent variable, while x0 is regarded as a field θ (τ ). In the
Lagrangian picture the action becomes

S = −
∫

dτ log Z (ζ , β ), (B4)

where β = ∂τ θ = 1/T , ζ = ∂τφ = μ/T , and Z = eβ	 is the
partition function. The momenta canonically conjugate to ζ

and θ are

−∂ log Z

∂ζ
= N, −∂ log Z

∂β
= U . (B5)

The equations of motion now read

∂τ N = 0, ∂τU = 0. (B6)

The nontrivial Poisson brackets are

{φ, N} = 1, {θ,U } = 1.

Note that in the Lagrangian picture the coordinate time x0

becomes a bonafide dynamical variable canonically conjugate
to energy. Upon quantization the energy-time uncertainty rela-
tion follows in the standard manner. On the other hand, in the
Eulerian picture one has an entropy-proper-time uncertainty
relation.

APPENDIX C: SUPERTHERMAL HYDRODYNAMICS

There seems to be no physical principle which would pro-
hibit the SK action in the Eulerian picture from depending
on the spatial derivatives of the proper time τ . We will say
that such an action describes a superthermal phase. A similar
phase has been previously considered by Liu [34]. While we
are unaware of any physical realizations of such a phase, it is
interesting to consider its properties.

Note first of all that in the presence of particle number con-
servation there is more than one version of the superthermal
phase, since the particle number symmetry may or may not be
broken. To simplify the discussion, let us consider a system
where the only conserved quantity is energy. Since we do
not impose Galilean invariance, this setup implicitly assumes
that there is also a “substrate” whose only role is to break in-
variance under Galilean boosts. In the Lagrangian picture, the
SK EFT contains only two fields: the coordinate time θ (τ, x)
and its SK partner �(τ, x). The local temperature is identified
as T −1 = ∂τ θ . The KMS transformations are given by (4.5).
The nondissipative part of the action Ind is constructed from a
thermodynamic potential 	 which is allowed to depend both
on T and ∂ jθ . According to the general recipe (4.7), when
Ind is written in the conventional Eulerian picture, it takes the
form

Ind = −
∫

d4x

[
∂0�

(
	 − T

∂	

∂T

)
− T ∂ j�

∂	

∂ (∂ jτ )

]
. (C1)

To quadratic order in spatial derivatives we must have

	(T, ∂ jτ ) = 	0(T ) + 1
2ζ jk (T )∂ jτ∂kτ. (C2)

The matrix ζ jk (T ) must be positive by thermodynamic
stability.

The dissipative part of the action is constructed from a
“seed” which is i times an expression which is quadratic in �,
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invariant under shifts of � and τ by constants, and is positive.
To leading order in spatial derivatives it must have the form

X (τ,�) = iT 2κ jk (T )∂ j�∂k�, (C3)

where the matrix function κ jk (T ) must be positive. The corre-
sponding dissipative part of the action is

Id =
∫

d4x(κ jk∂ j�∂kT + iT 2κ jk∂ j�∂k�). (C4)

The total action of the superthermal hydrodynamics is Ind +
Id . The corresponding equation of motion is a local conserva-
tion law for energy:

∂0JE
0 = −∂ jJ

E
j , (C5)

where

JE
0 = 	 − T

∂	

∂T
= u0(T ) + 1

2

(
ζ jk − T

∂ζ jk

∂T

)
∂ jτ∂kτ,

(C6)

JE
j = −T

∂	

∂ (∂ jτ )
− κ jk∂kT − 2iT 2κ jk∂k�

= −T ζ jk∂kτ − κ jk∂kT − 2iT 2κ jk∂k�. (C7)

Here u0(T ) = 	0 − T ∂	0
∂T .

If ζ jk = 0, both 	 and JE
0 = u0(T ) are functions of T only.

	 is then interpreted as the density of the Helmholtz free
energy. This interpretation remains true even if ζ jk is nonzero,
but then the local state of the system is determined not only
by the local temperature T , but also by the value of the vector
∇τ . This is analogous to the situation in a superconductor
where the local state depends not only on μ, T , but also on
the superfluid velocity ∇φ.

The expression for the energy current is reminiscent of the
London equation, as it contains, along with the usual diffusive
contribution −κ jk∂kT , a nondissipative term −T ζ jk∂kτ. One
can check that the entropy production is proportional to κ but
does not depend on ζ .

An equivalent way to characterize the superthermal phase
is to say that the heat conductivity diverges at zero frequency.
Indeed, if we consider a temperature gradient which depends
on time as e−iωx0

, the energy current is

JE
j (ω) = −

(
i

ω
ζ jk + κ jk

)
∂kT (ω). (C8)

Finally, by analogy with superconductors, we expect that
in a superthermal phase there is a gapless Goldstone mode.
Intuitively, it arises from spontaneous breaking of proper
time translation symmetry. To verify this, we write down
the linearized equation of motion for τ by letting τ (x0, x) =
T̄ x0 + h(x0, x) for h(x0, x) � 1 and a constant T (the average
temperature). To leading order in h(x0, x) and dropping the
terms containing the fluctuating field � we get

−∂2	0(T )

∂T
2 ∂2

0 h = ζ jk∂ j∂kh + κ jk

T
2 ∂ j∂k∂0h, (C9)

where ζ jk = ζ jk (T ), etc. Plugging in h(x0, x) =
exp(−iωx0 + ik jx j ) and solving for ω gives

ω = ±
(

∂2	0

∂T
2

)−1
√

−∂2	0

∂T
2 ζ jl k jkl −

(
κ jl

2T
2 k jkl

)2

+ i

2T
2

(
∂2	0

∂T
2

)−1

κ jl k jkl . (C10)

For sufficiently small k this describes a propagating linearly
dispersing mode with a direction-dependent velocity tensor

c2(T̄ ) jk =
(

−∂2	0

∂T 2

)−1

ζ jk . (C11)

Note that the positivity of the isochoric specific heat capacity,
CV = −T ∂2	0/∂T 2 � 0, and the positivity of ζ jk ensures that
c2 > 0. This mode describes waves of entropy and is similar
to the second sound in ordinary superfluids.

[1] V. L. Ginzburg and L. D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064
(1950).

[2] L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959).
[3] E. Abrahams and T. Tsuneto, Phys. Rev. 152, 416 (1966).
[4] A. Schmid, Phys. Kondens. Mater. 5, 302 (1966).
[5] L. P. Gorkov and G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 54, 612

(1968).
[6] H. Fukuyama and H. Ebisawa, Prog. Theor. Phys. 46, 1028

(1971).
[7] G. Schön and V. Ambegaokar, Phys. Rev. B 19, 3515 (1979).
[8] C. R. Hu, Phys. Rev. B 21, 2775 (1980).
[9] N. B. Kopnin, Theory of Nonequilibrium Superconductivity

(Clarendon Press, Oxford, 2001).
[10] A. M. Gulian and G. F. Zharkov, Nonequilibrium Electrons and

Phonons in Superconductors (Springer, Berlin, 2010).
[11] S. Ullah and A. T. Dorsey, Phys. Rev. Lett. 65, 2066 (1990).
[12] S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
[13] I. Ussishkin, S. L. Sondhi, and D. A. Huse, Phys. Rev. Lett. 89,

287001 (2002).

[14] S. Mukerjee and D. A. Huse, Phys. Rev. B 70, 014506
(2004).

[15] A. I. Larkin and A. A. Varlamov, Theory of Fluc-
tuations in Superconductors (Clarendon Press, Oxford,
2005).

[16] S. Vishveshwara and M. P. A. Fisher, Phys. Rev. B 64, 134507
(2001).

[17] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435
(1977).

[18] P. Kovtun, G. D. Moore, and P. Romatschke, J. High Energy
Phys. 07 (2014) 123.

[19] M. Harder, P. Kovtun, and A. Ritz, J. High Energy Phys. 07
(2015) 025.

[20] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High
Energy Phys. 05 (2015) 060.

[21] F. M. Haehl, R. Loganayagam, and M. Rangamani, J. High
Energy Phys. 04 (2016) 039.

[22] K. Jensen, N. Pinzani-Fokeeva, and A. Yarom, J. High Energy
Phys. 09 (2018) 127.

144514-14

https://doi.org/10.1103/PhysRev.152.416
https://doi.org/10.1007/BF02422669
https://doi.org/10.1143/PTP.46.1028
https://doi.org/10.1103/PhysRevB.19.3515
https://doi.org/10.1103/PhysRevB.21.2775
https://doi.org/10.1103/PhysRevLett.65.2066
https://doi.org/10.1103/PhysRevB.44.262
https://doi.org/10.1103/PhysRevLett.89.287001
https://doi.org/10.1103/PhysRevB.70.014506
https://doi.org/10.1103/PhysRevB.64.134507
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP07(2015)025
https://doi.org/10.1007/JHEP05(2015)060
https://doi.org/10.1007/JHEP09(2018)127


UNIVERSAL TIME-DEPENDENT GINZBURG-LANDAU THEORY PHYSICAL REVIEW B 107, 144514 (2023)

[23] L. M. Sieberer, A. Chiocchetta, A. Gambassi, U. C. Täuber, and
S. Diehl, Phys. Rev. B 92, 134307 (2015).

[24] M. Crossley, P. Glorioso, and H. Liu, J. High Energy Phys. 09
(2017) 095.

[25] P. Glorioso, M. Crossley, and H. Liu, J. High Energy Phys. 09
(2017) 096.

[26] P. Glorioso and H. Liu, arXiv:1805.09331v1.
[27] L. Kramer and R. J. Watts-Tobin, Phys. Rev. Lett. 40, 1041

(1978).
[28] J. M. Luttinger, Phys. Rev. 136, A1481 (1964).

[29] A. Gulian, Shortcut to Superconductivity: Superconducting
Electronics via COMSOL Modeling (Springer International
Publishing, Cham, 2020).

[30] A. Jain, J. High Energy Phys. 10 (2020) 208.
[31] A. Kapustin and L. Radzihovsky, Phys. Rev. B 105, 134514

(2022).
[32] A. T. Dorsey, Phys. Rev. B 46, 8376 (1992).
[33] A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51,

3880 (1995).
[34] M. Liu, Phys. Rev. B 18, 1165 (1978).

144514-15

https://doi.org/10.1103/PhysRevB.92.134307
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP09(2017)096
http://arxiv.org/abs/arXiv:1805.09331v1
https://doi.org/10.1103/PhysRevLett.40.1041
https://doi.org/10.1103/PhysRev.136.A1481
https://doi.org/10.1007/JHEP10(2020)208
https://doi.org/10.1103/PhysRevB.105.134514
https://doi.org/10.1103/PhysRevB.46.8376
https://doi.org/10.1103/PhysRevB.51.3880
https://doi.org/10.1103/PhysRevB.18.1165

