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Absence of the FFLO/BCS hybrid paired ground state in superconducting Weyl semimetals
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We study microscopic pairing mechanisms of superconductivity in doped Weyl semimetals. Depending on
the nature of the election scattering, there exist three possible superconducting pairings. We evaluate the
condensation energy required for electrons to pair up. The ground state of superconducting Weyl semimetals
is determined by the fermionic interaction. The scattering between two Weyl nodes plays an important role in
pairing mechanisms. It is shown that the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is the ground state if
the electron scattering is dominated by the intranode scattering. On the other hand, if the internode scattering is
strong, the ground state is with the BCS pairing. More importantly, we show that the state with FFLO/BCS
hybrid pairing cannot be the ground state of superconducting Weyl semimetals, thus our result provides a
definitive answer to an unresolved question.
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I. INTRODUCTION

An important question in superconductivity is what type
of interaction is responsible for electron pairing on the Fermi
surface. Since the Weyl semimetal (WSM) has been pre-
dicted theoretically and realized experimentally [1–8], the
research has focused on the unconventional pairing origi-
nating from disconnected Fermi surfaces in superconducting
Weyl semimetals (SWSMs). In WSMs, there are an even
number of nodal points, which are separated from each
other, with different chiralities. Accordingly, the chemical
potential intersects the band with an even number of dis-
connected Fermi surfaces (FSs). The nontrivial topological
structure of FSs stimulated study on the superconducting
mechanism in SWSMs [9–17]. Two superconducting pair-
ings have been proposed for SWSMs: the intranode pairing
and the internode pairing. The former is a pairing by elec-
trons from the same node so that it is spatially nonuniform
[18–20] and depends on the local momentum of Weyl nodes.
The latter is a pairing by electrons from different nodes
and is spatially uniform. The intranode pairing complies
with the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [9,18,19]
mechanism, while the internode pairing corresponds to the
BCS mechanism. It has been demonstrated that the SWSM
with BCS pairing can have four nodal points in the en-
ergy spectrum. The bound state with a crossed flat surface
can exist in SWSMs [16,17,21]. Theoretically, MoTe2 was
predicted to host four pairs of Weyl points [22]. The un-
conventional superconductivity in MoTe2 has been validated
experimentally [14].

Over the last few years, the ground states in SWSMs
with the FFLO and BCS superconducting pairings have been
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studied. Moore et al. [9] found the condensation energy of
SWSMs with a FFLO-pairing mechanism has a lower value
than that with a BCS-pairing mechanism. It is shown that
the FFLO pairing appears in noncentrosymmetric systems
where two Weyl nodes have different energies, while in BCS
pairing, there is a mismatch in the electron momenta [23]. In
contrast to Moore’s result, Burkov et al. [13] show that the
BCS pairing has a lower condensation energy if the inversion
symmetry is not broken. What type of pairing is responsible
for the superconductivity remains unsolved to date. Recently,
to distinguish the ground state properties of SWSMs, hy-
brid structures combining SWSM and other materials are
used to study the transport characteristics due to the FFLO
and BCS pairing. The pairing-dependent Andreev reflection
processes have been investigated in WSM/SWSM hetero-
junctions [24–26]. The SWSM Josephson junctions were
proposed to exhibit features of the FFLO and the BCS ground
state [27,28]. Gilbert et al. studied possible FFLO and BCS
phase transition in magnetically doped time-reversal invariant
topological insulators [29]. The result indicates that there
might be a similar phase transition in the SWSM. Although
there has been much effort to reveal the nature of the pairing
mechanism in SWSMs and to develop possible measure-
ment schemes for confirming particular features, the pairing
mechanism in SWSMs remains inconclusive. The question of
whether there exists a possibility of the state resulted from a
coexistence of the FFLO and BCS orders, or a FFLO/BCS
paired state, remains unresolved. We shall find an answer to
this question in this work.

To resolve this issue, we investigate the energy required
for electrons to pair up and the microscopic pairing mech-
anism. We shall identify the role of intra- and internode
scattering on the conventional or unconventional pairing. Our
starting point is the electron-electron interaction, where the
potentials for both the intra- and the interpairings are present
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[9,13]. We found that the gap equations have three solutions
which correspond to three different superconducting pairings
in SWSM. The ground state of SWSM is dependent on the
interaction of electrons, specifically, the interaction strength
with different scattering momentum. By analyzing the con-
densation energies for these three mechanisms, we show that
the ground state is a FFLO state when the scattering be-
tween two Weyl nodes is weak. However, once the internode
scattering becomes stronger than the intranode scattering, the
BCS pairing becomes more favorable. We found that states
with the FFLO/BCS hybrid pairing is also possible but can-
not be the ground state of SWSM. This finding provides
a definitive answer to the unresolved issue regarding this
matter.

II. INTRA- AND INTERNODE INTERACTIONS:
FFLO AND BCS PAIRING HAMILTONIAN

We consider a WSM that breaks time -reversal symmetry
but remains invariant under inversion, with an attractive inter-
action between electrons, H = H0 + HI , where H0 describes
noninteracting electrons in WSM:

H0 =
∑

κ

∫
dr ψ†

κ (r)
[
he

κ (−ih̄∇) − μ
]
ψκ (r), (1)

two Weyl nodes of opposite chirality separated by a distance b
are located at P± = (0, 0,±b), ψκ (r) = (ψκ,↑(r), ψκ,↓(r))T ,
he

κ (−ih̄∇) = −ih̄vF {σx∂x + σy∂y + κσz[∂z − i(κ/h̄)b]}, μ is
the chemical potential, σi (i = x, y, z) are Pauli matrices,
h̄ is Planck constant, T means a transpose, and κ (= ±)
stands for the chirality. HI is the interaction between electrons,
given as

HI = −
∫

dr dr′U (r − r′)ψ†
↑(r)ψ†

↓(r′)ψ↓(r′)ψ↑(r), (2)

where U is interaction strength for the s-wave pairing and
ψσ (r) = ∑

κ (1/
√

2)ψκ,σ (r).
In the momentum space, the field operator can be written as

ψκ,σ (r) = 1/
√

V
∑

k eikκ ·rdκ,kκ ,σ , where dκ,kκ ,σ is the annihi-
lation operator for the electron with momentum kκ = k + Pκ .
k is the momentum measured from the Weyl node Pκ . ψ†

κ,σ (r)
can be written in the same way but with a creation operator
d†

κ,kκ ,σ
. In d†

κ,kκ ,σ
and dκ,kκ ,σ , H0 is given by

H0 = 1

V

∑
κ,k

ξ
†
κ,kκ

[hκ (k) − μ]ξκ,kκ
, (3)

with hκ (k) = vF (σxkx + σyky + κσzkz ) and ξκ,kκ
=

(dκ,kκ ,↑ dκ,kκ ,↓)T . HI is given as

HI = − 1

4V 2

∑
κ1κ2κ3κ4

∑
k1k2k3k4

U
(
k1κ1 − k4κ4

)

× δ
(
k1κ1 + k2κ2 − k3κ3 − k4κ4

)
× d†

κ1,k1κ1 ,↑d†
κ2,k2κ2 ,↓dκ3,k3κ3 ,↓dκ4,k4κ4 ,↑. (4)

Assuming |Pκ | � |ki| (i = 1, 2, 3, 4), the conservation of
momentum and s-wave condition requires k1 + k2 = k3 +

FIG. 1. (a) Sketch of BCS and FFLO pairing: nF corresponds to
the FFLO-type pairing electron and nB corresponds to the BCS-type
pairing electron. The green arrow is the direction of spin, and the red
and blue circles are FS. (b) The scattering for the BCS interaction
(yellow arrow): the intranode scattering potential is λ(0), while the
internode scattering (silver arrow) potential is λ(2b).

k4 = 0 and κ1 + κ2 = κ3 + κ4. HI can then be written as

HI = −
∑

κ1κ2κ3κ4

∑
k,k′

U (|Pκ1 − Pκ4 |)
4V 2

δκ1+κ2,κ3+κ4

× d†
κ1,kκ1 ,↑d†

κ2,−k−κ2 ,↓dκ3,−k′−κ3
,↓dκ4,k′

κ4
,↑, (5)

where −kκ = −k − Pκ .
Under the restriction of δκ1+κ2,κ3+κ4 , there are two possible

pairing channels with κi (i = 1, 2, 3, 4). (1) κ1 = κ2 =
κ3 = κ4 which corresponds to the pairing taking place in the
same node (FFLO pairing), and (2) κ1 + κ2 = κ3 + κ4 = 0,
corresponding to the BCS pairing. Figure 1(a) shows pairing
fermions in the two nodes. For a Cooper pairing in an
anisotropic superconducting state, the magnitude U (k) varies
slowly in the momentum space and can be regarded as
relatively fixed in the vicinity of Weyl nodes. The situation is
different for the pairing interaction between the nodes. The
distance between two Weyl points is |Pκ1 − Pκ4 | = 2δκ1,−κ4 b.
The pairing interaction U (|Pκ1 − Pκ4 |) can be written as
U (0) for the FFLO pairing and U (2δκ1,−κ4 b) for the
BCS pairing. Therefore, HI consists of two types of
terms: HF

I and HB
I , where HF

I contains the product of
components with the same momentum shift related to the
node HF

I = −∑
κ

∑
k,k′ λ(0)d†

κ,kκ ,↑d†
κ,−k−κ ,↓dκ,−k′−κ ,↓dκ,k′

κ ,↑
and HB

I contains the Cooper pairing channel with
zero total momentum HB

I = −∑
κ,κ ′

∑
k,k′ λ(2δκ,−κ ′b)

d†
κ,kκ ,↑d†

−κ,−kκ ,↓d−κ ′,−k′
κ′ ,↓dκ ′,k′

κ′ ,↑, where the b-dependent

factor is λ(2δκ,−κ ′b) = U (2δκ,−κ ′b)/4V 2. Figure 1(b) shows
the effect on electron scattering. The Fourier components
of a four-fermion interaction weakens slowly in momentum
space so that λ(0) > λ(2b) if |Pκ | � |ki|. For the short-range
interaction, λ(0) � λ(2b).
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III. GAP EQUATION

We now introduce a unitary transformation ηκ,kκ
= U †

κ

(k)ξκ,kκ
, where Uκ (k)=(cos(θκ/2)e−iφ/2 sin(θκ/2)e−iφ/2

sin(θκ/2)eiφ/2 − cos(θκ/2)eiφ/2 ),

ηκ,kκ
= (cκ,kκ ,+ cκ,kκ ,−)T , θκ = arccos κkz/k, and φ =

arctan ky/kx. The subscript + (−) refers to the up (down)
energy band. H0 and HF/B

I read H0 = ∑
κ,γ

∫
dk/(2π h̄)3

(γ vF k − μ)c†
κ,kκ ,γ cκ,kκ ,γ , HF

I = −(1/4)
∑

κ,γ

∫
dk dk′/

(2π h̄)6λ(0)c†
κ,kκ ,γ

c†
κ,−k−κ ,γ

cκ,−k′−κ ,γ cκ,k′
κ ,γ , and HB

I =
−(1/4)

∑
κ,κ ′,γ

∫
dk dk′/(2π h̄)6λ(2δκ,−κ ′b) [A + B], where

A = sin θ sin θ ′c†
κ,kκ ,γ

c†
−κ,−kκ ,γ

c−κ ′,−k′
κ′ ,γ cκ ′,k′

κ′ ,γ is the
intraband term describing the interaction between
electrons from the up levels in two different Weyl nodes,
B = cos θ cos θ ′c†

κ,kκ ,γ c†
−κ,−kκ ,−γ c−κ ′,−k′

κ′ ,−γ cκ ′,k′
κ′ ,γ is the

interband term describing the electrons from the up band of
node κ interacting with the electrons in the down level of
node −κ , θ = θ+. The cross band scattering is weaker than
the scattering within the same band. Therefore, the term B
can be neglected in the lowest-order approximation.

We now solve the Eliashberg equations to determine which
pairing is more stable energetically. By taking into account the
FFLO and the BCS pairings in the Hamiltonian H = H0 +
HF

I + HB
I , the linearized Eliashberg equation in the weak-

coupling approximation is given by

�F ≡ −λ(0)

2

∫
D

dk′

(2π h̄)3
〈F++†

γ (k′, 0)〉 (6)

and

�B ≡ −
∑

κ

λ(2δκ,1b)

2

∫
D

dk′

(2π h̄)3
sin θ ′〈F−κκ†

γ (k′, 0)
〉
, (7)

for the FFLO and the BCS pairings, respectively.
Here Fκκ ′†

γ (k, τ − τ ′) = c†
κ,kκ ,γ

(τ ′)c†
κ ′,−kκ′ ,γ (τ ) and the

subscript D means the integrations are restricted in
the region around μ scaled with Debye frequency ωD

[30]. In the calculation, we take �B/F as positive real
numbers and neglect their phase. We assume the pairing
is isotropic and k independent. The Green’s function
Gγ (k, τ − τ ′) = −〈Tτ [Gκκ ′

γ (k, τ − τ ′)]〉 and the correlation

function F†
γ (k, τ − τ ′) = 〈Tτ [Fκκ ′†

γ (k, τ − τ ′)]〉 are obtained
as the functions of momentum and Matsubara frequency
Gγ (k, iω) = −[iω + (γ vF k − μ)]�γ (ω, k)/�γ (ω, k) and
F†

γ (k, iω) = − (�F − i �B sin θ σy) �γ (ω, k)/�γ (ω, k),

where Gκκ ′
γ (k, τ − τ ′) = cκ,kκ ,γ (τ )c†

κ ′,kκ′ ,γ (τ ′), �γ (ω, k) =
�

γ
+,+(ω, k) + i2�F �B sin θσy, �γ (ω, k) = [�γ

+,+(ω, k)]2 −
4�2

F �2
B sin2 θ , and �

γ

η,ζ (ω, k) = ω2 + (γ vF k − μ)2 +
ζ (�2

F + η�2
B sin2 θ ).

Using the relation Fκκ ′†
γ (k′, τ = 0) = β−1 ∑

ωn
Fκκ ′†

γ

(k′, iωn), the self-consistent gap functions are
obtained:

�F = λ

2β

∫
D

dk
(2π h̄)3

∑
ωn

�F �+
−,+(ωn, k)

�+(ωn, k)
(8)

and

�B = λ(1 + α)

2β

∫
D

dk
(2π h̄)3

∑
ωn

�B sin2 θ�+
−,−(ωn, k)

�+(ωn, k)
, (9)

FIG. 2. Normalized energy gap and condensed energy. (a) De-
pendence of gap on λ: �F (blue dot-dashed), �

(2)
B (red solid) for

α = 1, �
(1)
B (green dashed) for α = 0, �′

F (blue short-dashed) for
α = 1, and �′

B (red long-dashed) for α = 1. (b) Change of gap
function with α at λ = C/4μ2: �F (blue dot-dashed), �B (red solid),
�′

F (blue short-dashed), and �′
B (red long-dashed). (c) Dependence

of condensed energy on λ: E con
F (blue dot-dashed), E (2),con

B (red solid)
for α = 1, E (1),con

B (green long-dashed) for α = 0, E con
mix (magenta

short-dashed) for α = 1. (d) Change of condensed energy with α at
λ = C/4μ2: E con

F (blue dot-dashed), E con
B (red solid), E con

mix (magenta
short-dashed).

where β−1 = kBT , λ(0) = λ, and λ(2b) = αλ; α (∈ [0, 1]) is
a parameter characterizing the relative strength of the BCS
pairing interaction.

IV. THREE POSSIBLE PAIRINGS

There exist three different solutions for Eqs. (8) and (9).
(a) �F �= 0 and �B = 0 (FFLO), (b) �B �= 0 and �F = 0
(BCS), and (c) �F �= 0 and �B �= 0 (the FFLO/BCS hybrid).
Figure 2 shows the results of the normalized energy gap (�̃ =
�/ωD) and the normalized condensation energy (Ẽ = E/E0)
where E0 = 10−2μ2�2

D/C. The normalized scattering poten-
tial is λ̃ = λ(μ2/C).

A. FFLO pairing

The gap function for pure FFLO pairing becomes indepen-
dent of θ and α. Integrating k over a region around the Fermi
surface with a width of ωD leads to an equation for �F at zero
temperature, given as

1 = 2πμ2λ

(2π h̄vF )3
ln

√
ω2

D + �2
F + ωD

�F
. (10)

Because μ � ωD, it is found �F = 2ωD exp[−C/(λμ2)]
where C = 4π2(h̄vF )3. As the interaction strength increases,
more electrons partake in pairing. As a result, �F increases
with λ, shown by a blue dot-dashed curve in Figs. 2(a) and
2(b).
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B. BCS pairing

Equation (9) is reduced to

1 =
∫

D

dk
(2π h̄)3

(1 + α)λ sin2 θ

4
√

(vF k − μ)2 + �2
B sin2 θ

. (11)

The energy gap is found as �B = e5/6ωD exp{−3C/[2(1 +
α)λμ2]}. There are two limiting situations: when the elec-
trons are scattered into the same Weyl node, corresponding
to α = 0, the energy gap is �

(1)
B = e5/6ωD exp[−3C/(2λμ2)];

when the scattering is between different Weyl nodes with
equal intensity, corresponding to α = 1, the energy gap is
�

(2)
B = e5/6ωD exp[−3C/(4λμ2)]. We plot the λ dependence

of �
(1)
B and �

(2)
B by the green-dashed and the red curves in

Fig. 2(a), respectively. That �
(1)
B and �

(2)
B increase with λ

implies that the more pronounced electrons partake in the
pairing. We also show the α dependence of pairing potential
�B by the red curve in Fig. 2(b). Increasing α enhances the
scattering from one Weyl node to another Weyl node and more
electrons partake in the pairing.

C. FFLO/BCS hybrid pairings

Equations (8) and (9) lead to

1 = λμ2

2C

∫
dθ sin θ

∑
ν

�ν (θ )

2�′
F

ln
2ωD

|�(θ )| (12)

and

1 = λ(1 + α)μ2

2C

∫
dθ sin2 θ

∑
ν

ν�ν (θ )

2�′
F

ln
2ωD

|�(θ )| , (13)

where �ν (θ ) = �′
F + ν�′

B sin θ and ν = ±1. The
FFLO/BCS hybrid state is a local minimum solution of
the mean-field thermodynamic potential. We show �′

F and
�′

B by a blue short-dashed curve and a red long-dashed
curve, respectively, in Fig. 2. There exists a critical value
λμ2/C = 1/4 for the hybrid pairing. Below this value, the
pairing tends to be the FFLO type. �′

B = 0 for λμ2/C � 1/4
so that �′

F = �F . Conversely, λμ2/C > 1/4, �′
B has

nonzero value, while �′
F decreases. Around λμ2/C = 1/4,

�′
B is much smaller in comparison to �′

F ; we expand
gap functions, (λμ2/C)[ln(2/�′

F ) − �′2
B /(3�′2

F )] = 1 and
2(λμ2/C){(2/3)([ln(2/�′

F ) − 1]) + 4�′2
B /(45�′2

F )} = 1. The
solutions are �′

F = 2ωD exp[−C/(λμ2) − (1/3)(�′
B/�′

F )2]
and �′

B = �′
F

√
15/7[1 − C/(4λμ2)]. From these, �′

B = 0
and �′

F = 2ωD exp[−C/(λμ2)] when λμ2/C = 1/4. When
λμ2/C > 1/4, both �′

F and �′
B are real and positive. When

μ2/C < 1/4, there is no solution for the gap functions because
�′

F and �′
B must be real and positive. As a consequence, no

FFLO/BCS hybrid pairing is possible for λμ2/C < 1/4. The
minimum U required for the occurrence of the FFLO/BCS
hybrid pairings in SWSMs is Umin = 4π2(h̄vF )3/μ2.

The variation of the FFLO/BCS hybrid pairing with α

is shown in Fig. 2(b). For λμ2/C = 1/4, at small value α,
there is no solution for the FFLO/BCS hybrid pairing. As α

increases, �′
B deviates gradually from �B and �′

F increases
from zero. At a large value of α, �′

B vanished and �′
F ap-

proaches �F . The FFLO/BCS hybrid pairing is only possible
in a finite region of α. The BCS state appears at a small α,

while the FFLO state appears at a large α. The BCS pairing
potential increases with α in the case of pure BCS pairing.
This indicates that electrons are in favor of internode scat-
tering. On the contrary, �′

B is suppressed with the mixing of
�′

F . Because the total electrons around the Fermi surface is
fixed, the intranode pairing divides up the internode pairing.
Therefore, �′

B decreases as α increases accordingly.

V. CONDENSATION ENERGY

Because three pairing schemes can be energetically
stabilized in a large region of λ, it is relevant to consider
the nature of the ground state of these superconducting
phases with different pairings. We evaluate the condensation
energy with different pairings. The Hamiltonians HF

I and
HB

I in the mean-field approximation are HF
I = −(1/2)

∑
κ∫

dk/(2π h̄)3�F (c†
κ,kκ ,+c†

κ,−k−κ ,+ + c.c.) + ∑
κ �2

F /λ and

HB
I = −(1/2)

∑
κ

∫
dk/(2π h̄)3 �B sin θ (c†

κ,kκ ,+c†
−κ,−kκ , + +

c.c.) + ∑
κ �2

B/[(1 + α)λ]. Under the Bogoliubov
transformation, φκ,ν,+(k) = uk,ν,+(cκ,kκ ,+ + νc−κ,k−κ ,+) +
vk,ν,+(νc†

κ,kκ ,+ + c†
−κ,k−κ ,+) and φ

†
κ,ν,+(k) = uk,ν,+(c†

κ,kκ ,+ +
νc†

−κ,k−κ ,+) + vk,ν,+(νcκ,kκ ,+ + c−κ,k−κ ,+), where uk,ν,+ =√
1 + (vF k − μ)/Eν (k)/2 and vk,ν,+ = (ν�F +

�B sin θ )/[2Eν (k)
√

1 + (vF k − μ)/Eν (k)], the Hamiltonian
can be diagonalized, given as

H =
∑
κ,ν

∫
dk

(2π h̄)3
Eν (k)φ†

κ,ν,+(k)φκ,ν,+(k) + E (�F ,�B),

where

E (�F ,�B) =
∑

κ,ν=±1

∫
dk

(2π h̄)3

(vF k − μ) − Eν (k)

2
+ �α,

�α = ∑
κ �2

F /λ + ∑
κ �2

B/[(1 + α)λ], and Eν (k) is the
eigenenergy for the Bogoliubov quasiparticles. The conden-
sation energy EC is defined by EC = E (�F ,�B) − E (0, 0)
[31]. Below we can evaluate EC at zero temperature.

(a) Pure FFLO pairing: The eigenenergy is EF (k) =√
(vF k−μ)2+�2

F . The condensation energy is found as

EC
F = −8ω2

Dμ2

C
e−2C/λμ2

[
ln

(
μ

ωD

)
− 1

]
. (14)

(b) Pure BCS-type: The eigenenergy is EB(k) =√
(vF k−μ)2+�2

B sin2 θ. Then condensation energy is found as

EC
B (α) = −4e5/3μ2ω2

D

3C
e−[3C/(1+α)λμ2]

(
ln

μ

ωD
− 1

)
. (15)

EC
B (0) corresponds to intranode scattering while EC

B (1) corre-
sponds to internode scattering.

(c) FFLO/BCS hybrid pairings: Due to two branches Eν (k)
with ν = ±, there are two effective energy gaps, �ν

eff =
|�F + ν�B sin θ |. The FFLO and BCS pairings are coupled.
The condensation energy is found as

EC
M = 2μ2

C

∑
ν

∫ π

0
dθ sin θ�ν,2

eff

(
1 − ln

2μ

�ν
eff

)
+ �α. (16)
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We show EC
F , EC

B = EC
B (0) + EC

B (1), and EC
M in Figs. 2(c)

and 2(d) by a blue dot-dashed, solid red, and magenta dashed
curves, respectively. From Fig. 2(c), its is found that if the
electron is scattered within the same Weyl node (α = 0), the
FFLO state should be the ground state in the SWSM, which
corresponds with that given by Moore et al. [9]. However,
if the electrons can be scattered at both nodes (α = 1), the
ground state is a BCS state, which corresponds to that given
by Burkov [13]. For λμ2/C = 1/4, Fig. 2(d) shows that the
FFLO state is the ground state for small α, while the BCS state
is the ground state for large α. We found that the condensation
energy with the FFLO/BCS hybrid pairings is always higher
than those with the pure FFLO and BCS pairings.

Under FFLO/BCS hybrid pairing, the gap equation is de-
termined by Eqs. (12) and (13) simultaneously. There are two
solutions, with effective gaps of |�′

B ± �′
F |. The state with

a large gap is more stable than the one with a small gap.
We calculated the condensation energy of the BCS state, the
FFLO state, and the hybrid pairing state with a large gap.
The results show that the condensation energy of the hybrid
pairing state is higher than that of the pure BCS and FFLO
pairing state in the whole parameter range. The reason for this
is the following. In the mixed pairing, internode and intranode
coexist. The pure BCS and FFLO paired states are perfectly
ordered ground states. Mixed pairing results in entangled
states and removes the perfect ordering, or the state is slightly
disordered due to the pairing mixing. In this case the ground
state energy is always higher than that under a pure pairing.

We conclude that a state with a hybrid pairing cannot be a
ground state.

VI. CONCLUSION

In SWSMs, there are three possible pairings: FFLO, BCS,
and FFLO/BCS hybrid pairing. The nature of the electron
scattering determines which pairing is favored. If the intran-
ode scattering is dominant, the ground state is with the FFLO
pairing. If the internode scattering is strong, the ground state is
with a BCS pairing. This reflects the fact that more electrons
can be paired. More generally, when the electron scattering
between two Weyl nodes is weak, the FFLO phase is the
ground state. Because the energy spectrum with a FFLO pair-
ing is fully gapped, the BCS pairing is suppressed. However, if
the inter-node scattering is strong enough, the ground state is
in favour of the BCS pairing. Two effective gaps coexist in the
case of the FFLO/BCS hybrid pairing. From the condensation
energy, we found that although the state with the FFLO/BCS
hybrid pairing exists, it cannot be the ground state of SWSM.
Our result has resolved the issue of whether a state with
FFLO/BCS hybrid pairing can be the ground state of SWSM.
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