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Tensor network simulation of the quantum Kibble-Zurek quench from the Mott to the superfluid
phase in the two-dimensional Bose-Hubbard model
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Quantum simulations of the Bose-Hubbard model (BHM) at commensurate filling can follow spreading of
correlations after a sudden quench for times long enough to estimate their propagation velocities. In this work
we perform tensor network simulation of the quantum Kibble-Zurek (KZ) ramp from the Mott towards the
superfluid phase in the square lattice BHM and demonstrate that even relatively short ramp/quench times allow
one to test the power laws predicted by the KZ mechanism (KZM). They can be verified for the correlation length
and the excitation energy but the most reliable test is based on the KZM scaling hypothesis for the single-particle
correlation function: scaled correlation functions for different quench times evaluated at the same scaled time
collapse to the same scaling function of the scaled distance. The scaling of the space and time variables is done
according to the KZ power laws.
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I. QUANTUM KIBBLE-ZUREK MECHANISM

The Kibble-Zurek mechanism (KZM) originated from a
scenario for topological defect formation in cosmological
phase transitions driven by the expanding and cooling Uni-
verse [1]. Kibble considered an independent selection of
broken symmetry vacua in causally disconnected regions.
The result is a mosaic of broken symmetry domains, whose
size is limited by the causal horizon, leading to topologically
nontrivial configurations. However, the speed of light is not
relevant for laboratory experiments in condensed matter sys-
tems where, instead, a dynamical theory for the continuous
phase transitions [2,3] predicts the scaling of the defects den-
sity as a function of the quench rate employing equilibrium
critical exponents. It has been verified by numerous simu-
lations [4–15] and condensed matter experiments [16–40].
Topological defects play a central role in these studies as they
survive inevitable dissipation.

Their role was played down in the quantum KZM (QKZM)
that considers quenches across quantum critical points in iso-
lated quantum systems [41–80]. It was tested by experiments
[23,81–93]. Recent developments in Rydberg atoms’ quan-
tum simulators [92–95] and coherent D-wave [91,96] open
the possibility to study the QKZM in two and three spatial
dimensions and/or to employ it as a test of quantumness of
the simulator [77–80,91].

The QKZM can be described in brief as follows. A smooth
ramp crossing the critical point at time t = 0 can be linearized
in its vicinity as

ε(t ) = t

τQ
. (1)

Here ε is a dimensionless parameter in a Hamiltonian, that
measures distance from the quantum critical point, and τQ

is called a quench time. Initially, the system is prepared in
its ground state far from the critical point. At first the evo-
lution adiabatically follows the ground state of the changing
Hamiltonian until the adiabaticity fails near time −t̂ when the
energy gap becomes comparable to the ramp rate: � ∝ |ε|zν ∝
|ε̇/ε| = 1/|t |. This KZM timescale is

t̂ ∝ τ
zν/(1+zν)
Q . (2)

Here z and ν are the dynamical and the correlation length
critical exponents, respectively.

From a causality point of view [2,71], which is most
straightforward when the dynamical exponent z = 1 and the
excitations have a definite speed of sound at the critical point,
the correlation length initially grows as ξ ∝ |ε|−ν in step
with the correlation length in the adiabatic ground state, that
would eventually diverge at the critical point, but near −t̂ its
diverging growth rate,

dξ

dt
= dε

dt

dξ

dε
∝ τ−1

Q

1

|ε|ν+1
, (3)

exceeds the speed limit at which correlations can spread near
the critical point. The following growth is limited by 2c [71],
where c is the relevant speed of sound at the critical point. The
correlation length at −t̂ ,

ξ̂ ∝ τ
ν/(1+zν)
Q , (4)

defines the characteristic KZ length. Despite the following
growth between −t̂ and 0, the correlation range when crossing
the critical point is also proportional to ξ̂ although usually a
few times longer [71]. The causality picture can be general-
ized to z �= 1 where c has to be replaced by a relevant speed
of excitations that depends on τQ [71].
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The two KZ scales are interrelated by

t̂ ∝ ξ̂ z. (5)

Accordingly, in the KZM regime after −t̂ , observables are
expected to satisfy the KZM dynamical scaling hypothesis
[97–99] with ξ̂ being the unique scale. For, say, a two-point
observable Or , where r is a distance between the two points,
it reads

ξ̂�O 〈ψ (t )|Or |ψ (t )〉 = FO(t/ξ̂ z, R/ξ̂ ), (6)

where |ψ (t )〉 is the state during the quench, �O is the scaling
dimension, and FO is a nonuniversal scaling function.

In this paper we consider the QKZM in the two-
dimensional (2D) Bose-Hubbard model (BHM) on an infinite
square lattice. We assume commensurate filling of one particle
per site with a well-defined Mott-superfluid quantum phase
transition. A sudden quench from deep in the Mott phase to
the superfluid side of the transition was studied both exper-
imentally [100] and numerically [101]. After the quench the
system was allowed to evolve with the final Hamiltonian for
a time long enough to estimate the speed at which correla-
tions were spreading—the central phenomenon in the causal
interpretation of the QKZM. The aim of the present paper is
to demonstrate numerically that these evolution times would
also be long enough to verify the KZM scaling hypothesis.

The experimental setup [100], where the initial state is
a Mott state with the commensurate n = 1 particle per site,
provides an opportunity to go beyond the previous experimen-
tal test [84] where the initial atomic cloud had nonuniform
occupation numbers in the range n = 1 . . . 3. n ≈ 3 in the
center of the trap may be just large enough to explain why the
measured power laws for relatively fast quenches were con-
sistent with the QKZM but with the mean-field values of the
critical exponents. Another attempt was made in Ref. [85] but
a limited range of available parameters made the experimental
results inconclusive, though in good agreement with numeri-
cal simulations of the experimental setup. On the numerical
front a more tractable one-dimensional (1D) version was con-
sidered [102,103] where the Kosterlitz-Thouless nature of the
transition makes ξ̂ only logarithmically dependent on τQ and,
therefore, a clear-cut test of the KZM would require quench
times ranging over many orders of magnitude. In contrast, the
2D transition is sharper, the KZM power laws are steeper, and
their experimental verification should be unambiguous. How-
ever, numerical simulation of the nonintegrable 2D model
is more demanding as the applicability of the numerically
exact tensor-network density matrix renormalization (DMRG)
-like methods becomes severely limited in 2D and one may
be forced to resort to the mean-field Gutzwiller ansatz [104]
instead. In this work we overcome the limitations of the quasi-
1D DMRG by employing a genuine 2D tensor network.

II. 2D TENSOR NETWORK ALGORITHM

Typical quantum many-body states can be represented ef-
ficiently by tensor networks [105,106]. These include the
matrix product states in one dimension [107], the projected
entangled pair state (PEPS) in 2D [108,109], or the multiscale
entanglement renormalization ansatz [110–113] incarnating
the real-space renormalization group. Recently an infinite

PEPS ansatz (iPEPS) was employed to simulate unitary time
evolution on infinite lattices [77,101,114–122]. The simula-
tions include spreading of correlations after a sudden quench
in the BHM [101] and the transverse field Ising model [122] as
well as the Kibble-Zurek (KZ) ramp in the latter [77]. In this
work we perform simulations of the KZ ramp in the BHM that
seem timely in view of the new opportunities opened by the
recent experiment [100].

We apply the neighborhood tensor update (NTU) algorithm
[120] that was previously used to simulate the many-body lo-
calization [121] and the KZ ramp in the Ising model [77]. The
evolution operator is Suzuki-Trotter decomposed [123–125]
into a product of nearest neighbor (NN) Trotter gates. As
each Trotter gate increases the bond dimension along its NN
bond, it has to be truncated back to its original value to
prevent its exponential growth with time. The truncation has
to be done in a way that minimizes an error afflicted to the
quantum state. There are several numerical error measures,
each of them implying a different algorithm: the simple update
[116,118], the full update [114,126], the NTU [77,120,121],
or the gradient tensor update [127]. The NTU error measure
is explained in Fig. 1. This is the efficient and stable algorithm
to be employed here.

In each Trotter gate the Frobenius norm of the difference
between the left- (L) and right- (R) hand sides of Fig. 1(b) is
minimized. The norm,

δ = ‖L − R‖, (7)

is what we call an NTU error. For small enough time step
it should become proportional to dt . δ is an estimate for an
error inflicted on local observables by the bond dimension
truncation. Accumulating Trotter errors can eventually derail
the time evolution. In the worst case scenario the errors are
additive. This motivates an integrated NTU error [128],

� =
∑

i

δi, (8)

where the sum is over all performed Trotter gates. For a
second-order Suzuki-Trotter decomposition on a bipartite
square lattice, where each time step is a sequence of eight
NN Trotter gates, which is four gates per site, 4� estimates
an error of a typical local observable. The observables are
calculated with the help of the corner transfer matrix renor-
malization group [129,130].

III. BOSE-HUBBARD MODEL

The Hamiltonian on an infinite square lattice is

H = −J
∑
〈i, j〉

(
b†

i b j + b†
jbi

) + U

2

∑
i

ni(ni − 1). (9)

Here b†
i and bi, respectively, create and annihilate a boson on

site i, ni = b†
i bi is the number operator, J is the strength of

the hopping between nearest-neighbor sites, and U is on-site
repulsion strength. 〈i, j〉 denotes summation over NN pairs in
the hopping energy (every pair contributes to the sum only
once). For the commensurate filling of n = 1 particles per site
the continuous Mott-superfluid quantum phase transition is
located at U/J = 16.7 [131–133]. The dynamical exponent
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FIG. 1. Essential NTU. In (a) infinite PEPS with tensors A (light
green) and B (dark green) on the two sublattices. The red lines are
physical spin indices and the black lines are bond indices, with bond
dimension D, contracting NN sites. In one of the Suzuki-Trotter
steps a Trotter gate is applied to every NN pair of A − B tensors
along every horizontal row (but not to horizontal B − A pairs). The
gate can be represented by a contraction of two tensors by an index
with dimension r. When the two tensors are absorbed into tensors
A and B the bond dimension between them increases from D to
r × D. In (b) the A − B pair—with a Trotter gate applied to it—is
approximated by a pair of new tensors, A′ (light blue) and B′ (dark
blue), connected by an index with the original dimension D. The new
tensors are optimized to minimize difference between the two net-
works in (b). After A′ and B′ are converged, they replace all tensors
A and B in a new iPEPS shown in (c). Now the next Trotter gate
can be applied. The dominant numerical cost of the NTU procedure
scales as D8 and is fully parallelizable [120].

z = 1 and the correlation length exponent ν = 0.67, hence
ξ̂ ∝ τ 0.40

Q .
In an optical lattice both J and U depend on the recoil en-

ergy. Deep in the tight-binding regime the dependence of J is
roughly exponential while that of U is relatively weak (if not
negligible). In a tensor network simulation the dimension of
the local Hilbert space has to be truncated to a finite physical
dimension d , i.e., to occupation numbers 0, . . . , d − 1. This
is self-consistent on the Mott side of the transition, including
the critical point, thanks to the limited variance of occupation
numbers ni.

IV. SUDDEN QUENCH REVISITED

As a benchmark, but also to make contact with Ref. [101],
we begin with a sudden quench from deep in the Mott in-
sulator phase to the superfluid. In this section we define the
energy scale by setting U = 1. The initial Hamiltonian has
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FIG. 2. Sudden quench to U/J = 19.6. In (a) the NTU error and
in (b) the NN single-particle correlator in function of time. The
correlator appears converged in D already for D = 6..8 but the NTU
error in this range is still unacceptable (4� ≈ 0.1) and, indeed, for
higher D = 11 . . . 14 the correlator finds a new converged curve,
this time with acceptable errors (4� ≈ 0.01). Here we set J = 1,
U = 19.6, Jdt = 0.005, and physical dimension d = 3.

zero tunneling, J = 0, and the initial ground state is a Fock
state:

|11111111 . . .〉 (10)

with one particle per site. This is a product state that can be
represented by an initial iPEPS with bond dimension 1. Then
nonzero tunneling is suddenly switched on at t = 0. As in
Ref. [101] we consider 1/J = 19.6, i.e., a quench within the
Mott phase. This quench has been performed experimentally
in Ref. [100] although with a somewhat smoother ramp.

After the quench we follow the time evolution of the single-
particle correlation function

Csp
R = 1

2 〈ψ (t )|b†
i b j + b†

jbi|ψ (t )〉. (11)

Here r is a distance between sites i and j. Figure 2 shows
the time evolution of the NN correlator, Csp

1 , up to Jt = 0.5.
Acceptable convergence in this time window requires a bond
dimension of at least D = 11 . . . 14. If we were looking just
at Csp

1 (Jt ), then it might appear converged already for D =
6 . . . 9 but closer inspection of the corresponding NTU error in
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the bottom panel of Fig. 2 reveals that the NTU error does not
improve in this range of D as if adding more bond dimension
did not improve the expressive power of the iPEPS ansatz for
this problem. Hidden symmetries may require increasing D
not by 1 but by 2 or more in order to accommodate not just
one more virtual state but a whole multiplet before the ex-
pressive power is improved [134]. The error begins to improve
again from D = 10 and already D = 11 brings it down to an
acceptable level. At the same time, the curves Csp

1 (Jt ) appear
converging again but this time with an acceptable level of the
integrated NTU error.

This test shows that a combination of the more D-
efficient NTU algorithm, rather than the simple update used
in Ref. [101], and higher bond dimensions can significantly
increase simulable evolution time. The result encourages us to
step beyond the sudden quench and attempt smooth KZ ramps
that, by their very nature, take longer times.

V. KIBBLE-ZUREK RAMP

The Kibble-Zurek quench also begins from the product
state (10) but the hopping rate is increased by a smooth ramp
instead of the sudden jump. Near the critical point the ramp
can be approximated by a linear slope. It is convenient to
parametrize the ramp as

J = Jc[1 + ε(t )], (12)

where Jc is the critical point and ε(t ) is varied from −1 to ∞
either as a straight linear ramp ε(t ) = t/τQ or, for instance,

ε(t ) =
{

t
τQ

− 4
27

t3

τ 3
Q
, when t < 0

t
τQ

, when t � 0.
(13)

The former is just linear while the latter can be considered
approximately linear in the neighborhood of the critical point
at t = 0, where ε(t ) ≈ t/τQ, provided that quench time τQ is
long enough for t̂ in (2) to fall within the regime of validity
of the linearization. The additional qubic term in (13) was
added to make its first derivative equal to zero at the begin-
ning of the ramp when t = −3τQ/2. This smoothing prevents
extra initial excitations that would be created by the abrupt
beginning of the linear ramp and might overshadow the KZM
excitations created near the critical point. They do not pose a
problem for long enough τQ when their energy, proportional
to τ−2

Q , becomes negligible compared to the KZM excitation

energy that is proportional to ξ̂−3 ∝ τ−1.2
Q , but extra bond

dimension would be necessary from the very beginning of
the tensor network simulation in order to accommodate their
extra entanglement. In principle the extra entanglement is not
a problem for a quantum simulator/experiment but the relative
suppression of the abrupt excitation still requires longer ramp
times that are limited by dissipation. In either case there are
good reasons to begin the ramp smoothly.

Furthermore, as the on-site repulsion strength, U , depends
on the recoil energy relatively weakly—when compared to the
hopping rate—here we conveniently assume that it is constant
and choose the unit of energy such that U = 1. Even if we
allowed U to be time dependent, it could be linearized near
the critical point and the only effect of the time dependence

would be effective multiplication of τQ by a constant factor.
This factor would not affect the KZM scaling hypothesis.

In our simulations the tunneling rate is smoothly ramped
up to the critical point at Jc = 1/16.7 with a time step dt −
0.1 that is short enough for the second-order Suzuki-Trotter
scheme to be accurate. As our aim is to verify the KZM
power laws, quench times are incremented geometrically as
τQ = 0.1 × 2m/2, where m is a non-negative integer up to 16.
Longer τQ require larger bond dimensions, up to D = 14, as
they allow for longer KZM correlation length ξ̂ to build up.
The accuracy/convergence was monitored with the NTU error
as for the sudden quench. We present results obtained with the
physical dimension d = 3. Selective tests with d = 4 show
that d = 3 is accurate enough in consistency with the small
variance of occupation numbers in our simulations.

Our main focus is the single-particle correlation function.
It is the most sensitive probe of the KZM as it quantifies just
how the long-range order builds up when the system is driven
across the Mott-superfluid transition. In particular, according
to the general KZM scaling hypothesis (6), when the ramp is
crossing the critical point at t = 0 the correlator should satisfy

ξ̂ 2�spCsp
R (t = 0) = fC (R/ξ̂ ). (14)

Here fC is a nonuniversal scaling function, � is an anomalous
dimension, and ξ̂ ∝ τ

ν/(1+zν)
Q is the KZ correlation length. The

correlator at the critical point is plotted in Fig. 3. The top
panel shows raw data for Csp

R (t = 0) while the bottom one the
same data but scaled according to (14). In the rescaling we use
ξ̂ = 1τ

ν/(1+zν)
Q and t̂ = 1ξ̂ z with the numerical coefficients set

equal to 1 for definiteness. For the single-particle correlation
function 2�sp = 1 + η, where η = 0.038 176(44) [131–133].
The collapse of the plots with different τQ demonstrates that
we reached quench times long enough for the KZM scaling
hypothesis to hold as their t̂ is small enough to fall within the
critical regime near the transition.

Although the correlation function is not quite exponential,
an exponential profile seems to be a reasonably good first
approximation that allows one to characterize the range of
correlations by a single number. In order to ignore numerical
noise in the correlator’s long-range tail, we define the corre-
lation length as ξ (t ) = ln Csp

1 (t )/Csp
2 (t ). The length is plotted

in the top panel of Fig. 4 for several different quench times.
Furthermore, motivated by a more general KZM scaling hy-
pothesis,

ξ̂ 2�Csp
R (t ) = FC (t/t̂, R/ξ̂ ), (15)

that should hold in the KZM regime after −t̂ , in the bottom
panel of Fig. 4 we show scaled correlation length, ξ (t )/ξ̂ , in a
function of scaled time, t/t̂ . According to the hypothesis, for
long enough τQ the scaled plots should collapse in the KZM
regime and, indeed, this is what we can see for the slowest
quenches. The collapse allows a linear fit to the collapsed
sections of the plots after −t̂ . Our estimate of the slope is
v = 1.8(5)J . According to the causality version of KZM, the
slope is upper bounded by twice the sound velocity at the
critical point and, indeed, it is lower than the Lieb-Robinson
velocity 6(2)J predicted and measured in Refs. [100,101],
respectively. However, it is strangely low as compared to the

144510-4



TENSOR NETWORK SIMULATION OF THE QUANTUM … PHYSICAL REVIEW B 107, 144510 (2023)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 3. KZ ramp–single-particle correlations at t = 0. The
figure shows the single-particle correlation functions at the scaled
time t/t̂ = −1 for several values of the quench time, τQ. The correla-
tor is scaled according to the more general KZM scaling hypothesis
(15). The scaling makes the plots for different τQ collapse to a single
scaling function FC (−1, R/ξ̂ ). Here we set U = 1, Jdt = 0.005,
physical dimension d = 3, and bond dimension D = 14.

upper bound, at odds with many other examples [71]. We will
come back to this issue below.

In the meantime, we observe that the collapse in the bottom
panel of Fig. 4 is consistent with the general KZM scal-
ing hypothesis (15). This conclusion is further corroborated
by a direct test—without any assumption of an exponen-
tial or any other specific profile—made in Fig. 5, where
scaled correlation functions for different τQ, but for the same
scaled time t/t̂ = −1, are plotted together. Their collapse
appears even better than the later one at t/t̂ = 0 in Fig. 3.
These earlier states are less entangled, their correlations are
shorter, hence their representation by the tensor network
is more accurate. Similar collapses can be obtained in the
whole range t/t̂ ∈ [−1, 0] completing the demonstration of
the KZM scaling hypothesis for the single-particle correlation
function.

The collapsed correlation functions in Figs. 3 and 5, equal
to the scaling functions in (15), provide a more controlled
way to estimate the propagation speed [71]. For a small
threshold value h > 0 and the two values of the scaled time,
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FIG. 4. KZ ramp–correlation length. The single-particle corre-
lation function was fitted with exponents, Csp

R (t ) ≈ A exp(−r/ξ ), to
obtain/define time dependence of the correlation length, ξ (t ), during
the KZ ramp. In (a) bare ξ (t ) is shown for several quench times τQ.
In (b) scaled correlation length is shown in a function of scaled time.
For the slowest quenches the scaled plots collapse in the KZ regime
after −t̂ . In this regime they are linear fitted with the dashed line. Its
slope yields velocity v = 0.11(3) for (U/J )c = 16.7 and U = 1 or,
more generally, v = 1.8(5)J for (U/J )c = 16.7.

t/t̂ = −1, 0, equation

FC (t/t̂, R/ξ̂ ) = h (16)

can be solved with respect to scaled distance R/ξ̂ . Given that
for z = 1 we have t̂ = ξ̂ , the increase of the scaled distance
between t/t̂ = −1 and t/t̂ = 0 is the propagation speed, v(h).
Gradually decreasing h allows to probe the speed at which
farther correlations are spreading and thus make contact with
the Lieb-Robinson bound on the asymptote of the correlation
function. Figure 6 shows the graphic solution of (16), includ-
ing its error bars, that results in a series of estimates: v(0.3) =
0.19(4), v(0.2) = 0.23(5), v(0.1) = 0.30(7), and v(0.05) =
0.34(11) in our units where U = 1. The same speed estimates
for an arbitrary U are listed in Table I. The speed appears to
increase as threshold h is lowered, but at the same time, its
error bars increase due to the growing relative significance of
numerical uncertainties farther in the correlator tail. Within
the error bars the speed is approaching the estimate 6(2)J
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FIG. 5. KZ ramp–single-particle correlations at −t̂. The plot
shows scaled single-particle correlation functions at −t̂ , where
t̂ = 1τ

zν/(1+zν )
Q . The scaling makes the plots for different quench

times collapse to a single scaling function FC (−1, R/ξ̂ ). Here U =
1, Jdt = 0.005, physical dimension d = 3, and bond dimension
D = 14.

[100,101] that is its upper speed limit according to the casual
picture of the Kibble-Zurek mechanism.

In addition to the single-particle correlation function we
can also consider excitation energy per site:

Q(t ) = lim
N→∞

N−1[〈ψ (t )|H (t )|ψ (t )〉 − EGS(t )]. (17)

Here EGS(t ) is the ground state energy of the instantaneous
Hamiltonian H (t ) and N is the number of lattice sites. In
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0.2

0.3

0.4

0.5

FIG. 6. KZ ramp–correlation growth. Here we collect together
the collapsed scaled correlation functions at the scaled times t/t̂ =
−1, 0 in Figs. 5 and 3. Horizontal lines mark the values of threshold
h in Eq. (16) that are used to estimate the increase of the corre-
lation range between the two scaled times. Each pair of vertical
line segments delimits the range of scaled correlation distance, R/ξ̂ ,
where the horizontal line is estimated to cross with the collapsed
scaled correlation function at either t/t̂ = −1 or t/t̂ = 0. For each
h the difference between the two distances is the speed at which
the correlation range is growing between the two scaled times. The
speeds are listed in Table I together with their error bars.

TABLE I. KZ ramp–correlation growth. The speed at which the
single-particle correlations are spreading in the KZ regime estimated
in Fig. 6 for decreasing values of threshold h in Eq. (16). The brackets
enclose maximal error bars of the last digit. Its upper speed limit is
6(2)J according to Refs. [100,101].

h v

0.3 3.2(7)J
0.2 3.8(8)J
0.1 5.0(11)J
0.05 5.6(17)J

the KZ regime after −t̂ the excitation energy should satisfy
a scaling hypothesis

ξ̂ z+d Q(t ) = FQ(t/t̂ ), (18)

where FQ is a nonuniversal scaling function. On the one hand,
with z + d = 3 the dependence of Q on τQ is very steep
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FIG. 7. KZ ramp–excitation energy per site. Both panels show
the excitation energy per site. In the top panel bare energy Q is shown
in function of time t . In the bottom panel both the energy and the
time are scaled according to the KZM scaling hypothesis (18). The
scaling makes the plots with different τQ collapse in the KZM regime
after t/t̂ = −1. Here we set U = 1, Jdt = 0.005, physical dimension
d = 3, and bond dimension D = 14.
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allowing for a clear-cut test but, on the other hand, with
increasing τQ the excitation energy quickly becomes a small
difference of two large numbers that is prone to numerical
errors. Nevertheless, in the top panel of Fig. 7 we plot the
excitation energy in function of time for several values of the
quench time and in the bottom panel we show the same plots
but after the rescaling. The scaled plots demonstrate a rather
convincing collapse in the KZM regime after t/t̂ = −1.

VI. THERMALIZATION

In order to follow thermalization in the nonintegrable
model, the KZM ramp can be stopped either on the superfluid
side of the transition or even right at the critical point where
the thermalization should be the most expedient, unhampered
by any gap in the energy spectrum. The following unitary
evolution with the critical Hamiltonian conserves the KZM
excitation energy density Q ∝ ξ̂−(z+d ) while the state evolves
into a thermal one with temperature T . The critical dispersion,
ω ∝ kz, means thermal excitations up to kT ∝ T 1/z and ther-
mal excitation energy UT ∝ T (z+d )/z. Equating Q with UT we
obtain a “KZ temperature”

TKZ ∝ ξ̂−z ∝ τ
−zν/(1+zν)
Q (19)

and a thermal correlation range ξT ∝ k−1
T ∝ ξ̂ . Despite this

proportionality, the thermal correlator is not the same as the
KZ one immediately after stopping the ramp. Interestingly,
similar thermalization at and near the critical point but after a
sudden quench was considered in Ref. [135].

VII. CONCLUSION

The state-of-the-art quantum simulators of the Bose-
Hubbard model at commensurate filling allow one to follow
spreading of correlations after a sudden quench for times
long enough to estimate their propagation velocities. Our 2D
tensor network simulations demonstrate that the experimental
times would also be long enough to test the quantum Kibble-
Zurek mechanism by verifying the KZM scaling hypothesis
for the single-particle correlation function. The experiment
could push this test beyond the limited range of quench times
achievable by the classical simulation where the KZM scaling
hypothesis should become even more convincing. It could also
follow thermalization of the KZ excitations after the ramp is
stopped, which is a notoriously difficult task for the classical
simulation due to the rapid growth of entanglement. These are
the challenges worthy of a genuine quantum simulation.
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