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Discrete time translation symmetry breaking in a Josephson junction laser
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A Josephson junction laser is realized when a microwave cavity is driven by a voltage-biased Josephson
junction. Through the ac Josephson effect, a dc voltage generates a periodic drive that acts on the cavity and
generates interactions between its modes. A sufficiently strong drive enables processes that downconvert a drive
resonant with a high harmonic into photons at the cavity fundamental frequency, breaking the discrete time
translation symmetry set by the Josephson frequency. Using a classical model, we determine when and how
this transition occurs as a function of the bias voltage and the number of cavity modes. We find that certain
combinations of mode number and voltage tend to facilitate the transition which emerges via an instability
within a subset of the modes. Despite the complexity of the system, there are cases in which the critical drive
strength can be obtained analytically.
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I. INTRODUCTION

Circuit QED systems are ideally suited to the exploration
of nonlinear phenomena, such as frequency conversion, which
underlie the breaking of discrete time translational symme-
tries [1–3]. Famously, applying a dc voltage, V , to an isolated
Josephson junction (JJ) leads to oscillations at the Josephson
frequency, ωJ = 2eV/h̄. However, if the junction is embed-
ded in a microwave cavity, interactions between the strongly
nonlinear junction and cavity modes can trigger oscillations at
frequencies below ωJ , breaking the discrete time-translational
symmetry (DTTS). The resulting downconversion processes
and the properties of the radiation they generate have been
widely explored in few mode systems over the last few years,
both experimentally [4–7] and theoretically [8–12].

The breaking of a DTTS has been studied extensively
elsewhere in the context of many-body systems of coupled
oscillators and the symmetry broken time-crystalline phases
that emerge [13–17]. For superconducting circuits, although
attention has largely focused on systems where just one or
two modes play an important role, the possibilities enabled
by utilizing multiple modes are attracting increasing atten-
tion [18]. In particular, recent experiments revealed strong
coherent radiation at the fundamental mode frequency in a
JJ-cavity system where ωJ matched a high overtone of the
cavity [19]. In this system, known as a Josephson junction
laser (JJL) [19,20], emission at the fundamental mode fre-
quency is believed to result from an interplay between many
of the cavity’s modes [19]. Inspired by the JJL experiments,
in this paper we analyze a simplified theoretical model of
a voltage-biased JJ in series with a cavity, described as a
set of N harmonic modes [see Fig. 1(a)]. We explore the
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many-body discrete time-translational symmetry breaking
(DTTSB) transition which manifests as a change in the
periodicity of the cavity oscillations [see Fig 1(b)]: from
2π/ωJ to a larger value set by the period of the fundamen-
tal mode. Numerical modeling has highlighted the crucial
role played by the multiple modes supported by the cavity
[19] and a solution obtained analytically for the time-crystal-
like symmetry-broken regime [20]. However, the fundamental
questions we seek to answer of when and how the transition
occurs have not been addressed.

The JJ leads to a Hamiltonian which ostensibly generates
all-to-all couplings between cavity modes, but most of these
couplings are irrelevant as they are far off-resonant. Adopting
a rotating wave approximation (RWA) and a coherent state
ansatz, we find that, prior to the transition, the modes fall into
noninteracting subspaces with different symmetry properties.
This division into subspaces means that the location of the
DTTSB transition proves surprisingly dependent on the num-
ber of cavity modes. Relatively low transition thresholds are
associated with cases where the transition is continuous, and
we demonstrate that in such cases it initially arises from an
instability affecting modes in a single subspace. Remarkably,
closed form expressions for the critical coupling can be ob-
tained in some cases.

II. MODEL SYSTEM

The JJL can be modeled as a set of harmonic cavity modes
in series with a JJ to which a dc voltage bias V is applied
[19–23]. The phase across the JJ is controlled by the volt-
age and contributions from each of the modes leading to a
Hamiltonian [21,22,24–26],

Ĥ (t ) =
∑

n

h̄ωnâ†
nân − EJcos

[
ωJt +

∑
n

�n(â†
n + ân)

]
,

(1)
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where EJ is the Josephson energy of the junction, ân is the
raising operator for the nth cavity mode with frequency ωn,
and �n =

√
2e2/(h̄Cωn) is the corresponding strength of the

zero point flux fluctuations (in units of the flux quantum)
with C the cavity capacitance [21]. Here, the JJ phase is
locked to the sum of the time-dependent contribution from
the voltage, ωJt , and the flux across each of the modes,∑

n �n(â†
n + ân), see, e.g., Ref. [21] for a detailed derivation.

The Hamiltonian possesses the DTTS, Ĥ (t ) = Ĥ (t + TJ ) with
period TJ = 2π/ωJ .

The explicit time dependence of the cosine term in the
Hamiltonian Eq. (1) acts as a nonlinear drive whose strength
can be tuned by varying EJ [19,21]. This term is balanced by
dissipation, since photons can leak out of the cavity into its
surroundings. Assuming zero temperature for simplicity, the
dissipation can be described via a standard Lindblad master
equation [22,24,25,27,28]

ρ̇ = − i

h̄
[Ĥ (t ), ρ] +

∑
n

γn

2
(2ânρâ†

n − â†
nânρ − ρâ†

nân), (2)

with γn the loss rate for mode n.
In the following, we assume a hard cutoff in the number

of modes, N , together with an idealized cavity spectrum,
ωn = nω1, where ω1 is the fundamental mode frequency, and
a constant loss rate γn = γ [19,20]. In practice, deviations in
the mode frequencies and changes to the damping rate will
eventually become important as the mode index is increased
[21,29], leading to an effective decoupling of high frequency
modes, but how this occurs will depend on precisely how the
JJL is engineered. Rather than concentrate on a single specific
realization, we will consider the simplest case: a hard cutoff
that treats N as a parameter, allowing us to focus on exploring
how it affects the location and character of the DTTSB transi-
tion. However, we will also consider the extent to which our
methods and findings apply more generally to cases where the
cutoff in the number of modes is no longer sharp but rather
occurs gradually because of a smooth increase in the damping
rate with mode index (Appendix C).

III. CLASSICAL DYNAMICS

We analyze the classical dynamics of the system using a
coherent state ansatz to derive an approximate set of coupled
classical equations for the mode amplitudes [30]. We assume
that each mode is in a coherent state, ρα =⊗N

n=1 |αn〉〈αn|,
with αn a complex time-dependent amplitude [21,30]. This
approach is a variant on the standard semiclassical approxi-
mation technique of taking expectation values of Heisenberg
equations of motion and then replacing expectations of op-
erator products by the corresponding product of expectation
values (see, e.g., Ref. [31]). It is most accurate when the
nonlinearity is sufficiently weak that it only becomes relevant
for large photon numbers. This corresponds to low values of
�1, and indeed �1 → 0 constitutes the classical limit for the
system [11,32]. The classical equations of motion obtained
in this way also provide a framework which is typically very
helpful in developing an analysis of the full quantum problem,
while also serving as a starting point for approximate descrip-
tions of the role of quantum fluctuations [11,21,30–32].

FIG. 1. (a) Circuit model of the JJL. A JJ with Josephson energy,
EJ , biased by a voltage, V , in series with a microwave cavity modeled
as a series of LC oscillators with frequencies ω1, ω2, . . . . Losses
from the cavity lead to damping of the modes with rates γ1, γ2, . . . .
(b) DTTS breaking transition in the oscillations of the total cavity
phase, �(t ): Above the transition (blue), these have the period of
the fundamental mode, T = 2π/ω1, but period 2π/ωJ below (red).
Here, N = 11, ωJ = 3ω1, and the origin of the time axis has been
displaced to display the long-time behavior clearly.

The corresponding classical Hamiltonian H(t, �α) is
obtained from its quantum counterpart [Eq. (1)] by
making the replacements â(†)

n → α(∗)
n and EJ → ẼJ =

EJexp[− 1
2

∑N
n=1�

2
n] (this arises when normal ordering is per-

formed) [6,21,33–35]. Combined with Eq. (2), this leads to
dynamical equations for the amplitudes of the form

α̇n = −
(

iωn + γ

2

)
αn − iẼJ�n

h̄
sin (ωJt + � ), (3)

where � = 2
∑

n �nRe[αn] is the total phase across all of the
modes [20].

To identify the transition, the equations for the amplitudes
are integrated numerically. We focus on the case where the
drive is resonant with a higher harmonic ωJ = pω1 (p =
2, 3, . . . ) and vary the dimensionless drive strength [20] λ =
ẼJ�

2
1/h̄γ . At very weak drives, excitation starts in the res-

onant mode (ωp = pω1 = ωJ ), but the cosine term in the
Hamiltonian Eq. (1) upconverts these oscillations into effec-
tive drives at mωJ (with m a positive integer), progressively
exciting the resonant harmonics—all those modes with fre-
quencies matching mωJ . The transition occurs when the
excitation spreads beyond the resonant harmonics—it is seen
clearly in the behavior of � which changes from a sawtooth
oscillation of period TJ = 2π/ωJ in the symmetry-preserving
phase to one with period T1 = 2π/ω1 when the symmetry is
broken [Fig. 1(b)].

Tracing the response of the individual mode amplitudes
reveals that the transition can be either continuous or discon-
tinuous (see Fig. 2), depending on the precise relationship
between N and p. Surprisingly, Fig. 2 shows that changing
N by just one can trigger a change from a continuous to
discontinuous transition accompanied by a large increase in
the critical coupling.

IV. CONTINUOUS TRANSITIONS

To understand the connections between the characteristics
of the transition and the properties of the system, we now
focus on analyzing cases where a continuous transition oc-
curs. In such cases, important simplifications can be made
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FIG. 2. Long-time behavior of α̃n, the component of αn oscil-
lating at ωn, as a function of λ with p = 3 for N = 11 (a), (b)—a
continuous transition–and N = 12 (c), (d)—a discontinuous transi-
tion. In both cases, �1 = 0.2 and γ = ω1/100. (a), (c) show |α̃n| for
all modes; (b), (d) show just the fundamental, |α̃1|, which serves as an
order parameter for the transition. See Appendix A for details of the
numerical method. Red and blue symbols in (b) indicate the λ values
illustrated in Fig. 1(b). The vertical dashed lines show the threshold
predicted using linear stability analysis.

which allow approximate analytic methods to be employed so
the transition can be located without the need for numerical
integration.

The first simplification is obtained by making a RWA
[6,21,30,34]. Assuming ωJ = pω1 + δ, with δ a small de-
tuning, we move to a rotating frame by applying the
transformation

Û (t ) = exp

(
i

N∑
n=1

n(ωJ/p) â†
nân t

)
. (4)

The RWA is made by discarding nonresonant processes so
each mode is assumed to oscillate only at is own frequency
[36]. The resulting Hamiltonian can be written

ĤRWA =
N∑

n=1

h̄δnâ†
nân − ẼJ

2

[
Z {N}

p (�̂x) + H.c.
]
, (5)

where δn = −(n/p)δ, �̂x = (x̂1, . . . , x̂N ) with x̂n = 2i�nân,
and we have defined

Z {N}
p (�̂x) =:

∫ π

−π

dt

2π
exp

[
N∑

n=1

1

2
(x̂neint − H.c.) − ipt

]
: .

(6)

Here colons imply normal ordering and {N} = 1, 2, . . . , N .
The Z functions [30] [defined via Eq. (6)] are multidi-
mensional generalizations of Bessel functions, analytically
continued for complex arguments [37,38].

Setting the detuning to zero for simplicity, the DTTS with
period 2π/ωJ = 2π/(pω1) manifests as a discrete rotational
symmetry in the rotating frame [11,39,40],

R(2π/p)ĤRWA = ĤRWA, (7)

where R(θ )• = r̂(θ ) • r̂†(θ ) with the operator r̂(θ ) =
exp(iθ

∑
nâ†

nân) rotating a state by an angle θ . The modes can
be grouped according to their eigenvalue exp(ki2π/p) when

acted on by R(2π/p). The resonant harmonics all have k = 0;
the other modes have k �= 0 and fall into sets defined by

�sk = (âk, â†
p−k, âp+k, â†

2p−k, â2p+k, â†
3p−k, ...). (8)

The number of distinct sets is (p − 1)/2 for odd p, and p/2
for even.

To obtain critical couplings for continuous transitions in
the classical regime, we employ the corresponding coherent
state ansatz Hamiltonian obtained from Eq. (5), HRWA. The
fixed point corresponding to the symmetry-conserving solu-
tion is found and the critical drive strength, λc, at which
this point becomes unstable, is identified using linear stabil-
ity analysis; a detailed description of the method is given
in Appendix B. Comparison with numerical integration [see
Fig. 2(b)] demonstrates that this approach can identify the
critical coupling accurately.

Despite the potential complexity of the problem, the linear
stability analysis proves tractable for a wide choice of N and
p. The fact that we only need to find the fixed points below the
transition represents a significant simplification since, in this
regime, only a subset of the modes (the resonant harmonics)
have nonzero amplitudes, reducing the effective dimension-
ality of the problem. Furthermore, once obtained, the fixed
point amplitudes for a given set of resonant harmonics can be
applied to any combination of (p, N) with the same number
of resonant harmonics via a simple scaling. We located fixed
points for sets of up to nine resonant harmonics, which is
sufficient for all combinations of N and p such that N < 10p.
Finally, the special function form of the Hamiltonian [Eq. (5)]
is readily differentiated, facilitating the calculation of the Ja-
cobian matrix used for the stability analysis [30].

The stability is assessed by calculating whether small devi-
ations from the fixed point shrink (stable) or grow (unstable).
This is done by calculating the Jacobian matrix (a matrix
of all possible ∂α̇n/∂αm) and seeing if it has any positive
eigenvalues (indicating instability). More details are provided
in Appendix B. As well as yielding values of the critical
couplings for continuous transitions, the approach also reveals
how the transition occurs. Below the transition, the Jacobian
is block diagonal: couplings only occur between modes with
the same eigenvalue under discrete rotation, k. The continuous
transition emerges as an instability of the zero amplitude fixed
point within just one of the k �= 0 blocks. Numerical integra-
tion shows that this instability then spreads progressively to
modes with different k values. One can think of the blocks like
adjacent dominoes: the stability of each domino is indepen-
dent of the others, but an instability and subsequent symmetry
breaking in one spreads to the others.

Figure 3 shows how the threshold for a continuous tran-
sition depends on both N and p. The basic trend is of a
critical drive strength that increases with mode number N
(note λc/

√
N is plotted). Even though all the modes are cou-

pled to the Josephson drive, only one is resonant, hence it
is not surprising that the transition typically becomes harder
to reach as more modes are added. However, the nonlinear
couplings between the modes enable a complex range of
frequency conversion processes mediated by the drive, with
new ones enabled with each mode added. Understanding
these processes is key to understanding the complex interplay
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FIG. 3. Critical drive strength, λc at which a continuous transi-
tion takes place for a range of N and p values, calculated using linear
stability analysis (detailed in Appendix B). Lines connect points with
a specific relationship between N and p (labeled in each case).

between the behavior of λc and the precise relationship be-
tween N and p revealed in Fig. 3.

Qualitatively different trends emerge for p/2 � N < p,
N = p, and N > p, which we consider in turn. Note that no
continuous transition is possible for N < p/2. In this case,
the lowest order processes are cubic or higher (creating three
or more photons), and do not lead to continuous transitions
[9,11].

For p/2 < N < p, an instability occurs via a parametric
downconversion process in which the Josephson drive excites
two modes whose frequencies sum to ωJ = pω1 [41]. The
different blocks in the Jacobian, corresponding to different
values of k, couple the pairs of modes ωk and ωp−k ; in each
case, the interaction is equivalent to that in a parametric am-
plifier (typically nondegenerate). The blocks differ only by
factors of �n = �1/

√
n (this scaling follows directly from

the fact that the modes are harmonics of a microwave cavity
with ωn = nω1 [29]), with the parametric terms in block k pro-
portional to �k�p−k . Since �1�p−1 > �2�p−2 > �3�p−3...
the most strongly excited parametric process involves the last
mode added, ωN , and one finds λc = √

N (p − N ), leading to
the horizontal lines in Fig. 3. They form a ladder: keeping p
fixed and increasing N moves us down the rungs. [Derivations
of the expressions for λc given in this section are provided in
Appendix B.]

The second regime is N = p, where the system now pos-
sesses a resonant mode and the critical coupling follows the
solid black curve sloping downward in Fig. 3. The presence
of a resonant mode impedes the transition by diverting energy
away from the dominant parametric terms that now have a
reduced coupling strength in the Jacobian. The critical drive
is found to be λc = √

p − 1/[2J ′
1(x)], with J1(x) a Bessel

function and x the fixed point amplitude of the resonant mode
multiplied by 2�p, which satisfies [21] x2 = (4λ/p)J1(x).

The impeding effect of the resonant mode is strongest at
low p values. For p = N < 6, no continuous transition oc-
curs at all, but as p is increased the impact of the resonant
mode gets weaker and a simpler approximate relation can be
derived, λc ≈ p

√
p − 1/(p − 3/2), for large p. Eventually, λc

tends to
√

N , matching the critical drive for N = p − 1, in the
p → ∞ limit.

Finally, we consider cases where N > p. The number of
resonant harmonics grows with N , making it progressively
more difficult to obtain the below-transition fixed point. Fur-
ther complexity is introduced by an increase in the number of
modes within each block beyond two, enabling beam-splitter-
type interactions in which modes with frequency difference a
multiple of ωJ = pω1 exchange energy with each other me-
diated by the drive and the resonant harmonics. Nevertheless,
the blocks with different k remain fundamentally the same as
one another, differing only by factors of �n and by how they
are truncated by the finite mode number.

In this regime, it is helpful to think about the processes
enabled by the last mode added: relatively low values of
λc are found where this mode enables additional parametric
processes in which two modes can jointly be excited. The best
examples occur when N = qp − 1 for q = 2, 3...—in each
such case, the N th mode is added to the k = 1 space and
is parametrically coupled to the fundamental: these modes
can be excited together by combinations of the drive and
the resonant harmonics (ω1 + ωN = qpω1). Similar effects
arise when N = qp − 2, N = qp − 3, etc., with the N th mode
adding a new parametric process to the k = 2, 3, . . . space.
But as �1�qp−1 > �2�qp−2 > �3�qp−3, the new process
added gets weaker with increasing k and the corresponding
value of λc increases (similar to the ladder seen for N < p).
From this, it follows that for N = qp − k and k � (p/2) any
continuous DTTSB is in subspace k.

V. DISCONTINUOUS TRANSITIONS

We now examine the drive at which the DTTS breaking
transition actually occurs in a given system, λsb, which need
not necessarily correspond to λc since a discontinuous tran-
sition is also possible (see Fig. 2). Discontinuous transitions
have to be identified via numerical integration by tracing how
the symmetry-broken state evolves as the drive strength is
lowered progressively.

Combining numerical integration data with the critical
drives we previously obtained for continuous transitions,
Fig. 4 shows the value of λsb as a function of N for p = 2,
3, and 4. The basic message is that the N and p values that we
identified as leading to a relatively small λc (i.e., within the
range shown in Fig. 3), a continuous transition does indeed
occur before any discontinuous one is reached, but where a
continuous transition requires a relatively large drive strength
it will generally be forestalled by a discontinuous one. Specif-
ically, the relatively low values of λc that arise for N = qp − 1
(with q = 2, 3, . . . ) facilitate continuous transitions at a value
of λsb significantly lower than neighboring discontinuous tran-
sitions in each case. These are, in fact, the only continuous
transitions that occur for p = 2 and p = 3, which only pos-
sess blocks with k = 0 and 1. For p = 4, which also has a
k = 2 block, continuous transitions occur when N = 4q − 2
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FIG. 4. Drive at which a DTTS breaking transition occurs in a
given system, λsb, as a function of N for p = 2, 3, 4. Crosses: Dis-
continuous transitions. Solid (hollow) points: Continuous transitions
originating within the k = 1 (k = 2) block.

(triggered within the k = 2 block) as well as when N = 4q −
1 (triggered in the k = 1 block).

VI. CONCLUSIONS

The transition in a many-mode JJ-cavity system that breaks
the DTTS of the Hamiltonian occurs either continuously or
discontinuously as a function of the system parameters. We
developed an approximate classical description of the system
dynamics that enabled us to determine when a continuous
transition occurs efficiently, leading to simple analytic expres-
sions in some cases. We also examined exactly how these
transitions occur: they involve an instability within a partic-
ular subset of modes linked by a symmetry property. This
uncovered the existence of magic combinations of Josephson
frequency and mode number which facilitate continuous tran-
sitions at relatively low drive strengths. In systems that do not
match one of these combinations, the DTTS breaking transi-
tion is instead found to occur discontinuously at a relatively
high drive strength.

Although we have assumed a sharp cutoff in the number
of modes, we expect that our analysis will be relevant more
generally in cases where the cutoff is soft (determined, e.g., by
damping which increases smoothly with the mode number).
In particular, we find that a change from a continuous to a
discontinuous DTTS breaking transition can occur when the
effective mode number (controlled by the details of the soft
cutoff) is changed and that the tools used to understand the
locations of the continuous transitions in Sec. IV retain an
important role in explaining the behavior when the cutoff is
no longer hard (see Appendix C for details).

Beyond the insights that our analysis gives into the com-
plex and unusual classical dynamics of the JJL, it opens the
way for a quantum analysis of the system which would reveal
the extent to which couplings within each block might give
rise to patterns of many-body entanglement and the extent to

which quantum effects influence the location and nature of the
DTTS breaking transition. Finally, we note that our approach
could be adapted to describe a range of other nonlinear mul-
timode circuit-QED systems driven in different ways, e.g., by
an ac flux bias [2].
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APPENDIX A: NUMERICAL INTEGRATION
OF CLASSICAL EQUATIONS

Classical equations of motion are obtained using the co-
herent state ansatz. All of the modes are assumed to always be
in coherent states with corresponding time-dependent ampli-
tudes, {αl}. Normally ordering the Hamiltonian, one finds that
these obey the following set of equations of motion [30]:

α̇l (t ) = − i

h̄

∂H(t, �α)

∂α∗
l

− γ

2
αl (t ), (A1)

with the classical Hamiltonian

H(t, �α) =
N∑

n=1

h̄ωn|αn|2 − ẼJcos

[
ωJt +

N∑
n=1

2�nRe[αn]

]
,

(A2)

where ẼJ = EJ exp[−∑N
n=1 �2

n/2].
The coupled system of equations Eq. (A1) is solved nu-

merically, using standard routines, to study the transition to
the symmetry broken state. The principal difficulty lies in
identifying the location of discontinuous transitions, as in
such cases the emergence of a (stable) symmetry broken fixed
point is accompanied by the coexistence of a stable symmetry
preserving one. Our approach is to start by identifying the
symmetry-broken fixed point well above the transition and
seeking to follow it until it eventually disappears as the drive
strength is reduced. Specifically, we begin with a random ini-
tial condition and a large λ value and evolve in time until the
system has relaxed to a steady state with period T = 2π/ω1.
This final state is then used as the initial condition for the next
calculation at a slightly lower λ, and so on progressively until
the period T disappears. We extract the component of αn oscil-
lating at ωn by evaluating α̃n = ∫ 10T

0 (dt/10T )αn(t ) exp(iωnt ).
The discontinuous transition thresholds shown in Fig. 3

are found using this approach. As there were many such
calculations, we used additional techniques to save computer
resources. This consisted of a first-sweep calculation with
large λ increments and a relatively large γ /ω1 = 3 × 10−2 to
accelerate the convergence to a steady state. The point where
the nonresonant modes become inactive with lowering λ is
identified in this first sweep and a second sweep is carried out
in this region. This second sweep used γ /ω1 = 1 × 10−2 and
made use of a steady state from the previous sweep as the
initial condition.
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APPENDIX B: ANALYSIS OF CONTINUOUS
TRANSITIONS

In this Appendix, we detail the methods used to identify the
locations of continuous transitions. The first steps (described
in Sec. IV) are a unitary transformation of the Hamiltonian
(moving to a rotating frame) and a RWA. We then obtain
the classical equations of motion by applying the coherent
state ansatz to the RWA Hamiltonian [Eq. (5)]. Assuming that
the detunings are all set to zero, this leads to the following
equations of motion [30]:

α̇l = − i

h̄

∂HRWA(�α)

∂α∗
l

− γ

2
αl

= −�lλγ

2�2
1

[
Z {N}

p+l (2i �� ◦ �α) − Z {N}
p−l (−2i �� ◦ �α∗)

]− γ

2
αl ,

(B1)

where the classical RWA Hamiltonian takes the form

HRWA(�α) = − ẼJ

2

[
Z {N}

p (2i �� ◦ �α) + H.c.
]
. (B2)

Here we have adopted the vector notation so �� =
(�1,�2, . . . ,�N ) and �α = (α1, α2, . . . , αN ); the symbol ◦
indicates an elementwise product, i.e., �c = �a ◦ �b implies that
cn = anbn. The Z functions are defined in the main text
[Eq. (6)] and their properties (including differentiation) are
discussed in detail in Ref. [30].

To obtain the critical drive strength for a continuous tran-
sition, we need to identify the nonzero amplitudes at the
symmetry preserving fixed point (i.e., those of the reso-
nant harmonics) and then determine the eigenvalues of the
associated Jacobian. We address these in turn below (Ap-
pendices B 1 and B 2), after which we turn to examine the
different uncoupled symmetry blocks that describe the sys-
tem’s dynamics in this regime (Appendix B 3). The symmetry
blocks simplify the problem enough to allow analytic solu-
tions in some cases, described in Appendix B 4.

1. Symmetry-preserving fixed point

Prior to a continuous transition, only resonant harmonics
(i.e., modes at integer multiples of the drive frequency) are
excited; the others have zero amplitude. This makes finding
a fixed point much easier as we can neglect all the inactive
modes, working instead within a reduced mode space that in-
cludes just the resonant harmonics. When pM � N < p(M +
1), the N modes contain M resonant harmonics, this means we
can simply replace Z1,2,..,N

p by Z p,2p,..,M p
p in Eq. (B1).

Furthermore, a simple rescaling allows us to map the prob-
lem onto one which only depends on the number of resonant
harmonics, M, but is independent of the choice of p. The
mapping relabels the mode index for the resonant harmonics
n → n′, where n′ runs from 1 to M, and p → p′ = 1, us-
ing the identity [30] Z p,2p,..,M p

p = Z1,2,...,M
1 . The values of the

zero-point uncertainties and mode amplitudes also need to be
rescaled, since mode n′ in the reduced space refers to mode
n = pn′ in the full space, �′

n′ = �pn′ = �n/
√

p. The mode
amplitudes undergo the opposite scaling so �′

n′α
′
n′ = �pn′αpn′ .

The dimensionless drive, λ, remains unchanged.

The point of this rescaling is that once a solution is found
for a given value of M, it can be used to describe the below-
transition mode amplitudes of any situation with the same
number of resonant harmonics [i.e., where pM � N < p(M +
1)]. We carried out nine fixed point calculations [30], with M
from 1 to 9. These provide the fixed points needed to describe
the below-transition dynamics for any N , p such that N <

10p. In finding these fixed points, we are helped by the fact
that for λ = 0 all modes have zero amplitude and that at each
step, as λ is incremented higher, the new fixed point is located
near the previous one, which was used as the solver’s initial
guess. At each stage, we located the fixed points by evaluating
the Z functions using the integral definitions [Eq. (5)] and
varying the values of the amplitudes in small increments away
from the previous fixed point.

The behavior of the resonant harmonic fixed points has two
stages: First, a phase-locked regime in which the complex
mode amplitudes α′

n = A′
n exp(iθ ′

n) have phases that remain
fixed at θ ′

m = (1 − m)π/2. Here only the moduli A′
n = |α′

n|
change with λ. At high λ, this regime ends in a bifurcation,
after which the mode phases change with λ and the problem
becomes more difficult to solve. The M = 1 case of this
bifurcation is described in Ref. [21]. We tracked the fixed
point amplitudes as a function of λ for each of the resonant
harmonics up to this bifurcation.

2. Jacobian

The stability of the symmetry preserving fixed point is
determined by the corresponding Jacobian matrix, J . Cast-
ing the equations of motion Eq. (B1) in the compact form
�̇α = �f (�α, ��,λ, γ ), the Jacobian is defined as

J
T =

(
∂

∂α1

∂
∂α∗

1

∂
∂α2

∂
∂α∗

2
...
)T (

f1 f ∗
1 f2 f ∗

2 ...
)
.

(B3)

The necessary derivatives can be evaluated straightforwardly
[30], and we find

∂ f j

∂αl
= −i� j�lG j−l − γ

2
δl, j, (B4)

where we have defined

Gn = − ẼJ

2h̄

[
Z {N}

p+n(2i �� ◦ �α) + Z {N}
p−n(−2i �� ◦ �α∗)

]
, (B5)

with �α taking the corresponding fixed point value. Gn does not
appear in the fixed point expression, Eq. (B1), as the latter has
a minus sign between the Z functions.

The Jacobian is relatively sparse, with most elements zero
in the symmetry-preserving state: Gn = 0 except when n =
0,±p,±2p . . . . Where Gn is nonzero, it can be expressed
using Z functions with dimension M using the same mode
reduction procedure as before.

3. Block diagonal structure

The Jacobian matrix can be rearranged so it takes a block
diagonal form. The first stage involves separating out the
terms that correspond to the resonant harmonics: Formally,
we can write the Jacobian as J = JNH ⊕ JH, where JH(NH) is
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a matrix of size 2M [2(N − M )] squared, involving just the
modes that are (not) resonant harmonics of ωd = pω1; the
direct sum (⊕) notation builds the full Jacobian by placing
the component block matrices corner to corner.

We can also carry out a simple reordering of the
rows/columns to bring JNH into a block diagonal form. These
blocks are indexed by k, which labels the rotational symmetry
subspace and runs from 1 to (p − 1)/2 for p odd and to p/2 for
p even. Block k involves the modes (k, p − k, p + k, 2p − k,
2p + k, 3p − k,...) terminating the sequence as appropriate
given the number of modes N [see Eqs. (7) and (8) in the main
text], and takes the form

Jk =

⎛
⎜⎜⎝

∂ fk

∂αk

∂ fk

∂α∗
p−k

∂ f ∗
p−k

∂αk

∂ f ∗
p−k

∂α∗
p−k

. . .

⎞
⎟⎟⎠

= i �k

⎛
⎜⎝ −G0 −G+p

+G−p +G0
. . .

⎞
⎟⎠�k − (γ /2)I, (B6)

where �k is a diagonal matrix with elements �k,�p−k, ....
For odd p, the block of the Jacobian for modes which aren’t
resonant harmonics, JNH, consists of a direct sum of the (p −
1)/2 different k �= 0 blocks, Jk , together with their complex
conjugates, J

∗
k ,

JNH =
(p−1)/2⊕

k=1

(Jk ⊕ J
∗
k ). (B7)

For even p, things are slightly more complicated as the block
with k = p/2 is its own complex conjugate (it is similar to the
band-edge mode in a crystal that lacks a counter propagating
partner), and in this case

JNH =
⎡
⎣(p−1)/2⊕

k=1

(Jk ⊕ J
∗
k )

⎤
⎦⊕ J p/2. (B8)

A continuous DTTSB transition occurs when an eigenvalue
with a positive real part emerges in one of the Jk blocks
within JNH. Once a subspace has developed an instability, the
fixed point changes as amplitudes of the modes in that space
become nonzero. These nonzero amplitudes can generate new
couplings, breaking the strict division into symmetry sectors
and affecting the amplitudes of modes which were originally
in different blocks. This mechanism allows the instability to
propagate from a single block to affect all the modes in all the
blocks.

We searched for the critical λ value at which an instability
first occurs in J for a wide range of N and p. The correspond-
ing k value of the unstable block is shown in Fig. 5. If the
symmetry subspace of the instability is k �= 0, then a contin-
uous DTTSB transition can be identified. However, when the
instability occurs in the k = 0 space, the instability does not
represent a DTTSB transition but instead a bifurcation within
the resonant harmonics. We did not identify the behavior of
the resonant harmonics beyond the first bifurcation that they
undergo and hence did not locate any continuous DTTSB
transition in these cases.

2 5 8 11 14 17 20
N

2

5

8

11

14

17

p

0

1

2

3

4

5

6

7

8
Impossible

FIG. 5. Symmetry subspace, k, in which a continuous DTTSB
transition emerges as a function of N and p. Gray indicates no
DTTSB transition was found because an instability in the k = 0
space occurred first. White indicates an (N, p) combination that
wasn’t explored and black corresponds to cases where no transition
is possible (see Appendix B 4).

4. Critical drive strengths in the few-mode regime: N � p

When N � p, the form of the Jacobian matrix, J , is partic-
ularly simple, with each Jk taking the form of a 2 × 2 matrix
that allows analytic results to be derived. One finds that for
�n = �1/

√
n, the first instability occurs in the k = p − N

subspace for N < p or k = 1 when N = p, with a critical drive
given by

λc = ẼJ�
2
1

h̄γ
=

⎧⎪⎪⎨
⎪⎪⎩

∞ 2N < p
√

N (p − N ) N < p � 2N
√

p−1
2J ′

1(2�pAp) N = p.

(B9)

A continuous transition, occurring via a pitchfork bifurca-
tion, is only possible in the presence of a quadratic term in the
Hamiltonian [9,11]. This means that when the lowest order
energy-conserving processes produce three or more photons,
only discontinuous transitions are possible. Hence, the first
line of Eq. (B9): No continuous transition is possible if the
drive frequency is more than twice that of the highest fre-
quency mode.

For N = p (a single resonant harmonic), we can derive a
simpler expression for λc assuming p � 1 and �1Ap/

√
p �

1. Substituting Eq. (B9) into the fixed point expression [21],
ẼJ/(h̄γ ) = A2

p/J1(2�pAp), provides an approximate equa-
tion for the amplitude of the resonant harmonic at the
instability �1Ap � 2. Substituting this back into Eq. (B9) then
leads to the relation λc ≈ p

√
p − 1/(p − 3/2). This approxi-

mation proves quite accurate for p > 10.

APPENDIX C: SOFT CUTOFF

The assumption that all modes share a common decay rate,
γ , is an idealization. The damping rates of each mode in any
real device will be unequal and depend on the details of the
design/geometry [42]. For a coplanar microwave cavity, the
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FIG. 6. Threshold value λth = ẼJ�
2
1/(p2 h̄γ1) at which the sym-

metry unbroken solution becomes unstable with p = 2, 3, 4, 5, 6,
γn = n2γ1 and �n = �1/

√
n. Note that λth is defined in terms of

p2γ1 = γp rather than just γ1.

modes have a loss of the form

γn = γI + E n2, (C1)

where γI describes internal losses and E external losses due
to coupling to a nearby waveguide [29].

Equation (C1) implies three regimes. First, the under-
coupled regime, E/γI → 0, considered in the main paper.
Second, the strongly overcoupled regime γI/E → 0. Third,
an intermediate regime where both components are nonzero.
The following sections consider the overcoupled and interme-
diate cases in turn.

1. Overcoupled regime

Adjusting the fixed point Eq. (B1) and the Jacobian to
study the overcoupled regime with γn = n2γ1 is straight-
forward. The thresholds for continuous transitions predicted
within this model are shown in Fig. 6. The location of the
threshold clearly saturates for large enough N , in contrast to
the undercoupled regime discussed in the main paper. The
quadratic increase in damping with mode number acts as a
soft cutoff, naturally limiting the number of modes that affect
a given threshold.

For N < p, the results in Fig. 6 qualitatively match those
for constant loss, with more modes reducing the threshold by
enabling stronger parametric processes. Unsurprisingly, the
increased damping for the higher order modes reduces their
impact. We see that additional modes past N = p + 1 have
barely any effect on the threshold location, an effect which can
be understood from the block structure of the modes. Mode
p − 1 introduces a new (efficient) parametric process and thus
strongly lowers the threshold. Mode p introduces the resonant
mode which diverts energy from the nonresonant modes and
raises the threshold (slightly). Then, mode p + 1 is in the
all-important k = 1 block so it too can affect the dynamics of
the transition. However, all modes between p + 1 and 2p − 1
are in k > 1 blocks, so they cannot interact with the modes
that drive the transition. This, combined with the quadratically
ramping loss rate results in modes above N = p + 1 being
essentially irrelevant.
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FIG. 7. Continuous and discontinuous transitions with soft cut-
offs. The long-time behavior obtained from numerical integration of
|α̃n|1/2 (a),(c) and |α̃1| (b),(d) is shown. In (a),(b) γI = 0 leading
to a continuous transition, while in (c),(d) with γI = 34E it is
discontinuous. (a),(b) dashed line: analytic prediction from stability
analysis (see Fig. 6) (d) inset: zoom-in of the step-like discontinuous
transition. Note that the number of modes that play a role at the
transition clearly increases as we go from (a) to (b). In both cases,
we set p = 2.

For completeness, we note that when p > 2 the con-
tinuous transitions whose locations are shown Fig. 6, are
preceded by discontinuous ones, so the threshold values
plotted do not describe the first appearance of a symmetry
broken state but instead the point beyond which there is no
symmetry-unbroken state. Curiously, numerical integration
finds discontinuous transitions at ẼJ�

2
1/(h̄γ1) ≈ 2.2, 3.3, 4.4,

and 5.5 for p = 3, 4, 5, and 6 respectively.
Mathematically, we can adapt the method described in

Appendix B 4 to cases where the loss changes as a power of
n, γn = nlγ1, with l � 0. For l = 0, we have constant loss and
l = 2 gives the quadratically increasing rates just discussed.
For this class of loss relations, Eq. (B9) generalizes to

λc = ẼJ�
2
1

h̄γ1
=

⎧⎪⎪⎨
⎪⎪⎩

∞ 2N < p

[N (p − N )](1+l )/2 N < p � 2N

(p−1)(1+l )/2

2J ′
1(2�pAp) . N = p.

(C2)

In the limit l → ∞, every mode except the first has an infinite
damping rate and these expressions recover the results for
N = 1. For large l , Ap tends to zero and thus J ′

1(2�pAp) to
1/2. For p = 2, the instability condition becomes ẼJ�

2
1/γ1 =

1, matching the known case of a single mode driven at twice
its resonant frequency [21]. For p > 2 and N = 1, when l →
∞ we recover the known result that the origin never becomes
unstable (due to a rotational symmetry constraint in phase
space [9,11]).
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2. Intermediate coupling numerics

A striking feature of the hard-cutoff model is that transi-
tions to the symmetry-broken state can be either continuous
or discontinuous, depending on the location of the cutoff (i.e.,
the number of modes, N). In the following, we show that the
appearance of both continuous and discontinuous transitions
is not simply an artifact of the hard cutoff and that one can
move from one to the other by tuning the location of a soft
cutoff.

For a soft cutoff, the number of modes that are relevant
for a given p depends on the ratio γI/E [see Eq. (C1)].
Figure 7 illustrates how changing the ratio γI/E (from 0
to 34) changes the number of modes that play a role in the

p = 2 transition (analogous to changing N for the hard cutoff).
In the γI = 0 case, a continuous transition takes place (at
the location predicted by the stability analysis). However, for
γI = 34E the transition is instead discontinuous. In each
case, the numerical integrations included sufficient modes
(10 and 29, respectively) to ensure the soft cutoff is signif-
icantly exceeded (i.e., we are in a regime where the results
no longer change when further modes are added). Thus, the
change from continuous to discontinuous transitions which
occurs as N is varied for a hard cutoff is echoed by the
possibility of changing between continuous and discontinuous
transitions by tuning the effective number of modes for a soft
cutoff.
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