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The nature of the superconducting order parameter in Sr2RuO4 has generated intense interest in recent years.
Since the superconducting gap is very small, high-resolution methods such as scanning tunneling spectroscopy
might be the best chance to directly resolve the gap symmetry. Recently, a Bogoliubov quasiparticle interference
imaging (BQPI) experiment has suggested that the dx2−y2 gap symmetry is appropriate for Sr2RuO4. In this work,
we use a material-specific theoretical approach based on Wannier functions of the surface of Sr2RuO4 to calculate
the continuum density of states as detected in scanning tunneling microscopy experiments. We examine several
different proposed gap order parameters and calculate the expected BQPI pattern for each case. Comparing to
the available experimental data, our results suggest that a s′ + idxy gap order parameter is the most probable
state, but the measured BQPI patterns still display features unaccounted for by the theory for any of the states
currently under discussion.

DOI: 10.1103/PhysRevB.107.144505

I. INTRODUCTION

Sr2RuO4 [1–4] has once again been a topic of intense
research interest recently. For long time it was discussed as a
promising candidate for intrinsic topological superconductor
in the light of arguments in favor of a p + ip symmetry of
the gap order, in particular early evidence from NMR [5].
Muon-spin rotation [6] and Kerr effect [7] measurements were
argued to imply time-reversal symmetry (TRS) breaking [8] in
the superconducting state, consistent with this picture. How-
ever, a number of thermodynamic measurements detected
low-energy quasiparticle states, hinting at the existence of
nodes or deep minima in the gap �(k) [9–12].

Recently, strong evidence against the chiral p-wave
paradigm was provided by in-plane 17O nuclear magnetic res-
onance measurements [13,14] that found a substantial drop in
the Knight shift below Tc. Arguments in favor of spin-singlet
pairing were then drawn from the field dependence of the
Knight shift in comparison to the change of the entropy from
earlier specific heat experiments [15]. These measurements
are complemented by observations of shifts in the elastic con-
stants [16,17] together with experiments under strain [18] that
indicate a two component nature of the order parameter. All
these findings have led to a series of recent theoretical attacks
on the question of superconductivity in Sr2RuO4 [19–35].

Sr2RuO4 is generally considered to be an unconventional
superconductor, where electron pairing is mediated by the
exchange of electronic excitations, so theories typically at-
tempt to model the low-energy effective pairing interaction.
The Fermi surface is dominated by three Ru d orbitals dxz, dyz

that contribute mostly to quasi-1D bands, and dxy states domi-
nating a 2D band. Electrons in these states interact via intrasite

Coulomb U interactions and Hund’s coupling J , with the
dxy dominant bands thought to be more strongly correlated
[36,37]. In addition, spin-orbit coupling plays a significant
role [38,39]. Recent microscopic theories incorporate many of
these ingredients [19–21,23–26,29,30,32,33,40,41], leading
to a variety of predictions for �(k) depending on the assumed
model and the applied methodology. These calculations point
to a number of leading candidates which currently consist
of the even-parity 1D irreducible representation B1g(dx2−y2 ),
multicomponent orders such as dx2−y2 + igxy(x2−y2 ) and s′ +
idxy, as well as the 2D irreducible representation E1g(dxz +
idyz ). A two-component state is generally thought to be im-
portant to explain the observation of time-reversal symmetry
breaking, ultrasound [16,17], and recent μSR experiments
under strain [18]. At zero strain, these can correspond either to
the 2D representation, or to accidental degeneracies of two 1D
representations.

Not all such proposals are consistent with existing ex-
perimental results, nor are all the interpretations of the
experimental literature apparently consistent with one another
[4]. In such a situation it would be very useful to have a
direct measurement of the superconducting gap to distinguish
among theories and thereby constrain the possible pairing
mechanisms. The tiny size (|�| � 350 μeV) [42,43] of the
superconducting order parameter �(k) in Sr2RuO4 has hin-
dered such measurements for a long time, as they require
low temperatures and fine energy resolution to detect spectral
features arising from the small gap. However, in principle
Bogoliubov quasiparticle interference (BQPI) imaging is a
powerful technique capable of high-precision measurement of
multiband �(k) [44–47]. Interference of impurity-scattered
quasiparticles produces real space Friedel oscillations in the
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density of states (DOS) ρ(r, ω) within the energy range of
�(k), giving rise to complex patterns in the spatial Fourier
transform spectrum ρ(q, ω) that can in principle be mea-
sured in an STM experiment and interpreted in order to
extract the gap structure. The BQPI technique was recently
implemented to analyze �(k) in Sr2RuO4 [43]. This analy-
sis, motivated with observations from recent work [12,13,19–
21,48], suggested a dx2−y2 superconducting gap symmetry
for Sr2RuO4 by comparison with theoretical calculations of
ρ(q, ω) using simple low-harmonic gap candidates �(k).
Such an approach is, however, limited by (a) loss of q space
resolution when calculating BQPI on a simple Ru lattice
system and (b) failure to include the rather complex gap struc-
tures, including accidental nodes, anticipated by microscopic
theories [19,29,33].

In this work, we will adopt the Wannier-based T -matrix
technique introduced in Refs. [49,50] through which one
obtains BQPI images for real materials in their normal and
superconducting states that are directly comparable to ex-
periments. Unlike the theoretical approach used in Ref. [43]
to obtain lattice DOS ρ(R, ω), the Wannier-based T -matrix
approach is used for evaluation of the continuum DOS ρ(r, ω)
dressed by real-space Wannier functions pertaining to the or-
bitals that have dominant contribution around the Fermi level
of the material under consideration. These Wannier functions
substantially modify the continuum DOS patterns, bringing in
additional q(ω) features in its Fourier transformed image. In
addition, we take as representative of the various possible gap
symmetries not only simple harmonics, but gaps derived from
microscopic spin fluctuation pairing theory [29]. We find that
definitive conclusions are difficult because of limited experi-
mental tunneling spectra exhibiting superconductivity on the
surface (i.e., with evidence of low-energy coherence peaks),
and the fact that BQPI features are remarkably nondispersive
in this system, even for highly anisotropic gap structures. The
best fit to the data currently available [43] suggests a s′ + idxy

gap order parameter, but we discuss other alternatives in
detail.

This paper is organized as follows: in Sec. II, we introduce
the multiorbital Hubbard Hamiltonian with the pairing and
impurity terms, and describe it using the Bardeen-Cooper-
Schrieffer (BCS) equations in the Nambu spinor basis. We
write down the equations for computing the lattice DOS and
continuum DOS [49,50], in the presence of impurities us-
ing the T -matrix approach. In Sec. III, we demonstrate our
BQPI findings first in the normal state, and second in the
superconducting state of the material for which we borrow
the singlet and composite gap order parameters as obtained
in Refs. [19,29]. Finally, we present our conclusions in
Sec. IV and possible future directions of investigation in this
context.

II. MODEL

In this section, we will lay out the theoretical framework
on how the surface of a material is imaged by STM. The full
Hamiltonian has four terms, namely, the kinetic energy term
H0, the spin-orbit term Hsoc, the BCS mean-field term HMF,

and a single-impurity term Himp:

H = H0 + Hsoc + HMF + Himp,

H0 =
∑

RR′mns

tmn
RR′c†

RmscR′ns − μ0

∑
Rms

c†
RmscRms,

HMF = −
∑

RR′mn

[
�mn

RR′c†
Rm↑c†

R′n↓ + h.c.
]
,

Himp =
∑

R�mns

V mn
impc†

R�mscR�ns. (1)

Hsoc will be introduced in the next subsection. Here, c†
Rms

(cRms) is the creation (annihilation) operator for an electron
in the unit cell R, orbital m with spin s. tmn

RR′ is the amplitude
for hopping from unit cell R, orbital m to the unit cell R′, or-
bital n. The pairing field is given by �mn

RR′ = V mn
RR′ 〈cR′n↓cRm↑〉,

where V mn
RR′ is the effective attraction between unit cell R,

orbital m and unit cell R′, orbital n. R� is the impurity site
and V mn

imp is the (on-site only) nonmagnetic impurity potential
responsible for scattering of quasiparticles.

A. Noninteracting Hamiltonian

We will adopt the noninteracting tight-binding
Hamiltonian model for Sr2RuO4 as used in Refs. [19,27,29].
It is composed of the three Ru orbitals: dxz, dyz, and dxy.
Fourier transforming the real space hoppings from H0 fitted
to ARPES measurements [51,52], one obtains the dispersions
given by ξxz(k) = −2t1 cos kx − 2t2 cos ky − μ, ξyz(k) =
−2t2 cos kx − 2t1 cos ky − μ, and ξxy(k) = −2t3(cos kx +
cos ky)−4t4 cos kx cos ky−2t5(cos 2kx+ cos 2ky)−μ with
{t1, t2, t3, t4, t5} = {88, 9, 80, 40, 5, 109} meV with the
interorbital hybridization g(k) set to 0 [see Eq. (2) below]
and the chemical potential μ = 109 meV. Atomic SOC is
parametrized by Hsoc = λsocL · S and gives rise to orbital
mixing on the Fermi surface sheets. We include SOC of
λsoc ≈ 40 meV (≈0.5t1) [19,27,29]. For the TRS-preserved
normal state, we have doubly degenerate Kramer’s
eigenvalues and the noninteracting Hamiltonian Ĥ in
block-diagonal form can be represented in a pseudospin basis
σ = +(−). Here Ĥ = ∑

kσ 	†(k, σ )(H0 + Hsoc(σ ))	(k, σ ),
where

H0 =
⎛
⎝ξxz(k) g(k) 0

g(k) ξyz(k) 0
0 0 ξxy(k)

⎞
⎠, (2)

Hsoc(σ ) = 1

2

⎛
⎝ 0 −iσλsoc iλsoc

iσλsoc 0 −σλsoc

−iλsoc −σλsoc 0

⎞
⎠, (3)

and 	(k,+) = [cxz↑(k), cyz↑(k), cxy↓(k)]T , and 	(k,−) =
[cxz↓(k), cyz↓(k), cxy↑(k)]T .

B. Superconducting gap

The full BCS Hamiltonian (implied by the underscore) is
given by

Ĥ =
(

Ĥ (k) �̂(k)
�̂†(k) −ĤT (−k)

)
, (4)
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written in the Nambu spinor basis (
†(k),
T (−k)) where

†(k) = (	†(k,+), 	†(k,−)). The superconducting gap in
momentum space in the homogeneous system �̂(k) is ob-
tained from the spin-fluctuation pairing theory evaluations
[19,29]. Diagonalizing Ĥ yields the eigenvalues {±Eμ(k)}
and the unitary transformation matrix Û (k) that diago-
nalizes Ĥ . The orbitally resolved-gap structure �̂mn(k) is
also expressed in this Nambu basis [50] (see Appendix B
for theoretical details). We evaluate six different cases of
pseudospin-singlet (|↑↓〉 − |↓↑〉) gap order parameters: sim-
ple intraband dS

x2−y2 where �̂μ(k) = �0
2 (cos kx − cos ky), and

the rest taken from Refs. [19,29] dx2−y2 , s′, s′ + idx2−y2 and
s′ + idxy. The spin-fluctuation mediated pairing theory for
weakly coupled systems (like Sr2RuO4) enables one to find
the phase diagram of the possible leading gap order param-
eters as a function of the on-site Coulomb repulsion U and
Hund’s coupling J interaction terms [19]. The gap solutions
dx2−y2 , s′ and s′ + idx2−y2 are the results of such an analysis
pertaining to different U and J values. Furthermore, Ref. [29]
also included the effect of nearest-neighbor Coulomb repul-
sion V to investigate the fate of the leading gap order which
yields a robust s′ + idxy solution.

The orbitally resolved homogeneous DOS in the supercon-
ducting state is ρn(ω) = − 1

π
Im

∑
k Ĝnn(k, ω), where

Ĝ(k, ω) = (ω − Ĥ (k) + iδ)−1, (5)

is the Green’s function for the BCS Hamiltonian. The real-
space bare lattice Green’s function is obtained from the
Fourier transform

Ĝ
0
(R, R′, ω) =

∑
k

e−ik·(R−R′ )Ĝ
0
(k, ω) = Ĝ

0
(R − R′, ω).

(6)

C. Impurity states and T -matrix approach

With intraorbital, on-site impurity potential terms V nn
imp in

Himp of Eq. (1), one constructs the lattice Green’s function in
the presence of the impurity via the T -matrix approach:

Ĝ(R, R′, ω) = Ĝ
0
(R − R′, ω) + Ĝ

0
(R, ω)T̂ (ω)Ĝ

0
(−R′, ω).

(7)

The T matrix is given by

T̂ (ω) = [1 − V̂ impĜ(ω)]−1V̂ imp, (8)

where the local Green’s function is Ĝ(ω) = ∑
k Ĝ(k, ω) and

the diagonal matrix V̂ imp = V mn
impδmnτz, implying its expression

in the Nambu spinor basis with

τz =
(
1 0
0 −1

)
. (9)

D. Wannier functions to calculate continuum density of states

For a given bias voltage V , the differential tunneling con-
ductance in an STM experiment is given by [53]

dI

dV
(r, eV ) = 4πe

h̄
|M|2ρtip(0)ρ(r, eV ), (10)

where r = (x, y, z) denote the coordinates of the tip, ρ(r, eV )
is the continuum LDOS (cLDOS), ρtip(0) is the DOS of the

tip, and |M|2 is the square of the matrix element for the
tunneling barrier. The following methodology to include the
effect of Wannier functions in modifying the cLDOS was
introduced in Refs. [49,50]. The cLDOS can be calculated by

ρ(r, ω) = − 1

π
ImG11(r, r, ω), (11)

where G11(r, r, ω) = ∑
s Gss(r, r, ω) is the normal part of

the Nambu continuum Green’s function defined in a basis
described by the field operators ψs(r). These are related to the
lattice operators cRms through the Wannier functions matrix
elements wRm(r) as ψs(r) = ∑

Rm cRmswRm(r). Employing
the Wannier basis transformation [49,50], we can obtain the
continuum Green’s function as

Gss′ (r, r′, ω) =
∑

RR′mn

Ĝms,ns′ (R, R′, ω)wRm(r)wR′n(r′) (12)

and thereafter, evaluate the cLDOS from Eq. (11). A simple
Fourier transform of the cLDOS ρ(r, ω) gives the Bogoliubov
quasiparticle interference maps that can be compared directly
to experimental measurements.

III. RESULTS

The Sr2RuO4 crystal structure is composed of alternating
layers of SrO and RuO2 planes. The cleaving of the sample in
ultrahigh vacuum at low temperatures is considered to reveal
atomically flat SrO cleaved surface [43]. However, an STM tip
probing this surface is believed to be sensitive to the atomic
wave functions of the Ru d orbitals that dominate the Fermi
level, while the other atomic wave functions away from the
Fermi level are effectively invisible for STM. An illustration
of the Ru d−orbitals Wannier functions [as obtained from
ab initio calculations described in Appendix A] is provided
in Fig. 1. Notice the smaller z expanse of the dxy Wannier
orbitals compared to dxz, dyz orbitals, making dxy orbital less
likely to participate in tunneling through an STM tip located
at a certain z height above the cleaved surface. This property
might be altered on reconstructed surfaces [54]; in this work,
we concentrate on the spectroscopic features at low energies
assuming no reconstruction and a negligible effect from the
van Hove singularities. Whether these effects are essential
for the observation of superconductivity in Sr2RuO4 is not
presently clear, as the presence or absence of reconstruction
is not always examined in the experimental data [42,43].

A. Homogeneous superconducting state

Figure 2(a) shows the Fermi surface (FS) for 2D Sr2RuO4

with the corresponding dominant orbital contribution. There
are three FS pockets: two quasi-1D bands that originate from
Ru dxz (purple) and dyz (yellow) orbitals, leading to the
electronlike β band centered at the � point and holelike α

band surrounding the M point; and the Ru dxy (blue) orbital
generates the electronlike quasi-2D γ band centered at the
� point. SOC lifts degeneracy of the β and γ bands along
the diagonals in the first Brillouin zone (BZ) and introduces
further interorbital hybridization as seen in Fig. 2(a).

Figure 3 shows the orbitally resolved homogeneous
DOS ρn(ω) in the superconducting state, with degenerate
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FIG. 1. Isosurface plots of Ru dxy, dyz, and dxz Wannier orbitals in Sr2RuO4. The atoms Sr, Ru and O are depicted by the opaque spheres
colored in green, white, and pink, respectively. The Ru atom is positioned at the center of the unit cell which has an in-plane lattice constant of
a = 3.8644 Å as considered in the ab initio calculations described in Appendix A. The Wannier functions are depicted by the translucent red
and blue colored lobes indicating opposite phases of the wave functions.

contributions from dxz and dyz orbitals depicted by the dark-
yellow line and dxy orbital contribution in blue. Results are
presented for six different pseudospin-singlet gap order pa-
rameters: (a) purely intraband dS

x2−y2 = �0
2 (cos kx − cos ky)

(the superscript ‘S’ denotes the simple cosine form of the
order parameter), and the rest adapted from Refs. [19,29] (b)
dx2−y2 , (c) s′, (d) s′ + idx2−y2 , (e) s′ + idxy, and (f) dx2−y2 +
igxy(x2−y2 ). While the gap functions (b)–(f) correspond to
specific cases of microscopic parameters discussed in those
references, it was shown there that their structure was quite
robust against changes of those parameters within reasonable
ranges. Thus we hope therefore to identify qualitative BQPI
structures that are driven by these features. Case (a) with
dS

x2−y2 order parameter was evaluated to compare directly with
the BQPI analysis claims of Ref. [43]. The gap maximum
value for all cases was chosen as �0 = 3.5 meV, as required
with the k-grid size employed. A lower value of �0 would
require a larger k-grid size for converged calculations; we ver-
ified that the qualitative features of computed BQPI patterns
were robust against changes in the k grid.

The gap functions studied here all possess nodes or ex-
tremely deep near nodes on the Fermi surface [19,29], such
that spectra in Fig. 3 are all roughly V-shaped, consistent with
STM measurements [42,43]. Certain small features related
to the multiband character of Sr2RuO4 are clearly visible,
however. One can clearly identify the coherence peaks ap-
pearing in the vicinity of �0 = ±3.5 meV. Although some
cases, particularly (e) with s′ + idxy order parameter, show
evidence of shoulders in the DOS at energies less than �0,
this is not captured in experiments possibly due to: (1) the
extremely high STM-bias resolution at low energies required
to differentiate such a feature occurring below ±350 μeV
in the real system, and (2) smoothing of the DOS spectrum
due to convolution with Fermi distribution function at finite
temperatures as measured in the dI/dV spectrum [53]. We
have used 1000 × 1000 k grid and a broadening parameter of
0.1 meV for the above calculations.

B. Inhomogeneous superconducting state

To consider scattering from a single pointlike impurity,
we introduce an impurity substituting one of the atoms in

the center of the cleaved surface and calculate the cLDOS
over an area of 51 × 51 lattice constants. We consider a
weak nonmagnetic impurity scatterer (Born limit) that is
purely intraorbital, and diagonal in spin space, i.e., (V nn

imp)ss =
0.05 eV appearing in Eq. (8). Modeling the disorder is the
most uncertain part of this analysis, since we do not have
microscopic knowledge of the sources of scattering. We there-
fore follow the simplest path by modeling impurities by a
single δ function with a potential chosen to best reproduce
the simpler normal state QPI pattern. Thus here we do not
consider various forms of dressed impurity potentials arising
from electronic correlations [55–64]. We evaluate the Wannier
function-modified cLDOS pattern obtained from Eq. (11),
first, for the normal state and next, for the superconducting
states discussed under cases (a)–(f) in Sec. III A. The spatial
cLDOS is calculated on the xy plane at a specific z height
above the cleaved surface of the sample (here, z = 4.93 Å is
used for the Wannier functions). The specific choice of Vimp

produces the QPI map of the normal state scattering processes
at ω = 0 eV as shown in Fig. 2(b) and shows qualitative agree-
ment with experimental results of Refs. [43,65]. The normal
state intraband scattering vectors connecting FS patches with
similar orbital character across neighboring BZ are indicated
by the red, green, black and blue arrows in Fig. 2(a). These
specific q vectors are highlighted in Fig. 2(b) representing
the normal state QPI map. The specific double-cross feature
was also observed in earlier experimental work [43,65], but an
interpretation of its origin was not discussed in those works.
We found that most of the prominent q features, including
the sharp double-cross feature, arise from inter and intraband
dxz/yz scattering, as represented by the green, black, and blue
arrows. One can notice less-intense q features corresponding
to the suppressed tunneling matrix elements for dxy orbitals
along the diagonals of the BZ indicated by the red arrow
[which has been shown separately in Fig. 7(b)]. We have
provided our detailed discussion about the dxz/yz/xy-orbital
contributions, as evidenced by the orbitally resolved normal
state QPI maps, in Appendix C.

Next, we discuss the results for BQPI maps obtained in
the superconducting state as shown in Fig. 4 for cases (a)–(f).
The top row shows the experimental BQPI data [43] obtained
at four different STM bias values |ω| expressed in units of
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FIG. 2. (a) Fermi surface of Sr2RuO4 for the model discussed in
Sec. II A with patches showing the dominant orbital content (dxz, dyz,
or dxy) as indicated by the color legend. The normal state intraband
scattering vectors connecting patches with similar orbital character
are indicated by red, green, black, and blue arrows. (b) The QPI
pattern for an impurity potential Vimp = 0.05 eV and for ω = 0 eV in
the normal state of the system. The q vectors corresponding to these
red, green, black and blue arrows as shown in (a) are highlighted
as well. Intensities in the central region surrounding q = (0, 0) have
been suppressed for visual clarity.

the experimentally observed gap-maxima � = 350μeV. For
subsequent rows, |ω| is expressed in units of theoretically
observed coherence peak values. These values correspond to:
|ω|/� = [0, 0.26, 0.58, 0.84]. The most consistently notice-
able q(ω)-features across all bias values are encircled in red,
green, blue and black circles. Small |q|-features in the exper-
iments are believed to be due to long-range disorder/drift in
real space rather than any scattering interference, and hence,
are removed from the plots. We compared these specific
features appearing in our theoretically evaluated BQPI maps
corresponding to the six different singlet and composite order
parameters.

Before proceeding, we note one salient aspect of the ap-
plication of the BQPI technique to SRO and other low-Tc

unconventional superconductors. While we have emphasized

TABLE I. Score chart summarizing the weighted mean-squared
deviation �y( j) of the integrated BQPI intensity around the four
specific q -features at the colored circles (see Fig. 4) between ex-
perimental and theoretically evaluated BQPI maps, for various gap
order parameters ( j). The numbers are sorted starting from the least
(s′ + idxy ) to the highest (dx2−y2 + igxy(x2−y2 ) ) MSD corresponding
to various order parameters. This score determines the ranking for
the correspondence of the individual gap order parameters when
matched with experimental BQPI patterns.

Gap order Weighted mean-squared deviation

s′ + idxy 2.79
s′ + idx2−y2 2.93
dS

x2−y2 2.94
s′ 3.07
dx2−y2 3.17
dx2−y2 + igxy(x2−y2 ) 5.62

the utility of the technique to provide information on the gap
structure in superconductors with low Tc, such systems often
have much larger Dirac cone anisotropies vF /v� ∼ EF /�0

than, e.g., cuprates or Fe-based superconductors. As can be
seen in the experimental data, there is therefore virtually no
dispersion of the BQPI peak positions in the superconducting
state, although the weights of these peaks change with bias.
Colloquially, this is because the contours of constant quasi-
particle energy are arcs rather than “bananas.” The dispersion
takes place over a much smaller, and probably un-resolvable
range of q. An analysis based on an analog of the “octet”
model applied to cuprates [66] is therefore not possible, elim-
inating one of the most powerful tools to identify the gap
structure from BQPI.

We are therefore limited to comparing theoretical and ex-
perimental QPI maps at different biases and attempting to
identify the most qualitatively robust features. In Fig. 4, we
arranged the rows of BQPI maps below the experimental data
(first row) in a descending order starting from the case show-
ing the most to the least consistency with the experimental
patterns, i.e., second row for s′ + idxy, third for s′ + idx2−y2 ,
fourth for dS

x2−y2 , fifth for s′, sixth for dx2−y2 , and seventh
for dx2−y2 + igxy(x2−y2 ). In other words, the BQPI pattern for
s′ + idxy order parameter shows the closest similarity at the
four q positions of the colored circles across all bias values,
whereas dx2−y2 + igxy(x2−y2 ) order parameter shows the least
correspondence with these four specific q features. These
four q positions were first identified from their ubiquitous
and robust presence across all bias values in the experimental
BQPI maps, and thereafter, their corresponding presence in
the theoretically predicted BQPI maps were investigated [43].
Furthermore, to quantify the similarities, we evaluated the
mean-squared deviation (MSD) �y( j) of the integrated inten-
sities around the four specific q points across all STM bias
values for different order parameters ( j), weighted inversely
by their extent of mismatch compared to their experimental
counterparts. A summary score chart of this correspondence
is quantified in Table I below and a more detailed descrip-
tion is given in Appendix D. Additionally, the experimental
features at higher STM biases |ω|/� = [0.58, 0.84] show
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FIG. 3. Homogeneous orbitally resolved DOS in the superconducting state for six different gap order parameters: (a) dS
x2−y2 which is a

simple intraband order parameter of �0
2 (cos kx − cos ky ), and the rest taken from Refs. [19,29] (b) dx2−y2 , (c) s′, (d) s′ + idx2−y2 , (e) s′ + idxy,

and (f) dx2−y2 + igxy(x2−y2 ). Notice the V-shaped DOS spectrum across all cases.

enhanced intensities along the square edges positioned around
(±1.5π/a), as opposed to the lower biases |ω|/� = [0, 0.26].
This trend is also observed in the BQPI maps for the s′ + idxy

and the s′ + idx2−y2 order parameters, whereas the other order
parameters tend to exhibit this feature at other bias values,
not aligning with this trend. This enhanced square feature is
believed to arise from increased scattering between gradually
re-appearing normal-state-like Bogoliubov contours at higher
bias values.

As discussed in Ref. [43], the dxz/yz dominated α, β bands
are detected from the normal-state scattering interference
wave vectors [blue, green, and black arrows in Fig. 2(a)] and
subsequently, yield prominent signatures in the superconduct-
ing state. With the knowledge that our gap order parameter
exhibits multiple nodes and/or minima in the vicinity of
(±π/a,±π/a) on α, β bands, there could be numerous scat-
tering wave-vectors connecting these k regions. This gives
rise to the rich and intricate BQPI patterns as observed in ex-
periment and in our theoretical evaluations as well. However,
we note that the most significant features highlighted by the
blue, green and black circles (in Fig. 4) correspond to major
scattering wave-vectors connecting the Bogoliubov contours
along the (±π/a,±π/a) on α and β bands. Detecting BQPI
intensities along the diagonal regions of the BZ is somewhat
challenging in our numerical evaluations. This is because, in
our current tight-binding model together with ab initio derived
Wannier functions, the small value of the dxy Wannier func-
tion significantly suppresses the scattering matrix elements.
Further details are discussed in Appendix C.

IV. SUMMARY

The question of the gap structure of Sr2RuO4 in mo-
mentum space is difficult to address experimentally due to
the small superconducting energy scales in this system. At
present, Bogoliubov quasiparticle interference measurements
appear to be the only method of pinning down the location
of gap nodes. We have therefore performed 2D calculations
of the real-space Wannier function-modified continuum elec-
tronic density of states for Sr2RuO4. Using the T -matrix
approach in combination with Wannier functions for analyz-
ing scattering effects from a single impurity, we evaluated
the real-space tunneling conductance map and displayed its
Fourier transformed BQPI image to compare with STM

measurements [43]. We have shown our evaluations for six
possible pseudospin-singlet and composite gap order param-
eters: (a) purely intraband dS

x2−y2 parameter ( �0
2 (cos kx −

cos ky)), and the rest borrowed from Refs. [19,29]: (b) dx2−y2 ,
(c) s′, (d) s′ + idx2−y2 , (e) s′ + idxy, and (f) dx2−y2 + igxy(x2−y2 ).
We compared the important features between our theoreti-
cal predictions and the experimental measurements for the
homogeneous DOS spectrum and the BQPI patterns, and
concluded that the s′ + idxy gap order parameter seems to
be the most consistent with our observations. However, the
analysis is at best quantitative; the overall agreement with
the measured patterns does not seem sufficiently impressive
at this time to make a strong case for any of the above 2D
states. Since the analysis of BQPI patterns is a classic example
of “pattern recognition” problem [67], future investigations
in this context can be directed towards training convolutional
neural networks with theoretically generated images of BQPI
patterns labeled for various STM biases and gap order param-
eters, and testing them on experimental data sets. This will
facilitate less manual interference in analyzing complicated
and rich patterns in data, and will be less prone to bias and
estimation errors.
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FIG. 4. BQPI maps obtained in the superconducting state from: (top row) experimental data [43] obtained at four different STM bias values
|ω|/� = [0, 0.26, 0.58, 0.84] as marked for each column, followed by our theoretical predictions for s′ + idxy, s′ + idx2−y2 , s′, dx2−y2 , dS

x2−y2 ,
and dx2−y2 + igxy(x2−y2 ). The most noticeable q-features across all bias values are encircled in red, green, blue, and black. Intensities in the
region surrounding q = (0, 0) have been suppressed for visual clarity.
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FIG. 5. (a) The cell (constituent atoms and vacuum) of Sr2RuO4

depicted with black borders and constituent atoms Sr (maroon), Ru
(green), and O (blue) as indicated by the color legend. The upper
and lower extension of the cell into vacuum has not been shown
for brevity. Axis orientations are shown in the left-bottom corner.
(b) Surface geometry of Sr2RuO4 when viewed above a certain
height from the surface, with the Sr (maroon) and O (blue) atoms on
very similar z level. The bonds (in-plane and out-of-plane) between
different atoms are depicted by the bicolored lines.

APPENDIX A: FIRST-PRINCIPLES WANNIER
FUNCTION CALCULATIONS

The Wannier functions in this work were derived following
the same procedure as in Ref. [54]. In this work, however, no
octahedral rotations were incorporated. Therefore we could
use the Sr2RuO4 normal cell instead of a

√
2 × √

2 Sr4Ru2O8

supercell. As a first step, we performed Density Functional
Theory (DFT) calculations of monolayer Sr2RuO4 with an
in-plane lattice constant a = 3.8644 Å and a vacuum layer
of roughly 20 Å. The corresponding unit cell is depicted
in Fig. 5. Including the vacuum in our calculations allowed
us to simulate the Wannier functions above the surface of
Sr2RuO4 where the STM tip resides. For the DFT calculations
we employed the Vienna ab initio simulation package (VASP)
[68,69]. We used the generalized gradient approximation of
Perdew, Burke, and Ernzerhof [70], a plane-wave energy
cut-off of 650 eV and a 7 × 7 × 1 k-mesh. In the second
step, we derived the Wannier functions with the Wannier90
software [71]. Specifically, we projected the Ru-t2g orbitals
on the bands roughly within [−9.55, 1.45] eV. Furthermore,

we set num_iter = 0 and dis_num_iter = 10000, and took
the inner frozen energy window to be roughly equal to
[−1.65, 1.45] eV.

APPENDIX B: REPRESENTING PAIRING FUNCTIONS
IN ORBITALLY-RESOLVED NAMBU BASIS

The gap function obtained from Refs. [19,29] and illus-
trated in Fig. 6 are expressed as a function of the normal state
Fermi surface (FS) �μ(kF), where the gap magnitude tends
to be the largest compared to the rest of the BZ. To obtain
the gap function over the full BZ as required in Eq. (4), one
can extrapolate its value from the μth Fermi band �μ(kF)
as it falls off away from the FS, a behavior which can be
parametrized in terms of a Gaussian cutoff:

�μ(k) = �μ(kF
nn. ) exp(−(|Eμ(k)|/�C )2), (B1)

where �C = 10�0 and kF
nn. refers to nearest-neighbor kF

from k. This provides a local picture of the internal orbital
structure of a pair which continues out to a radius set by the
coherence length ξ0. While implementing this extrapolation,
one should keep in mind the translational invariance condition
for the BZ, i.e., to obtain �μ(k) values in the 1st BZ (−π/a :
π/a), contributions of �μ(kF) values from the neighboring
BZs (−2π/a : 2π/a) should also be taken into account. The
gap maxima value of |�μ(k)| in the BZ can also be set to a
chosen �0, for instance, 3.5 meV for our numerical purpose.
The following describes the next steps of basis transformation
from bands to orbital basis, for representing the gap (pairing)
functions.

1. Tight-binding Hamiltonian

The noninteracting Hamiltonian Ĥ (k) as in Eqs. (2) and
(3) has the block diagonal structure:

Ĥ (k) =
(

H0(k) + Hsoc(+) 0
0 H0(k) + Hsoc(−)

)
. (B2)

Since Hsoc(σ = ±) has imaginary components, diagonal-
ization of Ĥ (k) can yield eigenvectors that are linear
combination of Kramer’s degenerate eigenstates owing to
gauge-independence. To circumvent this, one can diag-
onalize H+(k) = H0(k) + Hsoc(+) and obtain the unitary

-1 1 -1 1 -1 1 -1 1 -1 1

1

-1

FIG. 6. Depictions of gap order parameters as a function of the Fermi surface for dS
x2−y2 order parameter (simple intraband form-factor of

�0
2 (cos kx − cos ky )), and the rest borrowed from Refs. [19,29] dx2−y2 , s′, dxy, and gxy(x2−y2 ). The red (blue) color denotes positive (negative)

values of the order parameter and marker-size of each kF point is proportional to the gap magnitude |�(kF)|. Composite order parameters like
s′ + idx2−y2 , s′ + idxy, and dx2−y2 + igxy(x2−y2 ) were obtained from complex combinations of the corresponding individual order parameters.
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matrix U (+)(k) and then H−(k) = H0(k) + Hsoc(−), to obtain
U (−)(k), and form the unitary matrix U (0)(k) such that

U (0)(k) =
(

U (+)(k) 0
0 U (−)(k)

)
, (B3)

U (0)†(k)Ĥ (k)U (0)(k) =
(

E (+)(k) 0
0 E (−)(k)

)
, (B4)

U (0)(k) diagonalizes Ĥ (k) to yield Kramer’s degenerate pairs
of eigenvalues E (+)(k) = E (−)(k).

2. Pairing function

The gap part of the BCS Hamiltonian �̂(k) is constructed
in the same basis as the Ĥ (k). However, the gap values
obtained from Eq. (B1) are represented in band pseudospin
basis. For the three bands present in the Sr2RuO4 system and
for pseudospin-singlet pairing with the Cooper-pair structure:
|↑↓〉 − |↓↑〉, we construct the gap matrix in this band pseu-
dospin basis as �pseudo(k):
⎛
⎜⎜⎜⎜⎜⎜⎝

. . . �1(k) . .

. . . . �2(k) .

. . . . . −�3(k)
−�1(k) . . . . .

. −�2(k) . . . .

. . �3(k) . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B5)

where the pseudospin structure of the basis is (↑,↑,↓,↓,↓,

↑). One constructs the gap part of the Hamiltonian in the
Nambu basis as

Ĥ� =
(

0 �pseudo(k)
(�pseudo(k))† 0

)
. (B6)

The unitary matrix in this Nambu basis

U N (k) =
(

U (0)(k) 0
0 (U (0)(−k))∗

)
, (B7)

that diagonalizes the noninteracting part of the Nambu Hamil-
tonian

ĤN =
(

Ĥ (k) 0
0 −ĤT (−k)

)
, (B8)

can be applied on Ĥ� for unitary transformation from the
band to orbital basis:

U N (k)Ĥ�(k)U †
N (k) =

(
0 �̂(k)

�̂†(k) 0

)
. (B9)

The matrix elements �mn(k) of the block �̂(k) are the
orbitally resolved gap structure in the Nambu basis. Its
real-space representation is obtained by a simple Fourier
transformation:

�mn(R) = 1

Nk

∑
k

�mn(k)e−ik·R, (B10)

where R refers to different lattice sites centered around (0,0).
The amplitude �mn(R) encodes the internal spatial and orbital

FIG. 7. Orbitally resolved normal state QPI map for Sr2RuO4 at
ω = 0 for (a) dxz and (b) dxy orbitals. Notice that the QPI intensity
magnitude are different for the two orbitals, with the dxy orbital in-
tensity being ∼10 times weaker than the dxz orbitals. The dyz-orbital
QPI map is same as in dxz, but rotated by π/2.

structures of the electron pair. With the information of �mn(R)
and its simple inverse Fourier transformation back to momen-
tum space, one can set up the full BCS Hamiltonian of Eq. (4)
in combination with any tight-binding parameters.

APPENDIX C: ORBITAL CONTRIBUTION
TO THE NORMAL STATE QPI PATTERNS

Here, we discuss the individual orbital contributions to-
wards the normal state QPI pattern as shown in Fig. 7,
evaluated as per the following equation for mth orbital:

ρm(r, ω) = − 1

π
Im

∑
RR′s

Ĝms,ms(R, R′, ω)wRm(r)wR′m(r),

(C1)

where Ĝms,ms(R, R′, ω) is the lattice Green’s function in the
presence of impurities [Eq. (7)] and wRm(r) are the Wannier
functions matrix elements. First, we attribute the double-cross
feature seen in Fig. 2(b) to intra and interband scattering
between the dxz/dyz-dominated Fermi pockets in neighboring
BZ. This can be verified from the dxz-resolved QPI map in
Fig. 7(a). These intraband scattering vectors have already been
depicted in Fig. 2(a) by the green, blue and black arrows. We
have not marked the interband scattering vectors, but they
can be visualized as vectors connecting the dxz-dominated
parts of the β and the α pockets, closely aligned along the
black arrow in Fig. 2(a). The less-intense q-features along the
diagonals of the BZ, correspond to the suppressed tunneling
matrix elements for dxy orbitals as shown in Fig. 7(b). One of
these features is marked by the red arrow in Fig. 2(b). Notice
that the dxz(=dyz ) features are ∼10 times stronger than the
dxy features. Note that the partial contribution to the density
of states is given by the product of the lattice Green’s func-
tion and the Wannier functions [see Eq. (C1)]. To understand
the difference in the intensities of the QPI maps, one needs
to analyze the modulation of the lattice Green’s function in
conjunction with the Wannier wave functions. In Fig. 8, we
show a log10 plot of the orbitally resolved x, y-integrated
ruthenium Wannier wave function amplitude as a function
of the z value of the unit cell representing Sr2RuO4. The
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FIG. 8. A log10 plot of the orbitally resolved x, y-integrated
ruthenium Wannier wave function amplitude as a function of the z
value of the unit cell representing Sr2RuO4. The center of the unit
cell containing the Ru atom has been marked by zRu in the figure.
The top surface of the unit cell is denoted by ztop. The Wannier wave
functions for the dxz(=dyz ) orbitals (yellow line) expand beyond the
unit cell along the z direction with a larger magnitude compared to
the restricted spread of the dxy orbitals (blue line).

integrated Wannier function amplitude is symmetric around
the Ru atoms for both the orbitals, as expected. However, the
dxz(=dyz ) orbitals (yellow line) expand beyond the unit cell
along the z direction with a larger magnitude compared to the
restricted spread of the dxy orbitals (blue line). At a distance of
4.93 Å above the surface, i.e., at z = 13.93 Å, where we carry
out our calculations, the dxz(=dyz ) orbital integrated Wannier
function amplitude is ∼10 times stronger than the dxy orbital.
This ratio is exactly what we observe in the orbitally resolved

QPI intensity differences in Fig. 7. This difference between
the orbital wave function intensity washes out most of the dxy

features and enhances the dxz/yz features in our BQPI maps.

APPENDIX D: DETAILED DESCRIPTION OF THE
ANALYSIS OF THE BQPI PATTERNS FOR RANKING

THE DIFFERENT GAP ORDER PARAMETERS

In this section, we describe the score assignment procedure
for ranking the different order parameters as per their BQPI
pattern matching with the experiments. As mentioned earlier,
we identified four q positions from their ubiquitous and robust
presence across all STM bias values in the experimental BQPI
maps and marked them in red, green, blue, and black colored
circles (see Fig. 4, first row).

Next, we evaluate the integrated intensities of the BQPI
maps around these four specific q points, as a function of
different STM bias values and for different order parameters
along with the experimental data, as shown in Fig. 9. This
was done by selecting a patch of 15 × 15 pixels centered
at each colored circle. These intensities were normalized by
the total integrated intensity over the full extended BZ at
each STM bias for each order parameter. Next, we evaluate
the mean-squared deviation (MSD) �y( j, i) of the integrated
BQPI intensity between experimental and numerically evalu-
ated BQPI maps for the 4 specific q-features centered inside
the colored circles (i) for various gap order parameters ( j).
Table II quantifies the details of this analysis with rankings
shown in descending order as before. The deviations are
summed across all STM bias values. Since some q points
(example, red circle) tend to display a higher mean-squared
deviation from the experimental counterpart than the other q
points, therefore, we assign a weight w(i) corresponding to
each colored circle to reflect the nature of this discrepancy.
To evaluate this weight w(i), first, we find the cumulative
deviation corresponding to each colored circle across all order
parameters. We pick the circle corresponding to the minimum
of this cumulative deviation weight, i.e., the green point in
this case. Next, we find normalized weights in units of this
minimum cumulative weight by dividing the total weights by

FIG. 9. (Left to right) Normalized integrated intensities around each q point, encircled in red (point 1), blue (point 2), green (point 3), and
black (point 4) colors in Fig. 4, as a function of STM bias values ω/�, for different gap order parameters as indicated by the legend on top. The
normalization was done with respect to the fully integrated BQPI intensity over the extended BZ at each bias value for each order parameter.
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TABLE II. Table displaying the mean-squared deviation �y( j, i)
of the integrated BQPI intensity between experimental and numeri-
cally evaluated BQPI maps, around the four specific q features at the
colored circles (i) (see Fig. 4) for various gap order parameters ( j).
The last two rows show the summed total weights w(i) and the nor-
malized weights w(i), as described in the text above in Appendix D.

MSD �y( j, i) from exp. intensity data

Gap order Red point Blue point Green point Black point

s′ + idx2−y2 6.12 1.81 0.74 0.98
dx2−y2 4.63 1.70 0.82 1.94
dS

x2−y2 3.45 1.31 0.62 3.72
dx2−y2 + igxy(x2−y2 ) 4.37 3.41 1.72 4.42
s′ 6.13 2.24 0.68 0.65
s′ + idxy 5.99 1.15 0.55 1.93
Total w(i) 30.69 11.62 5.13 13.64
Normalized w(i) 0.17 0.44 1.0 0.38

this minimum cumulative weight = 5.13 (written in bold in
Table II). When we re-evaluate the weighted MSD �y( j), we

multiply the normalized weights w(i) with the MSD �y( j, i)
corresponding to each circle i for a specific order parameter
j, to find the �y( j). This �y( j) score determines the ranking
for the correspondence of the individual gap order parameters
when matched with experimental BQPI patterns:

�y( j) =
∑

point i=1,2,3,4

�y( j, i) w(i) (D1)

as provided in Table I in the main text. An additional exper-
imental feature is the enhanced intensities along the square
edges positioned around (±1.5π/a) at higher STM biases
|ω|/� = [0.58, 0.84] as opposed to the lower biases |ω|/� =
[0, 0.26]. We observe that the s′ + idxy order parameter also
displays a similar trend in its BQPI map, while other order
parameters display different trends. Our approach is based on
the choice of dominant q features and results might change if
different choices were made. Unfortunately, we do not have a
more robust way to approach this pattern-matching problem.
We are restricted by the limited availability of experimental
data at ultralow temperatures.

[1] A. P. Mackenzie and Y. Maeno, The superconductivity of
Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod.
Phys. 75, 657 (2003).

[2] Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, and K.
Ishida, Evaluation of spin-triplet superconductivity in Sr2RuO4,
J. Phys. Soc. Jpn. 81, 011009 (2012).

[3] C. Kallin and J. Berlinsky, Chiral superconductors, Rep. Prog.
Phys. 79, 054502 (2016).

[4] A. P. Mackenzie, T. Scaffidi, C. W. Hicks, and Y. Maeno, Even
odder after twenty-three years: the superconducting order pa-
rameter puzzle of Sr2RuO4, npj Quantum Mater. 2, 40 (2017).

[5] K. Ishida, H. Mukuda, Y. Kitaoka, K. Asayama, Z. Q. Mao, Y.
Mori, and Y. Maeno, Spin-triplet superconductivity in Sr2RuO4

identified by 17O Knight shift, Nature 396, 658 (1998).
[6] G. M. Luke, Y. Fudamoto, K. M. Kojima, M. I. Larkin,

J. Merrin, B. Nachumi, Y. J. Uemura, Y. Maeno, Z. Q.
Mao, Y. Mori, H. Nakamura, and M. Sigrist, Time-reversal
symmetry-breaking superconductivity in Sr2RuO4, Nature 394,
558 (1998).

[7] J. Xia, Y. Maeno, P. T. Beyersdorf, M. M. Fejer, and A.
Kapitulnik, High Resolution Polar Kerr Effect Measurements
of Sr2RuO4: Evidence for Broken Time-Reversal Symmetry in
the Superconducting State, Phys. Rev. Lett. 97, 167002 (2006).

[8] T. M. Rice and M. Sigrist, Sr2RuO4: An electronic analogue of
3He? J. Phys.: Condens. Matter 7, L643 (1995).

[9] I. Bonalde, B. D. Yanoff, M. B. Salamon, D. J. Van Harlingen,
E. M. E. Chia, Z. Q. Mao, and Y. Maeno, Temperature Depen-
dence of the Penetration Depth in Sr2RuO4: Evidence for Nodes
in the Gap Function, Phys. Rev. Lett. 85, 4775 (2000).

[10] S. NishiZaki, Y. Maeno, and Z. Mao, Changes in the super-
conducting state of Sr2RuO4 under magnetic fields probed by
specific heat, J. Phys. Soc. Jpn. 69, 572 (2000).

[11] K. Deguchi, Z. Q. Mao, H. Yaguchi, and Y. Maeno, Gap Struc-
ture of the Spin-Triplet Superconductor Sr2RuO4 Determined
from the Field-Orientation Dependence of the Specific Heat,
Phys. Rev. Lett. 92, 047002 (2004).

[12] E. Hassinger, P. Bourgeois-Hope, H. Taniguchi, S. René
de Cotret, G. Grissonnanche, M. S. Anwar, Y. Maeno, N.
Doiron-Leyraud, and L. Taillefer, Vertical Line Nodes in the
Superconducting Gap Structure of Sr2RuO4, Phys. Rev. X 7,
011032 (2017).

[13] A. Pustogow, Y. Luo, A. Chronister, Y.-S. Su, D. A. Sokolov,
F. Jerzembeck, A. P. Mackenzie, C. W. Hicks, N. Kikugawa,
S. Raghu, and et al., Constraints on the superconducting order
parameter in Sr2RuO4 from oxygen-17 nuclear magnetic reso-
nance, Nature 574, 72 (2019).

[14] K. Ishida, M. Manago, K. Kinjo, and Y. Maeno, Reduction of
the 17O Knight Shift in the Superconducting State and the Heat-
up Effect by NMR Pulses on Sr2RuO4, J. Phys. Soc. Jpn. 89,
034712 (2020).

[15] A. Chronister, A. Pustogow, N. Kikugawa, D. A. Sokolov, F.
Jerzembeck, C. W. Hicks, A. P. Mackenzie, E. D. Bauer, and
S. E. Brown, Evidence for even parity unconventional supercon-
ductivity in Sr2RuO4, Proc. Natl. Acad. Sci. 118, e2025313118
(2021).

[16] S. Benhabib, C. Lupien, I. Paul, L. Berges, M. Dion, M.
Nardone, A. Zitouni, Z. Q. Mao, Y. Maeno, A. Georges,
and et al., Ultrasound evidence for a two-component super-
conducting order parameter in Sr2RuO4, Nat. Phys. 17, 194
(2021).

[17] S. Ghosh, A. Shekhter, F. Jerzembeck, N. Kikugawa, D. A.
Sokolov, M. Brando, A. P. Mackenzie, C. W. Hicks, and B. J.
Ramshaw, Thermodynamic evidence for a two-component su-
perconducting order parameter in Sr2RuO4, Nat. Phys. 17, 199
(2021).

[18] V. Grinenko, S. Ghosh, R. Sarkar, J.-C. Orain, A. Nikitin, M.
Elender, D. Das, Z. Guguchia, F. Brückner, M. E. Barber, J.
Park, N. Kikugawa, D. A. Sokolov, J. S. Bobowski, T. Miyoshi,
Y. Maeno, A. P. Mackenzie, H. Luetkens, C. W. Hicks, and
H.-H. Klauss, Split superconducting and time-reversal
symmetry-breaking transitions in Sr2RuO4 under stress, Nat.
Phys. 17, 748 (2021).

144505-11

https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1143/JPSJ.81.011009
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1038/s41535-017-0045-4
https://doi.org/10.1038/25315
https://doi.org/10.1038/29038
https://doi.org/10.1103/PhysRevLett.97.167002
https://doi.org/10.1088/0953-8984/7/47/002
https://doi.org/10.1103/PhysRevLett.85.4775
https://doi.org/10.1143/JPSJ.69.572
https://doi.org/10.1103/PhysRevLett.92.047002
https://doi.org/10.1103/PhysRevX.7.011032
https://doi.org/10.1038/s41586-019-1596-2
https://doi.org/10.7566/JPSJ.89.034712
https://doi.org/10.1073/pnas.2025313118
https://doi.org/10.1038/s41567-020-1033-3
https://doi.org/10.1038/s41567-020-1032-4
https://doi.org/10.1038/s41567-021-01182-7


SHINIBALI BHATTACHARYYA et al. PHYSICAL REVIEW B 107, 144505 (2023)

[19] A. T. Rømer, D. D. Scherer, I. M. Eremin, P. J. Hirschfeld, and
B. M. Andersen, Knight Shift and Leading Superconducting
Instability from Spin Fluctuations in Sr2RuO4, Phys. Rev. Lett.
123, 247001 (2019).

[20] H. S. Røising, T. Scaffidi, F. Flicker, G. F. Lange, and S. H.
Simon, Superconducting order of Sr2RuO4 from a three-
dimensional microscopic model, Phys. Rev. Res. 1, 033108
(2019).

[21] O. Gingras, R. Nourafkan, A.-M. S. Tremblay, and M. Côté,
Superconducting Symmetries of Sr2RuO4 from First-Principles
Electronic Structure, Phys. Rev. Lett. 123, 217005 (2019).

[22] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A. Ramires,
and D. F. Agterberg, Stabilizing even-parity chiral superconduc-
tivity in Sr2RuO4, Phys. Rev. Res. 2, 032023(R) (2020).

[23] S.-O. Kaba and D. Sénéchal, Group-theoretical classification
of superconducting states of strontium ruthenate, Phys. Rev. B
100, 214507 (2019).

[24] A. Ramires and M. Sigrist, Superconducting order parameter of
Sr2RuO4: A microscopic perspective, Phys. Rev. B 100, 104501
(2019).

[25] S. Acharya, D. Pashov, C. Weber, H. Park, L. Sponza, and M. V.
Schilfgaarde, Evening out the spin and charge parity to increase
Tc in Sr2RuO4, Commun. Phys. 2, 163 (2019).

[26] Z. Wang, X. Wang, and C. Kallin, Spin-orbit coupling and spin-
triplet pairing symmetry in Sr2RuO4, Phys. Rev. B 101, 064507
(2020).

[27] A. T. Rømer, A. Kreisel, M. A. Müller, P. J. Hirschfeld, I. M.
Eremin, and B. M. Andersen, Theory of strain-induced mag-
netic order and splitting of Tc and Ttrsb in Sr2RuO4, Phys. Rev.
B 102, 054506 (2020).

[28] A. T. Rømer and B. M. Andersen, Fluctuation-driven supercon-
ductivity in Sr2RuO4 from weak repulsive interactions, Mod.
Phys. Lett. B 34, 2040052 (2020).

[29] A. T. Rømer, P. J. Hirschfeld, and B. M. Andersen, Super-
conducting state of Sr2RuO4 in the presence of longer-range
Coulomb interactions, Phys. Rev. B 104, 064507 (2021).

[30] S. A. Kivelson, A. C. Yuan, B. Ramshaw, and R. Thomale, A
proposal for reconciling diverse experiments on the supercon-
ducting state in Sr2RuO4, npj Quantum Mater. 5, 43 (2020).

[31] J. Clepkens, A. W. Lindquist, and H.-Y. Kee, Shadowed triplet
pairings in Hund’s metals with spin-orbit coupling, Phys. Rev.
Res. 3, 013001 (2021).

[32] R. Willa, M. Hecker, R. M. Fernandes, and J. Schmalian, Inho-
mogeneous time-reversal symmetry breaking in Sr2RuO4, Phys.
Rev. B 104, 024511 (2021).

[33] A. T. Rømer, T. A. Maier, A. Kreisel, P. J. Hirschfeld, and
B. M. Andersen, Leading superconducting instabilities in three-
dimensional models for Sr2RuO4, Phys. Rev. Res. 4, 033011
(2022).

[34] M. Roig, A. T. Rømer, A. Kreisel, P. J. Hirschfeld, and
B. M. Andersen, Superconductivity in multiorbital systems with
repulsive interactions: Hund’s pairing versus spin-fluctuation
pairing, Phys. Rev. B 106, L100501 (2022).

[35] H. S. Røising, G. Wagner, M. Roig, A. T. Rømer, and B. M.
Andersen, Heat capacity double transitions in time-reversal
symmetry broken superconductors, Phys. Rev. B 106, 174518
(2022).

[36] F. B. Kugler, M. Zingl, H. U. R. Strand, S.-S. B. Lee, J.
von Delft, and A. Georges, Strongly Correlated Materials from
a Numerical Renormalization Group Perspective: How the

Fermi-liquid State of Sr2RuO4 Emerges, Phys. Rev. Lett. 124,
016401 (2020).

[37] J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and
A. Georges, Coherence-Incoherence Crossover and the Mass-
Renormalization Puzzles in Sr2RuO4, Phys. Rev. Lett. 106,
096401 (2011).

[38] M. W. Haverkort, I. S. Elfimov, L. H. Tjeng, G. A. Sawatzky,
and A. Damascelli, Strong Spin-Orbit Coupling Effects on the
Fermi Surface of Sr2RuO4 and Sr2RhO4, Phys. Rev. Lett. 101,
026406 (2008).

[39] M. Kim, J. Mravlje, M. Ferrero, O. Parcollet, and A. Georges,
Spin-Orbit Coupling and Electronic Correlations in Sr2RuO4,
Phys. Rev. Lett. 120, 126401 (2018).

[40] S. Raghu, A. Kapitulnik, and S. A. Kivelson, Hidden Quasi-
One-Dimensional Superconductivity in Sr2RuO4, Phys. Rev.
Lett. 105, 136401 (2010).

[41] T. Scaffidi, J. C. Romers, and S. H. Simon, Pairing symmetry
and dominant band in Sr2RuO4, Phys. Rev. B 89, 220510(R)
(2014).

[42] I. A. Firmo, S. Lederer, C. Lupien, A. P. Mackenzie, J. C. Davis,
and S. A. Kivelson, Evidence from tunneling spectroscopy for a
quasi-one-dimensional origin of superconductivity in Sr2RuO4,
Phys. Rev. B 88, 134521 (2013).

[43] R. Sharma, S. D. Edkins, Z. Wang, A. Kostin, C. Sow, Y.
Maeno, A. P. Mackenzie, J. C. S. Davis, and V. Madhavan,
Momentum-resolved superconducting energy gaps of Sr2RuO4

from quasiparticle interference imaging, Proc. Natl. Acad. Sci.
117, 5222 (2020).

[44] T. S. Nunner, W. Chen, B. M. Andersen, A. Melikyan, and P. J.
Hirschfeld, Fourier transform spectroscopy of d-wave quasipar-
ticles in the presence of atomic scale pairing disorder, Phys.
Rev. B 73, 104511 (2006).

[45] T. Hanaguri, Y. Kohsaka, J. C. Davis, C. Lupien, I.
Yamada, M. Azuma, M. Takano, K. Ohishi, M. Ono, and H.
Takagi, Quasiparticle interference and superconducting gap in
Ca2−xNaxCuO2Cl2, Nat. Phys. 3, 865 (2007).

[46] M. P. Allan, A. W. Rost, A. P. Mackenzie, Y. Xie, J. C. Davis,
K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, and T.-M. Chuang,
Anisotropic energy gaps of iron-based superconductivity from
intraband quasiparticle interference in LiFeAs, Science 336,
563 (2012).

[47] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour,
P. C. Canfield, S. Mukherjee, P. J. Hirschfeld, B. M. Andersen,
and J. C. S. Davis, Discovery of orbital-selective cooper pairing
in FeSe, Science 357, 75 (2017).

[48] S. Kashiwaya, K. Saitoh, H. Kashiwaya, M. Koyanagi, M. Sato,
K. Yada, Y. Tanaka, and Y. Maeno, Time-reversal invariant
superconductivity of Sr2RuO4 revealed by Josephson effects,
Phys. Rev. B 100, 094530 (2019).

[49] A. Kreisel, P. Choubey, T. Berlijn, W. Ku, B. M. Andersen, and
P. J. Hirschfeld, Interpretation of Scanning Tunneling Quasipar-
ticle Interference and Impurity States in Cuprates, Phys. Rev.
Lett. 114, 217002 (2015).

[50] A. Kreisel, R. Nelson, T. Berlijn, W. Ku, R. Aluru, S. Chi, H.
Zhou, U. R. Singh, P. Wahl, R. Liang, W. N. Hardy, D. A. Bonn,
P. J. Hirschfeld, and B. M. Andersen, Towards a quantitative
description of tunneling conductance of superconductors: Ap-
plication to LiFeAs, Phys. Rev. B 94, 224518 (2016).

[51] V. B. Zabolotnyy, D. V. Evtushinsky, A. A. Kordyuk, T. K.
Kim, E. Carleschi, B. P. Doyle, R. Fittipaldi, M. Cuoco, A.

144505-12

https://doi.org/10.1103/PhysRevLett.123.247001
https://doi.org/10.1103/PhysRevResearch.1.033108
https://doi.org/10.1103/PhysRevLett.123.217005
https://doi.org/10.1103/PhysRevResearch.2.032023
https://doi.org/10.1103/PhysRevB.100.214507
https://doi.org/10.1103/PhysRevB.100.104501
https://doi.org/10.1038/s42005-019-0254-1
https://doi.org/10.1103/PhysRevB.101.064507
https://doi.org/10.1103/PhysRevB.102.054506
https://doi.org/10.1142/S0217984920400527
https://doi.org/10.1103/PhysRevB.104.064507
https://doi.org/10.1038/s41535-020-0245-1
https://doi.org/10.1103/PhysRevResearch.3.013001
https://doi.org/10.1103/PhysRevB.104.024511
https://doi.org/10.1103/PhysRevResearch.4.033011
https://doi.org/10.1103/PhysRevB.106.L100501
https://doi.org/10.1103/PhysRevB.106.174518
https://doi.org/10.1103/PhysRevLett.124.016401
https://doi.org/10.1103/PhysRevLett.106.096401
https://doi.org/10.1103/PhysRevLett.101.026406
https://doi.org/10.1103/PhysRevLett.120.126401
https://doi.org/10.1103/PhysRevLett.105.136401
https://doi.org/10.1103/PhysRevB.89.220510
https://doi.org/10.1103/PhysRevB.88.134521
https://doi.org/10.1073/pnas.1916463117
https://doi.org/10.1103/PhysRevB.73.104511
https://doi.org/10.1038/nphys753
https://doi.org/10.1126/science.1218726
https://doi.org/10.1126/science.aal1575
https://doi.org/10.1103/PhysRevB.100.094530
https://doi.org/10.1103/PhysRevLett.114.217002
https://doi.org/10.1103/PhysRevB.94.224518


SUPERCONDUCTING GAP SYMMETRY FROM BOGOLIUBOV … PHYSICAL REVIEW B 107, 144505 (2023)

Vecchione, and S. V. Borisenko, Renormalized band structure
of Sr2RuO4: A quasiparticle tight-binding approach, J. Electron
Spectrosc. Relat. Phenom. 191, 48 (2013).

[52] S. Cobo, F. Ahn, I. Eremin, and A. Akbari, Anisotropic spin
fluctuations in Sr2RuO4: Role of spin-orbit coupling and in-
duced strain, Phys. Rev. B 94, 224507 (2016).

[53] J. E. Hoffman, Spectroscopic scanning tunneling microscopy
insights into Fe-based superconductors, Rep. Prog. Phys. 74,
124513 (2011).

[54] A. Kreisel, C. A. Marques, L. C. Rhodes, X. Kong, T.
Berlijn, R. Fittipaldi, V. Granata, A. Vecchione, P. Wahl,
and P. J. Hirschfeld, Quasi-particle interference of the van
Hove singularity in Sr2RuO4, npj Quantum Mater. 6, 100
(2021).

[55] H. Tsuchiura, Y. Tanaka, M. Ogata, and S. Kashiwaya, Lo-
cal magnetic moments around a nonmagnetic impurity in the
two-dimensional t − J model, Phys. Rev. B 64, 140501(R)
(2001).

[56] Z. Wang and P. A. Lee, Local Moment Formation in the Super-
conducting State of a Doped Mott Insulator, Phys. Rev. Lett. 89,
217002 (2002).

[57] J.-X. Zhu, I. Martin, and A. R. Bishop, Spin and Charge Order
around Vortices and Impurities in High-Tc Superconductors,
Phys. Rev. Lett. 89, 067003 (2002).

[58] Y. Chen and C. S. Ting, States of Local Moment Induced
by Nonmagnetic Impurities in Cuprate Superconductors, Phys.
Rev. Lett. 92, 077203 (2004).

[59] B. M. Andersen, P. J. Hirschfeld, A. P. Kampf, and M. Schmid,
Disorder-Induced Static Antiferromagnetism in Cuprate Super-
conductors, Phys. Rev. Lett. 99, 147002 (2007).

[60] J. W. Harter, B. M. Andersen, J. Bobroff, M. Gabay, and P. J.
Hirschfeld, Antiferromagnetic correlations and impurity broad-
ening of NMR linewidths in cuprate superconductors, Phys.
Rev. B 75, 054520 (2007).

[61] B. M. Andersen, S. Graser, and P. J. Hirschfeld, Disorder-
Induced Freezing of Dynamical Spin Fluctuations in Under-

doped Cuprate Superconductors, Phys. Rev. Lett. 105, 147002
(2010).

[62] M. Schmid, B. M. Andersen, A. P. Kampf, and P. J. Hirschfeld,
d-Wave superconductivity as a catalyst for antiferromagnetism
in underdoped cuprates, New J. Phys. 12, 053043 (2010).

[63] M. N. Gastiasoro, P. J. Hirschfeld, and B. M. Andersen,
Impurity states and cooperative magnetic order in Fe-based
superconductors, Phys. Rev. B 88, 220509(R) (2013).

[64] B. Zinkl and M. Sigrist, Impurity-induced magnetic ordering in
Sr2RuO4, Phys. Rev. Res. 3, 023067 (2021).

[65] Z. Wang, D. Walkup, P. Derry, T. Scaffidi, M. Rak, S. Vig,
A. Kogar, I. Zeljkovic, A. Husain, L. H. Santos, and et al.,
Quasiparticle interference and strong electron-mode coupling
in the quasi-one-dimensional bands of Sr2RuO4, Nat. Phys. 13,
799 (2017).

[66] K. McElroy, R. W. Simmonds, J. E. Hoffman, D. H. Lee,
J. Orenstein, H. Eisaki, S. Uchida, and J. C. Davis, Relating
atomic-scale electronic phenomena to wave-like quasiparticle
states in superconducting Bi2Sr2CaCu2O8+δ , Nature 422, 592
(2003).

[67] Y. Zhang, A. Mesaros, K. Fujita, S. D. Edkins, M. H. Hamidian,
K. Ch’ng, H. Eisaki, S. Uchida, J. C. S. Davis, E. Khatami,
and E.-A. Kim, Machine learning in electronic-quantum-matter
imaging experiments, Nature 570, 484 (2019).

[68] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[69] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[70] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[71] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt,
and N. Marzari, Wannier90: A tool for obtaining maximally
localised Wannier functions, Comput. Phys. Commun. 178, 685
(2008).

144505-13

https://doi.org/10.1016/j.elspec.2013.10.003
https://doi.org/10.1103/PhysRevB.94.224507
https://doi.org/10.1088/0034-4885/74/12/124513
https://doi.org/10.1038/s41535-021-00401-x
https://doi.org/10.1103/PhysRevB.64.140501
https://doi.org/10.1103/PhysRevLett.89.217002
https://doi.org/10.1103/PhysRevLett.89.067003
https://doi.org/10.1103/PhysRevLett.92.077203
https://doi.org/10.1103/PhysRevLett.99.147002
https://doi.org/10.1103/PhysRevB.75.054520
https://doi.org/10.1103/PhysRevLett.105.147002
https://doi.org/10.1088/1367-2630/12/5/053043
https://doi.org/10.1103/PhysRevB.88.220509
https://doi.org/10.1103/PhysRevResearch.3.023067
https://doi.org/10.1038/nphys4107
https://doi.org/10.1038/nature01496
https://doi.org/10.1038/s41586-019-1319-8
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1016/j.cpc.2007.11.016

