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Simulating superconducting properties of overdoped cuprates: The role of inhomogeneity
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Theoretical studies of disordered d-wave superconductors have focused, with a few exceptions, on optimally
doped models with strong scatterers. Addressing recent controversies about the nature of the overdoped cuprates,
however, requires studies of the weaker scattering associated with dopant atoms. Here we study simple models of
such systems in the self-consistent Bogoliubov-de Gennes (BdG) framework, and compare to disorder-averaged
results using the self-consistent T -matrix-approximation (SCTMA). Despite surprisingly linear in energy be-
havior of the low-energy density of states even for quite disordered systems, the superfluid density in such cases
retains a quadratic low-temperature variation of the penetration depth, unlike other BdG results reported recently.
We trace the discrepancy to smaller effective system size employed in that work. Overall, the SCTMA performs
remarkably well, with the exception of highly disordered systems with strongly suppressed superfluid density.
We explore this interesting region where gap inhomogeneity dominates measured superconducting properties,
and compare with overdoped cuprates.
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I. INTRODUCTION

Many phenomena observed in underdoped cuprates are
currently highly debated, including the origin of the so-called
competing order phases: Charge and spin ordering, pseudo-
gap, etc. Overdoped cuprates, which used to be regarded as
relatively simpler, have recently attracted considerable inter-
est, due to a few striking observations of unexpected behavior
apparently inconsistent with the Landau-BCS paradigm [1–3].
One observation that has received a great deal of attention
is the 2D superfluid density in overdoped La2−xSrxCuO4

(LSCO). The Brookhaven group prepared a large sequence
of high-quality, epitaxially grown overdoped films [1], and
showed that in a broad range of doping, the superfluid density
decreases linearly as temperature is increased. The authors
also found that the zero-temperature superfluid density ρs at
various dopings is proportional to the critical temperature Tc,
in contrast to BCS theory, which states that the zero temper-
ature ρs should not depend on Tc at all in a clean system, but
instead be simply proportional to the carrier density (which
increases as the system is doped). Although this quasipropor-
tionality of ρs(0) and Tc can occur in the dirty limit[4], the
authors ruled out an explanation based on disorder, since the
expectation is that the linear temperature variation of the clean
superfluid density is replaced by quadratic behavior in a dirty
system [5], which was not observed in their films down to the
lowest measurement temperature of about 3K.

In a series of papers [6–9] based on the so-called “dirty
d-wave” theory, David Broun and collaborators, including one
of the present authors, have argued that these data can be
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explained naturally and simply by accounting for the weak
scattering nature of the dopant impurities, located away from
the CuO2 planes, as well as the correct band structure of
LSCO. In this approach, the disorder averaged self-energy of a
d-wave superconductor is calculated using the self-consistent
T -matrix approximation (SCTMA). These authors showed
that a very good accounting of the unusual behavior of the
overdoped films could be obtained within this Landau-BCS
paradigm, without resorting to more exotic explanations.

The SCTMA assumes that disorder is distributed randomly,
and replaces the dirty superconductor with an effective trans-
lationally invariant medium with dissipation. However, there
is considerable evidence that at least some overdoped cuprate
samples are quite inhomogeneous [10,11] at the nanoscale.
The origin of this inhomogeneity is not completely clear. It
may arise in the sample fabrication and annealing process
from chemical barriers, in which case more refined annealing
protocols might remove much of the inhomogeneity. Such an
explanation is indeed supported by the claimed homogeneity
of the epitaxially grown superconducting films [1] relative to
the samples in Refs. [10,11].

On the other hand, it is possible that some of the inhomo-
geneity is emergent, i.e., arises in any short coherence length
d-wave system with random disorder. Recently, Li et al. [3]
studied the superfluid density versus doping for a model of a
d-wave superconductor using BdG simulations, showed that
very inhomogeneous gap distributions occurred for large con-
centrations of weak-to-intermediate impurity potentials, and
proposed that an emergent network of d-wave superconduct-
ing islands connected by weak Josephson links was present in
these samples. Such a description of the superconducting state
would perforce lead to large phase fluctuations, which are ac-
counted for neither in the SCTMA nor the BdG calculations,

2469-9950/2023/107(14)/144501(11) 144501-1 ©2023 American Physical Society

https://orcid.org/0000-0002-1580-3485
https://orcid.org/0000-0003-3028-377X
https://orcid.org/0000-0002-9279-1748
https://orcid.org/0000-0003-0375-7386
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.144501&domain=pdf&date_stamp=2023-04-04
https://doi.org/10.1103/PhysRevB.107.144501


PAL, KREISEL, ATKINSON, AND HIRSCHFELD PHYSICAL REVIEW B 107, 144501 (2023)

but which might give rise to a low-temperature linear super-
fluid density behavior [12]. Interestingly, in the supplementary
material of the Li et al. paper [3], the superfluid density was
calculated without phase fluctuations, and nevertheless shown
to be remarkably linear in T even for substantial concentra-
tions of moderate strength impurities, which is surprising,
given the expectations from the dirty d-wave theory.

In this paper, we compare the results of the disorder
averaged theory of a d-wave superconductor with the self-
consistent BdG method. The latter is subject to finite-size
effects that need to be carefully controlled, but includes both
(a) scattering processes not included in the SCTMA and (b)
the effects of inhomogeneity. Our goals are to test the validity
of the SCTMA, which has proven so successful in explain-
ing the properties of the overdoped cuprates [6–9], and to
check the predictions of Li et al. [3] to see if alternative
disorder/inhomogeneity based explanations are possible. A
recent paper by Breiø et al. [13] investigated some of the latter
issues, and concluded on the basis of similar BdG calculations
that an effective model of weakly coupled d-wave grains did
not emerge naturally from the highly disordered regime. Here
we study density of states, superconducting order parameter,
and superfluid density of a disordered d-wave superconductor,
and show that the SCTMA is remarkably robust in explaining
the regime of intermediate strength disorder appropriate for
dopant atoms, until regions of vanishing superconductivity
begin to appear in the sample, either for very high disorder
levels or very close to the critical temperature.

The quasiparticle density of states in this regime is found
to be remarkably linear at low energies until the gap is nearly
filled. Despite this, the penetration depth retains its quadratic
behavior for disorder levels that strongly suppress the zero
temperature superfluid density. This result, which contradicts
that of Li et al. [3], is obtained properly only for sufficiently
large system size and configuration averaging. We note their
result for the T dependence of ρs was not one of the main
points of their paper, nor does this remark affect their main
conclusions; however it is interesting and reassuring that the
expected results from the SCTMA are indeed accurate. We
note further that the results reported in the present work do
not contradict the result of Ref. [6], which stated clearly that
the quasilinear behavior in ρs(T ) was due in large part to
the particular electronic structure of LSCO, which we do not
consider here.

II. MODEL

We consider a Hamiltonian for disordered cuprates which
assumes weak pointlike potential impurities of a fixed strength
randomly at different lattice sites. Following Ref. [3], in order
to avoid issues related to the pseudogap, the homogeneous
system is taken at optimal doping of p =15%, corresponding
to n = 0.85 electron density. Disorder introduces an addi-
tional nimp impurities, each of which dopes the system with
approximately one electron, such that p = 0.15 + 0.5nimp.
The Hamiltonian is given by

Ĥ =
∑
i jσ

{ti j + (wi − μ)δi j}c†
iσ c jσ + Ĥpair, (1)

where ti j are the tight-binding hopping integrals, wi are im-
purity potentials at site i and μ is the chemical potential. The
pairing is treated in a mean-field approximation,

Ĥpair =
∑
〈i, j〉

{�i jc
†
i↑c†

j↓ + H.c.} (2)

with �i j = V 〈ci↑c j↓〉 as the order parameter. A local d-
wave order parameter �i can be defined as �i = 1

4 (�i,i+x̂ +
�i,i−x̂ − �i,i+ŷ − �i,i−ŷ ). We take ti j = −1 for nearest neigh-
bor i, j; ti j = 0.35 for next nearest neighbor i, j; and zero
otherwise, corresponding to a momentum space band for the
clean system of ξk = 2t (cos kx + cos ky) + 4t ′ cos kx cos ky.
This ratio of t/t ′ is quite typical for cuprate band struc-
tures. The pairing interaction is taken as V = 0.8t . In the
clean limit, this gives a superconducting transition tempera-
ture kTc = 0.085t when the electron density is n = 0.85 per
unit cell. This electron density corresponds to a hole density
p = 1 − n = 0.15 that is commonly associated with optimal
doping in cuprates. The corresponding d-wave gap function
is �k = �0(cos kx − cos ky), with �0 = 2�i = 0.0935t . Note
that since in cuprates t ∼ 300 meV from ARPES, Tc ∼ 300 K,
which is artificially high. The parameters are chosen in this
way to allow a direct comparison with Ref. [3], and for nu-
merical convenience. This amounts to expressing quantities
with dimensions of energy in units of t without explicitly
mentioning the unit.

The impurity potential wi at any site i is chosen randomly
to be either 0 or 1. A scattering potential of 1 (t) amounts to a
moderate strength of the potential scatterers we are modeling,
well away from the unitarity limit, but still considerably larger
than the realistic ab initio dopant potentials of order 0.2t–0.3t
calculated in Ref. [9] for Sr dopants in LSCO. In this sense
our study is qualitative, and makes no attempt to compare to
real cuprate systems. We have also not attempted to include O
vacancies and other sources of disorder discussed in Ref. [9].
The chemical potential μ is determined self-consistently via
iterative diagonalization of the BdG Hamiltonian. Fixing the
average electron density in the system leads to a unique chem-
ical potential via the self-consistent diagonalization.

III. RESULTS

We work in a 40 × 40 lattice with periodic bondary condi-
tion, and average over several random impurity configurations
at various values of average impurity density nimp. To in-
crease the resolution of the spectrum and for the purpose of
studying the system at sufficiently low temperature, the su-
percell method is employed to ensure a dense set of energy
levels (for details see Appendix A). With a bandwidth of
∼8t and only 40 × 40 levels, the level-spacing may not be
sufficient at low energies if supercells are not used. Averaging
over random configurations of impurities was also used to im-
prove the statistics. Averaging over more and more impurity
configurations makes the system effectively more and more
translationally invariant. Typically, averaging over 40 random
configurations of impurities appears to be sufficient to get an
accurate low-energy behavior.

The BdG equations are iteratively and self-consistently
solved for the order parameter and chemical potential. If
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FIG. 1. Maps of typical random impurity configurations and corresponding superconducting d-wave order parameters �i (colorscale) at
three impurity concentrations: (a) 4%, (b) 12.5%, and (c) 22% at kT/t = 0.001. Impurity locations are indicated by red crosses. The impurity
potential is 1t .

the impurity concentration in the system is varied with fixed
chemical potential, doping varies proportional to the impurity
concentration, and may be compared [3] roughly to a cuprate
scale as p = 0.15 + nimp/2. Note, however, that the actual
effect of doping on the electronic structure is neglected here,
and the rate of doping change with impurity concentration
depends in the model entirely on the potential of each indi-
vidual dopant, taken here to be w = 1t . Results for d-wave
order parameter, density of states and superfluid density are
summarized below.

A. d-wave order parameter

First, the variation of the superconducting order parame-
ter was studied as a function of the impurity concentration.
An impurity concentration of 0 < nimp < 1 empirically corre-
sponds to a hole doping of roughly �p ≈ 0.5nimp with respect
to the optimal filling of p = 0.15. We worked within an impu-
rity concentration range of nimp = 0.02–0.3. Typical maps of
impurity configurations along with the d-wave order parame-
ter at moderate to high impurity concentrations are shown in
Fig. 1. It is clear for the highest concentration that impurities
of this strength suppress the superconductivity nearly com-
pletely, and that the resistive transition temperature, which
depends on the existence of a percolating path of nonzero
order, might be zero.

Note that it is known that electrostatic potentials of this
kind cannot reproduce the detailed statistics of optimally
doped cuprates, which require in addition a disorder compo-
nent of the Andreev type [14]. Nevertheless it is clear that
dopant disorder of this form can lead to extensive gap inho-
mogneity for higher concentrations [3].

In these simulations, since the pairing interaction is
uniform on all nearest-neighbor bonds, a small local gap com-
ponent of s-wave symmetry will be induced by the disorder.
In addition, higher concentrations will lead to time-reversal-
symmetry breaking [3,13] by local currents, despite the fact
that the Hamiltonian contains no terms that explicitly break
time reversal symmetry. We study neither of these effects here.

The order parameter maps shown in Fig. 1 hint at an-
other interesting aspect of the highly disordered state, namely
that the order parameter inhomogeneity increases with nimp.
Figure 2(a) compares the temperature dependence of the
average bond order parameter for a number of disorder config-
urations; each data point corresponds to the average of �i over
the lattice for a single configuration. Here it is seen that not
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FIG. 2. (a) Plot of projected d-wave bond order parameter �i

averaged over entire system for 10 impurity configurations (circles),
for nimp = 4%, 12%, and 20% (symbols) and compared to SCTMA
(solid lines). (b) Average order parameter at T → 0 vs impurity
concentration nimp. Error bars represent standard deviation over the
different configurations.
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only does the gap distribution become more inhomogeneous
with increasing disorder, it also becomes more sensitive to
unusual local disorder configurations [3], giving rise to a much
larger dispersion of average gap values over configurations.
Also shown are the results for the same concentrations and
model within the SCTMA (described in Appendix D). For
the less disordered systems, the SCTMA describes the T -
dependent order parameter semiquantitatively at low T , but
predicts gap closings at lower Tcs than BdG (where Tc > 0
only means that �i > 0 on as little as 1 site). For the most
disordered case shown, the SCTMA predicts � = 0 at all
temperatures. The strongly inhomogengeous states found in
BdG indeed persist up to much higher doping, as seen in
Fig. 2(b).

B. Density of states

In the BCS theory of a clean d-wave superconductor, the
low-temperature linear-T term arises from the linear in ω

density of states. It is therefore interesting to study how the
density of states varies with energy in the disordered case
with intermediate strength scattering. The single-spin local
density of states (LDOS) at lattice site i can be calculated
from the eigenvectors Uiσ,ns and eigenvalues Ens of the BdG
Hamiltonian, Eq. (1),

ρ(ri, ω) = − 1

π
Im

(∑
n,s

|Ui↑,ns|2
ω − Ens + iη+

)
, (3)

where η+ is an artificial broadening, the pair (i,↑) indi-
cates the projection of the eigenstate (n, s) onto lattice site
i with spin up. Here, the pair (n, s) labels eigenstates with
pseudospin s =⇑, ⇓ such that En⇑ > 0 and En⇓ < 0 (see
Appendix C). While there are several BdG studies with strong
impurities [15–19], there are relatively few works to address
weaker scatterers in the overdoped region [3,20]. From the
SCTMA, it is expected that the residual ω → 0 DOS is ex-
ponentially small for low concentrations but becomes rapidly
a larger fraction of the normal state DOS as either the con-
centration or the strength of impurities is increased [7]. The
residual value is clearly seen in Fig. 3 to increase rapidly from
zero as disorder is added.

The more interesting feature of the LDOS for four disor-
der concentrations shown in Fig. 3 is the persistent V-shape
spectrum at low energies for the BdG calculation even with
relatively high impurity concentration, where the SCTMA
shows quadratic trend at low energies. In the strong-impurity
case, the low-energy bound states hybridize to form a broad
plateau-like impurity band, also seen qualitatively in the BdG
results with the exception of an energy range exponentially
small in the Dirac cone anisotropy, ∼ exp(−EF /�0) [21].
The positive energy coherence peak in the clean system is
at ω/t ∼ 0.18 and this does not differ much at the impurity
concentration of 12.5%. The peak shifts towards zero as nimp

is further increased, however. While the peak feature at nega-
tive energies resembles a coherence peak, it is in fact the van
Hove singularity in this system, and the coherence peak itself
is invisible in the figure.

ρ

ρ
FIG. 3. Density of states ρ(ω) of the system at kT = 0.001 aver-

aged over all lattice sites of 40 random impurity configurations (with
15 × 15 supercells) at each impurity concentration 12.5%, 18.7%,
and 22%. Artificial broadening is η/t = 0.005, impurity potential
wi/t = 1. In clean homogeneous system, d-wave order parameter
�/t is 0.187 where dashed vertical lines indicate the coherence
peak positions in the 4% case. Dashed colored lines indicate the
corresponding SCTMA results for 4% and 12.5%.

C. Superfluid density

In a tetragonal superconductor, the penetration depth for
in-plane screening currents is independent of the direction of
current flow within the plane. It is thus sufficient to calculate
the penetration depth for the case in which the magnetic vector
potential and current are both aligned with the x axis, i.e., λxx.
From the Kubo formula, the inverse squared penetration depth
is the sum of diamagnetic and paramagnetic contributions,

λ−2 ≡ λ−2
xx = 4πe2

c2

(
Kdia

xx + Kpara
xx

)
. (4)

where e and c are the electron charge and speed of light,
respectively. The two contributions take on well-known forms
in the clean limit (Appendix B), but are less familiar in the
absence of translational symmetry [22,23]. The diamagnetic
response kernel is

Kdia
xx = 1

N

∑
m,s

[M̃−1]xx
ms,ms f (Ems), (5)

where M̃−1 is the matrix representation of the inverse effec-
tive mass in the basis of eigenstates of the BdG Hamiltonian
(Appendix C) and f (Ems) is the Fermi-Dirac function for the
BdG energy eigenvalues. The paramagnetic response kernel is

Kpara
xx = 1

N

∑
m,n

∑
s,s′

|ζ̃ms,ns′ |2 f (Ems) − f (Ens′ )

Ems − Ens′
. (6)

Here, ζ̃ is the representation of the quasiparticle velocity in
the basis of eigenstates of the BdG Hamiltonian and, as above,
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m, n and s, s′ are eigenenergy and pseudospin indices, respec-
tively. N is the number of lattice points. Detailed expressions
for M̃−1 and ζ̃ are given in Appendix C.

It is also usual to define a related quantity, the superfluid
density, as

ρs = mc2

4πe2
λ−2. (7)

For a parabolic band, m is the electron effective mass; oth-
erwise, one may define m from the clean-limit expression
n
m = Kdia

xx (T = 0), where n is the electron density. Then

ρs(T ) = n · Kdia
xx (T ) + Kpara

xx (T )

Kdia
xx (0)|clean

. (8)

This choice correctly captures the fact that ρs = n at T = 0
in the clean limit, and is independent of either Tc or the order
parameter. For the qualitative behavior (and direct comparison
with results in the supplementary information of Ref. [3]), the
fundamental constants have been suppressed in the plots for
superfluid density.

Let us at this point connect the superfluid density at low
temperatures with the density of states at low energies as
discussed in Sec. III B. In BCS theory, there is a simple ex-
pression relating the superfluid density and density of states.
Writing ρs = 1 − ρn, with ρn the normal fluid density, one
obtains [24]

ρn =
∫

dω ρ(ω)

[
− df

dω

]
. (9)

For a clean d-wave superconductor, the density of states is
ρ(ω) ∝ ω, and it follows immediately that ρn ∝ T . If the den-
sity of states at low energy has a quadratic behavior, ρ(ω) =
γ + aω2/�2

0, and one simply substitutes this into the integral
above, one expects that ρn(T ) = const. + a

3 (πT/�0)2, such
that ρs decreases quadratically with T .

1. Zero temperature

The zero-temperature superfluid density is a fundamen-
tal measure of the strength of superconductivity. In Fig. 4,
we show calculations for ρs from both our BdG numerical
simulations and the SCTMA. As expected, the superfluid
density is seen to decrease monotonically as the impurity
concentration is increased in both approximations. At lower
impurity concentrations, the BdG and SCTMA predictions for
the suppression of ρs are virtually identical. It is only when
the superfluid density falls to about 10% of its clean value
that the two approaches differ significantly. As is well-known
from previous work, ρs vanishes linearly with disorder within
the SCTMA, as in the classic Abrikosov-Gor’kov treatment of
magnetic impurities in an s-wave superconductor [25]. In the
BdG case, however, ρs(0) has a concave-up tail that perisists
to high impurity concentrations, similar to what was observed
in Ref. [3]. This behavior is expected, because the SCTMA
describes the effects of an average order parameter, whereas in
the BdG case, islands of nonzero ρs in rare regions favorable
for superconductivity [26] persist well past the SCTMA criti-
cal concentration, and indeed well beyond the critical disorder
where regions of nonzero order parameter percolate across the
numerical sample (see Fig. 1).

FIG. 4. Superfluid density of the system in the zero-temperature
limit averaged over 10 random impurity configurations for the BdG
calculation (blue) and SCTMA (red) as a function of impurity
concentration.

It is also important to confirm the “non-BCS” quasipropor-
tionality of ρs(0) and Tc reported in Ref. [1] and reproduced
in the subsequent SCTMA study [6]. In a clean BCS super-
conductor, the low-temperature superfluid density is equal to
the density of conduction electrons in a normal metal. When
impurity scattering suppresses both Tc and ρs monotonically,
a quasiproportionality between the two as observed in Ref. [1]
can result, however. Accurate determination of Tc is not trivial
in a finite size system as considered in BdG. Here to get each
data point for Tc in the figure, we take the superfluid density
at three highest temperature points of the corresponding ρs

versus T data and fit a quadratic curve through those three
points to estimate the Tc. The result for Tc versus ρs(T → 0)
determined in this way is shown in Fig. 5, where we compare
results for both approximations. The functional form is clearly
not consistent with the BCS result ρs = n, but neither is it
consistent with the linear relation found in the experiment
of Ref. [1]. We have verified that decreasing the impurity
potential to correspond to the Born limit used in Ref. [6] does
not affect the SCTMA curve significantly. The deviation from
the quasilinear behavior is therefore due to band structure
effects, specifically the proximity of the van Hove singularity
to the Fermi level in the LSCO ARPES-derived band structure
used in that work.

2. Temperature dependence of superfluid density

Next, we focus on the temperature dependence of the
superfluid density in detail at a few specific impurity concen-
trations to see if the physics included in the BdG approach
allows for an understanding of the approximate linear-T be-
havior of the penetration depth reported in Ref. [1]. We were
also motivated by the BdG calculations in Ref. [3], which
seemed to indicate that asymptotic linear-T behavior was
often found for quite disordered samples.
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FIG. 5. Tc vs superfluid density ρs at zero T for BdG (blue) and
SCTMA (red).

For this range of impurities, averaging was done over the
40 × 40 system for forty random configurations at each value
of impurity concentration and 15 × 15 supercells were used.
BdG results for the superfluid density temperature depen-
dence, together with the equivalent result for the SCTMA,
are presented in Figs. 6(a) and 6(b). The superfluid density
in the clean, optimally doped cuprates typically decreases
almost linearly as temperature increases [27], reflecting the
linear low-energy density of states of a clean d-wave super-
conductor. However, strong disorder changes this linear-T
behavior into a quadratic behavior over an impurity band-

width rather rapidly [28], as predicted by SCTMA [5,29].
Both approximations give very similar quantitative results
over nearly the entire temperature range for the smaller dis-
order concentrations shown in Fig. 6(a), and the temperature
dependencies are qualitatively similar even for larger disorder
concentrations, until the disorder concentration approaches
the critical disorder for the destruction of superconductivity.
These discrepancies arise when the BdG superfluid density is
suppressed to roughly 10% of its clean value. In overdoped
LSCO, this would correspond to high levels of overdoping,
near the end of the superconducting dome, e.g., for Tc at or
below Tc = 10 K [1].

In the weak scattering limit with generic bands, a larger
concentration of impurities is necessary to create a clear
quadratic low-T behavior. From the SCTMA viewpoint, in
contrast to the strong impurity case, there is no analogous
impurity bandwidth over which the T 2 is expected. Indeed,
Lee-Hone et al. [6] found nearly linear-T behavior over
nearly the entire doping disorder range, but emphasized that
a signifcant role was played by the particular Fermi surface
of overdoped LSCO in the intermediate-to-low temperature
regime.

3. Supercell dependence of superfluid density

As mentioned above, some of the higher disorder concen-
trations of the ρs versus T results shown in the supplementary
information of Ref. [3] appear to show low-T linear behavior,
in contrast to the results we have just presented. Identical band
structures and disorder potentials were used in both works.
To investigate possible origin of this mismatch, we studied
the temperature variation of superfluid density with different
number of supercells used at each of impurity concentrations
12.5%, 18.7%, and 22%. The details of the implementation
are given in Appendix A. For 18.7% and 22%, we compared

FIG. 6. Effect of disorder on the temperature-dependent superfluid density. Superfluid densities at various temperatures were averaged over
40 random impurity configurations (with 15 × 15 supercells) at impurity concentrations (a) 0%, 4%, and 12.5%; (b) 12.5%, 18.7%, and 22%.
Note that, for the last two cases, SCTMA predicts that superconductivity is entirely supressed.
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FIG. 7. Supercell dependence of superfluid density. Superfluid
density averaged over 40 impurity configurations as a function of
the temperature at fixed impurity concentration 12.5% with differ-
ent number of supercells used. The superfluid density scale in this
figure is not normalized with ρs(T → 0) or ρClean

s (T → 0).

just between the effects of having no supercell and 15 × 15
supercells. For 12.5%, we additionally used a supercell lattice
of intermediate size 5 × 5. The result is presented in Fig. 7.

It is to be emphasized that for small systems of finite size,
the use of supercell lattice is quite important at low temper-
ature to create a sufficient density of states available within
a narrow energy range. Remarkably, the low-temperature be-
havior of superfluid density without any supercell resembles
the results from Ref. [3] quite well, so we speculate that
this effect is responsible for the discrepancy. The deviation
from linear behavior becomes increasingly apparent in case
of 18.7% and 22% impurities.

4. Superfluid density with self-consistent versus
homogeneous average gap

There are several major differences between the BdG and
SCTMA methods discussed here. The BdG suffers from finite
size corrections that need to be carefully estimated, as shown
above; however it includes both the effects of self-consistent
variation of the order parameter in response to a given disorder
configuration, as well as quantum interference corrections
(crossing diagrams in the self-energy and vertex corrections)
neglected in the one-impurity T matrix. The former source of
difference is easy to check by performing non-self-consistent
BdG calculations with artificial homogeneous order param-
eter. For this, the inhomogeneous superconducting gap for
each configuration was replaced with its average value at the
corresponding temperature, over the lattice before calculating
the superfluid density. The result is presented in Fig. 8. The
self-consistent (inhomogeneous) result is seen to be smaller
than the non-self-consistent (homogeneous average gap) re-
sult in the weakly disordered limit, where the superconductor

FIG. 8. Superfluid density for self-consistent inhomogeneous
superconducting order and corresponding spatially averaged homo-
geneous (termed “non-self-consistent”) superconducting order. The
impurity configurations corresponding to the impurity concentration
12.5% are the same as in Fig. 7.

is largely clean and the order parameter is suppressed only
around individual impurities. On the other hand, at large dis-
order, the system breaks up into distinct islands of relatively
large superfluid density, such that the inhomogeneous result is
slightly larger. However, the differences between the homoge-
neous and inhomogeneous BdG results are always small. This
suggests that the effects of inhomogeneity are not important
to understanding the differences between the two mean-field
approximations presented here, BdG and SCTMA; rather,
quantum interference diagrams beyond T matrix neglected in
the SCTMA drive the differences at larger disorder. Homo-
geneity can of course become much more important to the
actual superfluid density once phase fluctuations are included
in the cases of very small superfluid density, however. These
effects are beyond the scope of this work.

IV. DISCUSSION

In summary, we studied various superconducting prop-
erties in optimally doped to overdoped cuprates using the
impurity averaged self-consistent real-space BdG formalism
with supercells and periodic boundary condition. The doping
and impurity parameters were taken to correspond exactly
to the previous study [3] that unexpectedly found a linear T
dependence of the superfluid density for some highly disor-
dered cases. The strength of the impurity assumed in that work
is probably significantly higher than realistic values for real
spacer layer dopants [9] and may be classified as moderate
since the potential is a significant fraction of the bandwidth.
Nevertheless we compared directly and found quadratic T
behavior for the analogous cases studied by Li et al. We have
suggested here that the discrepancy lies in the use of too few
states in the low-energy region of the simulations of Ref. [3].
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We emphasize again, however, that these results were not the
main point of their work, and our results confirm theirs in most
other points of comparison.

We have shown that in this intermediate strength scattering
regime, the BdG density of states shows quite remarkably
robust linear low-energy excitation spectrum. Nevertheless,
the low- temperature superfluid density behavior apparently
displays the usual quadratic low-T temperature dependence
expected for a dirty d-wave superconductor. This is an un-
expected result based on the usual BCS argument, whereby
the leading ω term in ρ(ω) near the Fermi level determines
the low temperature T dependence of the superfluid density.
Possible sources of this discrepancy include Andreev scat-
tering from gap inhomogeneities, and quantum interference
from multi-impurity scattering (crossing diagrams). Figure 8
shows that gap inhomogeneities do not significantly change
the low-T superfluid density. We therefore conclude that the
multi-impurity scattering effects are responsible for the devia-
tion from the BCS relation between the density of states ρ(ω)
and the superfluid density ρs(T ). Equation (9) is therefore not
reliable in strongly disordered cases.

Gap inhomogeneity causes shifts in ρs at low T . The direc-
tion of the shifts is seen in Fig. 8 to depend on the impurity
concentration. For low impurity concentration, the gap inho-
mogeneities are isolated, and therefore lead to a small local
suppression of ρs near each impurity. This adds an Andreev
scattering channel that further suppresses the superfluid den-
sity. On the other hand, for large impurity concentrations, the
inhomogeneity increases ρs slightly since now large islands of
superconductor preferentially form in cleaner regions where
ordinary impurity scattering does not suppress ρs.

These studies suggest that the self-consistent T -matrix ap-
proximation works very well at low temperature compared to
full quantum calculations for weak to intermediate strength
scattering potentials, even up to quite large disorder con-
centrations, in contrast to strong scattering potentials [15].
Despite the fact that we found here results for the superfluid
density displaying substantial quadratic behavior at low T , as
expected for SCTMA at high concentrations even for weak
scatterers, it does not invalidate the result of Ref. [6]. This is
because unlike this reference, our studies neglect the effect of
the doping on the van Hove singularity near the Fermi level,
as occurs in LSCO.
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APPENDIX A: SUPERCELL METHOD

The numerical calculations in this article are based on the
Bogoliubov-de Gennes (BdG) method. For a homogeneous
system, results from the real space BdG calculations can

also be readily obtained from the corresponding momentum
space equations because of translation invariance. One can
freely choose as dense a momentum space grid as one wants
which in real space would correspond to a bigger and bigger
part of an infinite homogeneous lattice. This larger portion
of lattice, however, can also be obtained from stitching the
‘lattice-portion corresponding to the coarse momentum grid’
together one after another in one or more of the spatial
directions. The “entire lattice-portion corresponding to the
coarse momentum grid” can be called a supercell in real
space and the momentum corresponding to the periodicity
of these supercell is called supercell momentum. Obviously,
the neighboring supercells couple with each other through
the sites near their margin/boundary only, the supercell being
just an imaginary construct of grouping lattice sites together.
Hence, for a square lattice (which has been used in this paper),
only nearest-neighbor (NN) and next-nearest-neighbor (NNN)
supercells can couple with each other unless the supercell size
is not critically small compared to the hopping range of the
original lattice sites.

The corresponding scenario of stitching together the inho-
mogeneous lattices of a finite size is particularly useful for
increasing smoothness of the spectrum. In this case, within
the supercell there is no notion of momentum because of
lack of translational invariance and the eigenstates of the
inhomogeneous finite lattice are to be obtained by numeri-
cal diagonalization, often starting from the real space basis.
However, subsequently, the use of many supercells effectively
creates a narrow band of energy around each of these numeri-
cally obtained eigenenergies, thereby increasing the spectrum
resolution.

If M × M supercells are used, the supercell BdG equa-
tion in matrix form can be written as(

h(K) �(K)

�†(K) −hT (−K)

)
U:,ns(K) = Ens(K)U:,ns(K) (A1)

with

h(K) =
∑

I

TI0eiK·RI , (A2)

�(K) =
∑

I

�I0eiK·RI . (A3)

Here K is supercell momentum, RI is the coordinate of the
Ith supercell, TI0 is the supercell hopping matrix (of size
N 2No × N 2No where the size of the supercell is N × N
and each site has No orbitals) between the supercell at origin
and the Ith supercell, and �I0 is the supercell gap matrix
(of size N 2No × N 2No) between the supercell at origin and
the Ith supercell. The matrix U diagonalizes the Hamiltonian
and U:,ns(K) is the ns column-vector of U (K). In this work
we have No = 1 and number of lattice points N = N 2. Most
of the matrix elements of TI0 and �I0 (for I �= 0) are zero
unless they involve sites near the supercell-boundary which
maintain the supercell-supercell coupling. T00 and �00 are
exactly same as the hopping matrix and the gap matrix of
the N × N inhomogeneous lattice, whose spectrum is ob-
tained by explicit iterative self-consistent diagonalization to
get eigenenergies indexed by n. K can take values as Kx, Ky =
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FIG. 9. Illustration of the supercell method: A supercell lattice of
size 3 × 3 (periodically continued both horizontally and vertically)
consisting of supercells of size N × N where each lattice site hosts
1 orbital. The double-way arrows show the supercell-supercell cou-
pling in which the sites near the supercell boundaries participate.

m

M
, m = 0, 1, 2, . . . , M − 1 in units of 2π/Na, where a is

lattice constant, and for each K the supercell BdG diagonal-
ization is done just once to obtain the eigenvectors U:,ns(K),
each of size 2N 2No. So, as already mentioned, corresponding
to each n, a band of additional M2 − 1 eigenenergies are
obtained. The picture is schematically presented in Fig. 9.

APPENDIX B: CLEAN PENETRATION DEPTH
IN REAL AND K SPACE

It is useful for comparison to real-space BdG and SCTMA
calculations to have full results for the superfluid density
of the corresponding clean system, which can be calculated
more accurately in momentum space for bands ξk and gap
function �k as given in the main text. The result is (see, e.g.,
Refs. [23,30])

λ−2
xx = 4πe2

c2

[ ∑
k

∂2ξk

∂k2
x

(
1 − ξk

Ek
tanh

βEk

2

)

− β

2

∑
k

(
∂ξk

∂kx

)2

sech2 βEk

2

]
, (B1)

where ξk is the single particle energy with respect to chemical
potential as specified in the manuscript, Ek =

√
ξ 2

k + �2
k. The

first sum gives the diamagnetic contribution and the second
sum is the paramagnetic contribution. We have tested that
the calculated penetration depth using this formulas is quite
strongly dependent on the number of momentum space points.
The diamagnetic term has contributions from the full Brillouin
zone and the paramagnetic term has dominant contributions
from the nodal areas. The diamagnetic term can be written in
a different form using integration by parts, which leads to an
alternate expression for the penetration depth [30]

λ−2
xx = 4πe2

c2

∑
k

[(
∂ξk

∂kx

)2(
�k

Ek

)2

−
(

∂ξk

∂kx

)(
∂�k

∂kx

)
�kξk

E2
k

][
1

Ek
− ∂

∂Ek

]
tanh

βEk

2
.

(B2)

Although mathematically equivalent to Eq. (B1), this alternate
expression converges differently as a function of the number
of k points in the calculation. For finite systems, this can lead
to inaccurate results for the superfluid density particularly at
low temperatures. In the real space calculation, we are using
the (effective) multiband analog of Eq. (B1) which shows a
dependence on the number of supercell K points especially at
low temperatures, as demonstrated in Fig. 7.

APPENDIX C: INVERSE MASS AND VELOCITY

The Hamiltonian for an N site system in the usual
fermionic basis is

Ĥ = c†Hc with H =
(

h �

�† −hT

)
, (C1)

where H is a 2N × 2N matrix, h and � are N × N matrices
with matrix elements

hi j = ti j + (wi − μ)δi j, (C2)

�i j = V 〈ci↑c j↓〉, (C3)

and c and c† are respectively column and row vectors defined
as

c† = (c†
1↑ . . . c†

N↑ c1↓ . . . cN↓). (C4)

H is diagonalized by a unitary matrix U such that U †HU =
E , with E a diagonal matrix of eigenenergies. The quasiparti-
cle operators for the diagonalized Hamiltonian are

�† = c†U = (γ †
1⇑ . . . γ

†
N⇑ γ

†
1⇓ . . . γ

†
N⇓) (C5)

where in γ †
ns, n labels an eigenstate and s a pseudospin. The

eigenenergies satisfy En⇑ > 0 and En⇓ < 0.
The paramagnetic part of the electromagnetic response

kernel is given by [22]

Kpara
xx = 1

N

∑
m,n

∑
s,s′

|ζ̃ms,ns′ |2 f (Ems) − f (Ens′ )

Ems − Ens′
, (C6)
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where m, n are eigenenergy indices, s, s′ are pseudospin in-
dices, and

ζ̃ = U †

(
ζ 0
0 ζ

)
U (C7)

is the representation of the electron velocity operator ζ in
the basis of eigenstates of the Hamiltonian. In the basis of
lattice sites, ζ is an N × N matrix with matrix elements ζlm =
i(xl − xm)tlm, where tlm is the tightbinding hopping matrix
element between sites l and m, and xl and xm are the x co-
ordinates of the lattice site location. This form of the velocity
operator originates in linear response theory from the Peierls
substitution in the presence of a perturbing field.

The diamagnetic part of the electromagnetic response
kernel is

Kdia
xx = 1

N

∑
m,s

(M̃−1)xx
ms,ms f (Ems), (C8)

with

M̃−1 = U †

(
M−1 0

0 −M−1

)
U (C9)

and

(M−1)i j = −ti j (xi − x j )
2. (C10)

The inverse squared penetration depth and superfluid density
are then given by

λ−2
xx = 4πe2

c2

(
Kdia

xx + Kpara
xx

)
(C11)

and

ρs = mc2

4πe2
λ−2

xx . (C12)

The formalism described in this section can be extended to the
supercell method in order to facilitate numerical calculations.
To this end, one needs to Fourier transform the Hamiltonian
Eq. (C1) to a form like that in Eq. (A1); the velocity and
mass operators can be Fourier transformed using the prescrip-
tion in Eq. (A2) and acquire phase factors for displacements
xi − x j connecting different supercells. The sums over bands
in Eqs. (C6) and (C8) then pick up an additional sum over
supercell momenta K.

APPENDIX D: DIRTY D-WAVE THEORY

In the presence of impurities, the superconducting Green’s
function is

Gk(iωn) = [iωnτ0 − ξkτ3 − �kτ1 − �(iωn)]−1, (D1)

where �(iωn) is a 2 × 2 matrix that incorporates the effects
of impurity scattering. Within SCTMA, the self-energy for

pointlike impurities is obtained from the T matrix via

�(iωn) = nimpT (iωn), (D2)

where the 2 × 2 T -matrix is

T = [τ0V
−1 − τ3g(iωn)]−1τ3 (D3)

with

g(iωn) = 1

N

∑
k

Gk(iωn). (D4)

The impurity potential is set to V = 1.
For a d-wave gap with bond order parameters �±x =

−�±y = �0/2, we have �k = �0ηk and

�0 = − J

N

∑
k

ηk〈c−k↓ck↑〉 = − J

βN

∑
n,k

ηk[Gk(iωn)]12,

(D5)
with ηk = cos kx − cos ky. It is common to write

ω̃n = ωn − 1
2 Im Tr [�(iωn)τ0], (D6)

ξ̃k(iωn) = ξk + 1
2 Re Tr [�(iωn)τ3], (D7)

�̃k(iωn) = �k + 1
2 Re Tr [�(iωn)τ1], (D8)

so that

�0 = − J

βN

∑
n,k

ηk
�̃k

(iω̃n)2 − ξ̃ 2
k − �̃2

k

. (D9)

This is further simplified for pointlike impurities and d-wave
superconductivity, for which the off-diagonal matrix elements
of the self-energy vanish and �̃k = �k. Because the gap is
unrenormalized, Anderson’s theorem breaks down and the
nonmagnetic impurities reduce the order parameter through
pairbreaking.

It is common to ignore the chemical potential shift that
comes from the real part of the diagonal elements of �(iωn).
If one makes this assumption, then the dispersion ξk is also
unrenormalized; that is, ξ̃k = ξk. We do not make this assump-
tion here because we wish to include the chemical potential
shift that comes from impurity doping. We have checked that
the shifts in electron density so obtained are the same as in the
BdG calculations.

With these approximations, the diamagnetic kernel is

Kdia
xx = 1

Nβ

∑
k,n

∂2ξk

∂k2
x

Tr[Gk(iωn)τ3] (D10)

and the paramagnetic kernel is

Kpara
xx = 1

Nβ

∑
k,n

(
∂ξk

∂kx

)2

Tr[Gk(iωn)Gk(iωn)]. (D11)
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