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Antiferromagnetic iron-based magnetoelectric compounds
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The Landau free energy of a compound that benefits from a linear coupling of an electric field and a magnetic
field includes a product of the two fields, one polar and time even and one axial and time odd. Evidently, the
coefficient of the product of fields is unchanged by a simultaneous change in the directions of space and time,
a symmetry operation labeled anti-inversion. Invariance with respect to anti-inversion is the defining symmetry
of the linear magnetoelectric (ME) effect included in 58 of 122 magnetic crystal classes, 19 of which prohibit
higher-order (nonlinear) contributions to the free energy. In ME compounds, expectation values of some atomic
magnetic tensors are invariant with respect to anti-inversion. An invariance shared by the Dirac monopole (an
element of charge allowed in Maxwell’s equations that has not been observed) and a Zel’dovich anapole, is also
known as a Dirac dipole. From the science of materials perspective, it has been established that Dirac multipoles
contribute to the diffraction of x rays and neutrons. We identify Dirac monopoles in bulk magnetic properties
of iron tellurate (Fe2TeO6) and a spin ladder (SrFe2S2O). They are visible in the diffraction of light using an
iron electric dipole–magnetic dipole absorption event. Both cited compounds present a simple antiferromagnetic
configuration of axial dipoles, and their different magnetic crystal classes allow a linear ME effect. However, the
Kerr effect is symmetry allowed in the spin ladder and forbidden in iron tellurate. Anapoles are forbidden in iron
tellurate and allowed in the spin ladder compound, a difference evident in diffraction patterns fully informed by
symmetry. More generally, we identify a raft of Dirac multipoles, and axial multipoles beyond dipoles, visible in
future experiments using standard techniques with beams of neutrons or x rays tuned in energy to an iron atomic
resonance. ME invariance imposes a phase relationship between nuclear (charge) and magnetic contributions
to neutron (x-ray) diffraction amplitudes. In consequence, intensities of Bragg spots in an x-ray pattern do not
change when helicity in the primary beam is reversed. A like effect occurs in the magnetic diffraction of polarized
neutrons.

DOI: 10.1103/PhysRevB.107.144432

I. INTRODUCTION

The induction of magnetization by an electric field, and
the inverse magnetoelectric (ME) effect, namely, induction of
electric polarization by a magnetic field, have been studied for
a long time. In 1959, Dzyaloshinskii predicted that a linear
coupling of the two fields could occur in antiferromagnetic
chromium sesquioxide (Cr2O3) [1]. A year later, the coupling
coefficient was experimentally observed to be nonzero in an
unorientated crystal below the Néel temperature [2]. Further
early work on the the ME effect in Cr2O3 and other antifer-
romagnetic crystals, such as Gd2CuO4, Sm2CuO4, KNiPO4,
LiCoPO4, and BiFeO3, is gathered in Refs. [3,4]. The ME
effect is allowed when the magnetic crystal class contains
the product of spatial and time inversions, or anti-inversion
(1̄′); i.e., the two discrete symmetries of space and time do
no occur independently. Specifically, the linear ME coupling

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

coefficient in the Landau free energy is unchanged by a si-
multaneous change in sign of space and time coordinates. Of
58 classes that allow the linear ME effect, there are 19 that do
not allow allow nonlinear effects. Examples of the 19 linear
types include trigonal Cr2O3 (magnetic crystal class 3̄′m′) and
tetragonal gadolinium tetraboride GdB4 (4/m′ m′ m′) [5,6].

Anti-inversion in the crystal class prohibits axial mag-
netism, which is parity even (axial) and time odd (magnetic).
Magnetic monopoles are allowed, however. While there is
a strong symmetry between electric and magnetic fields in
Maxwell’s equations, a magnetic charge analogous to electric
charge is peculiarly absent. If the equations are symmetrized
by the introduction of magnetic charge, this charge must be
such that it is reversed by each of the discrete symmetries of
parity and time [7]. At an atomic level of detail, a monopole
〈S · R〉 represents magnetic charge, where S and R are spin
and orbital electronic degrees of freedom, respectively, and
angular brackets denote a time average (expectation value).
Such a charge contributes to the diffraction of x rays utilizing
an electric dipole–magnetic dipole event [8–10]. Notably, a
magnetic charge and Dirac’s monopole have identical discrete
symmetries [7,11]. An anapole is the next member along in a
family of electronic Dirac multipoles and it is equivalent to a
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TABLE I. Properties of antiferromagnetic iron-based ME com-
pounds. The propagation vector = (0, 0, 0), space groups are
centrosymmetric, the piezomagnetic effect is forbidden, and α j j

are diagonal components of the third-order ME coupling tensor.
Magnetic ions occupy sites 4(e). Saturation magnetic moments are
in units of the Bohr magneton μB. Our investigation of the or-
thorhombic compound applies also to SrFe2Se2O with a different
Néel temperature TN and cell edges [28].

Fe2TeO6 [23,24] SrFe2S2O [28]

Tetragonal Orthorhombic
P42/m′n′m′ (No. 136.503) Pm′ m′ n′ (No. 59.411)
4/m′ m′ m′ m′ m′ m′

Fe3+(3d5) Fe2+(3d6)
α11, α11, α33 α11, α22, α33

TN ≈ 209 K TN ≈ 216 K
μ ≈ 4.2μB μ ≈ 3.3μB

Monopole Monopole
No anapole Anapole
No Kerr effect Kerr effect [56]

dipole 〈(S × R)〉 and a like orbital entity [12–14]. The Dirac
monopole and the anapole represent the scalar (rank K = 0)
and dipole (K = 1) in a decomposition of the third-rank ME
tensor coupling coefficient. Anapoles contribute to the Bragg
diffraction of x rays and neutrons, along with higher-order
multipoles, e.g., a quadrupole (K = 2) in the decomposition
of the ME coefficient [15–17]. Compton scattering of x rays
is another technique with potential to observe them [18,19].
Advanced simulations of electronic structure are established
methods by which to derive estimates of Dirac multipoles
[20–22].

Looking to the future, we calculate Bragg diffraction pat-
terns for two antiferromagnetic iron-based magnetoelectric
materials specified in Table I. The configuration of axial mag-
netic dipoles in iron tellurate (Fe2TeO6), depicted in Fig. 1,
was established in 1968 [23], and its magnetoelectric prop-
erties are firmly established [24–27]. This is not so for the

FIG. 1. Configuration of ferric axial magnetic dipoles in the in-
verted trirutile Fe2TeO6 [23]. Reproduced from MAGNDATA [29].

FIG. 2. Configuration of ferrous axial magnetic dipoles in the
orthorhombic spin ladder compound SrFe2S2O [28]. Reproduced
from MAGNDATA [29].

spin ladder compound SrFe2S2O, to the best of our knowledge
[28]. Axial magnetic dipoles for the spin ladder are depicted
in Fig. 2, and the same configuration has been established for
SrFe2Se2O [28]. All mentioned magnetic configurations have
a propagation vector = (0, 0, 0), and magnetic space groups
are centrosymmetric.

Anti-inversion among the elements of symmetry in a mag-
netic crystal class is a profound influence on diffraction
amplitudes. For Bragg diffraction of x rays enhanced by
an atomic resonance, charge and magnetic contributions to
scattering amplitudes are in phase [30]. Thus, there is no
interference between charge and magnetic contributions to
Bragg diffraction patterns gathered from a ME compound.
Moreover, coupling to helicity in primary x rays is forbidden,
with no difference in the intensity of a Bragg spot observed
with opposite-handed x rays. In contrast, anti-inversion invari-
ance imposes a 90◦ phase shift between nuclear and magnetic
contributions in neutron scattering, and they are in quadrature
in the intensity of a Bragg spot [5,31,32]. A corollary is that
the classical polarized neutron diffraction technique, using a
departure from unity of the ratio of intensities for primary neu-
tron beams of opposite polarization, is not available for ME
compounds [31,33–35]. In their measurement of the magneti-
zation distribution in Cr2O3, Brown et al. exploited spherical
neutron polarimetry [5].

Valence states accessed by photoejected electrons in-
teract with neighboring ions when x rays excite a core
resonance. Thus, electronic multipoles in the ground state
observed in diffraction are rotationally anisotropic with a
symmetry corresponding to the site symmetry of the resonant
ion. The distribution in a crystal of spherically symmet-
ric atomic charge defines a space group. In general, strong
Bragg spots are absent in diffraction for specific conditions
on Miller indices, and absence conditions are listed in the
Appendix for the two compounds of interest. Absence condi-
tions can be violated by relatively weak Bragg spots arising
from nonspherical atomic charge, which is usually called
Templeton-Templeton scattering [36–38]. Space group for-
bidden Bragg spots are particularly revealing with regard to
fine features of the electronic structure. Tuning the energy of
x rays to an atomic resonance has two obvious benefits. In
the first place, there is a welcome enhancement of Bragg spot
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intensities and, secondly, spots are element specific. There
are four scattering amplitudes labeled by photon polarization,
two with unrotated and two with rotated states of polarization
[13,38]. Strong Thomson scattering, by spherically symmetric
atomic charge, that overwhelms weak signals is absent in
rotated channels of polarization. It is allowed in unrotated
channels of polarization using a parity-even absorption, but is
absent in a parity-odd absorption, e.g., electric dipole–electric
dipole (E1-E1) and electric dipole–electric quadrupole
(E1-E2) events. Diffraction amplitudes for E1-E1, E2-E2, and
E1-E2 events presented here include rotation of the crystal
about the reflection vector (azimuthal-angle scan) and they
are specific to position multiplicity, Wyckoff letter, and sym-
metry [38]. The range of values of the rank K is fixed by
the triangle rule, and K = 0–2, K = 1–3, and K = 0–4 for
E1-E1, E1-E2, and E2-E2 events, respectively. Angular rota-
tion symmetry in a crystal can be mirrored in a periodicity
of an azimuthal-angle scan, and the valuable property of the
diffraction technique depends on the direction of the chosen
reflection vector relative to crystal axes.

Magnetic multipoles in x-ray diffraction using E1-E1 or
E2-E2 absorption events have an odd rank, i.e., K = 1 or
3 [13,38], whereas a parity-odd E1-E2 event presents Dirac
multipoles with K = 1, 2, and 3. Magnetic contributions
to neutron diffraction patterns are often identified in differ-
ences between patterns taken at different temperatures, above
and below the onset of long-range magnetic order. Greater
sensitivity is afforded by exploiting polarization analysis. A
spin-flip signal has been used to good effect in measuring
weak magnetic signals from long-range order in the pseu-
dogap phase of high-temperature superconducting cuprates
[39–43].

Bulk magnetic properties of iron tellurate are made exclu-
sively of Dirac multipoles, including monopoles. Although
anapoles are forbidden, Dirac multipoles alone are responsible
for a whole class of Bragg spots for which we give scattering
amplitudes fully informed by symmetry. Axial quadrupoles
produce weak (space group forbidden) reflections. They ac-
count for a correlation between anapole and orbital degrees
of freedom in the magnetic neutron scattering amplitude. An
axial secondary order parameter in the spin ladder compound
contributes weak Bragg spots. Axial dipoles and anapoles are
orthogonal, with anapoles confined to the a axis in Fig. 2.
However, anapoles do not contribute to bulk properties of
SrFe2S2O. A Kerr effect is allowed, unlike iron tellurate.

II. IRON TELLURATE

The rutile-type structure (space group P42/mnm) contains
chains of edge-sharing octahedra along the crystal c axis
joined through corners in the a−b plane. Trirutile materials
(AB2X6 composition) use a superstructure with a tripling of
the rutile unit along the c axis [44]. Antiferromagnetic chains
parallel with the [1, 1, 0] axis, distinguished by the closest
metal-metal separation in a trirutile, are a characteristic of
the magnetic states [45]. The compound of interest, Fe2TeO6,
is referred to as an “inverted” trirutile, because the A and B
cations are interchanged with respect to the nominal triru-
tile [46]. It displays a linear magnetoelectric effect (ME), as
does Cr2WO6 [47,48]. The mentioned trirutile oxides possess

different long-range magnetic structures and magnetic crystal
classes, however, with moments parallel (Fe, 4/m′ m′ m′) and
perpendicular (Cr, m′mm) to the c axis [23].

Absence conditions on Miller indices (h, k, l ) for Bragg
diffraction by P42/mnm are listed in the Appendix. The con-
figuration of axial magnetic dipoles depicted in Fig. 1 belongs
to the tetragonal centrosymmetric space group P42/m′n′m′
(No. 136.503 BNS [49]), and ME crystal class 4/m′ m′ m′.
Ferric ions (Fe3+, 3d5) are in noncentrosymmetric Wyckoff
sites 4(e), with site symmetry 2.m′m′ comprising two opera-
tions 2z (dyad axis of rotation symmetry along the c axis in
Fig. 1) and m′

xy (mirror and time-reversal invariances along
a diagonal in the a−b plane). Cell lengths a ≈ 4.601 Å and
c ≈ 9.087 Å, and TN ≈ 209 K [23]. There are two indepen-
dent parameters in the ME coupling (susceptibility) tensor
[24]. A piezomagnetic effect is forbidden by anti-inversion in
the crystal class.

Properties of antiferromagnetic Fe2TeO6 contrast with
those of MnF2 [50], CoF2, and FeF2 that also have the rutile
structure P42/mnm. Magnetic properties of the cited fluorides
belong to the centrosymmetric crystal class 4′/mmm′. The
absence of anti-inversion in the crystal class means that the
ME effect is nonlinear, a piezomagnetic effect is allowed,
and the classical polarized neutron diffraction technique is
available [5,31,32].

A. X-ray diffraction

A universal structure factor of rank K,

�K
Q = [exp(iκ·d)] · 〈OK

Q

〉
d
, (1)

determines diffraction amplitudes. An electronic multipole
〈OK

Q〉 possesses (2K + 1) projections in the interval −K �
Q � K , and the complex conjugate obeys (−1)Q〈OK

−Q〉 =
〈OK

Q〉∗. Multipoles for x-ray and neutron scattering abide by
the same discrete symmetry requirements but they are dif-
ferent in detail. The structure factor �K

Q is informed of all
elements of symmetry in the magnetic space group. In Eq. (1),
κ is the reflection vector defined by integer Miller indices
(h, k, l ), and the implied sum is over the four Fe ions in sites
d in a magnetic unit cell. Evaluated for Fe2TeO6,

�K
Q (TET) = 〈

OK
Q

〉
[γ + σπσθγ

∗][1 + (−1)n(−1)h+k+l ], (2)

where the condition Q = 2n on projections flows from the
dyad axis of rotation symmetry on the c axis. Site symmetry
demands σπσθ (−1)K+n〈OK

−Q〉 = 〈OK
Q〉. Here, σπ and σθ are

signatures of discrete symmetries of parity and time, with
σπ = +1 (−1) for axial (polar) and σθ = +1 (−1) for time
even (time odd, magnetic). The spatial phase γ = exp(i2πzl )
with z ≈ 0.334 [23].

Magnetic reflection conditions reported by Kunnmann
et al. [23] are even h + k + l , and odd h + k + l absent. They
apply to axial magnetic dipoles. The conditions are repro-
duced by our structure factor, Eq. (2), after setting σπσθ = −1
and K = 1, and aligning dipoles with the c axis. Notably,
reflections indexed (h, k, 0) with γ = 1 are forbidden for all
axial multipoles for all h, k.

Dirac multipoles 〈GK
Q〉 possess σπ = −1 (parity odd) and

σθ = −1 (magnetic) and they alone are responsible for mag-
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netic Bragg reflections (h, k, 0). In particular, bulk magnetic
properties specified by (0, 0, 0) comprise Dirac multipoles
with projections even n, including magnetic monopoles. The
latter are revealed by the diffraction of light using the elec-
tric dipole–magnetic dipole (E1-M1) parity-odd absorption
event [8].

Here, we consider Bragg diffraction of hard x rays
enhanced by the Fe K edge (energy ≈ 7.115 keV and wave-
length λ ≈ 1.743 Å) using an E1-E2 event [51]. Primary
(secondary) photon polarizations parallel and perpendicular
to the plane of scattering are labeled π (π ′) and σ (σ ′), re-
spectively. The four scattering amplitudes for space group
forbidden (h, 0, 0) with odd h are (apart from numerical
factors and radial integrals [38,52])

(σ ′σ ) = cos(θ ) sin(ψ )
〈
G2

+2

〉′′
,

(π ′π ) = − cos(3θ ) sin(ψ )
〈
G2

+2

〉′′
,

(π ′σ ) = −(σ ′π ) = sin(2θ ) cos(ψ )
〈
G2

+2

〉′′
, (h, 0, 0) odd h.

(3)

Rotation of the Fe2TeO6 crystal around the reflection vector
is measured by the angle ψ , starting from the c axis normal
to the scattering plane. The Bragg angle θ is determined
by sin(θ ) = λh/(2a) ≈ h 0.189, and h = 1, 3, 5 satisfy the
Laue condition. To reiterate, Bragg spots (h, 0, 0) with odd
h are magnetic and solely determined by a Dirac quadrupole
〈G2

+2〉′′ = Im〈G2
+2〉. No additional information is available

from Bragg spots indexed by the remaining classes of space
group forbidden reflections. Equivalent reflections and ab-
sence conditions for space group P42/mnm are listed in the
Appendix for the convenience of the reader.

B. Neutron diffraction

Unlike multipoles for resonant x-ray diffraction, mul-
tipoles in neutron diffraction are strong functions of the
magnitude of the reflection vector κ . Radial integrals 〈 jc(κ )〉
in our axial multipoles 〈tK

Q 〉 are averages of spherical Bessel
functions and integer c is even. Values of 〈 j0(κ )〉 and 〈 j2(κ )〉
for ferric ions are displayed in Fig. 2 of Ref. [53]. By def-
inition, 〈 jc(0)〉 = 0 for c > 0, and 〈 j0(0)〉 = 1. Most simple
models of magnetic neutron scattering are based on the dipole
〈t1〉 and exclude all but 〈 j0(κ )〉; cf. Eq. (11) [53,54].

Magnetic and nuclear scattering amplitudes for Fe2TeO6

are 90◦ out of phase. This finding is expected on the grounds
that magnetic symmetry allows the ME effect. Specifically,
the identity {−(−1)K+n〈OK

Q〉∗} = 〈OK
Q〉 is imposed on axial

multipoles by site symmetry, and the multipoles are purely
real (imaginary) for odd (even) K + n. The Fe axial dipole
(K = 1, Q = 0) and quadrupole (K = 2, Q = ±2) are purely
real. An equivalent operator [(S × R) R] for the quadrupole
shows that it measures the correlation between a spin anapole
(S × R) and orbital degrees of freedom [55]. With n = 1 in
Eq. (2) the quadrupole may contribute to scattering for odd
h + k + l and likewise for the off-diagonal octupole (K = 3,
Q = ±2) that is purely imaginary.

Reflections (0, k, l) odd k + l are absent in nuclear scatter-
ing. The corresponding time average of the neutron scattering
operator 〈Q〉(+) = (〈Qx〉(+), 0, 0) [34,35,55] is purely imagi-

nary and

〈Qx〉(+) ≈ ieyez sin (2πzl )
[〈

t2
+2

〉′ + (1/2)
√

(35/2)
〈
t3
+2

〉′′]
,

(0, k, l ) odd k + l (4)

is correct at the level of octupoles. A unit vector e is par-
allel to the reflection vector and components ey ∝ k, ez ∝ l .
Since (2πz) ≈ 120◦ the amplitude, Eq. (4), is small for Miller
indices l that are multiples of 3. The superscript (+) on the
neutron amplitude denotes parity even. The quadrupole 〈t2

+2〉′
in Eq. (4) is proportional to the radial integral 〈 j2(κ )〉 that
also features in the octupole 〈t3

+2〉′′. It has a broad maximum
around κ ≈ 6 Å−1 [53].

In general, a polarized neutron diffraction signal � =
{P · 〈Q⊥〉}, where P is the polarization of the primary neu-
trons and 〈Q⊥〉 = {e × (〈Q〉 × e)}. A spin-flip intensity SF
is a measure of the magnetic content of a Bragg spot, and
SF = {|〈Q⊥〉|2 − �2} when P · P = 1 and (〈Q⊥〉∗ × 〈Q⊥〉) =
0 [41].

Magnetic monopoles are forbidden in 〈Q⊥〉(−) [55], and
the Fe anapole (K = 1) is zero in Fe2TeO6. In consequence,
the leading contribution to diffraction by Dirac multipoles is
made by the imaginary part of the spin quadrupole, 〈g2

+2〉′′.
The associated radial integral is zero in the forward direction
of scattering [53]. Consider reflections (0, k, l) absent in
nuclear scattering for odd k + l . The component of 〈Q⊥〉(−)

parallel to the a axis is different from zero, 〈Q⊥〉(−) =
(〈Q⊥, x〉(−), 0, 0), and, neglecting Dirac multipoles beyond
the mentioned quadrupole,

〈Q⊥,x〉(−) ≈ iey cos (2πzl )
〈
g2

+2

〉′′
. (5)

Thus

SF ≈ |〈Q⊥,x〉(−)|2(1 − P2
x

)
, (0, k, l ) odd k + l, (6)

and the spin-flip signal is zero for P normal to the reflection
vector, and potentially nonzero otherwise. Optimum intensi-
ties occur for l = 0, 3, 6, etc.

III. SPIN LADDER SrFe2S2O

A reduced symmetry of the orthorhombic spin lad-
der compound compared to tetragonal iron tellurate means
fewer constraints on multipoles and diffraction amplitudes,
which contain comparatively more multipoles. Diffraction
by axial magnetic dipoles superimposes with core Bragg
spots, as with iron tellurate, and the magnetic propagation
vector = (0, 0, 0) for both antiferromagnets under investi-
gation. Equivalent reflections and absence conditions for the
parent structure Pmmn (No. 59) are listed in the Appendix.
Cell lengths a ≈ 3.870 Å, b ≈ 9.379 Å, and c ≈ 6.307 Å [28].

The magnetic space group Pm′m′n′ (No. 59.411, origin
choice 2, BNS) of SrFe2S2O has only recently been deter-
mined [28]. It is centrosymmetric and belongs to the magnetic
crystal class m′ m′ m′ that forbids a piezomagnetic effect. The
antiferromagnetic configuration of axial dipoles normal to the
a axis below TN ≈ 216 K is depicted in Fig. 2. The refined
magnetic structure implies the magnetic axial dipole along the
b axis to be the primary order parameter, which defines the
Pm′m′n′ space group. The latter allows the orthogonal axial
component along the c axis as a secondary order parameter
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coupled to the primary one via a weak interaction, e.g., the
Dzyaloshinskii-Moriya interaction. Unlike tetragonal iron tel-
lurate, there are three independent parameters in the diagonal
ME coupling tensor, and the magnetic crystal class m′ m′ m′
is one of three with no bulk axial magnetism that allow the
Kerr effect [56]. Anapoles (Dirac dipoles) are another feature
of the spin ladder compound not present in iron tellurate.

Ferrous ions Fe2+ (3d6) use Wyckoff sites 4(e) with sym-
metry m′

x (mirror and time-reversal invariances along the a
axis in Fig. 2). An electronic structure factor for a reflection
vector (h, k, l ) with integer Miller indices is as follows:

�K
Q (ORH) = exp(iπh/2)

〈
OK

Q

〉
[β + β∗(−1)Q+k]

× [γ + σπσθγ
∗(−1)Q(−1)h+k]. (7)

Site symmetry for ferrous ions demands σπσθ (−1)K〈OK
−Q〉 =

〈OK
Q〉, while (−1)Q〈OK

−Q〉∗ = 〈OK
Q〉 and σπσθ = −1 (+1) for

axial (Dirac) multipoles, respectively. Spatial phases in Eq. (7)
are β = exp(i2πyk), γ = exp(i2πzl ) with y ≈ 0.582 and z ≈
0.378 [28].

Axial multipoles with even (odd) K + Q are purely
imaginary (real). The classification is reversed for Dirac
multipoles. Cartesian components (x, y, z) of a dipole
are derived from 〈O1

x〉 = (〈O1
−1〉−〈O1

+1〉)/
√

2 = −√
2〈O1

+1〉′,
〈O1

y〉 = i(〈O1
−1〉 + 〈O1

+1〉)/
√

2 = −√
2〈O1

+1〉′′, and 〈O1
z 〉 =

〈O1
0〉. Anapoles are normal to the b−c plane that contains axial

dipoles. Bulk magnetic properties comprise Dirac multipoles
with projections even Q, and include the monopole 〈G0〉 and
quadrupoles 〈G2〉.

A. X-ray diffraction

Diffraction enhanced by a parity-even absorption event is
allowed at space group forbidden reflections, in contrast to
iron tellurate. The Fe L2 edge has an energy 721 eV, λ/(2b) ≈
0.917, and k = 1 is allowed in (0, k, 0). The E1-E1 amplitude
in the rotated channel of polarization (π ′σ ) is proportional to
the axial moment parallel to the c axis, and the corresponding
multipole is denoted 〈T 1

z 〉 in amplitudes,

(π ′σ ) = −(σ ′π ) = sin(2πy) cos(θ ) sin(ψ )
〈
T 1

z

〉
, (0, 1, 0),

(8)

with sin(2πy) = −0.493. Axial octupoles are engaged in
diffraction by an E2-E2 event at the Fe K edge [38,57,58] with
the result

(π ′σ ) = −(σ ′π ) = − sin(2πyk) sin(ψ )
[

cos(3θ )
〈
T 1

z

〉

+ {3 cos(3θ ) +5sin2(ψ )}〈T 3
0

〉

−
√

30{cos(θ ) cos(2θ ) + sin2(ψ )}〈T 3
+2

〉′]
,

(0, k, 0) odd k, (9)

where  = {cos(θ ) [2−3 cos2(θ )]}. E2-E2 amplitudes,
Eq. (9), are potentially strong for (0, 3, 0), for which
sin(6πy) ≈ −1.0, cos(3θ ) ≈ 0.662, cos(θ ) cos(2θ ) ≈ 0.811,
and  ≈ −0.737. Moreover, diffraction by Dirac multipoles
using the event E1-E2 is negligible for (0, 3, 0), as we shall
see. The condition sin(θ ) = λk/(2b) ≈ k0.093 is satisfied for
k = 1, 3, 5, 7, 9. Contributions 〈T 1

z 〉 in Eqs. (8) and (9) merit

comment, which is found following Eq. (11) in the following
subsection.

In discussing diffraction by Dirac multipoles, we continue
to explore space group forbidden reflections. The structure
factor, Eq. (7), is zero for (h, 0, 0) with odd h. Projections
Q are restricted to odd values for (0, k, 0) with odd k, and in
the rotated E1-E2 channel,

(π ′σ ) = −(σ ′π ) = cos(2πyk) sin(2θ ) sin(ψ )

× [
3
〈
G1

+1

〉′ + 2
√

5
〈
G2

+1

〉′′ + {4 − 15 cos2(ψ )}〈G3
+1

〉′

+
√

15 cos2(ψ )
〈
G3

+3

〉′]
, (0, k, 0) odd k. (10)

As previously mentioned, cos(6πy) ≈ 0.0. Miller index k = 7
is optimum for the prefactors sin(2θ ) and cos(2πyk). Note
that a quadrupole is absent from the E2-E2 amplitude, Eq. (9),
because magnetic parity-even diffraction uses odd rank multi-
poles alone.

B. Neutron diffraction

For (0, k, 0) with odd k, 〈Q〉(+) = (0, 0, 〈Qz〉(+) ) is purely
imaginary, as expected, and

〈Qz〉(+) ≈ i sin(2πyk)
[〈

t1
z

〉 −
(

2/
√

3
)〈

t2
+2

〉′′

− (1/4)
√

(7)
{〈

t3
0

〉 + 2
√

5/6
〈
t3
+2

〉′}]
(0, k, 0) odd k.

(11)

The result is correct for all multipoles up to and including
K = 3. The presence in Eq. (11) of the axial magnetic dipole
appears, at first sight, to be at odds with the conclusion by Guo
et al. [28] that chemical and magnetic dipole structures match.
Two elementary resolutions are (i) the component of the axial
dipole 〈t1

z 〉 parallel to the c axis is zero, or (ii) 〈t1
z 〉 is too small

to be detected with the resolution available to Guo et al. [28].
As it stands, dipoles 〈t1

y 〉 constitute the primary order param-
eter, with 〈t1

z 〉 contributing a comparatively weak secondary
order parameter. Note, while Fe site symmetry m′

x allows 〈t1
z 〉

it can be identically zero. Returning to Fe2TeO6, the predicted
magnetic amplitude Eq. (4) for noncore Bragg spots has the
expected structure, i.e., no axial dipoles. Intensity of a Bragg
spot = |〈Qz〉(+)|2 since 〈Q〉(+) and e are orthogonal.

The result in Eq. (11) holds for (h, 0, 0) with h = (2n + 1)
on making one change. The spatial phase factor sin(2πyk) is
replaced by (−1)n.

An approximation for the axial dipole in Eq. (11),

〈t1〉 ≈ (〈μ〉/3)[〈 j0(κ )〉 + 〈 j2(κ )〉(g − 2)/g], (12)

is often used [34,55]. Here, the magnetic moment 〈μ〉 = g〈S〉
and the orbital moment 〈L〉 = (g−2)〈S〉.

Regarding diffraction by Dirac multipoles, 〈Q⊥〉(−) =
(0, 0, 〈Q⊥, z〉(−) ) for (0, k, 0) with odd k. At an accuracy that
includes anapoles and quadrupoles,

〈Q⊥,z〉(−) ≈ −i cos(2πyk)
〈
g2

+1

〉′′
, (0, k, 0) odd k. (13)

The spatial phase factor is zero for k = 3, to a good approxi-
mation, while Eq. (11) for the axial contribution to diffraction
is optimal.
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IV. DISCUSSION

In summary, we have identified Dirac multipoles in two an-
tiferromagnetic iron-based magnetoelectric (ME) compounds
cited in Table I, and depicted in Figs. 1 and 2. They are polar
and magnetic (time odd), and represent the scalar, dipole, and
quadrupole in a decomposition of the third-order tensor that
couples electric and magnetic fields in Landau free energy.
Findings are informed by symmetry in previously established
magnetic space groups for iron tellurate [23] and a spin lad-
der compound [28]. A linear ME effect in iron tellurate has
been thoroughly investigated, starting in 1972 with a study
reported by Buksphan et al. [24]. This is not so for the spin
ladder SrFe2S2O, to the best of our knowledge. However, its
magnetic space group belongs to the crystal class m′ m′ m′
that allows a linear ME effect. Even more interestingly, the
magnetic crystal class is one of three with no bulk axial
magnetism that allow the Kerr effect [56]. Dirac multipoles
form bulk magnetization in both iron-based compounds, and
it includes monopoles (often called magnetic charges).

The published magnetic space group Pm′m′n′ for the ladder
compound implies that magnetic axial dipoles along the b axis
in Fig. 2 form a primary order parameter. This space group
also allows an orthogonal axial component along the c axis.
The latter seems to be a secondary order parameter weakly
coupled to the primary one and therefore too small to be
reliably detected in a neutron diffraction experiment on a pow-
der sample [28]. Usually, orthogonal magnetic components
due to spin canting imposed by the Dzyaloshinskii-Moriya
interaction are roughly about 0.01–0.02μB, which is almost
an order of magnitude smaller than the sensitivity of good
quality powder diffraction data [59].

The defining property of magnetoelectric space groups
is the presence of anti-inversion (1̄′) among invariance re-
quirements. It has global influence on diffraction amplitudes
for antiferromagnetic materials, which is illustrated by our
results. Nuclear and magnetic contributions to the neutron
scattering amplitude are forced to differ by 90◦. In the diffrac-
tion of x rays with energy matching an iron resonance charge
and magnetic contributions have a like phase. In consequence,

Bragg diffraction patterns are independent of helicity carried
by primary x rays.

Special attention in our calculations is given to weak Bragg
spots stemming from angular anisotropy in magnetic distri-
butions. Such reflections violate absence conditions derived
from diffraction patterns generated by nuclei or spherical
distributions of electronic charge, which are listed in the
Appendix together with reflection equivalences. Weak Bragg
spots reveal fine details of the distribution of magnetization in
a crystal. They feature axial quadrupoles, the correlation be-
tween a spin anapole and orbital degrees of freedom, anapoles,
and Dirac quadrupoles. Calculated x-ray diffraction patterns
include the effect of rotating the crystal about the reflection
vector (an azimuthal-angle scan) that reveals magnetic sym-
metries.
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APPENDIX

Equivalent reflections for P42/mnm (No. 136):
(1) h, k, l; (2) −h, −k, l; (3) −k, h, l; (4) k, −h, l;
(5) −h, k, −l; (6) h, −k, −l; (7) k, h, −l; (8) −k, −h, −l;
(9) −h, −k, −l; (10) h, k, −l; (11) k, −h, −l;

(12) −k, h, −l;
(13) h, −k, l; (14) −h, k, l; (15) −k, −h, l; (16) k, h, l;
(0, 0, l) odd l absent; (h, 0, 0) odd h absent; (0, k, l) odd

k + l absent.
Equivalent reflections for Pmmn (No. 59):
(1) h, k, l; (2) −h, −k, l; (3) −h, k, −l; (4) h, −k, −l;
(5) −h, −k, −l; (6) h, k, −l; (7) h, −k, l; (8) −h, k, l;
(h, k, 0) odd h + k absent; (h, 0, 0) odd h absent; (0, k, 0)

odd k absent.
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