
PHYSICAL REVIEW B 107, 144431 (2023)

Caustic spin wave beams in soft thin films: Properties and classification
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In the context of wave propagation, caustics are usually defined as the envelope of a finite-extent wavefront;
folds and cusps in a caustic result in enhanced wave amplitudes. Here, we tackle a related phenomenon, namely,
the existence of well-defined beams originating solely from the geometric properties of the corresponding
dispersion relation. This directional emission, termed caustic beam, is enabled by a stationary group velocity
direction, and has been observed first in the case of phonons. We propose an overview of this “focusing” effect
in the context of spin waves excited in soft, thin ferromagnetic films. Based on an analytical dispersion relation,
we provide tools for a systematic survey of caustic spin wave beams. Our theoretical approach is validated by
time-resolved microscopy experiments using the magneto-optical Kerr effect. Then, we identify two cases of
particular interest both from fundamental and applicative perspectives. Indeed, both of them enable broadband
excitations (in terms of wave vectors) to result in narrow-band beams of low divergence.
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I. INTRODUCTION

The collective motion of magnetic moments in materials,
referred to as spin waves, has shown remarkable proper-
ties from a fundamental perspective. Examples range from
anisotropic dispersion in thin films [1], relevant for the field
of magnonics, to Bose-Einstein condensation of magnons [2],
through restricted-relativity-like bounded domain wall veloci-
ties [3]. Applications of magnetization dynamics also abound,
starting with the infinite-wavelength ferromagnetic resonance
(FMR) [4] and going all the way towards submicrometer
wavelengths, which are currently viewed as promising alter-
native information carriers in the fields of magnonics [5].
In addition to the absence of Joule heating and the poten-
tial device downscaling (using small wavelengths), spin wave
interference is an appealing prospect [6] as it allows logic
operations through the design of the propagation lines.

Several experimental techniques are readily available for
the study of spin waves [1], especially in the case of thin films
or patterned elements thereof. Among them, microresolved
and phase-resolved Brillouin light scattering (BLS) [7,8],
time-resolved magneto-optical Kerr effect (TR-MOKE) mi-
croscopy [9], and time-resolved scanning transmission x-ray
microscopy (TR-STXM) with magnetic sensitivity through
x-ray magnetic circular dichroism (XMCD [10]) [6,11] have
demonstrated outstanding imaging capabilities. Nevertheless,
the usually very small amplitudes of magnetization preces-
sion associated to spin waves as well as their attenuation
lengths (typically on the micrometer scale) pose a signifi-
cant challenge both for fundamental investigations and for
applications.

To be of practical use, spin waves must be harnessed
via a power-efficient strategy: some approaches like Winter’s
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magnons rely on channeling along domain walls [12], others
rely on careful control of spin wave scattering [13]. Another
possibility would take advantage of caustic spin wave beams
(CSWBs), i.e., spin wave beams of well-defined propagation
direction, narrow angular width, and higher power compared
to, e.g., Damon-Eshbach–type [14] spin waves. Furthermore,
caustics in soft, thin ferromagnetic films can be very dif-
ferent from the well-known acoustical or optical caustics,
which originate from inhomogeneous media [15–17]: here,
spin wave caustics can arise in perfectly homogeneous films
in broad ranges of conditions solely because of sufficient
anisotropies in their dispersion relation. The latter indeed
allows the direction of the group velocity to be stationary
around some wave vectors, leading to well-defined directions
of wave propagation associated to significantly stronger emis-
sion. In the context of phonon propagation, such phenomena
have been referred to as “focusing” [18], and they have been
observed and investigated since 1969 [18–22].

By contrast, caustics in ferromagnetic films were reported
for the first time about 30 years later [23]. There have been
quite a few reports since then [24–32] but, to the best of
our knowledge, there exists to date no systematic survey of
the properties of spin wave caustics, not even focusing on a
certain type of systems, e.g., ultrathin films with perpendic-
ular anisotropy, or soft thin films. In this work, we restrict
ourselves to the latter and give an overview of caustics in soft
thin films, as well as tools to further investigate them. More-
over, we highlight two special cases which seem particularly
appealing, notably for application in magnonics.

II. MODEL

A. General considerations

Our starting point is the model derived by Kalinikos and
Slavin [33] for spin waves in soft ferromagnetic thin films.
These excitations correspond to a time- and space-dependent
magnetization

−→
M (�r, t ), yet its norm Ms = ||−→M (�r, t )|| the
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FIG. 1. Schematic representation of a spin plane wave propagat-
ing in a soft thin film. The grayscale codes the local perpendicular
component of the dynamic component of magnetization δmz.

spontaneous magnetization is uniform. As a result, it is
simpler to consider the reduced magnetization −→m (�r, t ) =−→
M (�r, t )/Ms with norm 1. We focus on the linear regime,
i.e., the deviation δ−→m (�r, t ) = −→m (�r, t ) − −→m 0(�r, t ) from the
equilibrium magnetization (when no excitation is applied) −→m0

is such that ||δ−→m || � 1. Under the assumption of negligible
mode mixing and of a perfectly isotropic ferromagnetic mate-
rial, one may write the dispersion relation of a thin film as

ω2 =
[
γ0Ha + 2Aγ0

μ0Ms
k2

][
γ0(Ms + Ha ) + 2Aγ0

μ0Ms
k2

]

− γ 2
0 M2

s ξ (kd )

[
1 − ξ (kd ) + Ha

Ms
+ 2Aγ0

μ0M2
s

k2

]
cos2 ϕ

+ γ 2
0 M2

s ξ (kd )[1 − ξ (kd )], (1)

where ω is the spin wave angular frequency, γ0 = μ0|γ | with
γ = qe/(2me ) the electron’s gyromagnetic ratio (qe = −e and
me being the electron’s charge and mass, respectively), and μ0

the permeability of vacuum, A is the micromagnetic exchange
constant for the soft ferromagnetic material of interest, Ms its
spontaneous magnetization, k the spin wave’s wave number

corresponding to its wave vector
−→
k , Ha = ||−→Ha|| the strength

of the externally applied magnetic field
−→
Ha from which ϕ =

angle(
−→
Ha,

−→
k ) the wavefront angle is defined, d the film thick-

ness, and ξ is the function whose values are defined as

ξ (u) = 1 − 1 − e−u

|u| . (2)

As a consequence of the ferromagnetic material’s softness,
in the absence of excitation, the equilibrium magnetization
configuration in our thin film is the single-domain state, with
a corresponding reduced magnetization −→m 0 exactly along the

applied field. The orientations of −→m 0,
−→
Ha, and

−→
k are illus-

trated in Fig. 1, which also highlights the natural wavelength

λ0 = 2π/||−→k || of the spin wave as well as the unit vectors−→ex , −→ey , and −→ez .
Here, we focus on spin waves with no amplitude node

across the film thickness, i.e., we do not consider perpen-
dicular standing spin waves (PSSWs). However, we do note
that the latter may play a role in experiments performed on
sufficiently thick films where a realistic antenna for instance
could excite them due to its inhomogeneous magnetic field.

We introduce the following quantities: the Larmor an-
gular frequencies associated to magnetization ωM = γ0Ms

and to the applied magnetic field ωH = γ0Ha, the material’s
dipolar-exchange length lex = √

2A/(μ0M2
s ). We then rewrite

the equation as

ω2

ω2
M

=
(

ωH

ωM
+ l2

exk2

)(
1 + ωH

ωM
+ l2

exk2

)

− ξ (kd )

[
1 − ξ (kd ) + ωH

ωM
+ l2

exk2

]
cos2 ϕ

+ ξ (kd )[1 − ξ (kd )]. (3)

Introducing the reduced frequency ν = ω/ωM and applied
field h = ωH/ωM = Ha/Ms, and normalizing both the dipolar-
exchange length and wave number to the film thickness d
using η = lex/d and k̃ = kd , we arrive at

ν2 = (h + η2k̃2)(1 + h + η2k̃2)

− ξ (k̃)[1 − ξ (k̃) + h + η2k̃2] cos2 ϕ

+ ξ (k̃)[1 − ξ (k̃)]. (4)

With this, it is clear that any given experiment of spin wave
excitation corresponds to a specific value of the dimensionless
triplet (η, ν, h). In other words, they are the only independent
parameters within this model.

For a value of (η, ν, h), the solution to (4) is the possibly

empty set of accessible dimensionless wave vectors
−→
k d . The

existence and properties of spin wave caustics depend on the
geometrical characteristics of this set, which is why we are
first going to review several of its general properties.

Keeping in mind that we focus on applied fields below the
ferromagnetic resonance field at the excitation frequency, we
actually always have a nonempty solution, which is usually a
closed curve winding around the origin in wave-vector space.
This is the so-called slowness curve, in reference to the fact
that at fixed frequency k ∝ 1/||−→vp || where −→vp is the phase
velocity [34], oriented of course along the wave vector. Con-
sidering the parity of the cosine function and its antisymmetry
for the reflection ϕ → π − ϕ, we may restrict our analysis to
only the quadrant ϕ ∈ [0, π/2] and deduce the others using
mirror symmetries.

One can also parametrize the slowness curve using a
curvilinear abscissa: we define it to be zero for the lowest
dimensionless wave number k̃min at ϕ = π/2. One can indeed
show that the reduced wave number solving Eq. (4) at ϕ =
π/2 (respectively 0) is minimum (respectively maximum) on
the quadrant ϕ ∈ [0, π/2]. Thus, at the largest dimensionless
wave number k̃max = k̃(ϕ = 0), the corresponding curvilinear
abscissa sM corresponds to the length of the slowness curve in
the quadrant ϕ ∈ [0, π/2], i.e., one fourth of the whole length
of this curve.

Another important geometrical aspect of the slowness
curve that is central to this work is the local normal to it.
Considering its definition as a constant-frequency intercept of
the dispersion relation in wave-vector space, by nature, the
frequency gradient

−→∇ −→
k
ω is perpendicular to the slowness

curve. As a result, the direction of the group velocity of spin
waves −→vg = −→∇ −→

k
ω can be directly read from the direction of
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θV

ϕ0

−→
k0d

(b) (c)

(a)

FIG. 2. (a) Exemplary slowness curve for (ν, h, η) =
(0.2873, 10−20, 0.15). As can be clearly seen in the polar plot
of kd = k̃(ϕ), the direction (ϕ0 = 32.00◦) of the phase velocity−→vp and that (θV = 108.9◦) of the group velocity −→vg at the point
−→
k0 d are very different. (b) Radiation pattern (δmz is gray coded)
of a hypothetical source exciting only wave numbers very close to

||−→k0 ||d . (c) Plane wave corresponding to the carrier wave vector
−→
k0 d

(red lines are guides to the eye).

the local normal to the slowness curve. In our notations, we
point out that

−→∇ −→
k
ω ≡

∑
β=x,y,z

∂ω

∂kβ

· −→eβ where kβ = −→
k · −→eβ .

In the following, we will use the angle θV =
angle (

−→
Ha,

−→vg ). We point out that in the present case, phase
and group velocities need not be collinear: on the contrary,
there can be differences between θV and ϕ much larger than
in cases of light propagation through anisotropic media [35].
Figure 2 illustrates this on the example of a slowness curve
reconstructed for a vanishing reduced applied field.

B. Distinctive features of dispersion relation caustics

Typically, caustics in inhomogeneous media occur when
a wavefront folds onto itself; in this situation, there exists a
surface [or a line in two-dimensional (2D) wave propagation]
such that across it the number of rays passing through a
point in space changes by an even number [16,17]: this is the
caustic. Equivalently, it can be viewed as the set of the local
extrema of positions on the ray bundle on the wavefront, for all
the wavefronts along the wave propagation. It is this extremal
nature that grants these caustics large and localized intensities

compared to other points on the ray bundle. In a geometrical
optics approach, the intensity diverges as an initially finite-
sized portion of the wavefront shrinks to a vanishing area [16].
A wave optics treatment, however, reveals that the intensity re-
mains finite due to interferences: illumination profiles across
caustics can in principle be determined by taking into account
the variations of phase as a function of distance to the caustic
[15].

Such an approach has been used by Schneider et al.
[27] for spin wave caustics excited by the scattering of a
spin wave traveling in a waveguide terminating into a full
yttrium iron garnet (YIG) film. However, this is a very dif-
ferent situation compared to the above. Indeed, the wavefront
does not fold onto itself due to spatial variations of medium
properties, rather, its extent is determined almost exclusively
(owing to the subwavelength source size) by the characteris-
tics of spin wave propagation. The latter are determined by
the anisotropic spin wave dispersion relation, which allows
caustics to form thanks to the possibility of stationary group
velocity direction, i.e., a beam with a well-defined propaga-
tion direction yet comprising a range of wave vectors in the
vicinity of a carrier. More precisely, caustics correspond to
local extrema of the group velocity direction; in other words,
a caustic spin wave beam implies the existence of a caustic
point k̃c on the slowness curve such that

dθV

dk̃

∣∣∣∣
k̃c

= 0. (5)

The CSWB has then a carrier wave number k̃c, corresponding
to a central wavefront angle ϕc = ϕ(k̃c) and a beam direction
θV,c = θV(k̃c).

Coming back to the wavefront extent, rays from wave
vectors not close enough to the carrier cannot play a role
in the caustic wave amplitude simply because of differences
in propagation direction. More specifically, the experimental
data presented by Schneider et al. suggests that beam di-
vergences of 2◦ or less can be obtained. Thus, there seems
to be a contradiction between the cubic dispersion which is
assumed to define the beam profile and the measurements. The
question of the CSWB’s profile goes, however, beyond the
scope of this work. Nevertheless, it is clear from the low beam
divergences observed in many experimental reports [27,28,36]
that only small, almost straight, parts of the slowness curve
must contribute to CSWB.

In fact, integrating the contribution of wave vectors all the
way to infinity as done in [27] neglects the geometric impossi-
bility for them to create waves traveling from the point source
to a far-away point on the caustic. To put it differently, for geo-
metrical reasons, caustics originating solely from anisotropies
in the dispersion relation and excited by a pointlike source nat-
urally restrict the range of relevant wave vectors, in contrast to
the case of caustics due to inhomogeneities in the propagation
medium.

We wish to emphasize the above by reminding that in most
cases [16,37], caustics are treated on the basis of wave prop-
agation in an isotropic or weakly anisotropic medium. One
consequence is the fact that the flow of power, i.e., the group
velocity, is along the wave vector or close to parallel to it [15].
While this remains a reasonable approximation for slightly
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k̃

FIG. 3. Slowness curves for η = 0.015, h = 10−20, and ν =
0.331 (dashed blue line) respectively ν = 0.333 (full red line).

anisotropic media (as in usual crystal optics), in the case of
perfectly soft but fully polarized thin ferromagnetic films, this
collinearity may break down dramatically, as was illustrated
in Fig. 2. Therefore, even small changes in wave vector may
result in drastic changes in group velocity direction. By con-
trast, large changes in wave vectors do not necessarily lead
to strong variations in the apparent wavelength λ which we
define as

λ = 2π · ||−→vg ||
−→
k · −→vg

= 2π
−→
k · −→eg

= λ0(ϕ)

cos (θV − ϕ)
, (6)

where we have introduced −→eg as a unit vector along the
group velocity. The apparent wavelength is simply the spa-
tial period measured along the beam direction. Since large
differences θV − ϕ can easily be obtained [cf. Fig. 2, where
cos (θV − ϕ0) 
 0.227], and more importantly since the pro-
jection k̃(ϕ) cos (θV − ϕ) may remain almost constant over
significant portions of the slowness curve, one should consider
notions such as propagation-induced phase or spectral breadth
[38] of a spin wave beam carefully.

III. RESULTS AND DISCUSSION

A. Limit of model applicability: Thick films

We start by providing an example of a situation where the
model we use cannot be fully trusted, so as to highlight its
limitations. In Fig. 3 we show a case where the reconstructed
slowness curve splits into two separate connected components
above a certain threshold frequency.

Such a behavior has been described by Kreisel et al. [39]:
the model chosen for spin wave dispersion predicts a local
maximum in the ω(k, ϕ = π/2) vs wave-number curve, but
this extremum is not reproduced by a formal approach not
based on the thin-film approximation [40], and designed to
tackle the dipole-exchange regime. The maximum’s presence
leads to an additional pair of solutions in terms of wave num-
ber in a certain frequency range, corresponding to a splitting
of the slowness curve into two separate components.

Clearly, results obtained within our approach about caus-
tics deep in the dipole-exchange regime are not trustworthy.
Empirically, we see the slowness curve splitting into separate
components for values of η up to about 0.075; for the sake of
comparison, the thinnest films investigated by Kreisel et al.

feature η < 0.035 according to literature data on YIG [41].
Nevertheless, the absence of this splitting is no proof that
the reconstructed slowness curve is accurate, and we shall
remain cautious in discussing results concerning CSWBs with
wave numbers in the dipole-exchange regime. Finally, we note
that promising theoretical developments such as the dipole-
exchange dispersion relations recently derived by Harms and
Duine [40] could eventually allow a more accurate treatment
of caustics in the dipole-exchange regime.

B. General features

Let us have a look at a first example of frequency and field
map of caustic properties in Fig. 4. In the presented graphs,
the red color means that either the corresponding (h, ν) point
was not investigated because its reduced field is above the
reduced FMR field hFMR, or because no caustic points were
found there.

First of all, one can see that there is indeed a portion of
the (h, ν) plane where no caustic points exist. This occurs for
frequencies above a certain νm(h, η). Then, going down in
reduced frequency, there appears to be an oblique boundary
between two regions of the map. Above it, k̃c quickly en-
ters the dipole-exchange regime, which we will only present
but not discuss quantitatively as it corresponds to a situation
where our model is less reliable. Below the boundary, the
reduced caustic wave number is much smaller than 1. Corre-
spondingly, a boundary which we will label νb(h, η) appears
at the same position on the plot of ϕc; this angle also seems
close to constant over much of the region below the boundary.
In both cases, its sharpness decreases towards low h, and at
vanishing reduced field the transitions in k̃c or ϕc are both
smooth. All these features are represented on a simplified
representation of the map of k̃c shown as inset on the ϕc map,
including the point (hc, νc) at which the sharp boundary seems
to end. A zoomed-in view on (hc, νc) is shown in the inset of
Fig. 4(b).

In the following, we will refer to the lowest reduced field at
which this boundary is sharp as hc and denote νc = νb(hc, η).
As we shall see in more details, this abrupt boundary corre-
sponds to a change in the number of caustic points by two.
The lowest point (hc, νc) is actually a cusp in the domain of
existence of the two additional caustic points. We point out
that for all reduced fields and frequencies, the maps shown in
Fig. 4 display the lowest caustic wave number, respectively,
the associated wavefront angle.

Before moving on to discussing the low-frequency pocket,
its boundary, and the existence of additional caustic points,
and finally the threshold frequency for the absence of caustic
points, we stress that the behavior of caustics strongly depends
on η. As an example, we show in Fig. 5 field and frequency
maps for η = 0.09, 0.3, 0.6 (from left to right). At the lowest
value, the boundary νb extends all the way to h = 0, whereas
the two other maps do not display such a sharp behavior. In
addition to the expected changes in range of values for k̃c,
one can see that the overall shape of the domain of existence
of CSWBs also changes. From here on, we will call this
area D. From η = 0.09 to 0.3, we see that D has expanded
in the vertical direction at low h. In even thinner films, for
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FIG. 4. Frequency and field maps for a value of η = 0.12. For high enough fields, a sharp upturn in both properties can be seen for reduced
frequencies above about 0.42. We remind the reader that fields above ferromagnetic resonance are not considered. Only few level curves are
displayed for the sake of clarity. (a) Caustic wavefront angle ϕc, with a schematic representation of the map’s distinctive features as inset.
(b) Normalized wave number k̃c = kcd; a zoomed-in view on the area where the upturn’s sharpness drastically changes.

η = 0.6, the average slope of νm(h, η) has not changed much,
yet νm(0, η) has decreased; as a result, D shrinks vertically.

By contrast, even if the caustic group velocity direction
displays a similar wealth of features as the caustic wave-
front angle and reduced wave number, the jumps across the
boundary νb are much less significant when they exist. An
example of this is shown in Fig. 6, which shows maps for θV,c

at the same values of η as in Fig. 5.
In a certain range of reduced dipolar-exchange length,

we find that there may actually be more than one caustic
point on the slowness curve. Empirically, we observe that
the additional caustic points may exist for k̃c < 1. When
this inequality holds, the number of caustic points is either
equal to one or to three; two being possible but only on a

1D curve in the field and frequency plane; this curve in-
cludes the aforementioned boundary νb. Qualitatively, this is
due to the fact that in the corresponding range of field and
frequency, when dθV/dk̃ crosses 0, it does so with a local
behavior somewhat reminiscent of a polynomial of the type
P(k̃; a, b) = (k̃ − k̃c)3 + a(k̃ − k̃c) + b, where a and b are real
parameters. If a > 0, there exists only one root, whereas if
a < 0 and |b| is sufficiently small, there exist three distinct
roots.

The domain in the field and frequency plane with these
three roots will be referred to as D3 from now on, by contrast
with D1 = D \ D3 in which there is only one caustic point
instead of three. We will now describe D3 using the P(k̃; a, b)
approximant to dθV/dk̃ for the sake of simplicity.
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FIG. 5. Examples of field and frequency maps for (a) η = 0.09, (b) η = 0.3, and (c) η = 0.6; only the reduced caustic wave number is
shown.
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FIG. 6. Examples of field and frequency maps for the CSWB direction θV,c, at (a) η = 0.09, (b) η = 0.3, and (c) η = 0.6.

Let us start with Fig. 7, which displays the same field and
frequency map for k̃c as in Fig. 4 along with the maps for the
two other reduced caustic wave numbers. The two additional
solutions can be shown to coincide on the rounded boundary
of D3 to the lower left, which will be referred to as ∂D3,l . En-
tering D3 through this boundary by increasing ν corresponds
to the situation where |b| becomes small enough to allow the
two additional caustic points (with respect to the one with
lowest k̃c), thanks to a being negative enough. Increasing h, on
the other hand, mostly decreases a: upon crossing ∂D3,l , a pair
of caustic points with higher k̃′

cs appears. Of course, exactly
on ∂D3,l the two additional roots of dθ/dk̃ are identical.

Starting from inside D3, if one increases the reduced fre-
quency, eventually the caustic point with the intermediate
value of k̃c merges with the one featuring the smallest reduced
wave number. This happens on the other boundary of D3,
which we will call ∂D3,u from now on. This situation cor-
responds to ν = νb(h, η). Just above this boundary, the value
of b is low enough so that only one root of dθ/dk̃ remains.
That is the reason for the discontinuity in k̃c in Fig. 4: the
lowest caustic wave number jumps to what was the highest of

the three k̃′
cs below νb. Experimentally, this could imply that

SW excitation around this threshold wave number would have
marked changes in intensity as a function of frequency.

Based on the above, since the two boundaries other than
ferromagnetic resonance each imply that a different pair of
caustic points coincide, we can infer that on the cusped inter-
section of ∂D3,l and ∂D3,u, there exists a single caustic point
corresponding to three of them coinciding on the slowness
curve. This is precisely the point (hc, νc) from the inset in
Fig. 4.

It is important to note that while a purely mathemat-
ical analysis yields well-defined, separate caustic points,
experimentally the distinction between close caustic points
may well be impossible. In fact, there exists no straight-
forward experimental signature of dθV/dk̃ crossing 0, and
portions of the slowness curve where this derivative is small
but nonzero can behave similarly to an actual caustic point, as
was noted by Gallardo et al. [42]. Nevertheless, the presence
of more than one caustic point constrains a slowness curve
to be almost straight in their vicinities; this should then favor
marked caustics.
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FIG. 7. Field and frequency maps for η = 0.12, looking at the three reduced caustic wave numbers. Note the distinct grayscales for each
graph. (a) Lowest k̃c in the presence of several caustic points, and single value for k̃c otherwise. (b) Intermediate value for k̃c if several caustic
points exist. (c) Largest reduced caustic wave number.
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TABLE I. Comparison between reports on CSWBs and our predictions for the beam direction θV,c.

Ref. Excitation method Material (thickness in nm) Predicted θV,c Measured θV,c h ν η

[29] Edge modes of a waveguide Co2Mn0.6Fe0.4Si (30) 113◦ 123◦ 3.81 × 10−2 0.287 0.15
and nonlinearities

[44] Corners of slot-line termination YIG (235) 123◦ 124◦, 122◦ 0.126 0.427 7.36 × 10−2

and scattering off a defect
[36] Corners of slot-line termination YIG (245) 119◦ 118◦ 0.126 0.427 7.06 × 10−2

[45] Spin wave scattering off antidots YIG (4.5 × 103) 169◦ 128◦ 0.557 0.939 3.84 × 10−3

[28] Collapsing spin wave bullet YIG (5 × 103) 137◦ 137◦ 1.040 1.442 3.46 × 10−3

[23] Spin wave scattering off a defect YIG (7 × 103) 139◦ 135◦ 2.47 × 10−3 1.616 2.47 × 10−3

C. Low-frequency pocket

The low-frequency regime is important as it corresponds to
a well-established domain of validity of our theoretical model
as well as wavelengths which can still be excited and detected
reasonably easily in experiments.

1. Analytics

As could be seen in Fig. 5, the shape or even the existence
of the low-frequency pocket strongly depends on the chosen
value of η. Nevertheless, we can investigate the behavior of
caustics there by taking the limit ν → 0. In order to remain
below ferromagnetic resonance, we also take the limit h → 0.
Assuming h = 0 simplifies the computation of the quantity
tan θV = tan ϕ[1 + f (k̃, ν, η)], where f is a function given in
the Supplemental Material [43]. We can then differentiate this
with respect to k̃, take the limit ν → 0, and Taylor expand
the derivative; the details are provided in the Supplemental
Material [43]. Eventually, we find that

k̃c(ν → 0) = 3ν2 + O(ν4). (7)

It was expected that the caustic wave number goes to zero;
we can furthermore show that the lowest reduced wave num-
ber on the slowness curve (still in zero applied field), i.e., the
Damon-Eshbach wave number goes to zero as

k̃min(ν → 0) = 2ν2 + O(ν4) (8)

which proves that CSWBs exist down to vanishing reduced
frequencies, regardless of their values. In this limit, the asso-
ciated caustic wavefront angle is such that

cos ϕc = 1√
3

+ O(ν2). (9)

From the latter, we also get the CSWB direction θV,c:

tan θV (k̃c, h → 0, ν → 0) = −2
√

2 + O(ν2). (10)

The strength of this result lies with its independence on η;
this is not surprising as in the limit we are considering, the
CSWB’s wavelength diverges which means it must be much
larger than both the film thickness d and the dipolar-exchange
length lex, however large they may be. The numerical values
for the limits of ϕc and θV,c are about 54.74◦ and 109.5◦,
respectively.

2. Comparison with literature

We present in Table I a comparison between experimental
reports on caustics and predictions we make for the same

conditions, focusing on the CSWB direction. Whenever there
are three caustic points, the indicated predicted value for θV,c

is the closest found across all three caustic points.
We find a reasonable agreement in quite a few cases, gen-

erally for the larger values of η (i.e., for thinner films) with
the notable exception of the report by Sebastian et al. [29].
However, in this case, the theoretical dispersion relation that
we use may not be accurate any more due to the strong lateral
confinement of spin waves.

Furthermore, we find much larger discrepancies in several
cases. For instance, if we consider the excitation of a caus-
ticlike beam by Gieniusz et al. [45] at 4.62 GHz and under
an induction of 98 mT in a 4.5 µm thick YIG film, our model
predicts a caustic point at reduced wave number 13.2, with
a beam direction 169◦. However, the relevant reduced wave
numbers in this experiment are in the range of a few percent
[45], and the measured beam direction is 128◦. The origin of
this strong disagreement is easily understood by observing the
derivative dθV/dk̃ in this case. As Fig. 8 reveals, there exists a
local minimum at k̃ 
 0.0659 for dθV/dk̃ deep in the dipolar-
dominated regime. Moreover, the associated group velocity
direction is 128◦, and past the next local maximum, similar
values of dθV/dk̃ are reached again only for k̃ 
 0.9. This
illustrates the impossibility to distinguish a close-to-straight
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FIG. 8. Calculated derivative of the group velocity direction with
respect to the reduced wave number in the 4.62-GHz spin wave
excitation described by Gieniusz et al. [45].
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slowness curve from a true caustic point from measurements
alone.

Discrepancies may also arise due to the source’s nonideal
excitation efficiency, for instance, if it is too directional.
This is illustrated by the excitation of causticlike spin wave
beams by Körner et al. [46]. One of the reported TR-MOKE
measurements deals with a 60-nm thin permalloy (Ni80Fe20)
film driven at an excitation frequency of 16.08 GHz, under
160-mT applied induction; the authors observe twin beams
with a wavefront angle of 65◦, a beam direction 114◦, and
a reduced wave number of 0.314. Yet, the expected caustic
spin wave beams in these conditions should feature a reduced
wave number of 1.7063, a beam direction 138.62◦, not to
mention a wavefront angle of 53.27◦. In this case, it appears
that the excited spin waves simply correspond to the rather
narrow portion of the slowness curve that could be excited
by the authors’ tapered coplanar waveguide segments [47].
Indeed, at the measured wavefront angle of 65◦, in the authors’
experimental conditions, the expected reduced wave number
is about 0.28 (which falls rather far from zeros in the antenna’s
expected excitation efficiency [48]), and the beam direction
120.2◦. We do not have an explanation for the remaining
deviation in beam direction, though.

3. Experimental results

We now present results from experiments we have carried
out in order to validate our theoretical approach. Our aim
here is to measure CSWBs and compare their properties with
our predictions. In order to access CSWBs experimentally,
the reciprocal-space Fourier components of its magnetic field
must span a broad range of wave vectors. The ideal situation
where all wave vectors are accessible corresponds to an un-
realistic point source, which can obviously not correspond to
any high-frequency antenna. As a result, we choose a compro-
mise between ease of fabrication, and broadband excitation
efficiency, namely, a half-ring-shaped stripline antenna. This
design allows for a spin wave excitation of the slowness curve
within ϕ ∈ [0, π ], i.e., twice the quadrant previously investi-
gated. Of course, this excitation is not uniform because of the
microwave antenna dimensions on the order of a micrometer.

Our experiments were carried out using time-resolved
magneto-Optical Kerr ffect (TR-MOKE) microscopy. Here,
the dynamic out-of plane component of the magnetization δmz

is spatially mapped in the xy plane at a fixed phase between the
microwave excitation frequency and the laser probing pulses.
This enables direct imaging of the spin wave propagation in
the magnetic film. The wave-number resolution of the setup
lies within the dipolar-dominated regime. Indeed, our spatial
resolution r is about 0.29 µm (see Supplemental Material
[43]), so that for a film thickness t ∼ 100 nm, the largest
accessible reduced wave numbers are 2πt/(2r) ∼ 1.

It shall be noted that the position of the microwave an-
tenna in the resulting Kerr images is extracted from the
topography image which is acquired simultaneously and is
proportional to the reflectivity of the sample. Further infor-
mation on TR-MOKE can be found in the Supplemental
Material [43]. These experiments were performed on a 200-
nm-thick YIG film grown on a gadolinium gallium garnet
(GGG) substrate using liquid phase epitaxy. Considering this

YIG film 2 m−→
k

x

y

z
−→
Ha

FIG. 9. Schematic of the measurement geometry. The half-ring-
shaped antenna excites spin wave propagation within a broad angular
spectrum.

materials’ parameters [41], if not stated otherwise, η = 0.087
for all measurements. On top of the YIG film the 2 µm to 3 µm
wide microwave antenna was patterned by optical lithography
with subsequent Ar presputtering and electron-beam-induced
evaporation of Cr(5 nm)/Au(100 nm to 220 nm). During the
measurement the external bias field

−→
Ha was always kept fixed

such that it aligned with the legs of the antenna structure along
the x direction. A sketch of the measurement geometry can be
found in Fig. 9. At this stage, we point out one complication
resulting from this design. When driving the antenna with
a microwave field, the legs themselves excite spin waves in
the Damon-Eshbach geometry [14]. These modes are not of
interest for the generation of CSWBs, but due to the relatively
long attenuation length in YIG [36] they may propagate to the
tip of the antenna and interfere with the spin waves excited
by the half-ring. In order to suppress this effect, two different
approaches where applied. Either the length of the antenna
was set to 50 µm and the YIG between the legs and tip was
etched away, or the antenna was patterned to be 1 mm long in
the first place.

The first Kerr image shown in Fig. 10(a) was obtained
at a constant microwave frequency f = 1.44 GHz and an
external field μ0Ha = 5 mT. This corresponds to h = 0.028,

ν = 0.292. The width of the waveguide was 2 µm and the
distance between the legs and the tip was 1 mm. In the spatial
map, two spin wave beams with well-defined propagation
directions are visible; moreover, the phase and group ve-
locities are clearly noncollinear to each other. Here, beam
II stems from the waveguide excitation in the quadrant ϕ ∈
[π/2, π ]. The beam angles of beams I and II with respect
to the positive x direction are found to be 119.00◦ (beam
I) and 64.28◦ (beam II) which results in effective beam di-
rections of θI = 119.00◦ and θII = 180◦–64.28◦ = 115.72◦,
respectively. The discrepancy between θI and θII simply orig-
inates from a small misalignment of the external field with
respect to the waveguide legs. Since

−→
Ha is not fully paral-

lel to the x axis, the slowness curve is rotated by a small
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FIG. 10. Measurement data obtained for η = 0.087, h = 0.028,
and ν = 0.292. (a) Kerr image acquired from TR-MOKE. Two spin
wave beams highlighted in yellow and red propagate from the tip
of the antenna. (b) Squared modulus of the Fourier transform (FT)
of the Kerr image and expected slowness curve (blue). The yellow
and red points and arrows indicate the expected caustic points and
their respective group velocity directions. Caustic points I and II
correspond to beams I and II in the Kerr image.

angle αH = (θI − θII )/2 ≈ 1.64◦ in our frame of reference.
Keeping this in mind, we extract an average beam direction
θV,e = 117.36◦, a wavefront angle ϕe = 50.66◦ and a reduced
wave number k̃e = 0.211. These experimental findings are in
good agreement with our theoretical approach; indeed, values
of θV,c = 115.05◦, ϕc = 51.29◦, and k̃c = 0.223 are predicted
for a CSWB in our experimental conditions.

We can obtain further insight in reciprocal space with the
Fourier-transformed (FT) data shown in Fig. 10(b). Generally
speaking, the FT data allow for a direct observation of the
slowness curve in k̃ space. In order to reduce spectral leakage,
a Hanning windowing was applied; the latter provides a good
tradeoff between frequency and amplitude accuracy. We see
that the chosen antenna structure indeed excites a wide range
of wave-vector directions. The gaps in the spectrum arise
from the finite antenna dimensions, as previously mentioned.
We find a good agreement between the slowness curve (blue
curve) derived from our model (and corrected by the external
field angle αH). More importantly, this graph confirms that the
antenna structure grants access to the expected caustic points
(yellow and red points) since the Fourier magnitude is still
sufficiently large in that region. To conclude, caustic points I
and II can be assigned to beams I and II from the Kerr image.

We may now turn to the additional caustic points pre-
dicted by our model. The chosen triplet (η, h, ν) is an element
of the D3 set, and we would expect two further caus-
tic points θV,c,2 = 113.74◦, ϕc,2 = 33.00◦, k̃c,2 = 0.662 and
θV,c,3 = 114.02◦, ϕc,3 = 28.78◦, k̃c,3 = 1.227. These reduced
wave vectors could actually be resolved by our experimen-
tal setup where k̃res ≈ 2.2. The reciprocal space image in
Fig. 10(b), however, displays a very low amplitude for k̃ �
0.55, meaning that the microwave antenna cannot excite the
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FIG. 11. Measurement data obtained for η = 0.087 and ν =
0.292. Upper part: acquired Kerr images for reduced fields of (a1)
h = 0.0341, (a2) h = 0.0398, and (a3) h = 0.0511. (b1-3) Compar-
ison between experiment and theoretical predictions of caustic point
properties θV,c, k̃c, ϕc. The error bars are the standard deviations from
a bootstrapping fit procedure.

other caustic points very efficiently. Hence, only the low-
frequency pocket can be accessed.

Further Kerr images were taken for the same ν, but for
different h values. The h values were chosen such that they
lie beneath the expected FMR field hFMR ≈ 0.078 778. A
selection of the resulting Kerr images is illustrated in the
upper part of Fig. 11. In each of them, twin spin wave beams
are apparent. An overview of all the beam properties for
the corresponding h values is plotted in the lower part of
Fig. 11. Here, the relevant parameters from every individual
beam are extracted with image processing and bootstrapping
least-squares regression procedures. An example on how one
set of experimental data points is obtained can be found in the
Supplemental Material [43]. The reasonable, sometimes even
very good, agreement between predicted and experimental
values of θV,c and k̃c strongly suggests true CSWBs. The
deviation of the beam directions is mostly within the range
of the external field angle. The larger discrepancy between
predicted and measured wavefront angles ϕc is attributed to
the narrowness of the CSWB.

Beamlike features which do not coincide with a caustic
point were detected as well. This time, the measurements were
conducted with the 50 µm antennna structure and partially
etched film. The width of the antenna was 3 µm. The resulting
Kerr map for f = 1.84 GHz (ν = 0.372) and μ0Ha = 5 mT
(h = 0.028) is shown in the left upper half of Fig. 12. In this
geometry, a Damon-Eshbach–type mode propagating from the
YIG edge could not be fully suppressed; it is visible as a plane
wave background. Our procedure to analyze spin wave beams
yields θV,e = 136.33◦, ϕe = 68.97◦, and k̃e = 0.522, whereas
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FIG. 12. (a) Kerr image with twin beams obtained with η =
0.087, h = 0.028, and ν = 0.372. (b) Calculated derivative of the
group velocity direction with respect to the reduced wave number.
Dashed green lines highlight close-to-straight slowness curve. (c) FT
of Kerr image. The experimentally observed beam parameters are
depicted in yellow, the calculated slowness curve in blue, and the
calculated caustic points in red. Dashed green semicircle illustrates
lower limit of close-to-straight portion of slowness curve.

our model predicts a caustic point with θV,c = 121.39◦, ϕc =
35.84◦, and k̃c = 1.564.

The origin of the experimentally observed beams may be
twofold. First, a close-to-straight slowness curve similar to
the case of Gieniusz et al. [45] is predicted to exist within
relatively close distance to k̃e. The dθV/dk̃ plot in Fig. 12(b)
displays almost a constant behavior between 0.6 � k̃ � 1.2
(marked with green dashed lines). The proximity of the ex-
perimental caustic point to a straight-to-close slowness curve
is also illustrated in the FT data in the lower part of Fig. 12.
Here, the dashed green semicircle represents the lower bound
of k̃ = 0.6 and the extracted beam points are highlighted in
yellow. For this portion of the slowness curve, group velocity
directions of up to 121.39◦ are predicted. This beam direction,
however, is still in stark contrast with the measurement result.
Moreover, the calculated slowness curve (blue curve) devi-
ates significantly from the FT data. The difference between
reciprocal space image and our model may show the limit
of the model applicability since a film with η = 0.087 may
not be considered a thin film anymore. This results in pre-
dictions which are less reliable at higher ν values. A second
possible origin of the beams is the excitation efficiency of
the microwave antenna as there are many gaps in the FFT
spectrum. The beams appear to be located close to some of
them and, hence, may correspond to the excitation of only a
small portion of the slowness curve within this region.

D. Caustic point of higher order

Based on the conclusions from Sec. III B, we know that the
intersection of ∂D3,l and ∂D3,u there exists a single caustic
point on the slowness curve; in the schematic discussion from
the above based on the approximant P (k̃; a, b), it corresponds
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FIG. 13. (a) Plots of the relative deviations from the following
caustic point properties as a function of k̃: its group velocity direction
θV, its natural wavelength λ0 = 2π/k̃, and its apparent wavelength
λ = 2π/[k̃ cos (θV − ϕ)]. Main graph: h = h1 = 1.15 × 10−21, ν =
ν1 = 0.315 279 504, η = η1 = 0.102 536 646 141 47, which are ex-
tremely close to the values of νc and η for which hc = 0. Inset: same
h and η = η1, ν = 0.95ν1 = 0.299 515 528 8. (b) Slowness curve for
ν1, η1, and h1; k̃c 
 0.7259. The slowness curve at ν2 is not shown
for clarity, as it is very similar to the other one.

to a = 0 and b = 0, which means that dθV/dk̃ ∼ (k̃ − k̃c)3

around this point. To put it differently: At this intersection,
corresponding to the cusp seen in Fig. 7, the caustic point is
not a simple extremum for θV on the slowness curve but an un-
dulation point, in the vicinity of which θV − θV,c ∼ (k̃ − k̃c)4.

The existence of such an undulation point is of particular
interest since the higher order in the dependence of θV on
k̃ implies a flatter extremum in group velocity direction and
therefore the possibility of larger portions of the slowness
curve contributing to the CSWB. Moreover, as was discussed
in Sec. II B, this does not necessarily mean an increase in
spectral breadth of the CSWB since the latter depends on
the apparent wavelength. In order to evidence this, we show
in Fig. 13 how the group velocity direction as well as the
natural and apparent wavelengths vary around a caustic point
very close to one of higher order, here the one such that its
corresponding critical field hc is zero. The considered slow-
ness curve corresponds to h = h1 = 1.15 × 10−21, ν = ν1 =
0.315 279 504, η = η1 = 0.102 536 646 141 47.

Let us briefly outline how the coordinates νc,0 = νc(hc =
0) and ηc,0 = ηc(hc = 0) were found with a good accuracy.

144431-10



CAUSTIC SPIN WAVE BEAMS IN SOFT THIN FILMS: … PHYSICAL REVIEW B 107, 144431 (2023)

More details can be found in the Supplemental Material [43].
The starting point was a rough, hand-performed search for
a value of η bringing the cusp of D3 to lie on the ordinate
axis in a field and frequency map. This yielded a starting
point of η

(0)
c,0 = 0.10 and ν

(0)
c,0 = 0.31. In these conditions,

a caustic point was found for k̃(0)
c,0 
 0.73. We then began

an iterative procedure using appropriate Taylor expansions
of the dispersion relation and of an exact expression for
θV(h = 0, η, ν, k̃, ϕ). Updating these at each step with the new
solutions found by looking for the undulation point allows
to converge to numerical values which we assimilate to the
intersection of ∂D3,l and ∂D3,u.

Over three iterations, the relative changes in the estimates
steadily decrease in absolute value, from at most 5% in
the first step to at most 5 × 10−6 in the last one, which
provides the following guesses: k̃(g)

c,0 = 0.731 717, η
(g)
c,0 =

0.102 536 6, ν
(g)
c,0 = 0.315 279 6. The latter can be compared

with, e.g., the hand-refined values used for Fig. 13: ν = ν1 =
0.315 279 504, η = η1 = 0.102 536 646 141 47, correspond-
ing to k̃c = 0.725 904. It must be noted that the somewhat
larger relative difference in terms of k̃c,0 is due to the very
steep dependence of k̃c(ν, η, h → 0) on η. We do empha-
size that the exact location (νc,0, ηc,0) is necessarily different
from (ν1, η1) but close enough to highlight the qualitatively
different behavior of several characteristics of the slowness
curve. Finally, we note that for the parameters from Fig. 13,
θV,c = 118.36◦, ϕc 
 42.75◦, λ0,c = 84.41lex = 8.655d , and
λc 
 339.7lex = 34.83d .

We now examine the properties of the caustic point of
higher order in more detail. From Fig. 13, the dependence of
θV,c and the apparent wavelength λ on k̃ (in blue and green, re-
spectively) clearly appears to be quartic rather than quadratic
around the caustic point, which is where the deviations in
natural wavelength (in red) go through 0. Its much steeper
behavior is easily understood by looking at the corresponding
slowness curve in Fig. 13(b): around k̃c it is not only almost

straight but the angle γ between
−→̃
k and d

−→̃
k /ds is low, γ 


14.38◦. Hence, since d(k̃2)/ds is large, λ0 ∝ 1/k̃ varies fast.
By contrast, one can show that in the Taylor expansion of λ

in (s − sc)/k̃c around λc, the first coefficient is always exactly
zero at a caustic point. We stress again that this is caused by

an unchanging projection of
−→
k on −→eg across the caustic point.

If it is of higher order, it may be shown (see Supplemental
Material [43]) that in this term, the contributions due to the
second- and third-order variations of ϕ and to those of k̃ cancel
out. To put it differently, the projection k cos (θV − ϕ) is now
constant up to fourth order in (s − sc)/k̃c. On the other hand,
if the considered caustic point is a regular extremum for θV,
the term ∝ (s − sc)2 will be nonzero.

To summarize the above paragraph: For geometrical rea-
sons, the caustic point of higher order suppresses the quadratic
and cubic variations of the apparent wavelength around λc.
Hence, λ has then a markedly quartic behavior at a caus-
tic point of higher order. Furthermore, we point out that
even a small offset in frequency makes it display a clearly
quadratic behavior. This is shown in the inset of Fig. 13,
showing the same relative variations for the slowness curve at
h = h1 = 1.15 × 10−21, η = η1 = 0.102 536 646 141 47, but
ν = 0.95ν1 = 0.299 515 528 8.

We have thus shown that in a sufficiently close vicinity of
a higher-order caustic point, a broadband excitation in terms
of wave number can result in a narrow-band CSWB with a
very well-defined direction. As a result, this phenomenon is
expected to be extremely favorable in experiments since any
realistic antenna cannot have an arbitrarily narrow excitation
efficiency as a function of wave number. Provided that its
design yields AC magnetic fields with Fourier components
in the (broad) range of interest and with phases in a given
interval of width <π , all the corresponding spin waves will
coherently add in a beam with very small spectral breadth. In
other words, in such a situation, counterintuitively, exciting
additional wave vectors with different wave numbers does not
average out the carrier wave’s amplitude but rather increases
it. This naturally prompts the question of how much stronger
the emission from a caustic point of higher order would be
with respect to that of a regular caustic point and, more gen-
erally, of the spin wave amplitude enhancement due to the
caustics. This, however, goes beyond the scope of this paper.

To conclude this section, we point out that the reduced
field hc(η) corresponding to the caustic point of higher order
decreases as a function of reduced dipolar-exchange length.
Thus, this feature is expected to exist only for η < ηc,0 

0.102 536 6.

E. Merged caustic spin wave beams

We now move on to the topic of the threshold frequency
νm(h, η) corresponding to the upper boundary of D, i.e., above
which there are no caustic points any more. As was shown in
Fig. 6, the CSWB direction θV,c goes to π/2 as ν → νm(h, η).
This is illustrated in Fig. 14, where we show a slowness curve
for η1, h1, and ν2 = 0.718 364 190 52. We stress again that
νm(h, η) is strictly speaking an infinitely narrow boundary and
therefore ν2 �= νm(h1, η1), but in these conditions, we find a
unique caustic point on the slowness curve, with π/2 − ϕc 

0.32 µrad, and θV,c is equal to π/2 (within numerical preci-
sion). Moreover, at ν ′

2 = ν2 + δν, where δν = 1 × 10−11, we
do not find any caustic point on the slowness curve.

As a result, we take the slowness curve at (ν2, h1, η1) to be
assimilable to the one at (νm(h1, η1), h1, η1). Its very straight
aspect around ϕ = π/2 is somewhat reminiscent of the one
seen in the discussion of the caustic point of higher order. To
illustrate this in more detail, Fig. 14(b) displays the relative
deviations in group velocity direction θV, natural wavelength,
and apparent wavelength around the caustic point at ϕc. We
point out that in the present case, the deviations are plotted
against the curvilinear abscissa s normalized to the slowness
curve’s length sM instead of k̃ as in Fig. 13. This choice is
motivated by (i) the fact that in this case, to lowest order
k̃ − k̃c = O(s2) instead of O(s − sc) as before, and (ii) the
much smaller relative difference between the smallest and
largest normalized wave numbers k̃m, respectively, k̃M: k̃m 

5.17 and k̃M 
 7.91, compared to k̃m 
 0.240 and k̃M 
 5.66
before. Point (i) implies that for (ν2, h1, η1), k̃ cannot serve
as a meaningful abscissa along the curve since dk̃/ds = 0,
which was not the case for (ν1, h1, η1), while point (ii) shows
that the slowness curve for (ν2, h1, η1) is much closer to a
fourth of a circle than that for (ν1, h1, η1); as a matter of fact,
for (ν2, h1, η1), we find that 1 − [π (k̃m + k̃M)/4]/sM = 3.7%.
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FIG. 14. (a) Slowness curve at (ν2 = 0.718 364 190 52, h1, η1).
(b) Relative deviations in group velocity direction θV (blue), natural
wavelength λ0 (red), and apparent wavelength λ (green), as a func-
tion of curvilinear abscissa along the slowness curve normalized by
its total length sM.

Therefore, s/sM provides a better feeling for how much of the
slowness curve contributes to the CSWB.

From the graph, it seems that the apparent wavelength has
once more a quartic behavior around the caustic point. We
show in the Supplemental Material [43] that this is indeed
the case: in the conditions where ν = νm(h, η), to the lowest
nonzero order, θV(s → 0) − π/2 varies with an s3 depen-
dence around s = 0, and the lowest-order variations in k̃ and
ϕ (around k̃m and π/2) cancel each other out in the projection
k̃ cos (θV − ϕ).

As a result, a caustic point at νm(h, η) is such that an exci-
tation from a suitable, moderately directional antenna would
be effectively narrow band, and weakly divergent around the
group velocity direction θV,c = π/2. This orientation is itself
also advantageous in practice: as long as the used antenna can
excite sufficiently high wave numbers, the CSWB direction
becomes in this case simply perpendicular to the applied field.
Moreover, owing to the symmetries of the dispersion relation,
the CSWB benefits from the part of the slowness curve at
ϕ � π/2, which also feature θV 
 π/2. That is why large
spin wave amplitudes can be expected, as effectively two
CSWB have merged at this particular frequency. We note
that this merging phenomenon has already been observed in
simulations by Kim et al. [30] in perpendicularly magnetized
ultrathin films and by Gallardo et al. [42] in synthetic anti-

(a) (b)

FIG. 15. (a) νm,0(η) as a function of reduced dipolar-exchange
length η. (b) The corresponding reduced wavelength λ̃m =
(2π/k̃)/η = λ/lex = λ0/lex. Here, natural and apparent wavelengths
coincide as phase and group velocities are collinear.

ferromagnets. For the sake of completeness, let us comment
on what happens from an analytical point of view when the
two caustic points just below and above ϕ = π/2 coincide. It
must be kept in mind that they respectively correspond to a
maximum and a minimum for θV, temporarily considered for
ϕ ∈ [0, π ]. Thus, when they do coincide at ϕc = π/2, strictly
speaking there is no caustic point any more. To put it differ-
ently, below νm(h, η), over ϕ ∈ [0, π ], θV increases up to the
first caustic point where it reaches θV,c > π/2, decreases until
the second one (for ϕ > π/2) where it reaches π − θV,c, then
increases again to reach π when ϕ = π . Exactly at νm(h, η), it
is monotonously increasing with an inflexion point, and above
νm(h, η), it is strictly monotonously increasing.

In order to go beyond the particular case presented here, we
now investigate the evolution of νm(h → 0, η) = νm,0(η) as a
function of reduced dipolar-exchange length η. Similarly to
the caustic point of higher order, the evolutions as a function
of reduced field quickly become cumbersome. This is why we
focus on the νm,0(η), which is both the lowest frequency at
which CSWBs merge and a threshold frequency that is easier
to reach in experiments owing to the vanishing applied field,
provided that the studied film is soft enough.

We do keep in mind that below a certain limit in terms of
reduced dipolar-exchange length, the model we use loses its
validity. However, it has been shown that at sufficiently high
frequency [39], the analytical dispersion relation derived by
Kalinikos and Slavin describes spin waves once more with a
good accuracy.

Figure 15 displays the numerically determined dependence
of νm0 on η, as well as that of λm/lex the wavelength of the
corresponding CSWB, normalized by the dipolar-exchange
length. The procedure to find first a coarse estimate of this
curve (before refining it with actual field and frequency maps)
is described in the Supplemental Material [43]. We point out
that in the case of the merged CSWBs, the apparent and
natural wavelengths are equal since θV,c = ϕc = π/2. The
minimum value of η in these graphs corresponds to the small-
est one we used such that the slowness curve (in vanishing
fields) has only one connected component. While we may not
expect our findings to hold at the lowest η′s, we do expect their
accuracy to improve as η increases; it should be sufficient at
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least for η > 1 since in this case the considered ferromagnetic
film can truly be considered thin.

If we think about searching for the merged CSWBs,
Fig. 15(b) indicates that for realistic values of η = lex/d , the
CSWBs’ apparent wavelengths λ are only about one order of
magnitude larger than the material’s dipolar-exchange length,
typically λ � 25lex. This is in stark contrast with the case of
the caustic point of higher order in vanishing field, where
the natural wavelength was λ0,HO 
 84lex, and the apparent
wavelength λHO 
 334lex. As a result, it seems that while
caustic points of higher order may readily be excited by anten-
nas created with even conventional electron beam lithography,
in the case of the merged CSWB achieving a sufficient ex-
citation efficiency at the proper wave vectors should prove
quite challenging. For instance, even the low-magnetization,
low-damping, and rather soft ferrimagnet YIG features lex =
17.3 nm [41], meaning that high-end antennas with a charac-
teristic periodicity down to about 200 nm would be required
in this easiest of cases.

IV. CONCLUSIONS

We have focused on some properties displayed by spin
wave caustics in soft, thin ferromagnetic films. On the
theoretical side, our approach relied on the analytical dis-
persion relation established by Kalinikos and Slavin. We
could show that many reports on CSWBs in the literature
can be interpreted within this frame, although the absence
of characteristic signs of a true CSWB may still cause some
ambiguity. Following up on most studies, we have performed
time-resolved magneto-optical Kerr-effect-based microscopy
on samples designed for the study of CSWBs. Despite the
large thickness of the ferromagnetic material, our measure-
ments are in very good agreement with our predictions, thus
validating the approach. Furthermore, we have specifically
highlighted the large misalignment between phase and group
velocities in this case, and succeeded in observing narrow
CSWBs.

Just at the boundary of the dipolar-dominated regime ac-
cessible in our experiments, we have predicted the existence
of a special caustic point. We refer to it as caustic point of
higher order because it corresponds to an undulation point for
the group velocity direction rather than a quadratic extremum.
This configuration was shown to be of particular interest

because the apparent wavelength also featured a quartic be-
havior, which implies a low spectral breadth for the CSWB
even in the case of a broadband excitation. Although we
focused on the special value ηc of reduced dipolar-exchange
length such that the caustic point of higher order occurs at van-
ishing applied fields, we stress that this phenomenon would
appear at nonzero fields for η < ηc, as long as the dispersion
relation we use is valid.

Finally, we have investigated the merging of CSWBs. Once
again, we have studied in detail the case of vanishing applied
fields, yet the merging may occur for any field value, provided
that the excitation frequency is large enough. In terms of
model validity, it must be recalled that while vanishing values
of η are problematic for the chosen dispersion relation, the
merging always occurs at frequencies close to the exchange-
dominated regime. The discrepancies between the actual spin
wave dispersion and the model by Kalinikos and Slavin de-
crease in this frequency range [40]. As a result, our claim is
that the merging frequencies νm0 obtained for low η may be
slightly inaccurate yet the phenomenology should remain the
same as for larger η, where we expect our predictions to be
more reliable. As the CSWBs merge, a very significant por-
tion of the slowness curve contributes to spin wave emission
around θV = ϕ = π/2. Therefore, this configuration appears
promising in terms of channeling strong spin wave beams with
short wavelengths, as low as ∼15lex.

One of the most important questions remaining unad-
dressed so far concerns the quantification and prediction of
the enhancement of amplitude associated with CSWBs. More
precisely, the crucial distinction between natural and apparent
wavelength as well as the inadequacy of the usual Huygens-
Fresnel approach (due to the strong noncollinearity between
phase and group velocities) in the construction of CSWBs
calls for alternative evaluations of their amplitudes. We intend
to clarify these points and to go beyond the usually described
amplitude divergence so as to reconcile the theoretically van-
ishing curvature (on the slowness curve) and experimentally
finite amplitudes.
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