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Exchange interactions determine the correlations between microscopic spins in magnetic materials. Probing
the dynamics of these spin correlations on ultrashort length and time scales is, however, rather challenging, since
it requires simultaneously high spatial and high temporal resolution. Recent experimental demonstrations of
laser-driven two-magnon modes—zone-edge excitations in antiferromagnets governed by exchange coupling—
posed questions about the microscopic nature of the observed spin dynamics, the mechanism underlying its
excitation, and their macroscopic manifestation enabling detection. Here, on the basis of a simple microscopic
model, we derive the selection rules for cubic systems that describe the polarization of pump and probe pulses
required to excite and detect dynamics of nearest-neighbor spin correlations and can be employed to isolate
such dynamics from other magnetic excitations and magneto-optical effects. We show that laser-driven spin
correlations contribute to optical anisotropy of the antiferromagnet even in the absence of spin-orbit coupling. In
addition, we highlight the role of subleading anisotropy in the spin system and demonstrate that the dynamics of
the antiferromagnetic order parameter occurs only in next-to-leading order, determined by the smallness of the
magnetic anisotropy as compared to the isotropic exchange interactions in the system. We expect that our results
will stimulate and support further studies of magnetic correlations on the shortest length and time scales.

DOI: 10.1103/PhysRevB.107.144430

I. INTRODUCTION

The exchange interaction is the leading interaction in mag-
netically ordered solids, where the sign and strength dictate
the type of magnetic ordering, the temperature of magnetic
transitions, and the dispersion of collective magnetic excita-
tions: magnons. Ever since the first experiments on ultrafast
magnetism, the feasibility of controlling exchange interaction
by short laser pulses has been considered as one of the ulti-
mate tasks [1–14] offering access to the highest frequencies of
spin dynamics with the shortest possible wave lengths [15,16]
and, ultimately, to switching material between ferro- and anti-
ferromagnetic states [17]. This task, however, appeared to be
highly nontrivial. The perturbations of the exchange interac-
tion reported so far in experiments appear to be weak and do
not exceed a few percent [1,18,19]. Thus, it is naturally chal-
lenging to isolate this effect from other laser-induced effects,
such as optomagnetic and photomagnetic ones [20], to estab-
lish selection rules for laser-induced exchange perturbation,
and to reveal a leading mechanism of light-matter interaction
responsible for the effect.

Another challenge in studying the laser-induced control
of short-range exchange interactions stems from the fact that
the related spin dynamics may not comply with the classical
intuition based on quasihomogeneous dynamics of magnetic
order parameters. So far, different works were describing
the spin dynamics triggered by laser-induced perturbation of
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exchange using terminology originating from quantum in-
formation science, such as magnon squeezing [15,21], and
magnon entanglement driving longitudinal oscillations of the
antiferromagnetic vector [16,18,22]. However, as it was em-
phasized in several theoretical studies [11,13,14,18,23,24],
such dynamics is closely related to correlations between spins
at nearest-neighbor sites, which therefore is an another impor-
tant parameter which needs to be analyzed for comprehensive
understanding of the spin dynamics triggered by laser-induced
exchange perturbation [11,18,22,23,25,26]. Indeed, the sign
and magnitude of spin-spin correlations that characterize a
particular magnetic state are unambiguously connected with
the sign and strength of the exchange interaction. However,
since spin correlations are not a magnetic order parameter
themselves, it remains unclear how such dynamics can mani-
fest itself in optical pump-probe experiments, which measure
only macroscopic quasihomogeneous parameters of the mag-
netic medium.

To address this problem, it is of particular importance to
establish a direct link between the light-matter interaction,
microscopic spin correlation dynamics, and its macroscopic
manifestation. This calls for a theoretical framework, which
shows and allows us to model (i) how optical perturbation
of exchange interaction excites dynamics of spin correlations,
(ii) which macroscopic observables are modulated by the dy-
namics of spin correlations, and (iii) what is the best strategy
to probe this modulation optically. While the first part of this
task is being developed rapidly [11,22,25,26], analysis of the
rest of the problem is scarce [14] and is limited to considera-
tion of particular materials and signals studied experimentally
[15,18,27].
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In this article we present a theoretical description of
laser-driven perturbation of the exchange interaction in an
antiferromagnetic dielectric and related detection of the spin
dynamics excited by it. The perturbation is governed by light-
matter interactions in the electric-dipole approximation for the
nondissipative regime. We derive spin correlations for nearest
neighbors in the case of the simple Heisenberg model for
cubic dielectric antiferromagnets with and without magnetic
anisotropy. We show that dynamics of spin correlations can
be excited with ultrashort linear polarized laser pulses yield-
ing an impulsive change of the exchange interaction between
nearest neighbors, with a frequency corresponding to the fre-
quency of the two-magnon mode. We analyze the effect of the
excited spin correlations on macroscopic characteristics of the
system, i.e., the dielectric permittivity and the Néel vector. We
show that the laser-induced dynamics of nearest-neighbor spin
correlations manifests itself in an induced optical anisotropy.
Hence the latter can be used as a reliable manifestation of
the laser-driven spin correlation dynamics triggered by im-
pulsive perturbation of the exchange interaction, despite that
the pairs of magnons involved originate from the edge of
the Brillouin zone. Moreover, the analysis of laser-induced
changes of optical anisotropy reveals details of the exchange
perturbation, such as the orientation of the bonds along which
the exchange interaction was altered. We further show that
longitudinal dynamics of the Néel vector can also emerge,
however, only in a medium with magnetic anisotropy. In con-
trast to optical anisotropy, the dynamics of the Néel vector is
found to be less informative regarding the microscopic details
of the exchange perturbation. Finally, we link our theoreti-
cal results to ongoing experimental attempts to observe and
comprehend laser-driven two-magnon modes. To this end we
present complete pump and probe polarization dependencies
of modulation of the probe polarization at the frequency of the
two-magnon mode, and thus outline the strategy of excitation
and detection of this mode in experiments.

The article is organized as follows. In Sec. II we intro-
duce a cubic insulating antiferromagnet as a model system
to theoretically analyze the problem of optical excitation and
detection of the spin correlations. It is followed by formu-
lation of the unperturbed case in terms of the Heisenberg
model (Sec. II A), establishing a link between the Hubbard
model describing the interaction of light with electronic de-
grees of freedom and the spin Hamiltonian (Sec. II B), and
obtaining explicit expressions for the modulation of the di-
electric permittivity tensor by spin correlations (Sec. II C). In
Sec. II D we derive an expression for laser-induced changes
of exchange interaction based on the Hubbard model, and
in Sec. II E we describe related dynamics of macroscopic
medium characteristics. Section III A presents numerical cal-
culations of the laser-induced spin correlation dynamics in
the model antiferromagnet KNiF3. In Secs. III C and III B
we show modulation of dielectric permittivity and the Néel
vector driven by dynamics of spin correlations. In Sec. III D
we also obtain results for the case of an antiferromagnet
with additional magnetic anisotropy. In Sec. IV we discuss
the applicability of the developed theoretical description, and
discuss good agreement between our theoretical results and
experimental ones reported so far.

FIG. 1. (a) Illustration of the setup modeled. Magnetic ions form
two (red and blue) antiferromagnetically coupled sublattices. L is
the classical antiferromagnetic (Néel) vector. The electric fields of
the incident pump and probe pulses make angles θ and φ with the
x axis, respectively. Pump-induced changes of polarization, �φ(t ),
and ellipticity, �φ′(t ), of the probe pulses after passing through the
sample are the output values. (b) Schematic diagram illustrating the
values of spin correlations in ferromagnetic, classical antiferromag-
netic (Néel), and singlet antiferromagnetic states.

II. MINIMAL MODEL FOR THE DYNAMICS OF SPIN
CORRELATIONS IN CUBIC ANTIFERROMAGNETS

We consider a setup resembling a conventional pump-
probe geometry designed to detect laser-induced spin dynam-
ics by optical means [Fig. 1(a)]. The optical pump pulse with
duration 2τp and polarization angle θ is incident along one of
the crystal axes of a cubic antiferromagnet. The spin dynamics
excited by the pump pulse is probed by measuring the changes
of polarization, �φ(t ), of a weaker pulse delayed by the time
t with respect to the pump pulse and initially polarized at the
angle φ. In particular, we consider the pump pulse having a
Gaussian temporal profile of intensity, and the duration 2τp is
defined at the e−1 level of the peak intensity.

For the medium, we consider the primitive cubic crystal
structure with a lattice parameter a. Magnetic ions occupy
each corner of a cube. We consider the G-type antiferromag-
netic ordering with each magnetic ion surrounded by the ions
with opposite magnetic moment. Thus, the magnetic system is
described by two magnetic sublattices with opposite spin ori-
entations, SA and SB. We consider the z axis as a quantization
axis for the spins, coinciding with the propagation direction of
pump and probe pulses, and subsequently generalize to other
propagation directions for the pump and probe pulses. Our
focus is mainly on the case of an antiferromagnet possessing
no magnetic anisotropy. Correspondingly, we will find no
dependence on the actual orientation of spins in space. Addi-
tionally, we analyze how introduction of magnetic anisotropy
affects the main results. Also, where relevant, we include
results obtained for a two-dimensional (2D) square lattice in
the xy plane with the same type of spin arrangement with and
without magnetic anisotropy. This allows us to illustrate how
the dependence on the orientation of the Néel vector emerges
for models with anisotropy.

Dielectric properties of the lattice are described by strong
electron-electron interactions, treating the material as a single-
band Mott insulator. We limit our consideration to the case
of an antiferromagnet transparent for both pump and probe
pulses and treat the interaction of the pulses with the medium
in the electric-dipole approximation, which is justified in the
visible and near-infrared spectral ranges. Further, we do not
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include the effects of the spin-orbit coupling in the analysis of
light-matter interaction and exclusively focus on the effect of
exchange interactions.

A. Ground-state properties and static spin correlations

We start with the formulation of the unperturbed case. We
consider the Heisenberg model described by the Hamiltonian

Ĥ = J
∑

iδ

Ŝi · Ŝi+δ, (1)

where J is an exchange energy of the unperturbed system,
Ŝi = Ŝ(Ri ) is a spin operator at a position Ri in the lattice, and
the subscript δ denotes a vector δ = (δx, δy, δz )T to the nearest
neighbor. Following the standard approach, we consider the
ground state of the system being close to the Néel state, and
employ a truncated Holstein-Primakoff expansion with subse-
quent Bogoliubov transformation [16,18] to write the system
Hamiltonian in terms of magnon creation and annihilation
operators, keeping harmonic contributions only:

ĤHP =
∑

q

h̄�q(α̂†
q α̂q + β̂

†
−q

ˆβ−q + 1), (2)

where α̂†, β̂† and α̂, β̂ are magnon creation and annihilation
operators for different magnetic sublattices, respectively, and

q is the magnon wave vector, denoted by subscript q for
brevity. �q is the magnon frequency found as

�q = naJS

h̄

√
1 − γ 2

q , γq = 1

na

∑
δ

eiq·δ, (3)

with na being the number of nearest neighbors. It is convenient
to introduce two-magnon K̂ operators

K̂z
q = (α̂†

q α̂q + β̂
†
−qβ̂−q + 1)/2,

K̂+
q = α̂†

q β̂
†
−q; K̂−

q = α̂qβ̂−q, (4)

which act directly on magnon pairs and define number of
magnon pairs, as well as their creation and annihilation,
respectively. Commutation relations for K̂ can be obtained
from the Bose commutator relations for magnon operators as
[K̂z

q, K̂±
q ] = ±K̂±

q , [K̂−
q , K̂+

q ] = 2K̂z
q .

In terms of two-magnon K̂ operators the Hamiltonian of
the isotropic system reads

Ĥ2M =
∑

q

2h̄�qK̂z
q . (5)

Spin correlations are related to K̂ operators as

〈
Ŝz

i Ŝz
i+δ

〉 = −S(S + 1) + 2S

N

∑
q

⎛
⎜⎝ 2

〈
K̂z

q (t )
〉

√
1 − γ 2

q

− γq〈(K̂+
q + K̂−

q )(t )〉√
1 − γ 2

q

⎞
⎟⎠, (6)

〈
Ŝx

i Ŝx
i+δ + Ŝy

i Ŝy
i+δ

〉 = 2S

N

∑
q

cos(q · δ)√
1 − γ 2

q

(−2γq
〈
K̂z

q (t )
〉 + 〈(K̂+

q + K̂−
q )(t )〉), (7)

where N denotes the number of magnetic ions in the consid-
ered volume. Averaging is done over the unperturbed initial
state; hence we considered the Heisenberg picture throughout.
The dynamics of the Néel vector is directly related to the spin
correlations as well, and is given by the relation

〈L̂z〉 = NS

2
− 1

naS

∑
i,δ

〈
Ŝz

i Ŝz
i+δ

〉
. (8)

In terms of classical physics the spin correlations show the
mutual orientation for the nearest-neighbor spins and the
type of ordering, and become S2 for pure ferromagnetic and
−S2 for the Néel state. However, in quantum mechanics the
classical Néel state in antiferromagnets is not the ground
state. Although long-range Néel order persists for the three-
dimensional (3D) Heisenberg model, quantum fluctuations
reduce the local spin correlations below the classical limit
−S2, with a lower limit −S(S + 1) for the local singlet state of
two spins. Hence, even though the ground state will be close to
the classical Néel state, the numerical value of the spin corre-
lations is below what is accessible classically, as illustrated in
Fig. 1(b). Spin correlations are strongly dictated by the lattice
symmetry, which leads to their equality in the ground state for
different bonds, 〈Ŝi · Ŝi+δx 〉 = 〈Ŝi · Ŝi+δy〉 = 〈Ŝi · Ŝi+δz 〉. The
dynamics of spin correlations would reveal oscillations of the
local correlations with a value that is in between the values

of Néel and local singlet states and, potentially, for strongly
nonlinear dynamics, may extend to the ferromagnetic state.

B. Electric-dipole transitions and spin correlations

In the optical range, light excites electric-dipole transitions
and, therefore, does not pump or probe the spin subsystem
directly when spin-orbit coupling is not included. Never-
theless, spin-exchange processes do show up even in the
absence of spin-orbit coupling. A minimal model to describe
this is the Hubbard model and we illustrate the link be-
tween electric-dipole transitions and spin correlations using
the Schrieffer-Wolff transformation [28].

We start from a time-independent Hubbard model

ĤU = −
∑
i jσ

τi j ĉ
†
iσ ĉ jσ + 1

2
U

∑
i

n̂i(n̂i − 1), (9)

where τi j is the hopping amplitude between two sites i and
j and ĉiσ (ĉ†

iσ ) annihilates (creates) an electron at site i with
spin projection σ =↑,↓. U is the on-site repulsion and n̂i =∑

σ ĉ†
iσ ĉiσ is the number operator for electrons at site i. This

equation can be decomposed into

ĤU = −λT̂ + UD̂, (10)
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FIG. 2. (a) Illustration of diagonal and off-diagonal electron hop-
ping in the Hubbard model, corresponding to T̂2, T̂0 and T̂+, T̂−.
(b) Mutual electron hopping between two sites excited by a photon
with energy h̄ω. [(c), (d)] Schematic illustration of the pump-induced
spin dynamics and the related change of the dielectric response of the
4 × 4 lattice in the Néel state. (c) Mutual electron hopping between
two sites upon the perturbation of the exchange interaction induced
by the pump pulse polarized along the horizontal axis. (d) Resulting
state of the system with forbidden mutual electron hopping between
particular sites. This blockade of the electron hopping influences the
coupling of the electric field of the probe pulse with the system,
making it different for probe pulses with horizontal and vertical
polarization.

where T̂ is the kinetic energy operator and D̂ is the double
occupancy operator. λ stands for the order of hopping, which
is numerically equal to 1, but allows one to keep track of the
order of expansion in hopping [29]. The kinetic operator T̂
defines hopping between sites in the lattice and can be split
into four components schematically illustrated in Fig. 2(a).
Hopping operators T̂+ and T̂− change the number of doubly
occupied sites and hence the Coulomb energy, while operators
T̂2 and T̂0 do not.

As we consider the interaction of light with matter in the
nondissipative regime, the perturbation of the system is weak
and does not change Coulomb energy U . Therefore, for a
further analysis we detach the effects of electron permutations
between sites from changes in double occupancy. For that
reason we introduce canonical transformation

Ĥeff + UD̂ = eiŜĤU e−iŜ , (11)

with Ŝ decomposed by orders of hopping, Ŝ = ∑∞
i=1 λi. After

substitution and following a perturbative expansion we can
introduce the low-energy effective Hamiltonian

Ĥeff + UD̂ = ĤU + [iλŜ (1), ĤU ]

+ 1
2 [iλŜ (1), [iλŜ (1), ĤU ]] + O(λ3). (12)

We define Ŝ (1) in such a way as to satisfy the equation T̂− +
T̂+ = i[Ŝ (1),UD̂], such that all terms changing the number of
electrons per site are removed. Then Ŝ (1) can be found as a
linear combination of the off-diagonal hopping operators,

Ŝ (1) = i

U
(T̂+ − T̂−). (13)

By keeping only second order in the hopping expansion we
rewrite effective Hamiltonian (12) as a combination of the two
hopping operators, which acts as a permutation operator, as
illustrated in Fig. 2(b):

Ĥ (2)
eff = −λ2

U
T̂−T̂+, (14)

where T̂+T̂− is neglected due to zero double occupancy of sites
in the ground state.

Spin operators can be expressed in terms of cre-
ation and annihilation operators and Pauli matrices 2Ŝi =∑

σ1σ2
ĉ†

iσ1
σσ1σ2 ĉiσ2 . Then the effective Hamiltonian (14) ac-

quires a form

Ĥ (2)
eff = 2λ2

U

∑
i j

|τi j |2
(

Ŝi · Ŝ j − nin j

4

)
. (15)

Thus, we presented the well-known transformation that con-
nects electron dynamics with spin dynamics. In particular,
by comparing Eq. (1) and Eq. (15), one sees that we obtain
the well-known expression 2|τi j |2/U for the exchange inter-
action.

Hence, as is well known, virtual electron hopping is re-
sponsible for the ground-state exchange interaction. In the
presence of laser excitation, such virtual hopping processes
can be perturbed, leading to optical perturbation of the ex-
change interactions as we will discuss in the next sections.

C. Dielectric permittivity and spin correlations

The link between the Hubbard model and spin correlations
can now be used to describe how light-matter interactions
change the optical properties and can excite spin dynam-
ics. To this end we consider the standard expression for the
electric-dipole interaction, which for the Hubbard model can
be written as

Ĥ1(t ) = a3

2
P̂(t ) · E(t ), (16)

where P̂ = Qa−3 ∑
i n̂iRi is the polarization operator, with Q

the electric charge, and E(t ) is electric field of the pulse.
Next, to rewrite this into an expression that directly reflects

the spin correlations, we consider the evaluation of the dielec-
tric susceptibility. According to the Kubo formula [30], the
dielectric susceptibility and permittivity at a probe frequency
ω are found as

χμν (t ) = − ia3

2h̄ε0
〈[P̂μ(t ); P̂ν (0)]〉θ (t ), (17)

εμν (ω) = ε0Iμν − i
∫ ∞

−∞
χμν (t )e−iωt dt, (18)

where averaging is over the electronic subsystem, P̂μ is the
μth component of P̂, ε0Iμν accounts for all contributions
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to dielectric permittivity coming from high-energy optical
transitions, phonons, etc., Iμν stands for the identity matrix,
μ, ν = {x, y, z}.

To introduce spin correlations in the expression for the
dielectric permittivity [Eq. (18)], it is convenient to perform
two partial integrations:

εμν (ω) = ε0Iμν −
∑

n

a3

Zh̄2ω2ε0
〈ψn|[P̂μ, [P̂ν, ĤU ]]|ψn〉

−
∑
nm

a3 e−εn/kBT − e−εm/kBT

Zh̄3ω2ε0

× 〈ψn|[P̂μ, ĤU ]|ψm〉〈ψm|[P̂ν, ĤU ]|ψn〉
ωnm + ω − i0+ , (19)

where we have formally inserted the full set of elec-
tronic eigenstates {|ψn〉} with energy levels {εn}. Z =∑

n exp [−εn/kBT ] is the canonical partition sum, with Boltz-
mann constant kB and temperature T . As we discussed in
Sec. II B, the nearest-neighbor interaction, commutators of the
Hubbard Hamiltonian [Eq. (9)], and the polarization operator
can be written in a form resembling that of the hopping oper-
ator:

[P̂μ, ĤU ] = Q

a3

[∑
i

n̂iR
μ
i ,−λT̂

]

= −λQ

a3

∑
i, j

(
Rμ

i − Rμ
j

)
τi, j ĉ

†
i ĉ j

= −λQ

a3

∑
i,δ

δμτi,i+δ ĉ†
i ĉi+δ. (20)

Hence the commutators yield only kinetic terms, and, as we
have seen in the previous section [Eq. (15)], we can rewrite
them directly in terms of spin correlations. Details of this
derivation are given in Appendix A. This yields the main
expression for the dielectric susceptibility in terms of the spin
correlations,

εμν (ω) = ε0Iμν +
∑

δ

2J
(〈Ŝi · Ŝi+δ〉 − 1

4

)
U 2 − h̄2ω2

Q2δμδν

ε0a3
, (21)

where 〈Â〉 = ∑
n Z−1 exp (−εn/kT )〈φn|Â|φn〉, and new wave

vectors |φm〉 = exp (iλŜ(1) )|ψm〉. Hence, we have obtained the
desired result, which gives us an expression linking the spin
correlations along different bonds with the dielectric permit-
tivity. Again, we emphasize that in the ground state 〈Ŝi · Ŝi+δ〉
is the same for all bonds δ, hence the system is optically
isotropic in the ground state.

D. Exchange perturbation

With Eq. (21) we have derived an expression for the de-
pendence of the dielectric permittivity on spin correlations.
This already suffices for the description of the modulation
of the probe pulse due to spin correlations. We can use the
same expressions as well to describe the interaction of the
pump pulse with the antiferromagnet. To this end, it is conve-
nient to write the light-matter interaction in a different way.
In particular, for relatively small perturbations (in terms of
the electric field E as compared to fields causing dielectric

breakdown), we can treat the electrical polarization P as a
linear small perturbation in the electric field E. This allows us
to use the macroscopic approximation of the linear dielectric
susceptibility and define polarization as P(ω) = χ (ω)E(ω).
For the cubic crystals considered here, this means that the
light-matter interaction Ĥ1 can be rewritten as

Ĥ1 = a3ε0

2

∑
μν

∫ ∞

−∞
χ̂μν (t − τ )Eμ(t )E ν (τ )dτ, (22)

where we now use the susceptibility operator χ̂ instead of the
expectation value. This change is permitted when working in
the Heisenberg representation, where averaging is done with
respect to the initial equilibrium state.

We first consider monochromatic light Eμ(t ) =
1
2 (Eμ

0 eiωpt + Eμ∗
0 e−iωpt ), and evaluate the convolution using

the Fourier transform:

Ĥ1 = a3ε0

2

∑
μν

∫ ∞

−∞
χ̂μν (ω)eiωt Eμ(t )E ν (ω)dω, (23)

where

χ̂μν (ω) =
∑

δ

2J
(
Ŝi · Ŝi+δ − 1

4

)
U 2 − h̄2ω2

Q2δμδν

ε0a3
. (24)

The resulting integral yields both a static and oscillatory con-
tributions. Since we are interested in the low-frequency spin
dynamics (ωp 	 �2M), we can average over fast oscillations
of the optical pulse, which yields

Ĥ1 = a3ε0

2

∑
μν

1

2
χ̂μν (ωp)Eμ

0 E ν
0 . (25)

This allows us to write Ĥ1 as a perturbation of the spin
subsystem alone:

�Ĥ0 = �J
∑
i,δ

(e · δ/a)2

(
Ŝi · Ŝi+δ − 1

4

)
, (26)

where e = E0/|E0| is the polarization vector of the electric
field, and

�J = JE2
0 Q2a2

2
(
U 2 − h̄2ω2

p

) . (27)

Equation (27) describes the response of the system to
monochromatic laser excitation. To extend this result to the
Gaussian-like pulses E (t ) = E0 exp (−t2/2τ 2

p ) cos(ωpt ), we
pay attention to the fact that the considered pump frequencies
are far away from optical transitions, and one can neglect the
spectral dispersion of the dielectric susceptibility, so χ̂ (ω) can
be replaced with constant value χ̂ (ωp). Then the perturbation
acquires time dependence dictated by the temporal profile of
the pump pulse:

�Ĥ0 = f (t )�J
∑
i,δ

(e · δ/a)2

(
Ŝi · Ŝi+δ − 1

4

)
, (28)

where f (t ) = exp(−t2/τ 2
p ). We note that f (t ) is not limited

to a Gaussian pulse shape, but can describe an arbitrary pulse
shape with the spectral width not broad enough to require tak-
ing into account the dispersion of the dielectric susceptibility
within the pulse spectrum.
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Thus, in this section we have derived the key expressions
which enable one to describe consistently the excitation of
spin system by a laser pump pulse [Eq. (28)] and the mod-
ulation of the dielectric function [Eq. (21)]. We note that
the results are identical to the one obtained directly from
expanding the effective Hamiltonian to leading order in the
electric field [11]. In the following section we apply these
expressions to describe the major features of the laser-driven
spin dynamics that appears in this description as well as the
corresponding changes of optical properties.

E. Dynamics of spin correlations

In Sec. II D the light-matter interaction is described in
terms of perturbation of exchange interactions, which in-
duces an asymmetry in the system since bonds along different
crystal axes are perturbed differently depending on the po-
larization e of the electric field. We now evaluate the spin
dynamics which is triggered by such a perturbation. Since
akin to the unperturbed Hamiltonian [Eq. (1)] Eq. (28) is
defined in terms of exchange terms, we can express it in
magnon-pair operators. Using substitution of the transfor-
mation used in Sec. II A, we obtain for �Ĥ0 the following
two-magnon description:

�Ĥ2M = f (t )
∑

q

[h̄��qK̂z
q + h̄Vq(K̂+

q + K̂−
q )], (29)

with

��q = ζ�JS/h̄
1 − ξqγq√

1 − γ 2
q

, (30)

Vq = ζ�JS/h̄
ξq − γq√

1 − γ 2
q

, (31)

where ζ = ∑
δ (e · δ/a)2, ξq = 1/ζ

∑
δ (e · δ/a)2 exp(iq · δ).

Below we consider ultrashort pulses for which τp�q 
 1. In
addition, typically �J 
 J; hence it follows that ��q 
 �q.
The change of the magnon frequency is a small perturbation,
which is only present during the pulse, leading to a phase shift
that is of next order in smallness: τp��q 
 τp�q 
 1, which
we ignore in further discussions.

To evaluate the spin dynamics triggered by the optical
perturbation of exchange, we keep only leading order of
the two-magnon operators and omit the dynamics for times
t < τp during the pulse. The actual derivations are presented
in Appendix B and are obtained by using the Kubo for-
mula for linear-response dynamics and by employing the
Green-function method for the dynamics in response to a
perturbation with a Gaussian profile. The resulting dynamics
for the expectation values for the K̂ operators are

〈
K̂z

q (t )
〉 = 〈

K̂z
q,0

〉
,

〈(K̂+
q + K̂−

q )(t )〉 = −4Vqσq
〈
K̂z

q,0

〉
sin (2�qt ),

〈(K̂+
q − K̂−

q )(t )〉 = −4iVqσq
〈
K̂z

q,0

〉
cos(2�qt ). (32)

Here we used that expectation values 〈K̂x〉 and 〈K̂y〉 are zero
in the ground state, and

σq = √
πτpe−�2

qτ
2
p (33)

is the weighting factor accounting for the Gaussian pump-
pulse duration.

Combining these expressions with Eqs. (6) and (7) we ob-
tain the analytical expressions describing the time-dependent
spin correlations as a result of laser excitation:

〈
Ŝz

i (t )Ŝz
i+δ (t )

〉 = −S(S + 1) + 4S

N

∑
q

〈
K̂z

q,0

〉
√

1 − γ 2
q

(1 + 2γqVqσq sin (2�qt )), (34)

〈
Ŝx

i (t )Ŝx
i+δ (t ) + Ŝy

i (t )Ŝy
i+δ (t )

〉 = 4S

N

∑
q

〈
K̂z

q,0

〉
cos(q · δ)√

1 − γ 2
q

(−γq − 2Vqσq sin (2�qt )), (35)

�
〈
Ŝi(t ) · Ŝi+δ (t )

〉 = �J
8S2ζ

Nh̄

∑
q

(γq − cos(q · δ))(ξq − γq)

1 − γ 2
q

〈
K̂z

q,0

〉
σq sin(2�qt ). (36)

From Eqs. (34) and (35) one sees that the excitation of the
system results in spin correlations becoming time dependent
and oscillating at the frequency 2�q. Notably, the amplitude
of these oscillations is defined, in particular, by the parameter
Vq [Eq. (31)], which depends on ξq and therefore on the pump-
pulse polarization angle θ .

We note also that the time-dependent part of the spin
correlations is dependent on σq [Eq. (33)], which shows that
the amplitude of the spin correlation dynamics diminishes for
long pump pulses (�qτp 	 1). This is in agreement with the
well-established role of the pump-pulse duration in impulsive
excitation of various coherent processes [31]. In addition, the
correlation dynamics depends on the bond defined by δ. In
particular, correlations along different bonds δ are not inde-
pendent, since for the dynamics at t > τp,

∑
δ �〈Ŝi · Ŝi+δ〉 =

0; the total energy is conserved after the interaction of the
system with the pump pulse. Together the results of Secs. II C
and II E can describe both excitation and detection of spin
correlation dynamics within a single framework.

III. RESULTS

In this section, we show the dependencies of dynamics
of (i) spin correlations, (ii) the Néel vector, (iii) the probe
modulation on the polarization angle θ , and (iv) the influence
of magnetic anisotropy on dynamics of the Néel vector. We
start with the ideal cubic lattice and subsequently focus on
the anisotropic case. All results are based on numerical eval-
uation of Eqs. (21) and (36), using parameters taken for the
prototypical antiferromagnet KNiF3, given in Table I, and for
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TABLE I. Material parameters of KNiF3 used in calculations

J S U a εxx

(meV) (eV) (Å)

8.8 1 6.2 4 2.14
Ref. [32] Ref. [33] Ref. [34] Ref. [35] Ref. [36]

a cubic system of dimension V = (La)3, where L = 30 is the
number of sites in one direction, which is chosen such that
convergence is achieved for all observables presented.

A. Oscillations of spin correlations

In order to illustrate the dependence of laser-driven spin
correlation dynamics on the time t and pump polarization θ ,
we plot in Fig. 3(a) 〈Ŝi(t ) · Ŝi+δx (t )〉 for two nearest neigh-
bors along the x axis. The duration of the pump pulse was
2τp = 10 fs, and the induced change of the exchange inter-
action was �J/J = 0.008. The feasibility of this value of
�J/J is discussed below in Sec. IV A. As seen from the
calculated dependencies of 〈Ŝi(t ) · Ŝi+δx (t )〉 on time t after
excitation and the pump polarization θ , the pump pulse in-
cident along the z axis and polarized along either of the x
or y bonds excites oscillations of the spin correlations. The
frequency of the oscillation is 2�q∗/2π = 25 THz and dom-
inantly determined by magnons at the edges of the Brillouin

FIG. 3. (a) Dynamics of the spin correlation between nearest
neighbors along the x axis with respect to the polarization angle of
the pump pulse θ . Calculations are performed for taking exchange
interaction J = 8.8 meV, temperature T = 0, laser-induced perturba-
tion �J = 0.008J , and the pump duration 2τp = 10 fs. (b) Schematic
picture of oscillations on the scale of the spin correlations. (c) Spin
correlations at t = 9 fs after pulse as a function of the polarization
angle of the pump pulse θ for nearest neighbors along x, y, and z
bonds. +/− indicates increase or decrease of the value with respect
to the equilibrium one.

zone: �(q∗) = �(q∗, 0, 0) = �(0, q∗, 0) = �(0, 0, q∗), with
q∗ = ±π/a, since these magnon pairs provide the largest con-
tribution to the nearest-neighbor spin correlations. Apparent
damping of the oscillations is a result of two-magnon excita-
tion with lower wave vectors.

Figure 3(b) schematically illustrates the relation between
the sign of the perturbation of exchange and the initial phase
of the spin correlations. An instantaneous increase of the
exchange interaction between spins along the x axis induced
by the pump pulse polarized along the same axis (θ = 0◦)
excites dynamics of spin correlations along this x axis with
an initial phase that initially evolves closer to the singlet state.
Conversely, as shown in Fig. 3(a), a pump pulse along the y
axis (θ = 90◦), perturbing only exchange bonds along the y
axis, changes the initial phase of the x correlations, driving
them initially closer to the Néel state.

Even on the basis of energy conversation, not all phases
of nearest-neighbor correlations can be identical, since their
sum should be conserved during the dynamics after the pump
pulse. For the 2D case, it was shown that x and y correlations
have opposite sign [26] due to symmetry of the lattice and
the light-matter interaction. From our numerical results we
see that the same asymmetry in phase is present in three
dimensions as well, but amplitudes are not equal anymore. In
Fig. 3(c) we summarize how the initial phase and amplitude
of the spin correlation between the spins along all three bonds
depends on the pump polarization θ . Here, �〈Ŝi(t ) · Ŝi+δν

(t )〉
is plotted at t = 9 fs, for which the first maximum of the
oscillation occurs [see vertical line in Fig. 3(a)]. We empha-
size that perturbation of the exchange interaction along the x
bonds results in oscillations of spin correlations along all three
bonds, with amplitude being the largest for the x bond, and
with opposite phase and twice as small amplitude for the y and
z bonds. For general θ we find that the pump-polarization de-
pendencies of the spin correlations for x and y bonds possess
a twofold symmetry, while the one for the z bond is isotropic.

B. Dynamics of the Néel vector

In the previous section it was shown that the sum of all
correlations,

∑
δ〈Ŝi · Ŝi+δ〉, is time independent, consistent

with total energy conservation. This is true not only for the
scalar product, but also for z components of the correlations:∑

δ〈Ŝz
i Ŝz

i+δ〉. Hence, the macroscopic characteristic of long-
range magnetic order, the Néel vector defined by Eq. (8), will
be time independent. As it has been argued in [16,18], it is
expected that the excited two-magnon mode should manifest
itself in the longitudinal dynamics of 〈Lz〉. However, our nu-
merical calculations show that oscillations of 〈Lz〉 are absent
under perturbations of exchange interactions, in accordance
with the fact that both Ĥ and the light-matter interaction �Ĥ
are invariant under spin rotations. Likewise, 〈Lx〉 and 〈Ly〉
remain zero because of the high symmetry of the system.

In order to illustrate the origin of this result, we analyzed
the simplified case of a square lattice [Fig. 4(a)]. In this case,
the expression for the changes of 〈Lz(t )〉 can be written as

�〈Lz(t )〉 =
∑

q

Aq sin(2�qt ), (37)

Aq = −�JSζσq

h̄

γq(ξq − γq)

1 − γ 2
q

4
〈
K̂z

q

〉
, (38)
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FIG. 4. (a) Illustration of 2D square lattice antiferromagnetic
structure. Amplitude of oscillations Aq of z projection of spin corre-
lations in the first Brillouin zone (b) without spin anisotropy (Ja = 0)
and [(c), (d)] with anisotropy (Ja = 0.01J , Ja = 0.1J , respectively).
Calculations are performed for the same set of parameters as in
Fig. 3. Pump polarization is θ = 0o.

where the parameters entering expression for the amplitude
Aq reduce to γq = 1

2 cos(qxδx ) + 1
2 cos(qyδy) and ξq − γq =

(e2
x − 1

2 ) cos(qxδx ) + (e2
y − 1

2 ) cos(qyδy). By applying a mir-
ror transformation R along the (1,1) axis we get that γq

and ξq − γq transform as R(γq) = γq and R(ξq − γq) = (e2
x −

1
2 ) cos(qyδy) + (e2

y − 1
2 ) cos(qxδx ). As a result, the sum in the

right-hand side of Eq. (37) over the first Brillouin zone is
equal to zero. To visualize this, Fig. 4(b) shows Aq evaluated
numerically for different wave vectors in the first Brillouin
zone. From the presented data it is evident that the symmetry
of the system results in an absence of macroscopic dynamics
of 〈Lz〉. A similar analysis can be applied to the first Brillouin
zone of a 3D cubic antiferromagnet, yielding the same result.
In summary, our analysis of the results reveals that the spin dy-
namics excited by laser-induced perturbation of the exchange
interaction in the isotropic cubic crystal results in terahertz
oscillations stemming from a microscopic characteristic of
the magnetic system—spin correlations—while it does not
lead to oscillations of the macroscopic order parameter. In
the following section we analyze how the dynamics of spin
correlations can be detected in optical experiments.

C. Laser-induced dynamics of dielectric permittivity
and probe polarization

As a final step in the analysis we evaluate the perturbation
of the dielectric permittivity at the central frequency ω of the
probe pulse. In accordance with Eq. (21), we focus on the

FIG. 5. Amplitude of laser-induced oscillations of (a) dielectric
permittivity tensor components and (b) probe ellipticity �φ′(t ) as
a function of pump and probe angles. Cross sections of the ellip-
ticity map (c) at fixed probe polarization along the body diagonal
(φ = 45◦) and (d) at fixed pump polarization along the x axis (θ = 0).
Signs in panels (a), (c), and (d) and colors in panel (b) represent the
initial phase of the oscillations.

evaluation of

�εμν (t ) =
∑

δ

2J �〈Ŝi(t ) · Ŝi+δ (t )〉
(U 2 − h̄2ω2)

Q2δμδν

ε0a3
. (39)

For the cubic structure considered, the dielectric permittivity
is diagonal in the equilibrium: εxx = εyy = εzz = ε0. Exci-
tation of the spin correlation results in perturbation of the
diagonal tensor components with dominant frequency at two-
magnon frequency 2�q∗ ,

ε(t ) =
⎛
⎝εxx + �εxx(t ) 0 0

0 εyy + �εyy(t ) 0
0 0 εzz + �εzz(t )

⎞
⎠,

(40)

with in general �εxx = �εyy = �εzz, i.e., spin correlations
can induce optical anisotropy in the otherwise optically
isotropic antiferromagnet.

Figure 5(a) shows the amplitude and phase of the pertur-
bation of the dielectric tensor components as a function of
the pump polarization angle θ calculated at t = 9 fs corre-
sponding to the maximum of the laser-induced changes of
spin correlations [see Figs. 3(a) and 3(c)]. Two important
conclusions can be drawn from the presented plot. First,
Fig. 5(a) readily reveals that laser-induced dynamics of spin
correlations results in optical anisotropy. For instance, when
the pump pulse is polarized at θ = 0o, �εxx = −2�εyy =
−2�εzz. Second, by comparing Fig. 3(c) and Fig. 5(a) it is
observed that there is a one-to-one correspondence between
the amplitude and initial phase of spin correlation for spins
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along the μ bond and modulation of the dielectric permittivity
tensor component �εμμ. Qualitative insight in the emergence
of an optically induced anisotropy that appears even in the
absence of spin-orbit coupling can also be obtained from
the electron hopping in the Hubbard model, as illustrated
in Fig. 2(c). Again for simplicity we focus on the 2D case,
where only a 4 × 4 lattice is shown with a Néel ground state
[Fig. 2(c)]. In accordance with the discussion in Sec. II B, ex-
citation of the spin system by the pump pulse polarized along
the x bond yields the mutual hopping of the electrons between
the two nearest sites [Fig. 2(c)]. This hopping results in the
perturbation of the ground state with emergence of the nearest
neighbors with parallel spins [Fig. 2(d)]. As the hopping be-
tween them is blocked, pairs of such sites are excluded from
the interaction of the electric field of the probe pulse with the
system. As readily seen in Fig. 2(d), the number of such pairs
is different along x and y axes, giving rise to optical anisotropy
in the xy plane even within the electric-dipole approximation.

Therefore, spin dynamics triggered by the laser-induced
perturbation of the exchange interactions manifests itself in
the dynamics of macroscopic observables like the dielectric
permittivity. In general, the induced modulation of the am-
plitude and relative sign, i.e., the optical anisotropy, gives
rise to modulation of intensity of the transmitted or reflected
probe pulse and of the probe polarization, both for rotation
and for ellipticity. For the case of an isotropic transparent an-
tiferromagnet, the modulation of transmission coefficients for
the probe electric field components polarized along different
bonds will lead to effective rotation of the probe polarization
�φ(t ) independent of the sample thickness. At the same time,
the probe pulse will acquire ellipticity �φ′(t ) increasing with
sample thickness. For the probe pulse propagating along the
z axis [Fig. 1(a)] of a sample with thickness d one obtains a
simple expression for the induced rotation and ellipticity, as
a function of the incoming probe polarization φ [31], which
reads

�φ(t ) = �εxx(t ) − �εyy(t )

2(
√

εxx + 1)
sin(2φ), (41)

�φ′(t ) = ωd[�εxx(t ) − �εyy(t )]

4c
√

εxx
sin(2φ), (42)

where interference effects are neglected, and modulation of
the dielectric permittivity is small, |�εμν (t )| 
 εxx.

Substituting the solution for spin correlations [Eqs. (34)
and (35)] into Eqs. (41) and (42), we numerically calculate
the amplitude of oscillations of the probe ellipticity �φ′(t ) for
different pump and probe polarization angles θ and φ, respec-
tively. The result is shown in Figs. 5(b) and 5(c), where both
the pump and the probe propagate along the z axis. Naturally,
the pump-polarization dependence of the modulation of the
probe ellipticity [Fig. 5(b)] resembles that of the dielectric
permittivity and spin correlations, and have maxima when the
pump is polarized along the bonds. The dependence of �φ′(t )
on incoming probe polarization φ possesses maxima when the
probe makes an angle of 45◦ with respect to bond directions.

Figures 5(b) and 5(c) outline the complete experimental
strategy of excitation of ultrafast modulation of the exchange
energy in an antiferromagnet by a femtosecond laser pulse
and detection of subsequent spin dynamics at the two-magnon
mode frequency. Selecting the experimental geometry with

pump and probe pulses polarized along and at 45◦ with respect
to nearest-neighbor exchange bonds, respectively, yields max-
imum sensitivity to the spin correlations dynamics. It is also
worth noting that transient probe polarization rotation �φ(t )
and ellipticity �φ′(t ) both scale linearly with the induced
optical anisotropy, and possess the same dependence on the
incoming pump and probe polarizations. However, the coeffi-
cients entering expressions (41) and (42) are of the same order
of magnitude only for a case of small d ∼ 1 µm. For thicker
samples, the modulation of the probe polarization ellipticity is
expected to be more pronounced as compared to the rotation.

D. Influence of magnetic anisotropy

As shown in Sec. II E, in an isotropic cubic antiferromag-
net, perturbation of the exchange interaction by ultrashort
laser pulses yields dynamics of spin correlations. The latter,
in turn, manifests itself via modulation of such a macroscopic
parameter as a dielectric permittivity tensor. At the same time,
the longitudinal dynamics of the magnetic order parameters,
the Néel vector, is absent. However, in the majority of an-
tiferromagnets, there are preferable directions of the spins
associated with the presence of magnetocrystalline anisotropy.
Therefore, it is instructive to examine if the situation described
above holds in anisotropic cubic antiferromagnets as well.

We consider the uniaxial anisotropy of an easy-axis type,
with axis coinciding with the quantization axis z. Then magne-
tocrystalline anisotropy can be introduced in the Hamiltonian
[Eq. (1)] as

Ĥ = J
∑

iδ

Ŝi · Ŝi+δ + Ja

∑
iδ

Ŝz
i Ŝz

i+δ. (43)

We note that, although magnetocrystalline anisotropy is de-
fined for a single magnetic ion, the form of the additional
term in Eq. (43) yields the same additional contribution to the
two-magnon Hamiltonian [Eq. (5)]. As in the isotropic case,
we consider that the laser excitation results in perturbation of
the exchange parameter J between the nearest neighbors when
the pulse is polarized along the corresponding bond [Eq. (28)].
Introduction of magnetic anisotropy results in modification of
the parameters �q, γq, Vq, and σ ∗

q [Eqs. (3), (31), and (33)] of
the system and excitation as follows:

�∗
q = z(J + Ja)S

h̄

√
1 − (γ ∗

q )2, (44)

γ ∗
q = J

J + Ja
γq, (45)

V ∗
q = ζ�JS

h̄

ξq − γ ∗
q√

1 − (γ ∗
q )2

, (46)

σ ∗
q = √

πτpe−(�∗
q )2τ 2

p . (47)

Changes of parameters �∗
q, γ ∗

q , V ∗
q , and σ ∗

q affect results for
laser-driven spin correlations. However, the general features,
such as dependence of the pump polarization θ , remain qual-
itatively the same. Furthermore, modulation of the dielectric
permittivity tensor related to the spin correlations retains its
character; i.e., only modulation of diagonal components of the
tensor with different magnitude and sign occurs [Eq. (40)].
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The most important difference with the isotropic case oc-
curs when we consider longitudinal dynamics of the Néel
vector:

�〈Lz(t )〉 =
∑

q

A∗
q sin(2�∗

qt ),

A∗
q = −�JSζσ ∗

q

h̄

γ ∗
q (ξq − γ ∗

q )

1 − (γ ∗
q )2

≈ Aq − Ja

J + Ja

�JSζσq

h̄

γ 2
q

1 − γ 2
q

. (48)

Numerical calculations using Eqs. (8), (34), and (35) show
that, in the anisotropic antiferromagnet, the laser-driven spin
correlations result in oscillations of the Néel vector at the
frequency of the two-magnon mode 2�q∗ . However, distinct
from the situation with spin correlations, the oscillations of
the Néel vector are independent of the pump polarization. The
initial phase of the oscillations of �〈Lz(t )〉 reveals that the
system is first driven in the direction with reduced long-range
order, with subsequent oscillations around the equilibrium
value of 〈Lz〉 which is reduced as compared to the classical
value 2S due to quantum fluctuations. This is consistent with
the behavior revealed for spin correlations [Fig. 3(b)].

Occurrence of the longitudinal dynamics of the Néel vector
in the cubic crystal with magnetic anisotropy can be illustrated
by considering a simplified 2D case [Fig. 4(a)] and using
Eq. (37) with modified parameters. Figures 4(c) and 4(d) show
distribution of the amplitudes A∗

q across the first Brillouin
zone for two values of Ja/J . The presence of the magnetic
anisotropy results in an additional isotropic contribution to A∗

q,
breaking the mirror symmetry with respect to the (1,1) axis.
This additional contribution to A∗

q is found to be independent
of the pump polarization, leading to the absence of the depen-
dence of oscillations of Néel vector on θ .

It is important to stress that the obtained result on the
dynamics of the Néel vector is independent of the orientation
of the anisotropy axis. Thus, a pump pulse propagating along
an arbitrary direction in the anisotropic cubic antiferromagnet
would excite dynamics of spin correlations governed by the
angle the electric field of the pump pulse makes with respect
to the different bonds, and the pump-independent longitu-
dinal dynamics of the Néel vector. Both types of excited
spin dynamics can be probed optically by choosing a proper
propagation direction and polarization of the probe pulse. The
dynamics of the Néel vector changes the optical properties
via magnetic linear birefringence—an effect of spin-orbital
origin not accounted for by our microscopic model. Therefore,
we analyze the effect of laser-driven oscillations of 〈Lz(t )〉
within the phenomenological approach based on space-time
symmetry [37].

In the considered geometry [Fig. 1(a)] the time-dependent
Néel vector induces an additional difference between di-
electric tensor components εxx(yy)(t ) − εzz(t ) = b(〈Lz(t )〉)2 ≈
b〈Lz〉2 + 2b〈Lz〉〈�Lz(t )〉, where b is the magneto-optical co-
efficient. Thus, oscillations of the Néel vector could not be
sensed by the pulse propagating along the z axis. Since in
experiments pump and probe pulses often propagate nearly
collinearly to each other, we consider here an additional case
with the pump and the probe propagating along the y axis in

the layout shown in Fig. 1(a). In this case

�φ′(t ) = ωd

4c

[
�εxx(t )√

εxx + b〈Lz(t )〉2
− �εzz(t )√

εxx

+ 2b〈Lz〉√
εxx + b〈Lz(t )〉2

〈�Lz(t )〉
]

sin(2φ), (49)

where �εxx and �εzz describe modulation due to spin correla-
tions directly and correspond to �εxx and �εyy, respectively,
in Fig. 5(a). Thus, oscillations of the Néel vector bring ad-
ditional contribution to the dynamic ellipticity of the probe
pulse. However, this contribution is independent of the pump
polarization θ and thus can be distinguished from the contri-
bution from �εxx and �εzz.

IV. DISCUSSION

Before discussing the results obtained in light of experi-
mental findings reported so far, we note that our result can
be easily generalized to other antiferromagnets, for example,
those featuring noncubic crystal structures. The main require-
ment for a magnetic structure to support the results obtained
in our analysis is the presence of inversion symmetry, which
allows us to inverse a sign of magnon wave vectors. Another
condition is the transparency of the crystal for both pump
and probe pulses, which keeps changes of double occupancy
negligible. Thus we argue that the results obtained in our
analysis are applicable for dielectric weakly absorbing ma-
terials with crystal structures possessing an inversion center,
having one leading contribution to the isotropic exchange
interaction, and without anisotropic contributions to exchange
energy, such as Dzyaloshinskii-Moriya interaction. Materials
in which laser-driven two-magnon modes were demonstrated
experimentally, transition metal fluorides, do satisfy such re-
quirements to a certain degree.

A. Comparison with experimental data: Quantitative analysis

We start from estimating the magnitude of changes �J
expected for the pump fluences used in a typical experiment
with transparent dielectrics. We use KNiF3 as a model ma-
terial, since its magnetic and crystal structure can be readily
described by the structure shown in Fig. 1(a), and all relevant
material parameters and an extended set of experimental data
on the laser-driven two-magnon mode of this material is avail-
able.

KNiF3 crystallizes into a cubic structure, while antiferro-
magnetic ordering is of G-type and is characterized by a single
exchange constant. The Néel vector is aligned with one of
the cubic axes 〈100〉, and the magnetic anisotropy is weak.
The material is optically transparent in the near-infrared and
visible range, and optically isotropic in equilibrium. Mate-
rial parameters J , S, U , a and εxx required for calculations
are listed in Table I. Experiments on excitation of the two-
magnon mode by a laser pulse were reported in Refs. [16,18].
Parameters of experiments, such as laser fluence F , pump
pulse duration τp, pump and probe polarizations, and the
amplitude of the oscillations of the probe polarization �φ

being the outcome of experiments are presented in Table II.
Experiments were performed with photon energies of pump
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TABLE II. Experimental parameters and results of observation
of laser-induced two-magnon mode in KNiF3, and the results of our
calculations.

Theory (this work)

E0 τp θ �J/J �εxx �n φ �φ′

(V/cm) (fs) (rad) (rad) (mrad/µm)

1.9×109 5 0 0.008 2.8×10−5 9.6×10−6 π/4 0.05
π/20 0.016

Experiment with KNiF3 [18]

F τp θ φ �φ

(mJ/cm2) (fs) (rad) (rad) (mrad/µm)

8.6 5 0 < π/20 0.017

and probe pulses being h̄ωp = 2.2 eV and h̄ω = 1.3 eV. In
this spectral range the dispersion of the equilibrium dielectric
permittivity of KNiF3 can be neglected and a single value of
εxx = εyy = εzz can be used. Note that the experimental value
of �φ is provided per 1 µm in Table II, while in experiments
the sample thickness was d = 340 µm.

Since KNiF3 possesses low magnetic anisotropy, we argue
that the dominating contribution to the measured modulation
of the probe polarization originates from the induced optical
birefringence, Eq. (39), and not from oscillations of the Néel
vector and related magnetic linear birefringence. For calculat-
ing the impact of the pump pulse on the exchange interaction
J we estimate the electric field amplitude of the pump pulse
E0 as

E2
0 = (1 − R)F√

ln 2ε0εxxcτp

, (50)

where c is the speed of light in vacuum and R = 0.035 is the
reflectivity coefficient.

Using Eq. (27), we obtain a relative perturbation of the
exchange energy of �J/J = 0.008 for θ = 0, π/2. In Table II
we report the corresponding modulation of optical parameters
of the medium at the probe pulse photon energy and resulting
modulation of the probe ellipticity �φ′ for probe polarized at
φ = π/4. For the sake of generalization, we report �φ′ per 1
µm material thickness.

In Ref. [16], the detection in experiments has been realized
using probe pulses polarized at φ < π/20 which decreases
the detected amplitude of polarization modulation by a factor
of ∼0.3 as compared to that found for φ = π/4 [Eq. (42)].
Indeed, our calculations for φ = π/20 yield the value of
�φ′ = 0.016, which is in a good agreement with the exper-
imental results (Table II). Thus, we argue that the outcome
of our theoretical model quantitatively describes the results
of experiments with KNiF3. In Sec. IV B we substantiate it
further by analyzing polarization dependencies of the probe
polarization modulation in KNiF3.

In order to put the obtained value of �J/J and related mod-
ulation of optical birefringence in perspective and to justify
further if these values are realistic, we compare �J/J and �n
to the changes of these values in KNiF3 under strain �a/a
available in literature. Applying relation J ∼ a−12 [35], we

estimate that for KNiF3, �J/J = 0.01 effectively corresponds
to compressive strain �a/a ≈ 10−3, which is a large, but
experimentally accessible, value.

Having established the equivalent strain required to achieve
a change of the exchange interaction by 1%, we can now
compare the induced optical birefringence obtained in our
work with experimental values of strain-induced birefringence
reported for KNiF3. According to Ref. [38], the optical bire-
fringence induced by a strain of 10−3 applied along 〈001〉 is
|�n| ∼ 10−4 in the paramagnetic phase and |�n| < 10−4 be-
low TN . The calculated optical birefringence |�n| ≈ 1 × 10−5

(Table II) is in reasonable agreement with this value, support-
ing validity of calculations of optical birefringence induced by
changes of �J .

Thus, by comparing results of our calculations with exper-
imental data on the laser-induced two-magnon mode and to
the static data on strain-induced modulation of the exchange
parameter and optical birefringence, we obtained a realistic
estimation of the impact of the laser pulse on J reaching ≈1%
for laser fluences typically used for pump-probe experiments.

B. Comparison with experimental data: Symmetry analysis

1. Antiferromagnet with cubic lattice: KNiF3

The comprehensive experimental study of the laser-driven
two-magnon mode in KNiF3 [16,18] also provides the basis
for analyzing applicability of our model in terms of a sym-
metry of the effect. Several key observations were reported
on the excitation and detection of the two-magnon mode in
this material. First, it has been reported that the oscillations
of the probe polarization at the frequency of the two-magnon
mode are dependent on the pump polarization. For efficient
excitation, pump pulses were polarized along 〈100〉, i.e., along
δ for this material. This is in excellent agreement with cal-
culations based on our models as illustrated in Fig. 3(c).
Second, the initial phase of the detected oscillations of the
probe polarization was changing by π upon rotation of the
pump polarization from one axis to another. Again, such
pronounced pump-polarization dependence of the detected
probe polarization dynamics suggests that the macroscopic
parameter responsible for the measured signal is the induced
optical birefringence [Eq. (39)], and not magnetic linear bire-
fringence emerging due to oscillations of 〈Lz(t )〉. The latter
should be absent due to a weak anisotropy of the system.
Thus, the experimental results reported in Ref. [18] support
one of the main conclusions of our analysis predicting that
the induced optical birefringence is the leading macroscopic
manifestation of the laser-driven two-magnon mode.

It is important to point out that the authors of Refs. [16,18]
have attributed the oscillations of the probe polarization to
the oscillations of 〈Lz(t )〉, which has led to the necessity to
introduce additional symmetry lowering of the system into
the model. Indeed, the induced oscillations of 〈Lz(t )〉 are
pump-polarization independent in both our analysis and in the
analysis reported in Ref. [18]. Therefore, in order to explain
the pronounced pump-polarization dependence of the signal,
in Ref. [18] it was suggested that additional magnetoelastic
strain or spin-orbit effects contribute to different signs of �J
when the pump is polarized along and perpendicularly to the
equilibrium direction of L.
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2. Antiferromagnets with tetragonal lattice:
MnF2, FeF2, and CoF2

Applicability of our analysis to antiferromagnets with non-
cubic lattice structures can be demonstrated by considering
the results on excitation and detection of the two-magnon
mode in transition metal difluorides MnF2, FeF2 [15,21],
and CoF2 [27] possessing tetragonal rutile symmetry. The
dominating exchange interaction in these antiferromagnets is
between spins belonging to different sublattices with δ‖〈111〉,
while the Néel vector is along the [001] axis. Depending on
the transition metal ion, materials possess stronger (CoF2) or
weaker (MnF2) magnetic anisotropy. All these materials are
optically anisotropic with [001] being the optical axis.

In experiments reported in Refs. [15,21] pump and probe
pulses were propagating along the [001] axis. Thus, equilib-
rium optical anisotropy in the (001) plane is absent, and the
analysis of optical response linked to laser-driven dynamics of
spin correlations [Eqs. (40)–(42)] holds. The pump polariza-
tion was along the [110] direction, which coincides with the
projection of δ on the (001) plane. While pump-polarization
dependence of the detected signal was not reported, the cho-
sen pump polarization agrees with the outcome of our analysis
where the electric field of the pump pulse should have a
projection on δ in order to affect the hopping ti j and, thus,
yield nonzero �J . Differential transmission for the probe
pulses polarized along and perpendicular to the pump pulse
were measured, which corresponds to the rotation of the probe
polarization described by Eq. (41). In agreement with our
analysis, the probe was initially polarized at 45◦ with respect
to the pump pulses, thus being the most sensitive to induced
optical anisotropy at the two-magnon frequency. Longitudinal
dynamics of the Néel vector aligned along the [001] axis
cannot be optically probed in this geometry. We note that the
choice of the pump and probe polarizations in Refs. [15,21]
was made based on the symmetry of the two-magnon mode
and the corresponding Raman tensor.

In Ref. [27] the pump and the probe pulses were prop-
agating in a CoF2 crystal along the [010] axis, and the
equilibrium optical birefringence strongly affected the polar-
ization of pump and probe pulses, making direct comparison
of the experimental results with our theory intricate. However,
this geometry is of particular interest to us, since modula-
tion of the probe parameters due to both changes of optical
birefringence �εμν (t ) and longitudinal dynamics of 〈Lz(t )〉
can be observed. The authors reported that the detection of
the laser-driven two-magnon mode realized by measuring
transient probe rotation was possible with the probe pulses
polarized along the [001] axis. When the probe pulse was
polarized at 45◦, the detected signal was vanishing. On the
one hand, such observation contradicts the scenario where
the longitudinal dynamics of the Néel vector is detected via
magnetic linear birefringence. Indeed, in order to observe
such contribution, one needs to employ probe pulses polar-
ized at 45◦ to the Néel vector, i.e., to the [001] axis. On
the other hand, probe pulses polarized along the [100] or
[001] axes, as was used in the reported experiments, would be
sensitive to additional optical birefringence induced between
〈101〉 directions in the (010) plane. Thus, experimental results
on the laser-driven two-magnon mode in CoF2 [27] suggest

that the transient optical birefringence remains the dominating
macroscopic manifestation of the excited dynamics of spin
correlations even in material with strong magnetic anisotropy.
We note that no pronounced pump-polarization dependence
of the time-resolved signal at 2�q∗ could be extracted from
the data, which is a result of the static optical birefringence,
as well as of a poor signal-to-noise ratio. However, somewhat
stronger signals were observed with pump pulses polarized
along [101], i.e., when there is a maximal projection of the
pump electric field on δ‖〈111〉. Thus, overall, all results re-
ported for the transition metal fluorides are well described by
our model, even though the crystal structure of these materials
is different from the cubic lattice.

V. CONCLUSIONS

We have developed a full theoretical description of the
excitation, dynamics, and detection of spin correlations by
femtosecond laser pulses based on a minimal model of a trans-
parent cubic antiferromagnet. Despite the simplicity of our
model, it features observable responses in prototype strongly
correlated systems, which agree with existing experimental
reports. A single theoretical framework allows us to describe
that the impulsive perturbation of the exchange interaction by
an electric field of the femtosecond laser pulse triggers oscil-
lations of spin correlations, with initial phases and amplitudes
different for the bonds along and perpendicular to the electric
field of the pulse. Since the electric field of light affects the
interaction between the nearest neighbors, dynamics of spin
correlations is dominated by the frequency of the two-magnon
mode. The oscillations can be understood as a periodic shift
of spin correlations along one of the axes closer to the values
of local singlet or Néel states, and a shift of pairs along the
other two axes in the opposite directions, while the system as
a whole remains close to the long-range-ordered Néel state.
By varying the pump polarization, we obtain the complete
pump-polarization dependence of spin correlation dynamics
and demonstrate that it is the orientation of the electric field
of the pulse with respect to the bonds between the nearest
neighbors that governs this dependence.

We further show that in cubic antiferromagnets without
magnetic anisotropy, perturbation of exchange interaction
does not yield dynamics of the Néel vector, and, thus, the
dynamics of spin correlations cannot be explained in terms
of classical macroscopic parameters such as ferromagnetism
or the Néel vector. This is in contrast to the previously sug-
gested scenario that oscillations of the Néel vector are the
macroscopic manifestation of the laser-driven excitation of
the two-magnon mode [16,18]. We show that inclusion of
strong uniaxial anisotropy in the model leads to the emergence
of laser-induced dynamics of the Néel vector, because the
spin-orbit interaction, which determines magnetic anisotropy,
breaks independence between spin and lattice subsystems.
This contribution appears, however, only in next-to-leading
order, determined by the smallness of spin orbit with respect
to exchange interactions. Moreover, in a cubic crystal it does
not discriminate between perturbation of exchange along dif-
ferent bonds, and is therefore insensitive to polarization of the
excitation pulse.
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The developed model also reveals that the macroscopic
manifestation of the laser-driven exchange perturbation and
dynamics of spin correlations in cubic antiferromagnets is
the anisotropic modulation of the diagonal components of the
dielectric permittivity tensor of the electric-dipole type. As a
result, the dynamics of spin correlations can be detected in
the probe polarization ellipticity or rotation. Again, this effect
is governed by the crystal symmetry and does not depend
on the orientation of the antiferromagnetic vector. The latter
dependence emerges only when anisotropy is included and the
oscillation of the Néel vector is excited, leading to modulation
of magnetic linear birefringence.

To substantiate the conclusions drawn on the basis of
the developed model, we examined the symmetry and mag-
nitude of the laser-induced dynamics of the two-magnon
mode reported in literature, and compared those to theoret-
ical predictions. We compared pump and probe polarization
dependencies to experimental results in cubic (KNiF3) and
tetragonal (MnF2, FeF2, CoF2) antiferromagnets. The exper-
imental results for KNiF3 reported in Ref. [18] show good
agreement with our theory, both in terms of magnitude and
symmetry of the effect. Although the theory is developed for
cubic crystals, the results obtained can be easily generalized
to the case of centrosymmetric crystals. This is of great rel-
evance for studies on transition metal fluorides such as FeF2

and CoF2 [15,21,27] for which no experimental polarization
analysis has been reported so far. We hope that our theory
stimulates further experiments on the ultrafast dynamics of
spin correlations and facilitates the development of intuitive
models for the dynamics of magnetism at the shortest length
and time scale.
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APPENDIX A: POLARIZATION AND SPIN OPERATORS

We define new hopping operators as

T̃ μ =
∑
i,δ

δμτi,i+δ ĉ†
i ĉi+δ,

T̃ μν =
∑
i,δ

δμδντi,i+δ ĉ†
i ĉi+δ. (A1)

These definitions allow us to use the Schrieffer-Wolff
transformation for commutators with polarization

operators:

〈ψn|[P̂μ; ĤU ]|ψm〉 = −λQ

a3
〈ψn|T̃ μ|ψm〉

= −λQ

a3
〈φn|eiλŜ(1)

T̃ μe−iλŜ(1) |φm〉

= −λQ

a3
〈φn|T̃ μ|φm〉

− λ2Q

Ua3
〈φn|(T̂−T̃ μ

+ + T̃ μ
− T̂+)|φm〉,

(A2)

where |φm〉 = eiλŜ(1) |ψm〉. As far as electronic transition is
virtual, double occupancy for each cite is equal to zero. Taking
this into account, we keep only the contributions quadratic
in λ. A zero double occupancy ground state also leads to
〈T̂+T̂−〉 = 0. The same approach can be applied to another
commutator:

〈ψn|[P̂μ; [P̂ν ; ĤU ]]|ψm〉=−λ2Q2

Ua6
〈φn|(T−T̃ μν

+ + T̃ μν
− T+)|φm〉

= −2λ2Q2

Ua6
〈φn|T̃ μ

− T̃ ν
+|φm〉, (A3)

where T̂−T̃ μν
+ + T̃ μν

− T̂+ = 2T̃ μ
− T̃ ν

+ due to the definitions of
T̃ μν and T̃ μ. Then Eq. (19) in the main text can be written in
terms of new hopping operators whose product is proportional
to the spin correlation:

εμν (ω) = ε0Iμν + Q2

ε0a3

2〈T̃ μ
− T̃ ν

+〉
U h̄2ω2

− Q2

ε0a3

1

h̄2ω2

〈T̃ μ
− T̃ ν

+〉
h̄ω + U

+ Q2

ε0a3

1

h̄2ω2

〈T̃ μ
− T̃ ν

+〉
h̄ω − U

= ε0Iμν +
∑

δ

4|τi j |2
(〈Ŝi · Ŝi+δ〉 − 1

4

)
U (U 2 − h̄2ω2)

Q2δμδν

ε0a3
.

(A4)

APPENDIX B: TWO-MAGNON OPERATORS DYNAMICS

In this Appendix, we show how to derive two-magnon
dynamics in the case of an arbitrary perturbation profile. As
we discussed in Sec. II D, perturbation can be expressed as

�Ĥ2M = f (t )
∑

q

h̄Vq(K̂+
q + K̂−

q )

= 2 f (t )
∑

q

h̄VqK̂x
q = f (t )�Ĥ2M,0, (B1)

where [
K̂x

q , K̂y
q

] = −iK̂z
q,[

K̂y
q , K̂z

q

] = iK̂x
q ,[

K̂z
q, K̂x

q

] = iK̂z
q . (B2)
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We define Âq as one of K̂q operators and write the Kubo
formula for it:

〈Âq(t )〉 = 〈Âq,0〉 − i

h̄

∫ t

−∞
〈[Âq(t ),�Ĥ2M (τ )]〉dτ

= 〈Âq,0〉 + 2Vq

∫ ∞

−∞
f (τ )G

(
Âq, K̂x

q

∣∣t − τ
)
dτ

= 〈Âq,0〉 + 2Vq

∫ ∞

−∞
f (ω)G

(
Âq, K̂x

q

∣∣ω)
eiωt dω. (B3)

Green functions can be found from equations of motion for
G(Aq, Kx

q |ω) and G(Aq, Ky
q |ω):

ωG
(
Âq, K̂x

q

∣∣ω) = 1√
2π

〈[
Âq, K̂x

q

]〉 − 2i�qG
(
Âq, K̂y

q

∣∣ω)
,

(B4)

ωG
(
Âq, K̂y

q

∣∣ω) = 1√
2π

〈[
Âq, K̂y

q

]〉 + 2i�qG
(
Âq, K̂x

q

∣∣ω)
.

(B5)

Next, we solve this system and obtain the Green function for
Âq = K̂x

q :

G
(
Kx

q , Kx
q

∣∣ω) = − 1√
2π

2�q
〈
Kz

q

〉
ω2 − (2�q)2

. (B6)

In the case of Gaussian pulse f (t ) = e−t2/τ 2
p we obtain

〈
Kx

q (t )
〉 = −2Vq

2i
(F (−2i�q) − F (2i�q))

〈
Kz

q,0

〉
, (B7)

where F (p) =
√

π

2 σpept erfc(− t
τp

+ pτp

2 ), and σp = τpep2τ 2
p /4.

For τp 
 �−1
q ∼ t we can replace erfc (−t/τp)/2 with the

Heaviside function �(t ):〈
K̂x

q (t )
〉 = −4Vq

√
πτpe−�2

qτ
2
p
〈
K̂z

q,0

〉
sin (2�qt )�(t ). (B8)
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