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Spin-lattice interaction parameters from first principles: Theory and implementation
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A scheme is presented to calculate on a first-principles level the spin-lattice coupling (SLC) parameters needed
to perform combined molecular-spin dynamics (MSD) simulations. By treating changes to the spin configuration
and atomic positions on the same level, closed expressions for the atomic SLC parameters could be derived in
a coherent way up to any order. The properties of the SLC parameters are discussed considering separately
the symmetric and antisymmetric parts of the SLC tensor. The changes due to atomic displacements of the
spin-spin exchange coupling (SSC) parameters estimated using the SLC parameters are compared with the SSC
parameters calculated for an embedded cluster with the central atom displaced, demonstrating good agreement
of these results. Moreover, this allows to study the impact of different SLC contributions, linear and quadratic
with respect to displacements, on the properties of the modified SSC parameters. In addition, we represent an
approach to calculate the site-diagonal SLC parameters characterizing local magnetic anisotropy induced by a
lattice distortion, which is a counterpart of the approach based on magnetic torque used for the investigations
of magneto-crystalline anisotropy (MCA) as well as for calculations of the MCA constants. In particular, the
dependence of the induced magnetic torque on different types of atomic displacements is analyzed.

DOI: 10.1103/PhysRevB.107.144428

I. INTRODUCTION

While the ground state of magnetic materials is reason-
ably well described within the spin density functional theory
(SDFT) based first-principles approach, the Heisenberg model
is a tool giving access to the finite temperature and nonequilib-
rium magnetic properties, making use of Monte Carlo [1] or
spin-dynamics simulations [2], which are successfully applied
both to materials with robust local magnetic moment as well
as to metallic systems often treated as non-Heisenberg. In this
context it is important to note that it was a challenge for many
years to describe the thermodynamics of metallic magnetic
materials on the basis of the Heisenberg model [3,4] with the
corresponding coupling parameters derived using model elec-
tron Hamiltonians. Later on first-principles calculations of the
exchange coupling parameters Ji j done within the framework
of SDFT have been reported by various groups [5–12]. This
way a variety of systems including nonmetallic ones [6] could
be studied although the leading mechanisms of the exchange
interaction in these materials may be different, depending on
their structure and composition (more details can be found
in recent review articles [13,14]). A very efficient nonrela-
tivistic approach for calculations of the exchange coupling
parameters, based on the magnetic force theorem (MFT),
was suggested by Lichtenstein et al. [7], giving an explicit
expression on the basis of the multiple scattering formalism.
Corresponding extensions of this computational scheme are
now available to account for the full tensorial form of the
interaction parameters [15,16] as well as their extension to a
multisite formulation [17,18].

However, a description of magnetic properties based on a
spin Hamiltonian, in general, is incomplete, as it does not take
into account spin-lattice or magnetoelastic interactions. For

some materials, a corresponding contribution to the Hamil-
tonian may be neglected because of a negligible spin-lattice
coupling (SLC) while this is not the case for systems with
strong spin-lattice interactions, which may be responsible
for various interconnected magnetic and structural proper-
ties. This concerns, for instance, a structural transformation
accompanying the magnetic ordering transition observed in
noncollinear antiferromagnets RMnO3 [19] (where R is a rare-
earth element), CuCrO2 [20], CuCrS2 [21], and AgCrS2 [22],
as well as a formation of collinear order with complex struc-
ture in triangular lattice antiferromagnets exhibiting strong
geometrical frustration because of antiferromagnetic nearest-
neighbor exchange interactions [23,24]. A sufficiently strong
spin-lattice coupling may be responsible for the magnon-
phonon hybridization leading to mutual modifications of both
the magnon and phonon spectra that have been found in ex-
periments on the noncollinear antiferromagnets CuCrO2 [25]
and (Y,Lu)MnO3 [26,27]. Recent investigations on ultrafast
demagnetization [28–30] demonstrate the importance of SLC
for angular momentum transfer between the spin and lattice
subsystems, which may play a crucial role for the ultrafast
demagnetization [31–34]. Some phenomena determined by
magnon-phonon coupling are expected to be useful for various
applications, e.g., in spintronics. This for example holds for
the inverse Edelstein effect, which implies spin to charge
current conversion with a spin current generated by a surface
acoustic wave in a ferromagnetic layer via magnon-phonon
coupling [35]. Here one can also mention the possibility to
drive efficiently magnetic bubble domain walls, skyrmions,
and magnetic vortices by magnetoelastic waves [36], which
is of great practical importance for insulating materials when
compared to metallic systems where domain walls can be
moved by spin currents. A rapidly growing interest is also
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in the optical switching of the magnetization driven by spin-
lattice coupling [37,38].

Obviously, the growing interest in SLC driven magnetic
properties and phenomena already motivated many inves-
tigations on the mutual influence of the spin and lattice
degrees of freedom. Most of the investigations on magneto-
elastic properties have been performed so far on the basis
of the phenomenological continuous-field theory [39–41]
using parameters derived from experiment. More recent
work is based on results from first-principles electronic
structure calculations, as for instance the magnetism-driven
structure transformations (see e.g., [42,43] and references
therein), spin-dynamic simulations using temperature de-
pendent exchange coupling parameters modified due to
thermal lattice vibrations [18,44,45], or mutual spin and lat-
tice thermodynamic properties combining quantum Monte
Carlo simulations for the spin degree of freedom combined
with DFT-based force constant calculations [46]. Obvi-
ously, combined molecular-spin dynamics (MSD) simulations
[34,47–50] give access to the central aspects of the above
mentioned interesting and challenging experiments and phe-
nomena. A corresponding scheme required to calculate the
necessary SLC parameters on the basis of electronic struc-
ture calculations has been suggested by Hellsvik et al. [51]
and Sadhukhan et al. [52]. Within this approach the standard
Lichtenstein formula for the exchange coupling constant is ap-
plied to a system with an atom displaced from its equilibrium
position and represented by a super cell. In the following we
present an alternative scheme that treats changes to the spin
configuration and atomic positions on the same level by ap-
plying a corresponding extension to the Lichtenstein formula
[53]. This allows to derive closed expressions for the atomic
SLC parameters in a coherent way up to any order, followed
by MSD simulation [54] making use of these parameters.

Furthermore, we present a scheme to calculate the
site-diagonal SLC parameters characterizing local magnetic
anisotropy induced by a lattice distortion. It follows the
approach suggested by Wang et al. [55], giving access to
the magnetic anisotropy via the calculation of the magnetic
torque, which accounts for all contributions to the mag-
netocrystalline anisotropy (MCA). Moreover, it allows to
calculate in an efficient way all MCA constants entering the
spin Hamiltonian. A more general expression was worked out
by Staunton et al. on the basis of multiple scattering theory
[56]. Below we use a similar idea to calculate the MCA-like
contributions in the spin-lattice Hamiltonian. It should be
mentioned that in a complementary paper [57] we consider
in addition the role of the classical dipole-dipole interaction
for the SLC. Furthermore, this paper presents and discusses
further numerical results for various 2D and 3D materials, in
particular the magnetic films and compounds which magnetic
properties are strongly determined by prominent magnetic
frustrations and spin-lattice interactions.

II. INTERSITE SPIN-LATTICE INTERACTIONS

A. Spin-lattice Hamiltonian

To describe the coupling of the spin and spatial degrees
of freedom, i.e., between the spin and lattice subsystems we

adopt an atomistic approach and start with the phenomenolog-
ical spin-lattice Hamiltonian

HSLC = −
∑

i, j,α,β
k,μ

J αβ,μ

i j,k eα
i eβ

j uμ

k −
∑

i, j,α,β
k,l,μ,ν

J αβ,μν

i j,kl eα
i eβ

j uμ

k uν
l

+
∑
i,α,β
k,μ

Kαβ,μ

i,k eα
i eβ

i uμ

k +
∑
i,α,β

l,k,μν

Kαβ,μ,ν

i,kl eα
i eβ

i uμ

k uν
l ,

(1)

that can be seen as an extension of the standard Heisenberg
spin Hamiltonian. Accordingly, the spin and lattice degrees
of freedom are represented by the orientation vectors �ei( j)

of the magnetic moments �Mi( j) on the site i( j), and atomic
displacement vectors �uk(l ) for the atomic site k(l ). In Eq. (1)
we omitted the spin-spin coupling (SSC) terms as well as the
elastic interaction term represented by the interatomic force
constants [51], as we focus here on the SLC parameters and
their properties. Moreover, the spin-lattice coupling has been
restricted to three and four-site terms in Eq. (1) (terms 1 and 2)
J αβ,μ

i j,k and J αβ,μν

i j,kl , described in tensorial form as relativistic

effects are taken into account. The parameters Kαβ,μ

i,k and

Kαβ,μν

i,kl characterize the local magnetic anisotropy arising on
site i due to displacements of surrounding atoms k and l . The
Hamiltonian in Eq. (1) that is similar in form to that suggested
by Hellsvik et al. [51] obviously provides a suitable basis for
advanced MSD simulations.

B. Calculation of the Jαβ,μ

i j,k parameters

In previous works expressions for the nonrelativistic and
relativistic exchange coupling parameters Ji j [7] or Jαβ

i j
[15,16], respectively, have been derived by mapping the
free energy landscape F ({�ei}) obtained from first-principles
electronic structure calculations on the Heisenberg spin
Hamiltonian. Here we follow the same strategy by mapping
the free energy landscape F ({�ei}, {�ui}) by accounting for its
dependency on the spin configuration {�ei} as well as atomic
displacements {�ui} on the same footing. Making use of the
magnetic force theorem the change in free energy �F in-
duced by changes of the spin configuration {�ei} with respect
to a suitable reference system and simultaneous finite atomic
displacements {�ui} may be written in terms of corresponding
changes to the single-particle energies [7],

�F = −
∫ EF

dE �N (E ) , (2)

where EF is the Fermi energy and �N (E ) is the change to the
integrated density of states (NOS); see e.g., Eq. (6) in Ref. [7].

The use of the magnetic force theorem when calculating
the conventional exchange coupling parameters Ji j via the
LKGA scheme turned out to be rather successful for a wide
spectrum of materials, as can be seen from numerous reports
in the literature (see for instance the recent review articles
[13,14]). At the same time, one has to keep in mind also
its restrictions and their possible impact on the results based
on it; an issue also widely discussed and documented in the
literature [7,14,58–61]. When dealing with the SLC param-
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eters one has obviously a similar situation that gets more
complex as it involves not only the spin but also the lattice
degree of freedom. To justify the use of the magnetic force
theorem or more general of Andersen’s force theorem also
here we point out that spin tilting and atomic displacements
can be seen as independent perturbations allowing to consider
their impact in two steps one after the other (see, e.g., Ref.
[62]). A further justification can obviously be achieved by
comparing numerical results for the SLC parameters obtained
when using the scheme sketched here and those obtained by
more accurate but more time consuming methods [51,53]. A
corresponding comparison will be presented below (see also
Refs. [53,57]).

As exploited before [7,15,16], �N (E ) can be evaluated in
a very efficient way via the so-called Lloyd formula when the
underlying electronic structure is described by means of the
multiple scattering or KKR (Korringa-Kohn-Rostoker) for-
malism (see Appendix B) [63]. Adopting this approach one
has

�F = − 1

π
Im Tr

∫ EF

dE (ln τ (E ) − ln τ 0(E )) , (3)

with τ (0)(E ) the so-called scattering path operator, where
the double underline indicates matrices with respect to site
and spin-angular momentum indices [63]. Within the KKR
formalism these super matrices characterizing the reference
(τ (0)(E )) and perturbed (τ (E ))systems, respectively, are given
by

τ (0)(E ) = [m(0)(E ) − G(E )]−1 , (4)

with G(E ) the structure Green’s function and m(0)(E ) =
[t (0)(E )]−1 the inverse of the corresponding site-diagonal
scattering matrix that carries all site-specific information de-
pending on {�ei} and {�ui} [63].

Considering a ferromagnetic reference state (êi = êz) with
all atoms in their equilibrium positions (�ui = 0) the perturbed
state is characterized by finite spin tiltings δêi and finite
atomic displacements of the atoms �ui for the sites i. Writ-
ing for site i the resulting changes in the inverse t-matrix
as �s

αmi = mi(δêα
i ) − m0

i and �u
νmi = mi(u

ν
i ) − m0

i allows to
replace the integrand in Eq. (3) by

ln τ − ln τ 0 = −ln
(
1 + τ

[
�s

αmi + �u
νm j + ...

])
, (5)

where all site-dependent changes in the spin configuration
{�ei} and atomic positions {�ui} are accounted for in a one-
to-one manner by the various terms on the right-hand side.
This implies in particular that the matrices �s

αmi and �u
νmi

in Eq. (5) are site-diagonal and have nonzero blocks only
for site i. Assuming small tilting and displacement ampli-
tudes leading in turn to small changes of inversed scattering
matrix �s

αmi and �u
νmi, a Taylor series expansion for the

logarithm function in Eq. (5) gives access to the terms
having different order with respect to the spin tilting and
atomic displacement. Making use of the magnetic force the-
orem, these blocks may be written in terms of the spin
tilting δêα

i and atomic displacements of the atoms uμ
i to-

gether with the corresponding auxiliary matrices T α
i and Uμ

i ,

respectively, as

�s
αmi = δêα

i T α
i , (6)

�u
μmi = uμ

i U
μ
i , (7)

which represent the terms linear with respect to perturbations
δêα

i and uμ
i (for more details see Appendix C). Inserting these

expressions into Eq. (5) and the result in turn into Eq. (3)
allows in a straight forward way to calculate the parameters
of the spin-lattice Hamiltonian as the derivatives of the free
energy with respect to tilting angles and displacements. This
way, accounting for the “minus” sign in the Hamiltonian in
Eq. (1), and using the third- and fourth-order terms of the
Taylor series in Eq. (5), one obtains for the SLC parameters
up to fourth order the general expressions

J αβ,μ

i j,k = − ∂3F
∂eα

i ∂eβ
j ∂uμ

k

= − 1

2π
Im Tr

∫ EF

dE

× [
T α

i τ i j T β
j τ jk U

μ

k τ ki + T α
i τ ik U

μ

k τ k jT
β
j τ ji

]
(8)

and

J αβ,μν

i j,kl = − ∂4F
∂eα

i ∂eβ
j ∂uμ

k ∂uν
l

= 1

2π
Im Tr

∫ EF

dE

×[
T α

i τ i j T β
j τ jk U

μ

k τ kl U ν
l τ li

+T α
i τ i j T β

j τ jl U
μ

l τ lk U ν
k τ ki

+T α
i τ il U ν

l τ l jT
β
j τ jk U

μ

k τ ki

+T α
i τ ik U

μ

k τ k jT
β
j τ jl U ν

l τ li

+T α
i τ ik U

μ

k τ kl U ν
l τ l j T β

j τ ji

+T α
i τ il U ν

l τ lk U
μ

k τ k j T β
j τ ji

]
, (9)

that supply the basis for corresponding calculations of the
SLC parameters [53]. In the following these terms will be
called three- and four-site SLC terms, respectively, even if the
site indices are identical. Note that the site-diagonal parame-
ters, e.g., J αβ,μ

ii,k and J αβ,μν
i j,ii , may be contributed by the terms

determined by single-site scattering matrix corrections, which
are not only linear with respect to δêα

i and uμ
i [see Eqs. (6) and

(12), but also quadratic, i.e., δêα
i δêβ

i T (2)αβ
i (see for instance

[15]) and uμ
i uν

i U
(2)μν
i (see Appendix C), respectively.

In order to check the numerical results for three- and
four-site SLC parameters, J i j,k , J i j,kl , obtained using the ex-
pressions in Eqs. (8) and (9), auxiliary calculations have been
performed delivering information about the changes of the ex-
change coupling parameters occurring due to a displacement
of one atom from its equilibrium position. For this purpose,
the two-site SSC parameters Jαβ

i j (uμ
i ) have been calculated

for a cluster composed of 27 atoms, embedded into a bcc Fe
lattice (see Ref. [63]), with the central atom i displaced by uμ

i
along the x direction, i.e., �uk||x̂. Taking first- and second-order
derivatives of Jαβ

i j (uμ
i ) with respect to uμ

i (assuming μ = x)
in the limit of uμ

i = 0 obviously allows a direct comparison
to J αβ,μ

i j,i and J αβ,μμ
i j,ii . Alternatively, one may multiply J αβ,μ

i j,i
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with uμ
i and compare this with Jαβ

i j (uμ
i ) for varying uμ

i (also as-
suming μ = x). Note that all these calculations are performed
for a ferromagnetic (FM) reference system with its magnetiza-
tion �M along the z axis, i.e., �M||ẑ. The corresponding diagonal
α = x, β = x and off-diagonal, α = x, β = y tensor elements
in spin subspace, seen as a function of the displacement ux

i ,
are compared in Figs. 1(a) and 1(b), respectively. For the
diagonal terms shown in Fig. 1(a) one can see two groups
of data belonging to atoms i = 1–4 and i = 5–8, respectively
[see Fig. 1(c) that have opposite sign. Obviously, a rather good
agreement between the data for Jxx

i j (ux
i ) and J xx,x

i j,i · ux
i is found

for a small amplitude of the displacement. The same applies
also for the off-diagonal terms shown in Fig. 1(b). When
the displacement amplitude increases, the diagonal elements
Jxx

i j (ux
j ) deviate from the linear dependence on the displace-

ment, increasingly with its amplitude. On the other hand, the
off-diagonal terms show an additional splitting up and down
away from a linear variation, both for the curves showing
positive and negative sign. This can be attributed to the im-
pact of higher-order terms with respect to the displacement.
To check this, additional calculations have been performed
accounting for second-order contributions to the exchange
coupling tensor, quadratic with respect to the displacements
giving access to the combination J αβ,x

i j,i · ux
i + J αβ,xx

i j,ii · ux
i ux

i .
The second term is calculated using the expression for the
SLC tensor elements given by Eq. (9), assuming k = i and
l = i. Note, however, that in this case (i.e., k = i and l = i) an
additional second-order contribution J (2)αβ,μν

i j,ii has to be taken
into account, represented by the expression

J (2)αβ,μν
i j,ii = − 1

2π
Im Tr

∫ EF

dE
[
T α

i τ i j T β
j τ ji U

(2)μν
i τ ii

+T α
i τ ii U

(2)μν
i τ i jT

β
j τ ji

]
, (10)

where U (2)μν
i stems from the second-order derivative of the

distorted matrix mk with respect to the displacement (see
Appendix C), which includes the following two contributions:

�2,u
μν mi = uμ

i uν
i

(
U (2a)μν

i + U (2b)μν
i

)
(11)

with

U (2a)μν
i = −(U μ(ûi )miU

ν (ûi ) + U μ(ûi )miU
ν (ûi )) ,

U (2b)μν
i = (Ū (2)μν (ûi )mi + mi Ū (2)μν (ûi )). (12)

The dependencies of the terms J xx,x
i j,i · ux

i + J xx,xx
i j,ii · ux

i ux
i

and J xy,x
i j,i · ux

i + J xy,xx
i j,ii · ux

i ux
i on the displacement are shown

in Figs. 1(a) and 1(b), respectively, by dashed-dotted line,
demonstrating their good agreement with �Jxx

i j (ux
i ) and

�Jxy
i j (ux

i ), respectively, calculated for an embedded cluster
with a displaced atom in the center. In addition, the depen-
dence of the �Jxy

i j (ux
i ) parameter on the position of atom j

is determined by corresponding dependencies of the three-
site and four-site parameters J xy,x

i j,i and J xy,xx
i j,ii presented in

Table I.
The different sign of the parameters J xy,x

i j,i row (a) in the
Table 1 indicates a different slope for the two linear branches
J xy,x

i j,i · ux
i that can be observed for two groups of atoms j

in Fig. 1(b), positive for j = {1, 2, 5, 6} and negative for
j = {3, 4, 7, 8}. The parameters J xy,xx

i j,ii given in row (b) of

0 0.01 0.02 0.03 0.04
ux/alat

-2

-1

0

1

2

J ijxx
(u

j)  
- J

ijxx
(0

)  
  (

m
eV

) 

Jij
xx(SLC 1)

Jij
xx(SLC 2)

ΔJij
xx(CLU)

j = 1,2,3,4

j = 5,6,7,8

Fe bcc

0 0.01 0.02 0.03 0.04
ux/alat

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

J ij xy
 (u

x) (
m

eV
) Jij

xy(SLC 1) 

Jij
xy(SLC 2) 

Jij
xy(SLC 2) 

Jij
xy(CLU) 

j=1,2,5,6

j=3,4,7,8

Fe bcc

j=5,6

j=1,2

j=3,4

j=7,8

2

1

4

5

6
8

3 7
x

z

y
i

(a)

(b)

(c)

FIG. 1. The corrections of the diagonal (a) and off-diagonal
(b) exchange parameters, �Jxx

i j (ux
i ) and �Jxy

i j (ux
i ) (dotted lines), re-

spectively due to an atomic displacement ux
i of atom i along the x

axis, calculated for bcc Fe. The results are compared with those based
on the SLC parameters multiplied by the corresponding displace-
ment Jxx(SLC1)

i j = J xx,x
i j,i · ux

i and Jxy(SLC1)
i j = J xy,x

i j,i · ux
i (solid lines),

as well as Jxx(SLC2)
i j = J xx,x

i j,i · ux
i + J xx,xx

i j,ii · ux
i ux

i (a) and Jxy(SLC2)
i j =

J xy,x
i j,i · ux

i + J xy,xx
i j,ii · ux

i ux
i (b) (dashed-dotted lines) plotted as a func-

tion of displacement amplitude. (c) Labeling of the nearest-neighbor
atoms for a bcc lattice: A displaced atom i at the center is surrounded
by atoms j with �Ri j = �Rj − �Ri.

Table I characterize the curvature of the function J xy,xx
i j,ii · ux

i ux
i

quadratic with respect to the displacement. Within the first
group of neighbors, the curvature is positive for j = 1, 2
and negative for j = 5, 6, while within the second group
it is positive for j = 7, 8 and negative for j = 2, 4. As a
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TABLE I. The nearest-neighbor three-site J xy,x
i j,i (a) and four-site

J xy,xx
i j,ii (b) SLC parameters [meV/a.u. and meV/(a.u.)2 units, respec-

tively]. The results are given for the shifted atom i at the center and
the nearest-neighbor sites j [see Fig. 1(c).

i 1 2 3 4 5 6 7 8

a 0.182 0.182 –0.182 –0.182 0.182 0.182 –0.182 –0.182
b 0.506 0.506 –0.506 –0.506 –0.506 –0.506 0.506 0.506

consequence, the quadratic contribution results in a splitting
of the linear branches in line with the results for J xy

i j (ux
i ) ob-

tained from self-consistent calculations for embedded clusters
with a displaced atom i.

The antisymmetric part of the off-diagonal three-site SLC
tensor elements can be seen as the Dzyaloshinskii-Moriya in-
teraction Dz

i j induced by the symmetry-breaking displacement

of atom k, i.e., Dz,μ
i j,k = 1

2 (J xy,μ
i j,k − J yx,μ

i j,k ), that occurs despite
the conventional DMI represented by Dα

i j vanishes for the
nondistorted bcc Fe lattice due to inversion symmetry. The
same applies also for the four-site SLC parameters Dz,μν

i j,kl .
For illustration, the three-site and four-site SLC parameters

characterizing the spin-spin coupling between the nondis-
placed atom i and displaced atom j have been calculated for
FM-ordered bcc Fe. Figure 2 represents the diagonal J xx,μ

i j, j

and DMI-like Dz,μ
i j, j SLC parameters plotted as a function of

the interatomic distance Ri j , for different directions ux, uy, uz

of the displacement. Both Figs. 2(a) and 2(b) look symmetric
with respect to a sign inversion of the SLC parameters as a
consequence of the above mentioned spitting of the param-
eters into two groups with opposite sign. Of course, these
groups behave differently depending on the direction of the
displacement �u j . Moreover, for the DMI-like SLC parameters,
one can see different magnitudes of the Dz,z

i j, j parameters (i.e.,
for �u j parallel to the DMI vector) when compared to Dz,x

i j, j and
Dz,y

i j, j with the displacements perpendicular to the DMI vector.
The SLC tensor with the elements J αα,μ

i j,k , multiplied by
spin tiltings δêi( j) on sites i and j represents a force acting on
the atom on site k. These forces can lead to a structure insta-
bility induced by magnetic order in a system as mentioned in
the introduction.

Let us discuss the forces �F generated due to the sym-
metric diagonal J dia−s,μ

i j, j = 1
2 (J xx,μ

i j, j + J yy,μ
i j, j ) and DMI-like

Dα,μ
i j, j spin-lattice interactions, as shown in the left pan-

els of Figs. 3(a) and 3(b), respectively. Considering FM
bcc Fe with the magnetization direction along the z axis,
the corresponding forces generated due to a rotation of
the spin moments on sites i and j, êi( j) ≈ ẑ + δêx

i( j) have

the components −J dia−s,μ
i j, j δex

i δex
j and −Dy,μ

i j, j (êi × ê j )y =
−Dy,μ

i j, j (ê
z
i δêx

j − êz
jδêx

j ), respectively. In Fig. 3 the arrows

show the quantities �f j = −∑
μ J dia−s,μ

i j, j n̂μ (a) and �f j =
−∑

μ Dy,μ
i j, j n̂μ (b) (with the unit vectors n̂x = x̂, n̂y = ŷ, n̂z =

ẑ), which determine corresponding forces �Fj on the atoms
at site j, arising due to spin tiltings within the x − z plane.
The results are presented for two atomic shells around atom
i. As one can see, the forces originated from the diagonal
symmetric elements of the SLC tensor are directed along the

(a)

(b)

FIG. 2. (a) Diagonal SLC parameters J xx,x
i j, j for bcc Fe as a func-

tion of the interatomic distance Ri j . A similar behavior was obtained
for J xx,y

i j, j and J xx,z
i j, j . In case of �Ri j ⊥ �u all SLC parameters are zero.

The vectors next to the data points give the relative position �Ri j of
the sites j for the first three atomic shells around the central site i.
(b) Corresponding results for the DMI-like parameters Dz,μ

i j, j .

lines connecting the interacting atoms. This may lead to a
lattice distortion being the result of a competition with the
elastic forces between the atoms. On the other hand, as one
can see in Fig. 3(b), the forces originating from the anti-
symmetric elements of the SLC tensor, i.e., the DMI-like
SLC parameters, are perpendicular to the lines connecting
the interacting atoms, creating a mechanical torque on the
lattice dependent on the magnetic configurations, that can lead
to an angular momentum transfer upon the magnon-phonon
scattering events [53,64,65].

Figures 4 and 5 represent the four-site SLC parameters,
J dia−s,μν

i j,i j = 1
2

∑
k (J xx,μν

i j,i j + J yy,μν
i j,i j ) and Dz,μν

i j,i j , respectively,
plotted as a function of the interatomic distance Ri j . In this
case both atoms i and j are assumed to be displaced from
the equilibrium. One can see a dominating nearest-neighbor
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FIG. 3. The quantities �f j = −∑
μ J

dia−s,μ
i j, j n̂μ (a) and �f j =

− ∑
μ D

y,μ
i j, j n̂μ (b) (n̂x = x̂, n̂y = ŷ, n̂z = ẑ) associated with the sym-

metric diagonal and DMI-like SLC, respectively, characterizing the
forces on atoms j induced by spin tilting on site i via the spin-lattice
coupling in bcc Fe with the magnetization along z axis. The left
panel shows schematically the SLC-mediated force �F on atom j
(red arrow) induced by tilting of the spin moments on sites i and
j (shown in light blue color), and vice versa, the spin tiltings induced
due to the displacements of the atom on site j (light blue circle).
In the right panel, the arrows show the directions of the forces for
the first and second atomic shells, blue and red, respectively. In
the case (a) the forces are directed along the lines connecting the
interacting atoms, with �f j = 9.56(±1, ±1, ±1) for the first shell and
�f j = −2.9(0, 0, ±1), �f j = −2.9(0, ±1, 0), �f j = −2.9(±1, 0, 0) for

the second shell. In the case (b) the forces are perpendicular to the
lines connecting the interacting atoms, with �f 1

j = 0.16(±1, 0, ±1)

for the first shell and �f 2
j = 0.5(0, 0, ±1), �f 2

j = 0.5(±1, 0, 0) for the
second shell.

coupling J dia−s,μν
i j,i j in the case of μ �= ν, while the J dia−s,μμ

i j,i j
coupling has a comparable strength for several neighboring
shells. The SOC-driven DMI-like parameters are about two
orders of magnitude smaller, and are strongly determined by
the local symmetry depending on the directions of the dis-
placements and the direction of the �Dμν

i j,i j vector. In particular,
as is shown in Fig. 5(a), the Dz,μν

i j,i j component is equal to
zero for the displacement of atoms i and j along the same
direction.

At finite temperature the exchange parameters are modi-
fied not only by a single but all thermally excited phonons.
This problem was considered in the literature by various
groups [18,44,45]. In particular, the Debye model that pro-
vides a simple connection between the thermal average of
the squared displacement 〈u2〉D

T and the lattice temperature
T has been taken as a basis to account for thermal vibra-
tions. Using this relation, the dependence of the exchange
parameters Ji j on the temperature T has been determined

(a)

(b)

(c)

FIG. 4. The SLC parameters J dia−s,μν
i j,i j , diagonal with respect to

spin α = β and (a) diagonal with respect to displacement indices
μ = ν = x [the trend is similar for μ = ν = y(z)], and off-diagonal
with respect to displacement indices, μ �= ν, (b) for μ = {x, y} and
ν = {x, y} and (c) for μ = {x, z} and ν = {x, z}, represented as a
function of interatomic distance Ri j . The vectors next to the data
points give the relative position �Ri j of the sites j for the first three
atomic shells around the central site i.
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(a)

(b)

(c)

FIG. 5. The DMI-like SLC parameters Dz,μν
i j,i j diagonal with re-

spect to displacement indices μ = ν (a), and off-diagonal with
respect to displacement indices, μ �= ν, (b) for μ = {x, y} and ν =
{x, y} and (c) for μ = {x, z} and ν = {x, z}, represented as a func-
tion of interatomic distance Ri j . The parameters Dz,xy

i j,i j and Dz,yx
i j,i j in

(b) have for the same �Ri j the same magnitude but opposite sign. The
vectors next to the data points give the relative position �Ri j of the
sites j for the first three atomic shells around the central site i.

0 0.1 0.2
<u>rms (a.u.)

0

5

10

15

<J
> ij (m

eV
)

using SLC parameters
alloy analogy model

Fe (bcc) (FM)

100 K
200 K

400 K

600 K

FIG. 6. The dependence of the nearest-neighbor exchange cou-
pling parameters 〈Ji j〉T of bcc Fe on the root-mean-square thermal
displacement

√〈u2〉D
T of the atoms. Corresponding temperatures

are attached to some data points. Open symbols represent the
results based on the SLC parameters using Eq. (14) while
full squares correspond to results obtained via the alloy-analogy
model [66].

self-consistently on the basis of the so-called alloy analogy
model [66]. As the SLC parameters J diag,μ

i j,k and J diag,μν

i j,kl char-
acterize the corrections of the corresponding parameters Ji j

caused by displacements uμ

k , one can estimate the temperature
dependent 〈Ji j〉T by averaging over all lattice excitations cor-
responding to a given temperature T . This can be expressed
as follows:

〈Ji j〉T = J0
i j +

∑
k,μ

J diag,μ
i j,k

〈
uμ

k

〉
T +

∑
kl,μν

J diag,μν

i j,kl

〈
uμ

k uν
l

〉
T +... .

(13)

As the average 〈uμ

k 〉T of the linear term vanishes, the
second-order SLC parameters give rise to the lowest-order
contribution to the temperature dependence of the ex-
change parameters. Accounting only for the displacements
of the interacting atoms and using 〈uμ

k uν
l 〉T = δμν〈uμ

k uμ

l 〉T

we can approximate the thermal average of the parameters
as follows:

〈Ji j〉T = J0
i j +

∑
μ

J diag,μν
i j,i j

〈
uμ

i uμ
j

〉
T +

∑
μ

J diag,μν
i j,ii

〈
uμ

i uμ
i

〉
T

+
∑

μ

J diag,μν
i j, j j

〈
uμ

j uμ
j

〉
T . (14)

To evaluate this expression we use for the averaged displace-
ments the approximation 〈uμ

i uμ
j 〉T = 〈u2〉D

T with 〈u2〉D
T given

by the Debye model. The values for 〈Ji j〉T obtained this way
for bcc Fe are compared in Fig. 6 with corresponding results
calculated on the basis of the alloy analogy model [66]. One
can see that in this particular case the contribution due to
displacements of the interacting atoms are dominating, while
in general one might have to account also for contributions
due to the displacements of all surrounding atoms l and k
different from i and j.
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III. SITE-DIAGONAL SPIN-LATTICE
COUPLING PARAMETERS

A. Phenomenology: MCA-like spin-lattice Hamiltonian

In addition to the interatomic spin-lattice interaction, the
SLC Hamiltonian in Eq. (1) includes also a contribution to be
seen as a counterpart to the magnetic anisotropy in the spin
Hamiltonian

HMA =
∑
i,α,β

Kαβ
i eα

i eβ
i +

∑
i,α,β,γ ,δ

Kαβγ δ
i eα

i eβ
i eγ

i eδ
i + ... (15)

with the nonvanishing terms determined by the symmetry of
the crystal. The corresponding MCA-like terms in the spin-
lattice Hamiltonian in Eq. (1) characterize contributions to the
magnetic anisotropy at any site, arising due to a displacement
of surrounding atoms, breaking the local symmetry of the
crystal. Furthermore, these parameters give rise to a domi-
nating contribution to the spin-phonon interactions for some
materials as it was discussed for instance in Refs. [67–69].

The induced magnetic anisotropy energy in the Hamil-
tonian is characterized by the anisotropy constants, which
may include different contributions discussed in the literature,
controlled by dipole-dipole interactions and the spin-orbit
coupling (SOC) [70]. When comparing the dipole-dipole con-
tribution to the anisotropy and magnetostriction observed
experimentally, Lee [70] points out that it represents only
a small part of the observed values. This led him to the
conclusion that the magnetoelastic constants are primarily
determined by SOC.

Therefore we focus here on the SOC-driven spin-lattice
coupling responsible for the local magnetic anisotropy in-
duced by a lattice distortion breaking the local symmetry in
the system. Dealing with the atomistic spin-lattice Hamilto-
nian keeping the lowest-order terms linear with respect to the
atomic displacements according to the expression

Hme−MA =
∑
i,k

∑
μ

(
Kxx,μ

i,k uμ

k ex
i ex

i + Kyy,μ
i,k uμ

k ey
i ey

i

+Kzz,μ
i,k uμ

k ez
i e

z
i + Kxy,μ

i,k uμ

k ex
i ey

i

+Kxz,μ
i,k uμ

k ex
i ez

i + Kyz,μ
i,k uμ

k ey
i ez

i

)
, (16)

we will discuss below an approach providing the basis for
calculations of the SLC parameters of the Hamiltonian in
Eq. (1) on a first-principles level. Some contributions to the
expression in Eq. (16) have been discussed already [53],
which correspond to the site-diagonal SLC tensor J ii,k ,

both, diagonal, e.g., J dia−a,μ
ii,k = 1

2 (J αα,μ

ii,k − J ββ,μ

ii,k ) and off-

diagonal, e.g., J off−s,μ
ii,k = 1

2 (J xy,μ
ii,k + J yx,μ

ii,k ) terms. However,
there are further contributions, which have to be taken into
account, similar to those discussed in Ref. [15] consider-
ing various contributions to the MCA. In particular, one
should mention the so-called nonlocal contribution associ-
ated with the anisotropy of the three-site SLC J dia−a,μ

i j,k =
1
2 (J αα,μ

i j,k − J ββ,μ

i j,k ), similar to the so-called nonlocal contri-

bution 1
2 (J αα

i j − J ββ
i j ) to the uniaxial magnetic anisotropy

discussed in Ref. [15].
As an alternative, we are going to use a scheme based

on the magnetic torque [56] (see Appendix D), to get access

to the parameters of the MA-SLC Hamiltonian in Eq. (16).
Focusing on the terms Kαz,μ

i,k eα
i ez

i u
μ

k , the SLC parameters are
directly connected to the effective field determined as

�Hi,eff−SLCαz = − ∂

∂eα
i

Hme−MA|θ=0 , (17)

and can be calculated as follows:

Kαz,μ
i,k ez

i = ∂

∂2eα
i ∂uμ

k

Hme−MA|θ=0

= − ∂

∂uμ

k

�Hi,eff−SLCαz . (18)

For the FM reference state with the equilibrium magne-
tization direction along the z axis, one has ex ≈ θ , ey ≈ θ

and ez ≈ 1 − 1
2θ2 ≈ 1, assuming a small spin tilting θ from

the equilibrium. This allows to redefine for the sake of con-
venience the SLC parameters as follows: Kαz,μ

i,k ez
i → K̃αz,μ

i,k
[39,41,71], keeping in mind that the newly defined parame-
ters are antisymmetric with respect to time reversal and their
original form should be used in the dynamical equations. The
corresponding SLC parameters can be calculated via the first
derivative with respect to the spin direction, i.e.,

K̃αz,μ
i,k = ∂

∂eα
i ∂uμ

k

Hme−MA|θ=0 = ∂

∂eα
i ∂uμ

k

F |θ=0 . (19)

B. Torque: First-principles approach

As a starting point we use the ferromagnetic (FM) state
as a reference state and neglect for the moment all tem-
perature effects, i.e., assume T = 0 K. Instead of using the
Lloyd formula, we represent the change of free energy �F
in terms of the Green’s function G0(E ) for the FM reference
state, which is modified due to the perturbation. Denoting
the corresponding change in the Green’s function �G(E ) and
neglecting temperature effects one can write the change of the
total energy,

�F = − 1

π
Im Tr

∫ EF

dE (E − EF ) �G(E ) , (20)

where EF is the Fermi energy. Assuming that the perturbations
are small, the induced change of the Green’s function can be
represented by the following perturbative expansion:

�G(E ) = G0(E )�VmG0(E )

+G0(E )�VmG0(E )�VmG0(E ) + ...

+G0(E )�VmG0(E )�VuG0(E ) + ... , (21)

where �Vm describes a perturbation due to the spin tilting, and
�Vu is a perturbation due to a lattice distortion in the system. It
should be noted that we omit in Eq. (21) the terms determined
by the atomic displacements only, as well as all higher-order
terms. Below we will focus on the first and third terms in this
expression, as they give rise to the magnetic torque for the
nondistorted lattice and account for its distortion, respectively.

Substituting Eq. (21) into Eq. (20) and using the sum
rule dG

dE = −GG for the Green’s function, one obtains an
expression for the total energy change associated with the
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perturbations,

�F = 1

π
Im Tr

∫ EF

dE (E − EF ) �Vm
dG0(E )

dE

+ 1

π
Im Tr

∫ EF

dE (E − EF )�VmG0(E )�Vu
dG0(E )

dE
.

(22)

We keep here only the first- and second-order terms that
give access to the magnetic torque for the crystal, without and
with a lattice distortion, respectively.

By performing an integration by parts for the
second equation in Eq. (22) and taking into ac-
count that (E − EF ) �Vm G0(E )|E=EF = 0 and (E −
EF ) �Vm G0(E )�Vu G0(E )|E=EF = 0, the free energy change
�F is given by

�F = − 1

π
Im Tr

∫ EF

dE �V G0(E )

− 1

π
Im Tr

∫ EF

dE �VmG0(E )�VuG0(E ) (23)

= F (1) + F (2) . (24)

Representing the Green’s function in terms of the multiple
scattering formalism [63], Eq. (24) leads to the expression

�F = − 1

π
Im Tr

∫ EF

dE 〈�V m〉 τ (E )

− 1

π
Im Tr

∫ EF

dE 〈�V m〉τ (E )〈�V u〉τ (E ) . (25)

Using for the matrix elements of perturbation 〈�V m〉 and
〈�V u〉 the expressions (see Appendix C)

〈�V m〉 =
∑

α

δêα
i T α

i , (26)

〈�V u〉 =
∑

ν

uν
i U ν

i , (27)

and taking the derivatives ∂F (1)

∂eα and ∂2F (2)

∂eα∂uμ , one obtains for the
magnetic anisotropy constants

K̃αz
i = ∂�F

∂eα
i

∣∣∣∣
u=0

= − 1

π
Im Tr

∫ EF

dE T ν
i τ ii(E ) (28)

and their counterparts in the spin-lattice Hamiltonian,

K̃αz,μ
i,k = ∂2�F

∂eα
i ∂uμ

k

∣∣∣∣
u=0

= − 1

π
Im Tr

∫ EF

dE T μ
i τ ik (E )U ν

kτ ki(E ) . (29)

The parameters Kαz,μ
i,k give access either to the torque on a

magnetic moment �Ti = êi × �Heff caused by the effective field
induced by the displacements uμ

k of the atoms on sites k, i.e.,

�Hα
eff,i = −

∑
k,μ

Kαz,μ
i,k êz

i u
μ

k , (30)

and characterizing the rate of change of spin angular momen-
tum, or to the mechanical torque, e.g., �Tph

k = �uk × �Fk created

0 2 4
Rij (units of lattice parameter)

-0.5

0

0.5

K
i,kx,

μ  (m
eV

/(a
.u

.))

μ = x
μ = y
μ = z

0 2 4
Rij (units of lattice parameter)

-0.5

0

0.5
K

i,ky,
μ  (m

eV
/(a

.u
.))

μ = x
μ = y
μ = z

(a)

(b)

FIG. 7. The parameters Kx,μ
i,k (a) and Ky,μ

i,k (b) calculated for bcc
Fe, as a function of the distance Rik .

by the forces induced by spin tiltings êα
i on sites i, i.e.,

Fμ

k = −
∑
i,α

Kαz,μ
i,k êα

i êz
i , (31)

and contributing to the rate of change of the spin angular
momentum of phonons [65]. As an example, the parameters
Kαz,μ

i,k and Kyz,μ
i,k calculated for bcc Fe (with the magnetization

direction along z axis) are plotted in Fig. 7 as a function of
the distance Rik , for the three displacements μ = x, y, z. As
one can see, their absolute values are much smaller in the case
of a displacement perpendicular to the plane of magnetization
rotation (i.e., for the uy component for tilting within the x − z
plane and the ux component for tilting within the y − z planes)
when compared to the displacements within the plane.

As it was already pointed out, the displacement of any atom
k in the system, obviously, breaks the local symmetry at a
neighboring site i, creating a corresponding contribution to the
magnetic anisotropy and in turn to a corresponding effective
field and the torque on the magnetic moment on site i. This
torque depends on the local symmetry around the displaced
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FIG. 8. The dependence of the effective field (closed circles) in
bcc Fe on the θ angle characterizing the direction of the magnetiza-
tion with respect to ẑ, in the presence of a single atom displaced along
the ẑ direction. It is contributed by the terms ∼(Kxx,z

i,k − Kzz,z
i,k )sin2θ

(open circles) and ∼(Kxz,z
i,k + Kzx,z

i,k )cos2θ (open squares).

atoms, as well as on the direction of the magnetization with
respect to the crystal lattice. Using the phenomenological SLC
Hamiltonian, one can see that the contributions to the effective
field caused by the displacement uμ

k , which are associated
with different SLC terms in the Hamiltonian, have a different
dependence on the magnetization direction.

To demonstrate this dependence, we consider FM-ordered
bcc Fe and focus on the term ∼Kxz,μ

i,k . In the case of the mag-
netization oriented along the crystallographic direction [001]
and atoms k displaced along the ẑ||(0, 0, 1) direction, i.e.,
�u = uz

k ẑ, the corresponding effective magnetic field induced
on site i is equal to −Kxz,z

i,k ez
i u

z
k . It determines the induced

torque on the magnetic moment on site i responsible for the
formation of a noncollinear magnetic structure driven by the
lattice distortion. At the same time, the induced effective field
due to the terms Kxx,z

i,k ex
i uz

k and Kyy,z
i,k ey

i uz
k for such a geometry

is equal to zero as ex
i ∼ θ = 0 and ey

i ∼ θ = 0. Rotating the
frame of reference together with the magnetization (within
the x − z plane by the angle θ ), keeping ˆ̃z||m̂, the effective
field is calculated via the transformation R−θAR−1

−θ with A seen

as the matrix with the elements Aαβ ∼ Kαβ,z
i,k uz

k . As a result,
the nonvanishing effective field is given by the expression
Hx̃

i (uz
k ) = − ∂E

∂ex̃
i

= −(Kx̃z̃,z
i,k + Kz̃x̃,z

i,k )ez̃
i u

z
k , where

Hx̃
i

(
uz

k

)= − 1
2

[(
Kxx,z

i,k − Kzz,z
i,k

)
sin2θ + (

Kxz,z
i,k + Kzx,z

i,k

)
cos2θ

]
.

(32)

A similar expression can also be found for Kz̃x̃,z
i,k . Figure 8

represents a particular example of the effective field Hx̃
i (uz

k )
on site i [Ri = (0, 0, 0)] in bcc Fe, which is created due to
a displacement of atom k, Rk = a(0.5, 0.5, 0.5), along the
crystallographic direction [001], assuming |uz

k| = 1. This field
can now be calculated on a first-principles level, using the
expression in Eq. (29). The total field is shown by the red
solid line, which is a result of two contributions ∼sin2θ and
cos2θ , shown by blue dashed and green dashed-dotted lines,
respectively. In the case of a tetragonal distortion, i.e., a
displacement by uz of the atoms at a(±0.5,±0.5, 0.5) and a
displacement by −uz of the atoms at a(±0.5,±0.5,−0.5), the
only nonzero contribution due to the induced effective field is
associated with the term 1

2 (Kxx,z
i,k − Kzz,z

i,k ), i.e., ∼sin2θ , that

0 20 40 60 80
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-0.8
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H
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 (m
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.)

M(θ,ϕ=0)

FIG. 9. The dependence of the effective field (closed circles) in
bcc Fe on the θ angle characterizing direction of the magnetization
with respect to ẑ, in the presence of nearest-neighbor displacements
along ẑ direction, corresponding to a tetragonal distortion of the
crystal.

is shown in Fig. 9. Note that in this case the displacement
amplitude has been normalized by the factor 1/8 to represent
the energy (or field) per one displaced atom. Figure 10 shows
the corresponding magnetic torque for θ = 45o as a function
of the strain, where the SLC-based results (squares) are com-
pared with those of Marchant et al. [72]. There are several
reasons for the observed deviations: (i) the present results
on the MAE are obtained using the nearest-neighbor SLC
parameters implying a displacement of only nearest neigh-
bors, in contrast to the volume conserved tetragonal lattice
distortion of the bcc lattice in the case of Marchant; (ii) in the
later case the electronic structure calculations have been done
self-consistently with the torque representing the magnetic
anisotropy energy (MAE) E001 − E100 = Tθ=π/4.

The MCA-like SLC parameters may be connected with the
corresponding magnetoelastic parameter B1 used within mi-
cromagnetic considerations (see [54]). On the other hand, the
parameter B1 is connected with the magnetostriction constant
λ representing the relative elongation δl/l along the direction
of applied magnetic field. For the example considered here the
corresponding relation is given by

B1 = − 3
2λ001(C11 − C12) (33)

-0.01 0 0.01
(c-a)/a

-4

-2

0

2

4

T θ 
= 

π/
4 (μ

eV
/a

to
m

) Ref. [80], 5.4 a.u.
SCF bct Fe
nn distortion; 5.41 a.u
nn distortion; 5.4 a.u

FIG. 10. Magnetic torque for magnetization rotated by θ = 45o

within the xz plane, plotted as a function of strain. The SLC-based
results are shown by squares are compared with self-consistent re-
sults for the tetragonal distortion of the bcc Fe along [001] direction
(diamonds), as well as with corresponding results of Marchant et al.
[72] (circles).
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FIG. 11. The shell-resolved effective field for bcc Fe contributed
by the DMI-like parameters Dy,μ

i j,k , i.e., −∑
j:|Ri j |∈dn

Dy,μ
i j,k (closed

symbols) up to | �Rmax
i j | = 4a, accounting for displaced nearest-

neighboring atom k. Open symbols represent the effective field as
a function of | �Ri j | summed up over all contributions up to | �Ri j |, i.e.,
− ∑

j:|Ri j |�dn
Dy,μ

i j,k . Top panel corresponds to μ = x, middle panel to
μ = y, and bottom - to μ = z.

with the cubic elastic constants C11 and C12. This implies
that the calculation of these elastic parameters is required in
addition to compare theoretical results for B1 with experiment.

Note that the effective field considered here is caused by
the SOC-induced anisotropic part of the exchange tensor, seen
as a nonlocal contribution to the magnetic anisotropy, that
concerns also the anisotropy induced by a lattice distortion
(via SLC). One should point out that these contributions stem
from the DMI-like SLC given by the expression

Hx
i ({�uk}) =

∑
j,k,μ

(
ê j × �Dμ

i j,k

)
x
uμ

k (34)

(note that the results shown in Figs. 8 and 9 are obtained for
μ = z), as well as the anisotropy of the diagonal elements of
the SLC tensor 1

2

∑
j,k (J xx,z

i j,k − J zz,z
i j,k ). The former one has a

dependence on the magnetization direction similar to that of
the site-diagonal contribution related to the Kxz,μ

i,k uμ

k MCA-

like term, which is associated to the DMI-like SLC �Dz
i j,k . As

one can see in Fig. 9, this contribution vanishes in the case of
a tetragonal distortion of the lattice as this deformation does
not break inversion symmetry. The effective field associated
with the diagonal anisotropy of the SLC tensor is responsible
for a uniaxial magnetic anisotropy. It does not vanish in the
case of the displacements shown in Fig. 9, as well as in
the case of a tetragonal distortion, and is responsible for the
nonlocal contribution to the magnetic anisotropy discussed in
the literature [15,73].

Discussing the properties of the effective field determined
by the three-site SLC parameters (the same concerns also
other multisite SLC parameters), one has to take into ac-
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) (
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FIG. 12. The shell-resolved effective field for bcc Fe con-
tributed by the diagonal anisotropic part of the SLC tensor, i.e.,∑

j:|Ri j |∈dn
1/2(J xx,μ

i j,k − J zz,μ
i j,k ) (closed symbols) up to | �Rmax

i j | = 4a,
accounting for displaced nearest-neighboring atom k. Open symbols
represent the effective field as a function of |Ri j | summed up over all
contributions up to | �Ri j |, i.e.,

∑
j:|Ri j |�dn

1/2(J xx,μ
i j,k − J zz,μ

i j,k ). The top
panel corresponds to μ = x, middle panel to μ = y, and bottom to
μ = z.

count the J αβ,μ

i j,k parameters with k �= i and k �= j. Thus, their
contribution to the effective field (torque) at site i was inves-
tigated for the case of a displaced nearest-neighboring atom
k, but accounting for all SLC contributions including j �= k.
Figure 11 shows shell-resolved DMI-SLC contributions to the
effective field Hx

i (uμ

k ) induced by a displacement uμ

k of the
atom at �R01 = a(0.5, 0.5, 0.5). It is determined by a coupling
via the term Dy,μ

i j,k [according to Eq. (34) of the central atom i
with all atoms j within the shell n with the radius dn going
up to dmax

n = | �Rmax
i j | = 4a (closed symbols). Open symbols

represent the sum [using Eq. (34) over all shells around site
i up to dn = | �Ri j |. Note that the antisymmetric behavior of
these interactions with respect to a permutation of sites i and j
ensure a zero total torque on the magnetization due to the van-
ishing effective field obtained via summation over all sites i in
the lattice, assuming fixed positions of the displaced atoms.
In a corresponding manner, | �Ri j | dependent results for the
effective field due to the diagonal anisotropic part of the SLC
tensor, i.e., 1

2

∑
j (J

xx,μ
i j,k − J zz,μ

i j,k )sin2θ , are shown in Fig. 12.
However, their absolute value is about an order of magnitude
smaller when compared to the effective field associated with
the DMI-like SLC.

Following the discussions above on the forces induced via
the SLC parameters, J dia−s,μ

i j, j and Dα,μ
i j, j , one can consider also

the force on the atoms on sites k induced via the MCA-like
SLC Kαz,μ

i,k by tilting the magnetic moment on site i from
the magnetization orientation m̂||ẑ, as shown schematically in
Fig. 13 (left panel). The right panel represents the quantities
�f = −∑

μ Kαz,μ
i,k n̂μ characterizing forces [see Eq. (31) on
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FIG. 13. The quantities �f = −∑
μ K

αz,μ
i,k n̂μ (n̂x = x̂, n̂y = ŷ,

n̂z = ẑ) characterizing forces on atoms j induced by spin tilting on
site i via the spin-lattice coupling in bcc Fe with the magnetization
along z axis. Left panel shows schematically the force �F on the atom
k (which may be nonmagnetic) induced via Kαz,μ

i,k SLC by tilting of
spin moments on site i, and vice versa, the spin tiltings induced due
to the displacements of atoms on the site k. Blue and red arrows
show the directions of the forces on atoms �f 1

k and �f 2
k within the first

and second atomic shells, respectively, assuming spin tilting within
the x − z plane, where �f 1

k = (±0.69, ±0.02, ±0.71) (first shell)
and �f 2

k = 0.25(0, 0, ±1), �f 2
k = 0.25(0, ±1, 0), �f 2

k = 0.25(±1, 0, 0)
(second shell).

atoms k (corresponding to nearest-neighbor and next-nearest-
neighbor atomic shells) induced by a spin tilting on site i
via spin-lattice coupling in bcc Fe with the magnetization
along z axis. As one can see, these forces are perpendicular to
the directions connecting interacting atoms R̂ik similar to the
properties of the forces induced via the DMI-like SLC shown
in Fig. 3.

One can consider a more complex example with the torque
on the magnetic moment generated by phonon-like lattice dis-
tortions instead of a single atom displacement. As a reference
state, let us consider a FM configuration in the equilibrium,
that implies zero total torque on each magnetic moment. Cre-
ating a phonon in the system, or, e.g., switching on an external
source for acoustic waves, one can expect a distortion in the
magnetic structure induced by spin-lattice interactions. This
implies that each spin in the FM-ordered system can experi-
ence a corresponding torque as a result of the common impact
of the displaced surrounding atoms. If the displacement �u j is

represented in terms of a single phonon mode ∼ei(�q· �Rj ), the
effective field calculated using this Hamiltonian is given by

Hα
eff,i,�q = − ∂

∂eα
i

Hme−MA,�q = −
∑

μ

Kαz,μ
i,�q ez

i u
μ

�q . (35)

The other way around, the SLC parameter Kαz,μ
i,�q may be seen

as a force acting on the atom on site i when a periodic spin
modulation occurs in the FM-ordered system. This way one
can see a mutual impact of spin and lattice excitations, which
can result in a simultaneous distortion in the system.

IV. SUMMARY

To summarize, we presented in this paper a scheme to
calculate the spin-lattice coupling parameters within the mul-
tiple scattering formalism making use of the magnetic force
theorem. The properties of the three- and four-site SLC pa-
rameters, giving access to the SSC corrections linear and

quadratic with respect to displacements, respectively, are dis-
cussed. It is demonstrated that the force originating from
the DMI-like SLC parameters may be responsible for the
mechanical torque on the lattice dependent on the mag-
netic configuration, that can control the angular momentum
transfer via magnon-phonon scattering events. We discussed
an approach to calculate the site-diagonal SLC parameters
characterizing local magnetic anisotropy induced by a lattice
distortion, which is a counterpart to the approach based on
magnetic torque calculations worked out for the investigations
of the MCA. The approach gives access to all contributions to
the MCA-like SLC parameters, accounting also those orig-
inating from the anisotropic part of the interatomic SLC
parameters. Furthermore, we have demonstrated the contribu-
tions of different MCA-like SLC parameters to the energy,
considering different types of displacements.

APPENDIX A: COMPUTATIONAL DETAILS

The results presented in the paper are based on first-
principles electronic structure calculations using the spin-
polarized relativistic Korringa-Kohn-Rostoker Green’s func-
tion (SPR-KKR-GF) method [63,74] in combination with
atomic sphere approximation (ASA). The local spin den-
sity approximation (LSDA) to spin density functional theory
(SDFT) has been used with a parametrization for the exchange
and correlation potential as given by Vosko et al. [75]. The
angular momentum expansion of the Green’s function was
given up to the cutoff lmax = 3 was used. A k-mesh with
36 × 36 × 36 grid points was used for the integration over the
BZ.

APPENDIX B: MULTIPLE SCATTERING FORMALISM

Within the KKR Green’s function formalism the electronic
Green’s function G(�r, �r ′, E ) is represented in real space by
the expression [76]

G(�r, �r ′, E ) =
∑
12

Zn
1

(�r, E )τ nn′
12

(E )Zn′×
2

(�r ′, E )

−
∑
1

[
Zn

1
(�r, E )Jn×

1
(�r ′, E )�(r′ − r)

+ Jn
1

(�r, E )Zn×
1

(�r ′, E )�(r − r′)
]
δnn′ . (B1)

Here �r, �r′ refer to site n and n′, respectively, τ nn′
′ (E ) is the

so-called scattering path operator that transfers an electronic
wave coming in at site n′ into a wave going out from site n with
all possible intermediate scattering events accounted for. The
four-component wave functions Zn

(�r, E ) [Jn
(�r, E )] are regu-

lar [irregular] solutions to the single-site Dirac equation with
the Hamiltonian set up within the framework of relativistic
spin-density functional theory [77,78],

HD = −ic�α · �∇ + 1
2 c2(β − 1) + V (�r) + β �σ · �Bxc(�r) .

(B2)

These functions are labeled by the combined quantum num-
bers  [ = (κ, μ)], with κ and μ being the spin-orbit and
magnetic quantum numbers [79]. The superscript × indi-
cates the left-hand side solution of the Dirac equation. The
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operators αi and β in the Hamiltonian in Eq. (B2) are the stan-
dard Dirac matrices [79] while V̄ (�r) and �Bxc(�r) are the spin
independent and dependent parts of the electronic potential
[76,79].

APPENDIX C: CHANGE OF THE INVERSE
SCATTERING MATRIX

The change of the inverse scattering matrix due to a spin
tilting can be calculated as described earlier in Ref. [16], giv-
ing this way direct access to the derivatives with respect to êα

i .
In this case the change of the inverse scattering matrix �s

αmi
(the underline denotes a matrix in an spin-angular momentum
representation ) caused by a tilting of spin moment on site i,
δêα

i , can be written as follows [16]:

�s
αmi = δêα

i T α
i , (C1)

where the matrix elements T α
i,′ of the torque operator are

given by the expression

T α
i,′ =

∫
�i

d3r Zi×
 (�r, E )

[
βσαBi

xc(�r)
]

Zi
′ (�r, E ) , (C2)

with μ = (x, y, z). Note that using the fixed frame of reference
with the magnetization along z axis, only the two torque
components T x

i and T y
i linear with respect to the tilting angle

are available. To get access to the other component T z
i , one

has to use a rotated frame of reference as it was suggested by

Udvardi et al. [15] when introducing relativistic calculations
of the exchange coupling tensor J

i j
.

In the case of atom i displaced from the equilibrium po-
sition by �ui, the change of the single-site scattering matrix
�t i = t i − t0

i is given in terms of the t-matrix t (0)
i for the

unshifted atom, and the scattering matrix for shifted atom

t i = U (�ui ) t0
i U (�ui )

−1 , (C3)

(analogously for the inversed scattering matrices m0
i and mi),

where the transformation matrix U i is given by the expression
[80,81]

ULL′ (�ui ) = 4π
∑
L′′

il+l ′′−l ′CLL′L′′ jl ′′ (|�ui|k)YL′′ (ûi ) , (C4)

given here in the nonrelativistic form with k =
√

2mE/h̄2,
and YL real spherical harmonics. In Eq. (C4) jl is a spheri-
cal Bessel function, CLL′L′′ stands for the Gaunt coefficients
given in nonrelativistic angular momentum representation
with L = (l, ml ). The relativistic form of Uk,′ is obtained
by a standard Clebsch-Gordan transformation. The inversed
transformation matrix can be written as follows:

[U −1(�ui )]LL′ = ULL′ (−�ui ) = UL′L(�ui ) . (C5)

The Bessel function jl ′′ (|�ui|k) in the limit of a small displace-
ment amplitude |�ui| is given by the expression [82]

jl (|�ui|k) = (|�ui|k)l

(2l + 1)!!
. (C6)

Keeping in Eq. (C4) only the terms up to second order with respect to the displacement, one obtains

ULL′ (�ui ) = 4π
∑
L′′

il+l ′′−l ′CLL′L′′
(|�ui|k)l ′′

(2l ′′ + 1)!!
YL′′ (ûi ) = 4π

[
il+0−l ′CLL′00

(|�ui|k)0

(1)!!
Y00(ûi )

+
1∑

m=−1

il+1−l ′CLL′1m
(|�ui|k)1

(3)!!
Y1m(ûi ) +

2∑
m=−2

il+2−l ′CLL′2m
(|�ui|k)2

(5)!!
Y2m(ûi ) + ...

]

= 4π

⎡
⎣il−l ′ 1√

4π
1

1√
4π

δLL′ + il+1−l ′
1∑

m=−1

CLL′1m
|�ui|k
(3)

Y1m(ûi )

+il+2−l ′
2∑

m=−2

CLL′2m
|�ui|2k2

15
C−1

l0,l ′0,20

⎛
⎝√

20π

9

1∑
m1=−1

1∑
m2=−1

C1m1,1m2,2mY1m1 (ûi )Y1m2 (ûi )

⎞
⎠ + ...

⎤
⎦

≈ δLL′ + 4π

3
|�ui|kil+1−l ′

1∑
m=−1

CLL′1mY1m(ûi )

+4π

15

√
20π

9
|�ui|2k2il+2−l ′

2∑
m=−2

CLL′2mC−1
l0,l ′0,20

⎛
⎝ 1∑

m1=−1

1∑
m2=−1

C1m1,1m2,2mY1m1 (ûi )Y1m2 (ûi )

⎞
⎠ + ...

where the following expansion is used [82]

Cl0,l ′0,20Ylm(ûi ) =
√

4π (2l + 1)

(2l1 + 1)(2l2 + 1)

l1∑
m1=−l1

l2∑
m2=−l2

Cl1m1,l2m2,2mYlm1 (ûi )Y1m2 (ûi )

Here the direction of displacement of atom i is given by unit vector ûi.
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Representing the real spherical harmonics Y1m(ûi ) in the following form:

Y1m(ûi ) =
√

3

4π

⎧⎪⎪⎨
⎪⎪⎩

uy
i /|�ui| = ûy

i for m = −1

uz
i /|�ui| = ûz

i for m = 0

ux
i /|�ui| = ûx

i for m = +1

the transformation functions ULL′ (�ui ) is reduced to the following form:

ULL′ (�ui ) ≈ δLL′ +
∑

μ

4π

3

√
3

4π
uμ

i kil+1−l ′CLL′1mμ

+
∑

μ

1∑
ν

4π

15

√
20π

9

3 · 2

4π
uμ

i uν
i k2il+2−l ′

2∑
m=−2

CLL′2mC−1
l0,l ′0,20C1mμ,1mν ,2m + ...

= δLL′ +
∑

μ

uμ
i Ū mμ

LL′ +
∑
μν

uμ
i uν

i Ū (2b),mμmν

LL′ ,

ULL′ (−�ui ) ≈ δLL′ −
∑

μ

uμ
i Ū mμ

LL′ +
∑
μν

uμ
i uν

i Ū (2b),mμmν

LL′ ,

where mμ(ν) = {mx, mymz}, such that mx = 1, my = −1, mz = 0,

Ū mx
LL′ = k

4π

3
il−l ′+1

√
3

4π
CLL′1 +1 = kil−l ′+1

√
4π

3
CLL′1 +1,

Ū
my

LL′ = kil−l ′+1

√
4π

3
CLL′1 −1,

Ū mz

LL′ = kil−l ′+1

√
4π

3
CLL′1 0,

Ū 2b,μν

LL′ ≡ Ū 2b,mμmν

LL′ = k2 1

3

√
4π

5
il+2−l ′

2∑
m=−2

CLL′2mC−1
l0,l ′0,20C1mμ,1mν ,2m,

where

Ū μ

LL′ (−ûi ) = −Ū μ

LL′ (ûi ), Ū 2b,μν

LL′ (−ûi ) = Ū 2b,μν

LL′ (ûi ),

as a consequence of the property

Y1m(−ûi ) = (−1)1Y1m(ûi ) = −Y1m(ûi ).

Thus, we obtain the approximate transformation matrix for a small displacement �u μ
i ,

ULL′ (�ui ) = δLL′ +
∑

μ

uμ
i Ū mμ

LL′ +
∑
μ,ν

uμ
i uν

i Ū (2b),mμmν

LL′ , (C7)

or, using the notation Ū (2b),μν

LL′ ≡ Ū (2b),mμmν

LL′ , one can represent the modified single-site scattering matrix as follows:

t̃ i = U (�ui ) t i U −1(�ui ) = U (�ui ) t i U (−�ui )

≈
(

I +
∑
μ′

uμ′
i Ū μ′

(ûi ) +
∑
μ′ν ′

uμ′
i uν ′

i Ū (2b),μ′ν ′
(ûi )

)
t i

(
I +

∑
ν ′′

uν ′′
i Ū μ′′

(−ûi ) +
∑
μ′′ν ′′

uμ′′
i uν ′′

i Ū (2b),μ′′ν ′′
(−ûi )

)

≈ t +
∑

μ

(
uμ

i Ū μ(ûi ) t i + uμ
i t i Ū μ(−ûi )

)

+
∑
μν

uμ
i uν

i

(
Ū μ(ûi ) t i Ū ν (−ûi ) + Ū

(
ûν

i

)
t i Ū

( − û μ
i

) + Ū (2b),μν (ûi )t i + t i Ū (2b),μν (−ûi )
)
,

t̃ i − t i =
∑

μ

uμ
i (Ū μ(ûi ) t i − t i Ū μ(ûi )) +

∑
μν

uμ
i uν

i ( −Ū μ(ûi ) t i Ū ν (ûi ) − Ū ν (ûi ) t i Ū μ(ûi ) + Ū (2b),μν (ûi )t i

+t i Ū (2b),μν (ûi )) + O((uμ
i )3) , (C8)

and analogously for mi = t−1
i .
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APPENDIX D: TORQUE ON MAGNETIC MOMENT

Here we give the relationship between the torque on a
magnetic moment of the system and the energy change due
to a rotation of the magnetic moment, that is used for the
calculations of the magnetocrystalline anisotropy energy in
magnetic systems [56]. Let us consider a FM-ordered system
with the magnetization direction ê. The energy change due to
a tilting of the magnetic moment is given by the expression

δE = δE

δê
· δê = δE

δê
· �δθ × ê (D1)

= − �Heff · [ �δθ × ê] = − �δθ · [ê × �Heff ] (D2)

= −δθ n̂ · [ê × �Heff ] = −δθ T n̂ (D3)

with the effective field �Heff = − δE
δê , δê = �δθ × ê, �δθ =

n̂δθ , and n̂ the direction perpendicular to the plane of
rotation by the angle δθ of the magnetization direction.
Thus, the torque on the magnetic moment represented in

terms of local effective field

�T = ê × �Heff (D4)

gives access to the MCA energy via its projection on the
direction n̂

T n̂(ê) = n̂ · [ê × �Heff ] (D5)

characterizing the energy change due to a rotation of the mag-
netization. Representing this direction in terms of the polar
angles θ and φ, the torque may be defined as the derivative

T n̂(ê) = −∂E

∂θ
. (D6)

As it was discussed in Refs. [15,56], this quantity can be
used for the calculation of the magnetic anisotropy param-
eters. In particular, considering the magnetization direction
tilted by θ = π/4, the corresponding torque T n̂(π/4) gives
direct access to the energy of uniaxial anisotropy T n̂(π/4) =
E (ê||x̂) − E (ê||ẑ), and as a consequence to the uniaxial
anisotropy parameters.
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