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Electronic manipulation of magnon topology by chirality injection from boundaries
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Magnon bands are known to exhibit nontrivial topology in ordered magnets under suitable conditions,
engendering topological phases referred to as magnonic topological insulators. Conventional methods to drive a
magnonic topological phase transition are bulk magnetic or thermal operations such as changing the direction of
an external magnetic field or varying the temperature of the system, which are undesired in device applications
of magnon topology. In this work, we lift the limitation of the magnon topology control on the bulk nonelectronic
manipulation by proposing a scheme to manipulate magnonic topological phases by electronic boundary
operations of spin chirality injection. More specifically, we consider a ferromagnetic honeycomb lattice and
show that a finite spin chirality injected from the boundary of the system via the spin Hall effects introduces
a tunable sublattice-symmetry-breaking mass term to the bosonic counterpart of the Haldane model for the
Chern insulators and thereby allows us to electronically manipulate the bulk topology of magnons from the
boundary. The “shoulder” in the thermal Hall conductivity profile is proposed as an experimental probe of
the chirality-induced topological phase transition. The scheme for the boundary manipulation of the magnon
topology is shown to work for a honeycomb antiferromagnet as well. We envisage that the interfacial chirality
injection may offer a nonintrusive electronic means to tune the static and the dynamical bulk properties of general
magnetic systems.
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I. INTRODUCTION

Since the experimental discovery of the integer quan-
tum Hall effect [1] and the ensuing extensive studies on
topological materials [2–4], the idea of topology has been
established as a powerful tool in condensed matter physics to
understand exotic phases of matter and a promising resource
for technical applications. Well-known electronic topologi-
cal phases include a quantum spin Hall system realized in
the HgTe quantum well [5] and a three-dimensional topo-
logical insulator Bi2Te3 [6]. These electronic topological
materials are of fundamental interest as well as practical
significance, for they can serve as excellent spin-current
sources, enabling the efficient manipulation of spin-based
devices [7–10].

While the above works are for electrons, there has been
emerging attention to the topological phases of bosonic sys-
tems. In particular, the topological properties of bosonic
collective excitations in ordered magnets, called magnons,
have drawn physicists’ interest in that they can be eas-
ily manipulated through magnetic fields and spin torques
to investigate their topological properties. In certain mag-
netic systems referred to as magnonic topological insulators,
magnon bands are known to exhibit nontrivial topologies
[11–15]. The magnonic topological insulators have been iden-
tified in various setups including honeycomb ferromagnets
with magnon-magnon interaction [16,17] and magnetoelastic
interaction [18].

To harness the magnon topology for practical applications,
it is important to be able to manipulate the topological prop-
erties of the magnon bands. So far, the conventional control
of the magnon-band topology required the bulk manipula-

tion of the systems via, e.g., changing an external magnetic
field or the temperature [19]. However, these bulk magnetic
or thermal operations are not only challenging to efficiently
implement in nanoscale devices but also unsuitable for ul-
trafast execution. In this paper, we lift this limitation of the
magnon-band topology control on the bulk nonelectronic ma-
nipulation by showing that the magnon-band topology can
be controlled electronically from the boundary by injecting
a spin chirality into the bulk. More specifically, we propose
a scheme to manipulate magnonic topological phases of fer-
romagnets and antiferromagnets on a honeycomb lattice via
chirality injection, which can be realized, e.g., via interfa-
cial spin Hall effects resulting from the proximate heavy

FIG. 1. (a) The ground-state spin configuration of a ferromag-
netic honeycomb lattice and the sign νi j of the DM interaction.
(b) The chiral spin texture is induced in a honeycomb ferromagnet by
injecting a spin current into the sample with the incident angle θinc via
the spin Hall effect from the proximate heavy metals. The magnon
bands on top of the induced chiral texture can exhibit a topological
phase transition as the injected chirality increases. See the main text
for the details.
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metals [20–22]. We demonstrate that the chirality injection
engenders a sublattice-symmetry-breaking mass on top of
the previously studied bosonic counterpart of the Haldane
model [23–25]. This chirality-induced mass term competes
with the known Haldane mass term, which allows us to non-
locally tune the bulk topology from nontrivial to trivial and
vice versa from the boundary. For experimental probes of
the chirality-induced topological phase transition, we pro-
pose the magnon thermal Hall effect arising from the band
topology [26]. The “shoulders” in the thermal Hall conduc-
tivity profile can herald the presence of the proposed phase
boundary. Our work exemplifies the utility of the interfacial
chirality injection via the spin Hall effects as an electronic
nonintrusive means to control magnets and magnon bands
therein.

The organization of the remainder of this paper is as
follows. In Sec. II, we introduce the ferromagnetic model
on a honeycomb, which is sandwiched between two heavy
metals, and discuss the spin texture of its ground state.
Then, in Sec. III, we employ the linear spin-wave the-
ory to study the magnon band of the model discussed in
Sec. II. Next, in Sec. IV, we discuss how the presence of
spin chirality enables the manipulation of topological prop-
erties of the magnon bands. The shoulder-shaped profile
of the thermal Hall conductivity, which is an experimental
proxy of the chirality-induced topological phase transition,
is explicated in Sec. V. We conclude with a summary
and discussion in Sec. VI. Finally, details in calculations,
temperature dependence of the “shoulder” pattern, and the
similar topological phase transition for the honeycomb an-
tiferromagnet model are addressed in the Appendixes A
and B.

II. MODEL

We consider a two-dimensional (2D) ferromagnet on a
honeycomb lattice whose Hamiltonian is given by

H = − J
∑
〈i, j〉

Si · S j + K

2

∑
i

S2
i,z

+ D
∑
〈〈i, j〉〉

νi j ẑ · (Si × S j ) − B
∑

i

Si,z, (1)

where the first and the second terms represent the Heisen-
berg exchange interaction (J > 0) between the nearest spins
and the easy-plane anisotropy (K > 0), respectively. The 2D
honeycomb ferromagnet with an in-plane magnetic order is
realized in monolayer CrCl3 [27–29]. The third term is the
Dzyaloshinskii-Moriya (DM) interaction between the next-
nearest-neighboring spins [30,31]. In the DM interaction, the
sign νi j = ±1 depends on the orientation of the two next-
nearest spins as shown in Fig. 1(a). The last term in Eq. (1)
represents the Zeeman coupling to the out-of-plane magnetic
field B. When |B| < KS, the ferromagnetic ground state has
a uniform spin configuration characterized by a polar angle
θ0 = cos−1(B/KS) with the spontaneously broken U(1) spin-
rotational symmetry about the z axis, which is crucial for
a spin current to flow through the magnet [20,32–34]. We

denote the distance between the nearest neighbors by d and
that between the next-nearest neighbors by a = √

3d .
Now, let us consider the setup shown in Fig. 1(b) designed

for the injection of spin chirality into the magnet. The
honeycomb ferromagnet is sandwiched between two heavy
metals with the relative angle of θinc (|θinc| � π/6). The
charge currents through the two heavy metals inject a spin
current polarized along the z direction into the ferromagnet
via the spin Hall effect [21,35], which is also referred to as
spin-orbit torque [36]. The injected spin currents from the left
and the right heavy metals are given by τ (x = 0) = sin2 θ ϑ jL
and τ (x = L) = sin2 θ ϑ jR, respectively, where ϑ is the
dampinglike spin-orbit-torque parameter for the injected spin
current per unit charge-current density [37] and L is the
sample length. On the other hand, the z component of the spin
current within the magnet is given by Js

z = −A sin2 θ ∇φ

where A is the exchange coefficient. For the given charge
currents jL and jR, we can obtain a steady-state solution
by matching the bulk spin current to the injected spin
currents at the two boundaries. In particular, when the
charge currents on both sides are the same ( jL = jR = j),
which is the situation we focus on in this paper, it has
been shown in Refs. [20–22] that a static spin texture
with spatially varying azimuthal angle φ(r) = φ0 + φ′x
can be established in the bulk of the magnet with the
azimuthal-angle gradient φ′ ≈ jϑ/A (see Appendix A 2). In
this case, the spin current flows with the incident angle of
θinc with respect to the primed coordinate system (x′, y′) of
the honeycomb lattice shown in Fig. 1(b). Here, note that
the spin chirality φ′ of the magnet can be nonlocally tuned
from the boundary of the sample by controlling the charge
currents j flowing in the adjacent heavy metals. Hereafter,
we shall use the spin chirality φ′ as a tunable control
parameter of the system. When there is a finite spin chirality,
the easy-plane anisotropy K is effectively renormalized
to Keff = K − J[3 − g(φ′d, θinc)], where g(φ′d, θinc) =∑3

j=1 cos(∇φ · α j ) and ∇φ = φ′(cos θinc,− sin θinc) so
that the ferromagnetic ground state has a modified
polar angle θ0 = cos−1(B/KeffS) when |B| < KeffS (see
Appendix A 3).

III. MAGNON HAMILTONIAN

Under the chirality injection, the static steady
state in the bulk of the ferromagnet is given by
Si = S(sin θ0 cos φi, sin θ0 sin φi, cos θ0) where the azimuthal
angle varies over space as φi = φ0 + φ′xi. To obtain a magnon
band on top of the chiral spin texture, we introduce new spin
variables S̃i = RiSi for each spin where

Ri =
⎛
⎝cos θ0 cos φi cos θ0 sin φi − sin θ0

− sin φi cos φi 0
sin θ0 cos φi sin θ0 sin φi cos θ0

⎞
⎠ (2)

is the three-dimensional orthonormal matrix representing a lo-
cal spin transformation that rotates the original spin Si to the z
axis. The Hamiltonian for the noninteracting magnons can be
obtained by rearranging Eq. (1) with new spin variables S̃i and
performing the Holstein-Primakoff transformation truncated
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to the order of
√

S [38]:

S̃i,x =
√

S

2
(c†

i + ci ), S̃i,y = i

√
S

2
(c†

i − ci ),

S̃i,z = S − c†
i ci (3)

with c = a, b, where ai and bi are the independent bosonic op-
erators residing in the sublattice A and B, respectively. After a
Fourier transformation ci = √

2/N
∑

k ckeik·ri [k = (kx, ky)],
we can rewrite the magnon Hamiltonian in the momentum

space in the Bogoliubov–de Gennes (BdG) form with the aid
of the Nambu vector ψk = (ak, bk, a†

−k, b†
−k )T :

H = 1

2

∑
k

ψ
†
kH(k)ψk, (4)

H(k) =
(

h(k) λ(k)
λ(k)† h(−k)T

)
, (5)

h(k) = ε0I +
3∑

j=1

⎛
⎜⎝ JS sin2 θ0 cos ϕα j + DS f j (k,∇φ) −JSeik·α j

(
cos

ϕα j

2
+ i cos θ0 sin

ϕα j

2

)2

−JSe−ik·α j

(
cos

ϕα j

2
− i cos θ0 sin

ϕα j

2

)2
JS sin2 θ0 cos ϕα j − DS f j (k,∇φ)

⎞
⎟⎠, (6)

λ(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

S

2
sin2 θ0

⎛
⎝K − 2D

3∑
j=1

eik·β j sin ϕβ j

⎞
⎠ −JS sin2 θ0

3∑
j=1

eik·α j sin2 ϕα j

2

−JS sin2 θ0

3∑
j=1

e−ik·α j sin2 ϕα j

2

S

2
sin2 θ0

⎛
⎝K + 2D

3∑
j=1

eik·β j sin ϕβ j

⎞
⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where ε0 = B cos θ0 − KS(1 + 3 cos 2θ0)/4 + 3JS cos2 θ0,
ϕα j = ∇φ · α j and ϕβ j = ∇φ · β j are the azimuthal
angle difference along α j and β j , respectively, and
f j (k)= sin ϕβ j [cos(k · β j )(1+cos2 θ0)−2 sin2 θ0]+2 cos ϕβ j

sin(k · β j ) cos θ0. After neglecting the off-diagonal blocks
λ(k) and λ(k)† that modify a magnon-band structure near
the points K = (4π/3a, 0) and K′ = (2π/3a, 2π/

√
3a)

only slightly (see Appendix A 4), we obtain the following
magnon Hamiltonian: H = ∑

k �
†
k[h0I + h(k) · σ]�k where

�k = (ak, bk )T and σ = (σ1, σ2, σ3) are the Pauli matrices.
The components of the Hamiltonian H are given by

h0 = ε0 + JS sin2 θ0

3∑
j=1

cos ϕα j , (8)

h(k) =
3∑

j=1

⎛
⎝−JS Re[ρ j (k)]

−JS Im[ρ j (k)]
DS f j (k)

⎞
⎠, (9)

where ρ j (k) = e−ik·α j [cos(ϕα j /2) − i cos θ0 sin(ϕα j /2)]2.
The corresponding energies of the upper and the lower bands
are given by

E±(k) = h0 ± |h(k)|. (10)

In the absence of the DM interaction (D = 0), the gap between
the upper and the lower band closes at the points k = K̄
and K̄′ where ρ j (k) = 0 holds, which are the so-called Dirac
points. When no spin chirality is present (φ′ = 0), the two
Dirac points are just K and K′ and the gap there is given by
�φ′=0 = 6

√
3DS cos θ0 [23,24]. The gap �φ′=0 closes when

the DM interaction vanishes.
In the presence of spin chirality φ′ �= 0, the two Dirac

points K̄ and K̄′ shift from their original positions and the
gap sizes at the two points change. The positions of the
shifted Dirac points can be obtained by solving ρ j (k) = 0

perturbatively with respect to φ′. We can then obtain the Dirac
Hamiltonian for magnons by expanding the Hamiltonian (9)
near K̄ and K̄′ (see Appendix A 5 for a detailed expressions
for the shifted Dirac points and the Dirac Hamiltonians). The
size of the modified gaps at K̄ and K̄′ is given by

�K̄/K̄′ = 3
√

3|D|
16K2

| ± 8B[4K + 3J (φ′d )2]

− 13K2S(φ′d )3 cos 3θinc|, (11)

to linear order in B. Note that the gap �K̄/K̄′ is proportional
to the DM interaction D as previously shown [23] and also
proportional to cos(3θinc) as dictated by the sixfold rotational
symmetry of the honeycomb lattice. More importantly, for
D �= 0, there is a critical magnetic field Bc where the gap at
either K̄ or K̄′ closes:

BK̄/K̄′,c = ±13KS

32
(φ′d )3 cos 3θinc, (12)

to cubic order in the spin chirality φ′d . The critical mag-
netic field is determined by the spin chirality φ′ and thus
can be controlled from the boundaries. This chirality-induced
magnon-gap closing is one of our main results, whose topo-
logical significance is described in Sec. IV.

IV. TOPOLOGICAL PHASE TRANSITION

The band topology of the bosonic quadratic Hamiltonian
[Eq. (9)] is identical to that of the corresponding fermionic
counterpart with the same Hamiltonian [39]. Note from
Eq. (11) that the mass term of the Dirac Hamiltonian [Eq. (9)]
contains two components. The first component is the Hal-
dane mass [4] proportional to DB and its sign is different
between the two Dirac points K̄ and K̄′. This manifesta-
tion of the Haldane model at the honeycomb ferromagnet

144423-3



LEE, GO, AND KIM PHYSICAL REVIEW B 107, 144423 (2023)

FIG. 2. (a) The Berry curvature �+
z of the upper magnon band

in a honeycomb ferromagnet under chirality injection φ′d = 0.2 for
B = 0 and (b) for B = 0.05JS. (c) The topological phase diagram,
which shows the Chern number of the upper magnon band. (Left
panel: D > 0 is fixed, right panel: φ′d > 0 is fixed.) The red and blue
curves show the phase boundaries between the trivial and nontrivial
phases [Eq. (12)], and the green line represents the D = 0 line.
(d) The magnon bands in a ribbon geometry with 40 unit cells for
B = 0 and (e) for B = 0.05JS. The colors of the bands represent the
average vertical positions 〈y〉 of each mode along the axis where the
sample is finite. The inset in (d) zooms in the trivial edge modes. For
(a) and (b) and (d) and (e), the parameters K = D = 0.2J, φ′d = 0.2,
and θinc = 0 are used.

results in topologically nontrivial phases with the Chern num-
bers sgn(DB) for the upper magnon band [23]. The second
component proportional to (φ′d )3 is a sublattice-symmetry-
breaking mass that acts as a staggered onsite potential. The
Haldane mass and the sublattice-symmetry-breaking mass
compete to determine whether the phase is topologically
trivial or not. Since the sublattice-symmetry-breaking mass
depends on the spin chirality φ′ injected from the bound-
aries, we can nonlocally manipulate the topological phase
from the boundaries by controlling charge currents in heavy
metals.

The topological phase of our system can be specified by the
Chern numbers defined by C± = (1/2π )

∫
BZ d2k �±

z where
�±

z (k) = ∓ 1
2 n̂ · (∂kx n̂ × ∂ky n̂) is the Berry curvature of each

magnon band and n̂(k) = h(k)/|h(k)|. Figures 2(a) and 2(b)
show the Berry curvature of the upper magnon band for the
incident angle θinc = 0 for two different values of B. When
the external field is below the critical value (determined by
the spin chirality) |B| < |Bc| [see Fig. 2(a)], the Chern number
C+ for the upper band is zero. On the other hand, for the
external field exceeding the critical value, the Chern number
becomes C+ = +1 for B > |Bc| [see Fig. 2(b)] and −1 for

B < −|Bc|. Figure 2(c) summarizes the topological phases of
our system. The phase diagram is truncated at φ′d = ±0.2,
which is below the Landau criterion for the spin chirality
(for the used parameters) over which the static steady state
becomes unstable [34].

A nontrivial band topology in bulk is followed by the ex-
istence of chiral edge modes according to the bulk-boundary
correspondence [2]. Figures 2(d) and 2(e) plot the magnon
bands at a ribbon geometry for the magnetic fields correspond-
ing to Fig. 2(a) and 2(b) [40]. We can see that the localized
edge modes in Fig. 2(d) can be deformed smoothly into bulk
bands, while that in Fig. 2(c) bridge the gap and hence are
chiral. The change of the magnon topology driven by the spin
chirality φ′ injected from the boundary constitutes one of our
main results. Here, we remark that the effect of the spin chi-
rality on the topological properties of magnon bands depends
on the incident angle θinc through the sublattice-symmetry-
breaking mass term ∝(φ′d )3 cos θinc in Eq. (11). In particular,
when θinc = ±π/6, the sublattice-symmetry-breaking mass
term is absent in the magnon Dirac Hamiltonian and thus the
magnon band’s Chern numbers remain finite regardless of the
injected spin chirality.

V. THERMAL HALL EFFECT

Our theoretical prediction of the chirality-induced topo-
logical phase transition can be experimentally examined by
measuring the magnon thermal Hall conductivity, which
can be expressed in terms of the Berry curvatures �±

z
[26,41]:

κxy = −k2
BT

h̄

∑
n=±

∫
d2k

(2π )2
c2(ρn,k ) �n

z (k), (13)

where ρn,k = (eEn,k/kBT − 1)−1 is the Bose-Einstein distribu-
tion function, c2(ρ) = (1 + ρ){ln[(1 + ρ)/ρ]}2 − (ln ρ)2 −
2 Li2(−ρ) and Li2(z) is the polylogarithm function. To esti-
mate the thermal Hall conductivity numerically, we adopt the
following material parameters for CrCl3. We assume S = 3

2 ,
which is a Cr magnetic moment of bulk chromium trihalides
[42]. The exchange and the easy-plane anisotropy coeffi-
cients are given by J = 0.79 meV and K = 0.03 meV [27],
which gives K/J ≈ 0.04. For the DM interaction, we use
D = 0.2 meV [43]. We choose B = 2.2 Oe for the external
magnetic field. With the given parameters, Fig. 3 plots the
thermal Hall conductivity κxy at T = 10 K as a function of
the spin chirality φ′. For the small spin chirality φ′d � 0.06,
the thermal Hall conductivity κxy increases as the spin chirality
φ′ increases because of two reasons. First, the constant energy
term h0 [Eq. (8)] decreases as the spin chirality increases. This
lowers the energy level at Dirac points and c2(ρ) increases
accordingly. Second, the small spin-chirality-induced gap [the
second term in Eq. (11)] broadens the gap width so that a
broader region near the Dirac points contributes to �n

z (k).
When θinc �= ±π/6, the profile of the thermal Hall conductiv-
ity develops a “shoulder” as we pass through the topological
phase transition [Eq. (12)]. These shoulders appear at the
phase boundary when the Chern number changes from ±1
to 0 and therefore there arises the significant cancellation
of the Berry-curvature contribution in the momentum-space
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FIG. 3. Thermal Hall conductivity κxy as a function of the
injected spin chirality φ′, where d is the lattice constant. The “shoul-
ders” appear at the topological phase transition [Eq. (12)] for the
incident angle θinc = 0 and π/12. For the incident angle θinc = π/6,
there is no topological phase transition and thus no “shoulders”
pattern in the thermal Hall conductivity. The plots on the right panel
show the Chern numbers of the upper band as a function of the spin
chirality. The used parameters are given in the main text.

integral in Eq. (13) [44]. Away from the phase boundary,
the thermal Hall conductivity begins to increase again. When
θinc = ±π/6 for which no topological phase transition occurs,
the Chern number does not change and hence there is no
“shoulder” pattern in the thermal Hall conductivity. Detect-
ing the “shoulder” patterns in the profile of κxy can provide
the feasibility of the suggested manipulation of magnonic
topological phases. For a discussion about the temperature
dependence of the “shoulder” pattern, see Appendix A 6.

VI. DISCUSSIONS

In this paper, we have investigated the manipulation of the
magnon topology of honeycomb ferromagnets via the interfa-
cial chirality injection. We have shown that the bulk magnon
topology of the magnets can be electronically manipulated
by inducing the spin chirality from the boundaries through
the charge currents in the proximate heavy metals. As an
experimental probe of the predicted chirality-induced topo-
logical phase transition of magnons, we have proposed the
shoulderlike feature of the magnon thermal Hall conductivity.

While our proposed scheme to control a magnon topol-
ogy by injecting a chirality is expected to work for generic
easy-plane spin systems that host topological magnons and
allow a spin current to flow in the form of a chiral spin
texture, it would not work for easy-axis magnets due to the
inertness of their uniform ground state to a spin-current in-
jection. Also, here, we have focused on spin systems with
sufficiently large S such that magnons defined by the truncated
Holstein-Primakoff transformation are well defined. It is an
open question whether the proposed scheme would work for
quantum spin systems with small spin length S such as spin- 1

2
systems.

We remark that the predicted topological phase transition
occurs also in a honeycomb antiferromagnet whose Hamilto-
nian is given by Eq. (1) with −J replaced by J > 0. Analogous
to the ferromagnetic case, the spin chirality can be injected
into the antiferromagnet by sandwiching it with heavy met-
als and flowing parallel currents through the heavy metals

[21,45]. It can be shown that the injected spin chirality can
drive a topological phase transition of magnons in antifer-
romagnetic honeycombs subjected to an external field. The
detailed discussion of the antiferromagnetic case is in Ap-
pendix B. Our scheme for the electronic control of magnon
topology through boundary can be tested in 2D magnets
with in-plane ordering, which includes ferromagnets CrCl3,
Mn2I3Br3 [46], and Cr(I, Cl)3 Janus monolayers [47] and
antiferromagnets NiPS3 [48] and MnPSe3 [49]. Real mate-
rials at finite temperatures are expected to have impurities,
in-plane anisotropies (associated with the crystal structure),
and thermal fluctuations, which can disturb the formation of
spin chiral textures. Although it has been shown that, if the
injected spin current is sufficiently large to overcome the
anisotropy, the spin chiral structures can be formed even in
the presence of the in-plane anisotropies [50], the detailed in-
vestigation of their effects on the spin-chirality formation and
suitable length scales for samples requires the comprehensive
analytical and numerical studies, which is beyond the scope of
this work. Our results indicate that the interfacial chirality in-
jection might serve as versatile nonintrusive means to control
the static and dynamical bulk properties of generic magnetic
systems.
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APPENDIX A: HONEYCOMB FERROMAGNET

1. Derivation of continuum Hamiltonian

Consider a honeycomb ferromagnet on a honeycomb lat-
tice whose Hamiltonian is given by Eq. (1). The vectors con-
necting the nearest-neighbor and the next-nearest-neighbor
sites are given as follows [see Fig. 1(a)]:

α1 = d

2
(
√

3, 1), β1 =
√

3d

2
(1,−

√
3),

α2 = d

2
(−

√
3, 1), β2 =

√
3d

2
(1,

√
3),

α3 = d (0,−1), β3 =
√

3d (−1, 0). (A1)

Let Si = Smi and A = 3
√

3d2/2 be the area of the unit cell.
A continuum Hamiltonian of the model can be derived using
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mi − m j 
 ∇m · (ri − r j ). Each term in Eq. (1) becomes as
follows (up to some constant) in the continuum description:

HEx = JS2
∑
〈i, j〉

(mi − m j )
2 
 A

2

∫
dx dy (∇m)2, (A2)

HEP = KS2

2

∑
i

m2
i,z 
 K

2

∫
dx dy m2

z , (A3)

HZeeman = −BS
∑

i

mi,z 
 −B
∫

dx dy mz, (A4)

where A = 2
√

3JS2/3, K = 4
√

3KS2/9d2, and B =
4
√

3BS/9d2. Meanwhile, the DM interaction term does
not contribute to the low-energy classical Hamiltonian.
Treating the components of mi as a classical variable,
ẑ · (mi × mi+β j

) 
 mi,x(∇mi,y · β j ) − mi,y(∇mi,x · β j ). Since∑3
j=1 β j = 0, we get ẑ · ∑3

j=1(mi × mi+β j
) = 0 and hence

HDMI = DS2ẑ ·
3∑

j=1

(∑
i∈A

mi × mi+β j
−

∑
i∈B

mi × mi+β j

)

= 0. (A5)

Combining Eqs. (A2)–(A5), the continuum Hamiltonian den-
sity for the honeycomb ferromagnet becomes

H = A
2

(∇m)2 + K
2

m2
z − Bmz. (A6)

2. Spin chirality injection

The classical spin dynamics is described by the Landau-
Lifshitz-Gilbert (LLG) equation

ṁ + αm × ṁ = −s−1m × ∂H

∂m

= −s−1m × (−A∇2m + Kmzẑ − Bẑ), (A7)

where s is a local spin density. In the spherical coordinates,
m = (sin θ cos φ, sin θ sin φ, cos θ ) ∈ S2 and

ṁ = θ̇ θ̂ + (φ̇ sin θ )φ̂,

∂am = (∂aθ )θ̂ + (∂aφ sin θ )φ̂,

∂2
a m = −(

∂2
a θ + sin2 θ ∂2

a φ
)
m + (

∂2
a θ − sin θ cos θ ∂2

a φ
)
θ̂

+ (
sin θ ∂2

a φ + 2 cos θ ∂aθ ∂aφ
)
φ̂,

mzẑ = cos θ (cos θm + sin θ θ̂), (A8)

for a = x, y. Here the ordered set {m, θ̂, φ̂} forms a right-
handed coordinate system. Substituting Eqs. (A8) into
Eq. (A7),

−s sin θφ̇ − αsθ̇ = − A∇2θ − A sin θ cos θ
∑

a=x,y

(∂aφ)2

− K sin θ cos θ + B sin θ, (A9)

sθ̇ − αs sin θφ̇ = − A
[

2 cos θ
∑

a=x,y

∂aθ∂aφ + sin θ ∇2φ

]
.

(A10)

Multiplying both sides of Eq. (A10) by sin θ , we get (assum-
ing α = 0)

−∂t (s cos θ ) = −A
∑

a=x,y

∂a(sin2 θ∂aφ), (A11)

which is the continuity equation ∂t (smz ) + ∇ · Js
z = 0 for the

spin density smz = s cos θ and the spin-current density Js
z =

−A sin2 θ∇φ.
Let us consider a steady-state solution with an ansatz

θ (r, t ) = θ0 and φ(r, t ) = φ(x, t ) [see Fig. 1(b)]. From
Eqs. (A9) and (A10),

φ̇ = A(∂xφ)2 cos θ0 + K cos θ0 − B
s

≡ �, (A12)

φ′(x) = αs

A sin θ0
�x + φ′(0), (A13)

which lead to φ(r, t ) = φ(x) + �t . When the sample is sand-
wiched between the heavy metals with charge currents jL/R

flowing on them, the spin-current injection occurs at the inter-
faces and the related boundary conditions are given by [22](

Js
L/R

)
z = sin2 θ0( jL/Rϑ ∓ γL/R�), (A14)

where ϑ is the dampinglike torque coefficient and γL/R is the
renormalized spin-mixing conductance. We then obtain two
expressions for the loss of spin current �Js

z ≡ (Js
L )z − (Js

R)z:

�Js
z = sin2 θ0[( jL − jR)ϑ − (γL + γR)�], (A15)

�Js
z = −A sin2 θ0

(
− αs

A sin θ0
�L

)
= αs�L sin θ0. (A16)

Equating Eqs. (A15) and (A16), we get

� = ( jL − jR)ϑ

2γ + αsL/ sin θ0
. (A17)

Therefore, for a series configuration jL = jR, we have � = 0.
Then, (Js

L )z = −A sin2 θ0φ
′ = sin2 θ0 jϑ and hence the sys-

tem has a static spiraling spin texture with φ′ = − jϑ/A.

3. Equilibrium angle of the ground state

Define the angle of incidence θinc of the spin superfluid on
the honeycomb lattice as shown in Fig. 1(b) (−π/6 � θinc �
π/6). The spin current flows along the x′ direction. Assume
the static spiral spin texture as discussed in Appendix A 2. De-
fine the azimuthal angle field φ(r) on the honeycomb lattice.
Since ∇′φ = (φ′, 0) where φ′ ≡ ∂φ/∂x′ and(

x′
y′

)
=

(
cos θinc − sin θinc

sin θinc cos θinc

)(
x
y

)
, (A18)

the gradient of φ in the (x, y) coordinates is ∇φ =
φ′(cos θinc,− sin θinc).

Let θ0 be the equilibrium polar angle of the ground
state and SA(φ) [SB(φ)] be the spin in the A (B) sub-
lattice with azimuthal angle φ. By definition, SA/B(φ) =
S(sin θ0 cos φ, sin θ0 sin φ, cos θ0). Then, for any φ0, we have

SA(φ0) ·
3∑

j=1

SB(φ0 + α j · ∇φ)

= S2[3 cos2 θ0 + sin2 θ0 g(φ′d, θinc)], (A19)
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ẑ ·
[

SA/B(φ0) ×
3∑

j=1

SA/B(φ0 + β j · ∇φ)

]

= S2 sin2 θ0 h(φ′d, θinc), (A20)

where g(φ′d, θinc) ≡ ∑3
j=1 cos(∇φ · α j ) and h(φ′d, θinc) ≡∑3

j=1 sin(∇φ · β j ) (φ′d is the change in the azimuthal angle
per the distance between neighboring sites in the x′ direction).
Let us denote the total number of sites on the lattice by N .
Then, the exchange and the DMI terms become

HEx = −N

2
JS2[3 cos2 θ0 + sin2 θ0 g(φ′d, θinc), (A21)

HDMI = N

2
D{[Eq. (A20) for A] − [Eq. (A20) for B]}

= 0. (A22)

The easy-plane and the Zeeman terms are HEP =
NKS2 cos2 θ0/2 and HZeeman = −NBS cos θ0, respectively.
Thus, the classical Hamiltonian of the honeycomb
ferromagnet with spin chirality is given by

Hcl = − NS

2
[2B cos θ0 + (3J − K )S cos2 θ0

+ JS sin2 θ0 g(φ′d, θinc)]. (A23)

The function g satisfies g(φ′d, θinc) � 3 for (φ′d, θinc) ∈
[−π, π ] × [−π/6, π/6] and the equality holds only when
φ′d = 0.

Let f ≡ 2Hcl/NS = −gJS − 2B cos θ0 + KeffS cos2 θ0

where Keff = K − J (3 − g(φ′d, θinc)). Note that when φ′ = 0,
f = −3JS − 2B cos θ0 + KS cos2 θ0. Thus, the effect of the
finite chirality is reflected in the renormalized anisotropy Keff,
reducing the effect of the easy-plane anisotropy K slightly.
Searching for the value of θ0 satisfying ∂ f /∂θ0 = 0 and
∂2 f /∂θ2

0 � 0, one can conclude that the equilibrium angle θ0

is determined by

θ0 = �(KeffS − |B|) cos−1

(
B

KeffS

)
, (A24)

where � is the Heaviside theta function. Note that when there
is no magnetic field (B = 0), we obtain θ0 = π/2 regardless
of the value of φ′d .

4. Numerical justification for ignoring λ(k)

Figure 4 shows a numerical comparison between the
magnon bands near the two Dirac points obtained from the ap-
proximated Hamiltonian with no pairing terms λ(k) [Eqs. (8)
and (9)] and the exact full Hamiltonian [Eqs. (4)–(7)]. Note
that the approximated bands perfectly agree with the exact
bands across the phase boundary [Eq. (12)]. This justifies us-
ing the approximated Hamiltonian to study the band topology.

5. Shifted Dirac points and Dirac Hamiltonians

The position of the shifted Dirac points K̄ and K̄′ can be
obtained by looking for the zeros of the equation ρ j (k,∇φ) =
0 where ρ j (k,∇φ) = e−ik·α j (cos

ϕα j

2
− i cos θ0 sin

ϕα j

2
)2 and

ϕα j = ∇φ · α j . When φ′ = 0, the zeros are the original
Dirac points K = (4π/3a, 0) and K′ = (2π/3a, 2π/

√
3a).

For nonzero φ′, solving ρ j (k,∇φ) = 0 perturbatively up to
the order of (φ′d )3 yields

(K̄)kx = 4π

3
√

3d
− φ′ cos θ0 cos θinc + φ′2d

8
sin2 θ0 cos 2θinc

− φ′3d2

16
cos θ0 sin2 θ0 cos θinc, (A25)

(K̄)ky = cos θ0 sin θinc + φ′2d

8
sin2 θ0 sin 2θinc

+ φ′3d2

16
cos θ0 sin2 θ0 sin θinc, (A26)

X X X

(a)

(a) (b) (c)

(b) (c)

FIG. 4. Numerical comparison between the bands obtained from the exact Hamiltonian with magnon-pairing terms (red, solid) and the
approximated Hamiltonian (blue, dashed) near the two Dirac points. (a) φ′d = 0. (b) φ′d = 0.093. Note that the approximated magnon bands
correctly capture the gap closing at the phase boundary [Eq. (12)]. (c) φ′d = 0.14. The parameters used are the same as those used in Fig. 3.
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FIG. 5. Magnon thermal Hall conductivity κxy at various temper-
atures T for the case θinc = 0.

(K̄′)kx = 2π

3a
− φ′ cos θ0 cos θinc − φ′2d

8
sin2 θ0 cos 2θinc

− φ′3d2

16
cos θ0 sin2 θ0 cos θinc, (A27)

(K̄′)ky = 2π√
3a

+ φ′ cos θ0 sin θinc − φ′2d

8
sin2 θ0 sin 2θinc

+ φ′3d2

16
cos θ0 sin2 θ0 sin θinc. (A28)

We can obtain a Dirac Hamiltonian near the shifted Dirac
points by expanding H = ∑

k �
†
k[h0I + h(k) · σ]�k given in

Eqs. (8) and (9) near K̄ and K̄′ given in Eqs. (A25)–(A28).
Here we present the Dirac Hamiltonian for the case θinc = 0
near K̄:

hK̄,1(p) = 3JSd

2
px + 3J (B2 − K2S2)φ′2d3

8K2S
px, (A29)

hK̄,2(p) = −3JSd

2
py, (A30)

hK̄,3(p) = − 3
√

3BD

K
+ 9

√
3D(B2 − K2S2)φ′d2

4K2S
px

+ 9
√

3DB[B2 pxd + KS2(4J − K pxd )]φ′2d2

16K3S2

+ 3
√

3D

64K4S3
[B4(9pxd − 10) + K4S4(15pxd − 26)

+ 12B2KS2[6J pxd + K (3 − 2pxd )]], (A31)

where p is a small momentum deviation from K̄. For general
θinc, the third components (mass term) of the Dirac Hamilto-
nians at the shifted Dirac points (p = 0) are given by

hK̄/K̄′,3(0) = 3
√

3D

32K4S3
[±8BK2S3[4K + 3J (φ′d )2]

+ (−5B4 + 18B2K2S2 − 13K4S4)

× (φ′d )3 cos 3θinc]. (A32)

The gap size � is twice the absolute value of Eq. (A32), which
reduces to Eq. (11) for a small magnetic field B.

FIG. 6. c2[ρn,k(En,k )] in Eq. (13) as a function of the magnon-
band energy En,k/JS at various temperatures T . The blue dashed line
indicates the energy values near the Dirac points.

6. Temperature dependence of the “shoulder” pattern

The “shoulder” persists for any temperatures sufficiently
large enough so that enough population of thermal magnons
exists near the Dirac points, where the Berry curvature takes
nontrivial values. For the parameters used in Sec. V, the
“shoulder” starts to be detectable near T = 5 K and continues
to exist at higher temperatures (see Fig. 5). Figure 6 clearly
displays that the function c2[ρn,k(En,k )] inside the integration
in Eq. (13) is largely suppressed at low temperatures (T 

1 K) near the blue dashed line, which corresponds to energies
En,k near the Dirac points where the Berry curvature �n

z (k)
is large. As temperature increases, the value of c2[ρn,k(En,k )]
near the blue dashed line increases and therefore the change
of the Chern number from one to zero results in the shoulder-
shaped profile of the magnon thermal Hall conductivity κxy.
Note that there is a critical temperature Tc above which the
magnetic order does not persist. Near and above Tc, our linear
spin-wave approach is not well justified and therefore we
expect that the temperature window to observe the “shoulder”
from κxy will be bounded above by some fraction of Tc.

APPENDIX B: HONEYCOMB ANTIFERROMAGNET

1. Model and ground state

Consider a honeycomb antiferromagnet on a honeycomb
lattice whose Hamiltonian is given by

H = J
∑
〈i, j〉

Si · S j + K

2

∑
i

S2
i,z

+ D
∑
〈〈i, j〉〉

νi j ẑ · (Si × S j ) − B
∑

i

Si,z. (B1)

All terms in Eq. (B1) are the same as the ferromagnetic
model in Eq. (1), except for the sign of the exchange term.
We again consider a setup shown in Fig. 1(b) to inject
spin chirality into the antiferromagnet. Let θA (θB) be the
ground-state equilibrium polar angle of the spins belong-
ing to the sublattice A (B). Let SA/B(φ) denote a spin in
the sublattice A (B) with azimuthal angle φ, whose compo-
nents in the Cartesian coordinates are given by SA/B(φ) =
S(sin θA/B cos φ, sin θA/B sin φ, cos θA/B). Then, for any φ0, we
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obtain

SA(φ0) ·
3∑

j=1

SB(φ0 + α j · ∇φ)

= S2[3 cos θA cos θB + sin θA sin θB g(φ′d, θinc)], (B2)

ẑ ·
[

SA/B(φ0) ×
3∑

j=1

SA/B(φ0 + β j · ∇φ)

]

= S2 sin2 θA/B h(φ′d, θinc). (B3)

Denoting the total number of sites on each sublattice by N , the
easy-plane and the Zeeman terms of Eq. (B1) become HEP =
NKS2(cos2 θA + cos2 θB)/2 and HZeeman = −NBS(cos θA +
cos θB). Then, the classical Hamiltonian of the honeycomb
antiferromagnet with spin chirality becomes

Hcl = NS

2
[KS(cos2 θA + cos2 θB) − 2B(cos θA + cos θB)

+ 2JS[3 cos θA cos θB + sin θA sin θB g(φ′d, θinc)]

+ 2DS h(φ′d, θinc)(sin2 θA − sin2 θB)]. (B4)

We can obtain the equilibrium polar angles θA and θB by
looking for the arguments that minimize Hcl.

2. Magnon Hamiltonian

As in Sec. III for the ferromagnetic model, by performing
local spin rotations, the Holstein-Primakoff transformation,
and the Fourier transformation sequentially, we can again
obtain the magnon Hamiltonian in the momentum space. Note
that for the antiferromagnetic model we should rotate spins

FIG. 7. (a) The Berry curvature �+
z of the upper magnon band

in a honeycomb antiferromagnet under chirality injection for B =
1.8JS and (b) for B = 0. (c) The topological phase diagram for anti-
ferromagnet. For (a) and (b), the parameters K = D = 0.2J, φ′d =
0.2, and θinc = 0 are used.

in different sublattices with different polar angles θA and θB.
Introducing the Nambu spinor ψk = (ak, bk, a†

−k, b†
−k )T , the

magnon Hamiltonian of the honeycomb antiferromagnet can
be written as H = 1

2

∑
k ψ

†
kH(k)ψk with

Hk =
(

h(k) λ(k)
λ(k)† h(−k)T

)
, (B5)

where

h(k) =
(

εA 0
0 εB

)
+ S

3∑
j=1

(−J sin θA sin θB cos ϕα j + D fA, j (k,∇φ) J γ j (k,∇φ)
J γ ∗

j (k,∇φ) −J sin θA sin θB cos ϕα j − D fB, j (k,∇φ)

)
, (B6)

λ(k) = 1

2
KS

(
sin2 θA 0

0 sin2 θB

)
+ S

3∑
j=1

(−D sin2 θA e−ik·β j sin ϕβ j J γ̃ j (k,∇φ)
J γ̃ j (−k,∇φ) D sin2 θB e−ik·β j sin ϕβ j

)
, (B7)

εA/B = B cos θA/B − 1

4
KS(1 + 3 cos 2θA/B) − 3JS cos θA cos θB, (B8)

fA/B, j (k,∇φ) = (3 + cos 2θA/B) cos(k · β j ) sin ϕβ j − 4 sin2 θA/B sin ϕβ j + 4 cos θA/B sin(k · β j ) cos ϕβ j , (B9)

γ j (k,∇φ) = eik·α j [sin θA sin θB + (1 + cos θA cos θB) cos ϕα j + i(cos θA + cos θB) sin ϕα j ], (B10)

γ̃ j (k,∇φ) = eik·α j [sin θA sin θB − (1 − cos θA cos θB) cos ϕα j − i(cos θA − cos θB) sin ϕα j ]. (B11)

3. Topological phase transition

We can analyze the topological phases of the antiferromag-
net under chirality injection by calculating the Chern numbers
of the magnon bands via the scheme of Fukui et al. [51].
Figures 7(a) and 7(b) show the Berry curvatures of the upper
magnon band of the Hamiltonian given by Eqs. (B5)–(B11).
Under a magnetic field that yields a noncollinear (canted) Neél

order, the Berry curvature has the same sign all over the first
Brillouin zone as shown in Fig. 7(a) with the corresponding
Chern number +1, which is consistent with the previous study
[52]. Meanwhile, when B = 0, the effective time-reversal
symmetry is restored and the Berry curvature sums up to van-
ish [see Fig. 7(b)], resulting in a topologically trivial phase.
Figure 7(c) shows the chirality-induced topological phase
diagram of the antiferromagnet. The overall feature of
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the topological phase transition of the antiferromagnet
is analogous to that of the ferromagnet. We numerically

checked that the trivial phase disappears when θinc = ±π/6
as the ferromagnets.
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