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Interaction of gapless spin waves and a domain wall in an easy-cone ferromagnet

Wooyon Kim and Se Kwon Kim
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

(Received 14 November 2022; revised 22 March 2023; accepted 23 March 2023; published 13 April 2023)

We theoretically study the interaction of spin waves and a domain wall in a quasi-one-dimensional easy-cone
ferromagnet. The gapless spin waves on top of a domain wall are found to exhibit finite reflection in contrast to
the well-known perfect transmission of gapful spin waves in easy-axis magnets. Based on the obtained scattering
properties, we study the thermal-magnon-driven dynamics of a domain wall subjected to a thermal bias within the
Landauer-Büttiker formalism, where transmitted magnons are shown to exert the magnonic torque on the domain
wall and thereby drive it with the velocity linear to the applied thermal bias. The peculiar gapless nature of spin
waves in easy-cone magnets enables the thermally driven domain-wall motion even at low temperatures, differing
from the easy-axis case where the domain-wall velocity is exponentially suppressed at low temperatures. Our
work suggests that easy-cone magnets can serve as a useful platform to study the interaction of gapless spin
waves and nonlinear excitations and thereby realize low-temperature magnon-related phenomena.

DOI: 10.1103/PhysRevB.107.144418

I. INTRODUCTION

Magnetic systems can hold a variety of topological de-
fects, such as domain walls (DWs), vortices, and skyrmions,
and their dynamics have been studied for decades for both
fundamental and practical interest [1]. In particular, magnetic
DWs have drawn great attention due to their practical applica-
tions exemplified by domain-wall race-track memory [2]. The
mechanism of driving a DW has been studied extensively in
several easy-axis magnets with various driving means, such as
an external magnetic field [3,4] and an electric current [5–11].
In addition to these means, spin waves have also been shown
to be able to drive a DW [12–15]. Magnons, i.e., quanta of spin
waves, carry spin h̄ in the opposite direction to the background
spin, which enables them to push a DW by flipping their
spin while moving across a DW and thereby transfer spin
angular momentum to the DW according to the conservation
of the total angular momentum. For easy-axis ferromagnets
and antiferromagnets, it is well known that spin waves show
perfect transmission through a DW [16–19]. Magnons in the
easy-axis magnets have a finite gap to be excited and there-
fore the effects of thermal magnons on transport properties
are exponentially suppressed at sufficiently low temperatures
compared to the magnon gap.

Easy-cone magnets are another class of magnets having
uniaxial anisotropy, in which ground-state manifolds form
a couple of cones about the high-symmetry axis [20–23]
[see Fig. 1(a)]. The ground states spontaneously break both
the Z2 and U(1) symmetries by choosing, respectively, which
of the cones to reside in and which direction within the cone
is pointed at. The spontaneous breaking of these symmetries
endows easy-cone magnets with the peculiar ability to support
DWs [Fig. 1(c)] and gapless spin-wave excitations [Fig. 1(c)]
in one system [24], which is absent in easy-axis magnets. In
particular, the latter gapless property of spin waves in these
magnets is expected to enable us to drive a DW with spin
waves of lower energy compared to the case of a gapful
easy-axis magnet.

Recent technology to fabricate easy-cone magnets has
advanced significantly, increasing the feasibility of easy-
cone magnets for experimental studies and technologi-
cal applications. The example materials include Co/Pt,
Ta/Co60Fe20B20/MgO, (Cr0.9B0.1)Te, and NdCo5 [25–31].
However, despite the aforementioned unique features of easy-
cone systems compared to easy-axis systems, the spin-wave
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FIG. 1. (a) Ground-state manifolds of an easy-cone magnet in
the unit sphere. The manifolds form a pair of cones about the z axis
with angle θc (upper blue) and π − θc (lower red). The black arrow
on the blue cone represents one possible ground-state magnetization.
(b) The gapless dispersion relation ω(k) of spin waves in a ground
state of an easy-cone magnet. Both axes are in natural units of
length and time, λ0 and τ0. See the main text for their definitions.
(c) Schematic illustration of a one-dimensional easy-cone magnet
with a domain wall (DW). Region I (III) is in the ground state with
uniform magnetization within the blue (red) cone. These regions
are interpolated by region II, where the DW is located (centered at
X ). The black arrows represent the magnetizations in a static DW
profile, while the gray cones around them represent time-evolving
magnetizations of spin waves.
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properties, the dynamics of solitons such as a DW, and their
interactions in easy-cone magnets have been studied little.

In this paper, we study the interaction of spin waves and a
DW in an easy-cone ferromagnet within the Landau-Lifshitz
framework. In Sec. II, we begin by giving a brief review of
the easy-cone system and the DW solution therein. In Sec. III,
we develop a theory for spin waves on top of a DW and
compute the reflection and the transmission probability of
the spin waves interacting with the DW. Using the obtained
scattering property, in Sec. IV, we study the magnon-driven
DW motion subjected to a thermal bias and obtain the DW
velocity as a function of the temperatures involved, within the
Landauer-Büttiker formalism. In particular, we show that the
gapless nature of spin waves in easy-cone magnets gives rise
to the finite DW velocity even at low temperatures, in contrast
to the easy-axis case where the analogous DW velocity is
exponentially suppressed as the temperature decreases due to
the finite spin-wave gap.

II. EASY-CONE SYSTEMS

In this section, we describe easy-cone magnets, their sym-
metry properties, and ground states. We also present an exact
solution for a domain wall.

A. Easy-cone magnets

We consider a quasi-one-dimensional ferromagnet along
the x axis with the potential energy given by

U [m(x)] =
∫ [

A

2
(∂xm)2 − K

2
m2

z + K ′

2
m4

z

]
dx, (1)

where A > 0 is the exchange coefficient, K > 0 is the ef-
fective first-order uniaxial anisotropy, and K ′ > 0 is the
second-order uniaxial anisotropy [20–23]. Here, K = Ku −
μ0M2

s /2 includes both the magnetocrystalline anisotropy ∝
Ku and the dipolar-induced shape anisotropy ∝ M2

s (by as-
suming that the magnet has a sufficiently narrow cross
section so that the system can be considered quasi-one-
dimensional [32]). Note that the first-order anisotropy favors
the magnetization along the z axis, while the second-order
anisotropy tends to tilt the magnetization away from the z axis.
To parametrize the competition of these two effects, we define
a dimensionless number κ = K ′/K . The condition for the
system to be an easy-cone magnet is given by κ > 1/2 [21],
which will be assumed throughout the paper. The potential
energy possesses two distinct symmetries. First, it is invari-
ant under time-reversal m �→ −m, showing the Z2 symmetry
of the system. Second, it is invariant under global rotations
of the magnetization m(x) �→ R̂z(ϕ)m(x), where R̂z(ϕ) is a
three-dimensional rotation matrix about the z axis with angle
ϕ, showing the U(1) spin-rotational symmetry of the system.

Given the potential energy, the couple of cones of the
ground-state manifold [Fig. 1(a)] are determined as follows.
Their angle about the high-symmetry axis (z axis) are
θc = arccos

√
(2κ )−1(< π/2) for the upper blue cone and

π − θc for the lower red cone, respectively. Note that the an-
gles are determined by κ , the relative strength of the first- and
the second-order anisotropies, as expected. A ground state is

a uniform array of the magnetization m which belongs to one
of the given manifolds. It is well described by the spherical
coordinates θ and φ where m=(sin θ cos φ, sin θ sin φ, cos θ ),
and is given by

θ (x) = θc or π − θc, (2)

φ(x) = �, (3)

in which each coordinate breaks one of two symmetries: θ

breaks the Z2 symmetry and φ breaks the U(1) spin-rotational
symmetry.

For the following discussions, it is convenient to use the
following natural units of length, time, and energy:

λ0 =
√

A/K, τ0 = s/K, ε0 =
√

AK, (4)

where s is the spin density.

B. Domain walls

The easy-cone system supports another stable state referred
to as a DW, which connects two uniform ground states in
different manifolds while minimizing the potential energy.
That is, a DW is a stationary solution satisfying δU/δθ0 = 0
and δU/δφ0 = 0, with boundary conditions θ0(x → ∓∞) =
θc and θ0(x → ±∞) = π − θc . The exact solution is avail-
able [33,34], which is given by

θ0(x) − π

2
= ± arctan

[
1√

2κ − 1
tanh

(
x − X

λd

)]
, (5)

φ0(x) = �, (6)

where λd = λ0

√
4κ

2κ−1 is the DW width. See Fig. 1(c) for

the schematic illustration of the DW described by Eq. (5)
with plus sign and Eq. (6) with � = 0. Here, the polar an-
gle changes from θc to π − θc as x varies from −∞ to ∞,
while the azimuthal angle is uniform. In Eq. (5), X repre-
sents the DW center at which the polar angle is π/2. Due to
the translational invariance of our system, X is arbitrary and
thus represents the zero-energy mode associated with sponta-
neous breaking of the translational invariance by the DW. In
this paper, we are interested in spin waves on top of this DW,
which we turn to below.

III. INTERACTION OF SPIN WAVES
WITH A DOMAIN WALL

In this section, we study spin-wave dynamics on top of a
DW. In particular, we confirm the gapless dispersion and show
that the incident spin wave is partially reflected from the DW
regardless of its frequency, which is in contrast to the well-
known perfect transmission in easy-axis magnets [16–19].

A. Spin waves

In order to consider a spin wave on top of a DW, we
divide the magnetization m(x, t ) into the static DW profile
m0(x ; X,�) and a small perturbation δm. In the local frame,
the small perturbation can be written as

δm(x, t ) ≈ θ̂ δ1(x, t ) + φ̂ δ2(x, t ), (7)
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FIG. 2. (a) The plots of p(x) (blue solid) and q(x) (red dashed
line) in the spin-wave equation (10) with q0 = 1. Both are even
functions and converge to constant values far away from the DW.
The middle region where p(x) and q(x) vary corresponds to the DW.
(b) The probability of reflection R (blue solid) and transmission T
(red dashed) of a spin wave scattering with a DW, as a function of
frequency ωτ0. Their sum R + T shown as the dotted black line is
confirmed to be unity. Both (a) and (b) are for θc = π/4 .

where θ̂ = ∂m0/∂θ , φ̂ = (1/ sin θ0)(∂m0/∂φ), and m0 form
the local orthonormal frame.

By linearizing the Landau-Lifshitz equation [35] about the
DW solution while neglecting the damping,

∂m
∂t

= − δU

δm
× m , (8)

in the local coordinate system, we have a set of first-order
equations in the small field δm, given by

−δ̇1(x, t ) = −δ′′
2 + p(x)δ2, (9a)

δ̇2(x, t ) = −δ′′
1 + q(x)δ1, (9b)

with

p(x) = 2 cos2 θ0(x) − 3κ cos4 θ0(x) − 1/(4κ ), (10a)

q(x) = [2 cos2 θ0(x) − 1] + 2κ[3 cos2 θ0(x) − 4 cos4 θ0(x)].

(10b)

See Fig. 2(a) for the exemplary plots of p(x) and q(x)
for θc = π/4. Note that p(x) approaches zero as x → ±∞,
which stems from the spontaneous breaking of the U(1) spin-
rotational symmetry in ground states and is associated with
the gapless nature of spin waves therein [36]. However, q(x)
approaches a finite value q0 = 2 − 1/κ as x → ±∞, repre-
senting the finite energy cost for the magnetization to be tilted
away from the easy-cone manifolds. Far away from the DW
where p(x) and q(x) are uniform, the spin-wave equation has
plane-wave solutions δn(x, t ) = An exp(ikx − iωt ), with the
dispersion relation given by

ω(k) =
√

k2(k2 + q0). (11)

See Fig. 1(b) for the plot and note that the gap is zero.
One may notice that taking the limit of κ to 0 does not

bring Eqs. (10) to the Pöschl-Teller potential and Eq. (11)
to the gapful dispersion. See Appendix B for the appropriate
treatment of general easy-axis magnets having finite second-
order anisotropy.
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FIG. 3. (a) A schematic illustration of a setup for a thermally
driven DW. An easy-cone ferromagnet with a DW is placed between
two thermal reservoirs that maintain constant temperatures TL and
TR(< TL ), respectively. Each reservoir injects thermal magnons into
the magnet, which exert a torque on the DW and thereby push it to the
region with higher temperature. (b) DW speed in the setup (a) in the
presence of damping α = 0.1, as a function of Tavg = (TL + TR )/2.
The temperature difference �T = TL − TR is set to 0.1Tavg. For the
used material parameters, see the main text.

B. Reflection and transmission probability

The incident spin wave is found to be partially reflected
from the DW. The probability of reflection and transmis-
sion were obtained by numerically solving Eqs. (9) within
the Green’s function formalism detailed in Appendix A. See
Fig. 2(b) for the plots of the probabilities for θc = π/4, which
represents one of our main results. Note the finite reflection
probability at the whole energy ranges, which is in contrast
to the reflectionless spin waves in the easy-axis counterpart.
The transmission probability increases as the spin-wave en-
ergy increases since the effect of the energy barrier on its
transmission becomes weaker at high energies.

When a spin wave is quantized, a quasiparticle referred
to as a magnon emerges. The reflection probability and the
transmission probability of magnons are the same as those for
the spin waves, which we will invoke below when discussing
the thermal-magnon-driven DW motion.

IV. DOMAIN-WALL MOTION DRIVEN
BY THERMAL MAGNONS

In this section, we study the DW motion driven by the
scattering of thermal magnons. See Fig. 3(a) for the schematic
illustration of a system. An easy-cone magnet with a single
DW is placed between the left and the right thermal reservoirs
that maintain finite temperatures TL and TR, respectively. We
employ the Landauer-Büttiker formalism by assuming ballis-
tic magnon transport to obtain the DW motion [37–39], as
done in Refs. [40,41]. In Eq. (18), we present the DW velocity
as a function of the average temperature Tavg = (TL + TR)/2,
which is another main result of ours.

A. Magnonic force and torque

Thermally populated magnons move between the two
thermal reservoirs. When traveling magnons are transmitted
through a DW, they exert a torque on it by changing their spin.
The torque by the right-moving magnons, which come out of
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the left reservoir, is given by

τL =
∫

dε 2h̄ cos θc T (ε) nB

(
ε

kBTL

)
1

2π h̄
, (12)

with polarization along the z direction, where nB is the
Bose-Einstein distribution function and kB is the Boltzmann
constant. Here, the factor 2h̄ cos θc = h̄ cos θ (x → −∞) −
h̄ cos θ (x → ∞) represents the angular-momentum transfer
from a single magnon to the DW, T (ε) is the transmission
probability of magnons with energy ε, and the last factor
1/(2π h̄) comes from the product of a density of states per
unit length and the group velocity dω/dk [40]. Similarly, the
torque τR exerted on the DW by the magnons moving from
the right reservoir to the left reservoir can be obtained. The
net torque τ = τL + τR can be approximated by

τ ≈ cos θc

π
�T

∫
dε T (ε)

∂nB

∂T

∣∣∣∣
Tavg

, (13)

for �T 
 Tavg, where �T = TL − TR is the temperature dif-
ference between the two reservoirs.

A reflected magnon, however, exerts a force on the DW.
By the derivation analogous to the above torque case, the net
force exerted on the DW by magnons coming out of the two
reservoirs can be approximated by

F ≈ �T
∫

dε
k

π
R(ε)

∂nB

∂T

∣∣∣∣
Tavg

, (14)

where k/π is a product of 2h̄k—the linear-momentum transfer
by a single magnon—and 1/(2π h̄)—the product of a density
of states per unit length and the group velocity. Here, R(ε)
is the reflection probability of magnons with energy ε by the
scattering with the DW. Again, the approximation is valid for
�T 
 Tavg.

B. DW motion

The torque and the force on the DW by the scattering with
thermal magnons give rise to the DW motion as follows. The
equations of motion for the DW parameters, the position X
and the angle �, are given by [in natural units defined in
Eq. (4)] (

g αη�

αηX −g

)(
Ẋ
�̇

)
=

(
τ

F

)
, (15)

where g = −2 cos θc is the gyrotropic coupling constant be-
tween Ẋ and �̇ [42], α is the Gilbert damping constant, and
ηX and η� are the parameters that represent energy dissipa-
tions associated with the translational and rotational motion,
respectively, which are given by

ηX = 1√
4κ

[(κ − 1)(π − 2θc) − √
2κ − 1], (16)

η� = 2κ − 1

2κ
L − 1√

κ
(π − 2θc), (17)

with L the length of a magnet. Here in Eq. (15), the left-hand
sides in the absence of the damping are the time derivatives
of the spin angular momentum and the conserved linear mo-
mentum of a DW, respectively, which are derived through

Noether’s theorem [41,43]. The former gẊ can be easily un-
derstood by considering the dependence of the total spin on
the DW position, which determines the lengths of the spin-up
and spin-down regions: Sz

tot ∝ ±X [minus sign for increasing
Sz(x) , which is the case in Fig. 3(a)]. For the torque and the
force given in Eqs. (13) and (14), the DW velocity is given by

Ẋ = 1

g2 + α2ηX η�

(gτ + αη�F ), (18)

in natural units [Eq. (4)]. We numerically obtained the
velocity by using the material parameters of NdCo5

given by lattice constant a = 0.5 nm, saturation mag-
netization Ms = 1.1×106 A/m, A = 1.1×10−11 J/m, K =
2.4×106 J/m3, K ′ = 1.6×106 J/m3, and thereby κ =
0.67 [28–31]. Here in τ and F , the probabilities T (ε)
and R(ε) can be affected by the presence of magnon
damping in accordance with the fluctuation-dissipation the-
orem [44]. However, in this work, our main focus is
to provide a simple phenomenological theory for the in-
teraction of a magnon current and a DW and thus we
considered the effect of spin dissipation only on the dy-
namics of the DW, not on the magnon scattering with a
DW by assuming that the damping is sufficiently small
that magnons do not significantly decay until they finish
their interaction with a DW [40,45]. We remark here that
if a quantitatively accurate prediction is needed for the DW
velocity, one has to account for the effect of the finite
magnon damping on the DW dynamics in the theory in or-
der to be consistent with the fluctuation-dissipation theorem.
Figure 3(b) shows the velocity of the thermally driven DWs
in NdCo5 of length L = 10λd in the presence of magnetic
damping α = 0.1 , as a function of Tavg with �T = 0.1Tavg.
Note that there is no exponential suppression of the DW
velocity as the average temperature decreases, which can be
attributed to the gapless nature of spin waves in easy-cone
magnets.

V. SUMMARY AND DISCUSSION

We have studied how spin waves and a DW interact in a
one-dimensional easy-cone ferromagnet within the Landau-
Lifshitz phenomenology [35]. Specifically, we have studied
the scattering properties of spin waves with a DW and ob-
tained the reflection and the transmission probability as a
function of the wave frequency. Based on this, we have further
investigated the magnon-current-driven dynamics of a DW
under a thermal bias within the Landauer-Büttiker formal-
ism [37–39]. The DW velocity is shown to be linear to the
applied thermal bias and to increase as an average temperature
rises. In particular, the gapless feature of magnons is shown to
enable the thermal DW motion at low temperatures without
exponential suppression. In Sec. IV, we only considered the
spin-transfer torque induced by thermal magnons. In general
discussions on thermally driven DW motion, however, one
should take into account an entropic torque as well [46–48],
which reveals the effect of thermal excitation that leads to the
increase of spin disorder in a DW. We assumed the thermal
gradient in our system is present only at the interfaces with
thermal reservoirs and magnets and absent inside the magnet
so that the free energy of the DW remains the same within
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the magnet regardless of its position, and thus neglected an
entropic torque.

In the future, it might be worth investigating a two-
dimensional easy-cone magnet that harbors a one-dimensional
DW with chiral spin rotation along with it. Here, one can
expect magnon deflection by the emergent magnetic field,
which is formed exclusively at the DW [49–52]. Analogous
research has been conducted for easy-axis ferromagnets with
gapful magnons in Ref. [53]. Compared to the ferromagnetic
case, we expect that the easy-cone counterpart would allow us
to study the interaction of gapless magnons and a DW with
chiral spin rotation.
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APPENDIX A: SCATTERING OF SPIN WAVES
WITH A DOMAIN WALL

We present a numerical method to compute the scattering
parameters of spin waves. To compute them, it is important
to include evanescent waves (∼e±k̄x ) in addition to a plane-
wave solution [54]. Here k̄ is an imaginary wave number with
dispersion relation ω(k̄) =

√
k̄2(k̄2 − q0) . We set an ansatz,

�i =
(

eikxi + re−ikxi

r′ek̄xi

)
for i = 0,−1,−2, . . . , (A1)

�i =
(

teikxi

t ′e−k̄(xi−xN )

)
for i = N + 1, N + 2, . . . , (A2)

outside the DW, which lies in the i = 1, 2, . . . , N th
sites. Here, eikx represents an incoming spin wave, and
r (r′) and t (t ′) is the reflection and transmission coefficient,
respectively, for the traveling (evanescent) mode.

The recurrence relation of the spinors �i is in the form of

ω�i = −[t]�i−1 + [si]�i − [t]�i+1. (A3)

Here, the [t] and [si] are 2×2 matrices, which can be specified
from the spin-wave equation (9).

Note that the relations for the spinors at the DW bound-
aries, i.e., the ones for the (−1, 0, 1)-th or (N, N + 1, N +
2)-th spinors, will give equations for r , r′ , t , t ′, once we
know �1 and �N that are inside the DW. To this end, let us
define the propagator [G], which is the N×N matrix whose

elements are 2×2 matrices:

[G]i j =

⎧⎪⎨
⎪⎩

[t], j = i ± 1

[ωI − si], j = i

[110], otherwise,

(A4)

where [I] is the 2×2 identity matrix. All of the spinors inside
the DW including �1 and �N are determined,⎛

⎜⎜⎜⎜⎜⎜⎜⎝

�1

�2

...

�N−1

�N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= [G]

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−[t]�0

0
...

0

−[t]�N+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

Therefore, Eq. (A3) of i = 0 and N + 1 reduce to a set of
four linear equations for r, t, r′, t ′,

−[t]�−1 + [−ωI + s0 + t G11t]�0 + [t G1Nt]�N+1 = 0,

(A6)

[t GN1t]�0+[−ωI+sN+1 + t GNNt]�N+1 − [t]�N+2 = 0,

(A7)

from which we obtain the probability of reflection, |r|2, and
of transmission, |t |2.

APPENDIX B: SPIN-WAVE EQUATIONS IN GENERAL
EASY-AXIS MAGNETS

We present the alternative forms of the potentials p(x) and
q(x) [Eqs. (10)], the dispersion relation [Eq. (11)], and a static
DW solution [Eq. (5)] for a general easy-axis system that has
a finite second-order anisotropy K ′. For K > 0 and κ = K ′

K ∈
(−∞, ∞) , a system is an easy axis if κ � 1/2 and an easy
cone if κ > 1/2.

The potentials for spin waves on top of a DW θ0(x) are
given by

p(x) =
{

2 cos2 θ0(x)−3κ cos4 θ0(x) − (1 − κ ), κ � 1/2

2 cos2 θ0(x)−3κ cos4 θ0(x) − 1/(4κ ), κ > 1/2,

(B1)

q(x) = [2 cos2 θ0(x) − 1] + 2κ[3 cos2 θ0(x) − 4 cos4 θ0(x)],

(B2)

where the domain-wall solution θ0(x) is implicitly given by

cos2 θ0(x) =

⎧⎪⎨
⎪⎩

(1−κ ) tanh2 (
√

1−2κ x)
(1−2κ )+κ tanh2 (

√
1−2κ x) , κ � 1/2

tanh2 (
√

2κ−1x/
√

4κ)
(2κ−1)+tanh2 (

√
2κ−1x/

√
4κ) , κ > 1/2.

(B3)

One can retrieve the well-known Walker solution and the
Pöschl-Teller potential for the special case of κ = 0 , where
the second-order anisotropy vanishes,

cos2 θ0(x) = tanh2 x, (B4)

p(x) = q(x) = 1 − 2 sech2x. (B5)

The dispersion relation is given by

ω(k) =
√

(k2 + p0)(k2 + q0), (B6)
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where p0 and q0 are the limits of p(x) and q(x) at infinity,
respectively,

p0 = q0 = 1 − 2κ, κ � 1/2

p0 = 0 , q0 = 2 − κ−1, κ > 1/2, (B7)

from which the gapful nature of the easy-axis case is recov-
ered. The equality of the limits in the easy-axis case comes
from ambiguity in choosing axes θ̂ and φ̂ . (Both are ill de-
fined, so one can take θ̂ ≡ x̂ , φ̂ ≡ ŷ .) The κ > 1/2 case can
be understood from the footnote [36].
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