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We have studied the finite-temperature magnetic phase transition using a combination of first-principles
calculations and the second-order Holstein-Primakoff approximation of the anisotropic Heisenberg model for
hexagonal MnX (X = N, P, As, and Sb) monolayers. The MnX monolayers are all half-metal with dynamically
and thermally stable atomic structures at T = 300 K. The hexagonal MnN is an out-of-plane easy-axis ferro-
magnetically ordered monolayer with the Curie temperature close to the room temperature. However, the other
three MnX (X = P, As, and Sb) monolayers have an easy axis inside the plane with Curie temperature close
to zero. The ab initio energy difference between spin configurations is mapped into an anisotropic Heisenberg
spin Hamiltonian which is solved using the second-order Holstein-Primakoff approximation. The anharmonic
(magnon-magnon) interaction softens the magnetic excitation energy and reduces the magnon energy gap at the
� point, which is crucial for the finite-temperature long-range magnetic order in two dimensions. As a result,
the inclusion of magnon-magnon interaction dramatically reduces the Curie temperature of hexagonal MnX
monolayers. Although the magnon-magnon interaction is a perturbation in energy dispersion, it has an important
effect on the finite-temperature long-range magnetic order in two-dimensional monolayers.
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I. INTRODUCTION

The recent discovery of two-dimensional (2D) magnetic
materials has gained considerable attention in recent years
[1–7]. There are various synthesized and theoretically stud-
ied 2D ferromagnetic monolayers [1,6,8–18]. According to
experimental observations, most ferromagnetic monolayers
have low Curie temperatures [1,13–17,19], while various 2D
magnets have been predicted with Curie temperatures well
above the room temperature [20–27]. There are also vari-
ous experimental reports of room-temperature ferromagnetic
monolayers [11,18,28–31]. The large difference in the ob-
served Curie temperature of monolayers can be attributed
to the value of exchange between magnetic moments. For
2D monolayers, according to the Mermin-Wagner-Hohenberg
theorem [32,33], the magnetic anisotropy is crucial to stabilize
long-range magnetic order at any finite temperature. The role
of magnetic anisotropy is to open an energy gap inside the
magnon spectrum and limits the number of excited magnons
at a finite temperature. However, the thermal fluctuation may
close the magnon gap and annihilate magnetic order at low
temperatures.

In most of the previous theoretical works, the thermody-
namics of 2D monolayers is studied by using the mean-field
approximation [34,35], the classical Monte Carlo simulation
based on the Ising spin model [36,37], the random-phase
approximation [34,35], or the first-order Holstein-Primakoff
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(HP) approximation [10,38,39]. The well-known Bloch’s
spin-wave theory disregards the magnon-magnon interaction
[40]. At sufficiently low temperatures, the average number
of thermally flipped spins meaningfully vanish, which hypo-
thetically reduces interaction. As a result, the spin excited
states are well described as zero-temperature magnon disper-
sion energy. However, the physics of excited states at high
temperatures close to the phase transition is strongly affected
by the magnon-magnon interaction [41–43].

The magnetic anisotropy energy opens an energy gap in
the magnon spectrum, which limits the number of excited
magnons. The value of magnetic anisotropy and the resul-
tant magnon energy gap are generally small. The interplay
of magnetic anisotropy and magnon-magnon interaction in
the formation of the long-range 2D magnetic order and the
value of Curie temperature is still not well understood. The
origin of finite-temperature 2D magnetism is more complex
than the simple noninteracting magnon picture and deserves
a deeper theoretical study. Here we study the electronic and
magnetic structure of all MnX (X = N, P, As, and Sb) mono-
layers within the combination of DFT+U and the anisotropic
Heisenberg model. We address the magnon energy normal-
ization and magnetic phase transitions by the inclusion of
magnon-magnon interaction within the second-order HP ap-
proximation. The magnon spectra correction is carried out by
using the Hartree-Fock approximation and a self-consistent
solution of energy. As a result, we calculate the temperature-
dependent magnon energy correction in the first Brillouin
zone for hexagonal MnX monolayers. Finally, we show
that the magnon-magnon interaction dramatically reduces the
Curie temperature in the 2D MnX monolayers. The rest of the
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paper is organized as follows. Sec. II provides computational
details and theoretical methods for the anisotropic Heisenberg
model. In Sec. III A, we investigate the atomic and electronic
structure and stability of the MnX monolayers. The thermal
evaluation of the magnon energy spectrum and long-range
magnetization in the second-order HP approximation is dis-
cussed in Sec. III B. We briefly summarize our findings and
conclude the paper in Sec. IV.

II. MODEL AND METHOD

A. First-principles calculations

The first-principles calculations based on density-
functional theory (DFT) are performed using the projected
augmented wave [44,45] method as utilized in the
Vienna Ab initio Simulation Package (VASP) [46,47].
The generalized gradient approximation based on the
Perdew-Burke-Ernzerhof [48] functional is employed to
describe the exchange-correlation functional. The plane-wave
basis set’s cutoff energy is set to 800 eV. The integration
of the Brillouin zone is performed with a (32×32×1)
k-point mesh by using the gamma-centered Monkhorst-Pack
algorithm [49]. The lattice constants and atomic positions
are optimized by the conjugate gradient method, with a
maximum Hellmann-Feynman force of 0.001 eV Å−1 on each
atom. The energy convergence criterion between consecutive
steps is taken to be 10−10 eV. The vacuum layer along the
z direction to prevent interactions between adjacent images
is set to 30 Å. The effects of strongly correlated electrons
in atomic d orbitals are described with the DFT+U method
[50,51] by utilizing the effective on-site Coulomb repulsion
to the d orbitals of Mn atoms. The value of the effective
Hubbard-U parameter depends on the chemical structure
and can be modulated by substrate dielectric screening
and environmental effects. We have obtained the values
of the U parameters of all MnX (X = N, P, As, and Sb)
structures with the linear response approach proposed by
Cococcioni and Gironcoli [52]. The dynamical stability
was examined with phonon spectra by using the PHONOPY

[53] code based on density-functional perturbation theory. All
phonon calculations are performed in a 4×4×1 supercell. The
thermal stability of all MnX monolayers is further examined
by using the ab initio molecular dynamics calculations in
a canonical ensemble with the Anderson thermostat. The
system is considered as a 4×4×1 supercell, and the total
simulation time is 2 ps with a 1-fs time interval at 300 K.
Additionally, the Bader charge analysis is used to examine the
bonding nature between Mn and pnictogen atoms [54–56].

B. Anisotropic Heisenberg spin model

1. In-plane easy axis

The spin model is considered as the anisotropic Heisenberg
Hamiltonian,

H = −J
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〈i j〉
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The first term denotes the isotropic Heisenberg exchange
Ji j = Jji= J with summation over the nearest-neighbor pairs
of atoms 〈i j〉. The 1/2 factor is to avoid double-counting
of the pairs. The J > 0 (J < 0) is corresponding to the
ferromagnetic (antiferromagnetic) coupling between nearest-
neighbor moments. The nearest-neighbor exchange interac-
tion approximation for the localized magnetic moments is
widely used for the description of 2D magnetic monolayers
[57–61]. The next three terms describe the in-/out-of-plane
magnetic anisotropy. The second term describes the inter-
site magnetic anisotropy within the xy plane (monolayer
plane), where the � term is the corresponding interaction
parameter. The � parameter defines an easy axis in the
Cartesian basis for the hexagonal lattice [62,63]. The third
term describes the out-of-plane magnetic anisotropy, where
δ is the diagonal zz component of the intersite magnetic
anisotropy tensor and the last term is the single-ion magnetic
anisotropy energy. The positive values of A and δ corre-
spond to the out-of-plane easy axis while for negative A
and δ the easy axis lies inside the xy plane. In fact, the
magnetic order in 2D monolayers is achieved by breaking
the symmetry usually provided by the inherent magnetic
anisotropy [10,38].

The anisotropic Heisenberg spin model can be transformed
to a bosonic Hamiltonian via the in-plane HP transformations
[64],

S+
i = a†

i

√
2S − a†

i ai,

S−
i =

√
2S − a†

i ai ai,

Sx
i = a†

i ai − S, (2)

where S is the total angular momentum of a spin and
S±

i = −Sz
i ± iSy

i are spin ladder operators.
The spin operators can be expanded in the first-order HP

transformation [10,38,39,65]. This approximation is based
on the low number of excited magnons, which is not ap-
propriate to describe the magnetic phase transition at higher
temperatures. To describe the magnon at a higher temper-
ature, we consider the second-order HP transformation for
the spin operators. In the second-order HP approximation,

the leader operators are expanded as S+
i ≈ √

2S(a†
i − a†

i a†
i ai

4S )

and S−
i ≈ √

2S(ai − a†
i aiai

4S ). By substituting the expansion
of ladder operators into the spin Hamiltonian, the trans-
formed bosonic Hamiltonian consists of noninteracting and
anharmonic magnon-magnon two-particle interactions (see
Appendix B 1 for details) [41,66].

By applying the Hartree-Fock decoupling to the interacting
bosonic Hamiltonian [Eq. (B3)], and diagonalization of the fi-
nal bosonic Hamiltonian, H = ∑

k βka†
kak + ∑

k αka†
ka†

−k +∑
k αkaka−k [Eq. (B4)], the interacting magnon energy

becomes

Ek =
√

(βk )2 − 4(αk )2, (3)

144409-2



EFFECT OF MAGNON-MAGNON INTERACTION ON … PHYSICAL REVIEW B 107, 144409 (2023)

where βk = h̄ωk + �,
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Here Z is the number of nearest neighbors and
〈a†

kak′ 〉 = δk,k′nk. The three terms,
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correspond to the first-order HP expansion of the magnon
spectrum (see Appendix B 1). Here the h̄ωT

k is the wave
vector dependent magnon dispersion correction, and �T is
the magnon gap correction due to the magnon-magnon in-
teraction. The value of magnon interaction correction (�T )
is always negative, which reduces the magnon energy gap
at the � point. The αk is the contribution of off-diagonal
parts to magnon dispersion and energy gap. The lowering
of the magnon energy gap at the finite temperature reduces
the critical temperature for the ferromagnetic to paramagnetic
phase transition. The zero-temperature magnon energy gap
in the absence of magnon-magnon interaction is derived as
ET =0

k=0 = S
√

72�2 − 72δ� − 24A�. For 2D monolayers with
easy axis inside the plane, the value of the magnon energy
gap directly depends on the � parameter. In the case of easy-
plane material with � = 0, the magnon energy gap disappears
at finite temperature, which is consistent with the Mermin-
Wagner-Hohenberg theorem.

2. Out-of-plane easy axis

The spins interaction is modeled based on the well-known
Heisenberg Hamiltonian,

H = − J
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Using the HP theory for out-of-plane easy axis defined as
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where S± = Sx ± iSy are spin ladder operators, magnon en-
ergy takes the form
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See Appendix B 2 for more details.

C. Temperature-dependent magnetization

In the thermodynamic limit, each excited magnon reduces
total spin by one unit. As a result, the total magnetization at a
finite temperature can be obtained by counting the number of
excited magnons,

M(T )

Msat
= 1 − 1

S

∑
k

1

exp (βEk ) − 1
. (12)

Here Msat is the saturation magnetization. For the zero
magnon energy gap at a finite temperature, there will be an in-
finite number of excited magnons at the � point and M(T >0)
goes to zero, in agreement with the Mermin-Wagner-
Hohenberg theorem. Therefore, the anisotropy energy gap at
the � is essential to preserve the 2D long-range magnetic
order at a finite temperature.

III. RESULTS AND DISCUSSION

A. Atomic and electronic configuration

We first consider the hexagonal MnX (X = N, P, As, and
Sb) monolayers unit cell as shown from the top and side view
in Fig. 1. The lattice parameters of MnN, MnP, MnAs, and
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FIG. 1. Top and side views of (a) MnN, (b) MnP, (c) MnAs, and (d) MnSb monolayers.

MnSb hexagonal monolayers are equal to 3.37, 4.20, 4.35,
and 4.74 Å, respectively, as presented in Table I. These re-
sults are comparable with previous studies of hexagonal MnN
[67,68]. The Hubbard (U) parameter is determined by using
the linear response theory as mentioned in Sec. II A. The
corresponding converged Hubbard U values of MnX mono-
layers are presented in Fig. S1 (see Supplemental Material
[69]). Our findings are compatible with previous monolayer
MnX studies [67,68,70]. On the other hand, we observe that
Hubbard U parameters of MnX monolayers depend on the
pnictogen atoms. Also, we notice that the dimension of the
materials can affect the Hubbard parameter [71–74], e.g.,
the Hubbard parameter of monolayer MnAs (see Table I) is
increased by a factor of ∼2 compared to the bulk MnAs crys-
tal [74]. According to our DFT calculations, the ground state
of all MnX monolayers is the ferromagnetic arrangement of
spins with a net moment of 4μB per Mn atom (corresponding
to an S = 2 electronic system). To investigate the synthe-
sis feasibility of MnX , we calculate the cohesive energies,
ECoh = EMn + EX − EMnX , where EMnX is the total energy of
the MnX monolayer, EMn and EX are the single-atom energies
of manganese and pnictogen atoms, respectively. The high
cohesive energies in Table I indicate that the manganese and
pnictogen atoms are bonded tightly, thus they are suitable
for synthesis [75,76]. The cohesive energies of MnX vary
around 4–8 eV/atom with a similar trend to that of hexago-
nal CrX monolayers [8]. The absence of imaginary phonon
frequencies ensures the dynamical stability of all hexagonal
MnX monolayers (see Fig. S2 in the Supplemental Mate-
rial). The phonon frequencies of MnX monolayers decrease
with an increasing atomic mass of pnictogen atoms. Further-
more, we examine the thermodynamic stability of the MnX
monolayer by utilizing the ab initio molecular dynamics sim-
ulations within the canonical ensemble (NVT) and Anderson
thermostat at the room temperature (T = 300 K) for 2 ps.
The variation of total energy during molecular dynamics and

the final snapshot of atomic configurations are shown in the
Supplemental Material (see Fig. S3). There is no significant
atomic distortion or phase transitions due to the thermal fluc-
tuations in MnX monolayers. These small thermal distortions
become more pronounced with the decreasing atomic mass
of pnictogen atoms. In Table I, we demonstrate the electron
transfer from manganese to pnictogen atoms with the Bader
charge analysis. The charge-transfer amount between man-
ganese and pnictogen (from N to Sb) atoms decreases from
∼1.3 to 0.8 |e| owing to the decreasing electronegativity with
the increasing atomic mass. The electronegativity differences
of MnN, MnP, MnAs, and MnSb are found to be 1.49, 0.64,
0.63, and 0.5 on the Pauling scale, which are correlated with
charge transfers (�Q) and cohesive energies (ECoh). All MnX
monolayers are half-metal with a large electronic energy gap
for the spin-down state, as shown in Fig. 2. The pure spin-
up states at the Fermi level can be a perfect spin polarizer
for spintronic devices. The valence edge of spin-down states
arises from the hybridization of both Mn and pnictide atoms.
However, the edge of the conduction band results purely from
the Mn atom. We also show electronic bands in the presence
of spin-orbit coupling (SOC) as dashed lines in Fig. 2. The
SOC mixes electronic up and down spin states and forms
spinors. According to our results, the SOC has a negligible
effect on the electronic structure of MnX monolayers. The flat
band close to the Fermi level can occupy a particularly large
number of spin-up electrons, which leads to strong many-body
interactions and exotic states of matter [77,78]. According to
the partial density of states (DOS), the peak in the density of
states arises from pnictogen atoms. For the MnN monolayer,
the flat band and the peak in DOS cross the Fermi level.

B. Finite-temperature magnetism

We use the anisotropic Heisenberg spin Hamiltonian to
study the magnetization as a function of temperature for MnX

TABLE I. The calculated value of the Hubbard U parameter in the linear response theory, lattice constant, cohesive energies, Bader electron
transfer from Mn to pnictogen atom, easy axis, anisotropic Heisenberg parameters, magnon gap at T = 0 K (�0), and Curie temperature with
second-order HP (TC) and first-order HP (T 1

C ) approximations for all MnX monolayers.

U (eV) a (Å) ECoh (eV) �Q (|e|) Easy axis J (meV) A (meV) δ (μeV) � (μeV) �0 (meV) TC (K) T 1
C (K)

MnN 5.60 3.37 7.82 1.32 out of plane 12.32 0.02 1.18 0.074 480 820
MnP 5.80 4.20 5.25 0.99 in plane 7.66 −0.02 2.38 0.002 0.002 7 445
MnAs 4.90 4.35 4.70 0.90 in plane 7.36 −0.11 −24.92 0.044 0.028 18 585
MnSb 5.60 4.74 3.94 0.78 in plane 4.94 −0.38 −127.42 0.204 0.122 24 505
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FIG. 2. The spin-polarized electronic band structure of MnX monolayers in the absence (solid line) and presence (dashed line) of spin-orbit
coupling. The side figures show the total and projected density of states on the Mn and pnictogen atoms.

monolayers. The spin model parameters are derived from the
energy difference between different magnetic configurations
as shown in Appendix A. For hexagonal MnX monolayers,
anisotropic Heisenberg Hamiltonian parameters J , �, A, and
δ are presented in Table I. Although the effect of the SOC on
the magnetic exchange interaction is negligible, we have taken
the SOC into account to determine magnetic anisotropies.
It is because the magnetic anisotropies, which are essential
to stabilize magnetic order in 2D materials, are driven by
the SOC. The easy-axis direction depends on the type of
ligand atom. The MnN monolayer has an out-of-plane easy
axis with a relatively strong isotropic nearest-neighbor ex-
change interaction. The other MnX monolayers are all in FM
in-plane ground state and the value of magnetic anisotropy
is increasing with the atomic mass of the ligand atom. Ac-
cording to our calculations, there is an easy axis inside the
monolayer plane, which is characterized by the � parameter.
The � parameter has a vital role to open the magnon en-
ergy gap which stabilizes the 2D structure. Accordingly, for
the case of � = 0, the material has a magnetic easy plane
with no finite-temperature long-range magnetic order [38].
The finite-temperature magnon dispersion of the hexagonal

MnX monolayer is obtained from the self-consistent solu-
tion of Ek = � + h̄ωk. The self-consistent loop is started
from the noninteracting magnon spectrum E0

k = h̄ω0
k + �0.

The noninteracting magnon energies, E0
k , for hexagonal MnX

monolayers are plotted along the high-symmetry point inside
the first Brillouin zone in Fig. 3.

For the MnX unit cell with one spin, there is one acous-
tic magnon branch [79]. The magnon spectrum is softened
smoothly from the MnN to the MnSb monolayer. The min-
imum energy at the � point is equal to the noninteracting
gap values �0, which are presented in Table I. The energy
increases monotonically toward the edge of the first Bril-
louin zone. The magnon energy gap is generally increasing
with the increasing atomic mass and the strength of spin-
orbit coupling in pnictogen atoms. For example, the MnSb
magnon energy gap is two orders of magnitude larger than the
MnP monolayer. The energy correction due to the magnon-
magnon interaction (−h̄ωT

k ) for the MnN monolayer depends
on the wave vector as shown in Fig. 4(a). By the increasing
temperature, the number of excited magnons and the interac-
tion strength are increased together. Due to the perturbative
second-order term in the HP transformation expansion, the
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FIG. 3. The noninteracting magnon energy spectrum (E 0
k ) in the high- symmetry path for MnX (X = N, P, As, and Sb) monolayers.

magnon-magnon correction is negligibly small in the entire
first Brillouin zone [see Fig. 4(a)] but it is critically important
at the � point. The low-energy magnon states around the
� point play an important role in the thermal behavior of
magnetization in 2D monolayers.

The magnon energy gap modification with temperature for
MnN and MnX (X = P, As, and Sb) monolayers are shown in
Figs. 4(b) and 5(a), respectively. The energy gap is reducing
slowly close to T = 0 K and sharply drops to zero. The
energy gap renormalization at the � point is related to the

magnon softening. The temperature dependence of magneti-
zation from Eq. (12) in the second-order HP approximations
are presented in Figs. 4(c) and 5(b). For the second-order
HP, the finite magnetization is obtained in the self-consistent
solution of the magnon spectrum in Eq. (12). We define the
Curie temperature (TC) as the point where the magnetization
reduces to half of the saturation value, i.e., Msat/2 [10]. In the
second-order HP approximation, above the Curie temperature,
the magnetization goes to zero very fast. Although the integral
of Eq. (12) is taken throughout the first Brillouin zone, it

FIG. 4. (a) The Ek in 3D surface as a function of 2D wave vector (kx, ky ) at different temperatures for MnN monolayer with out-of-plane
magnetic anisotropy. The white line displays the high-symmetry path and the sequential color map reflects the magnitude of magnon energy.
(b) The curve indicates the temperature dependence of the Ek at the � point. The inset shows the Ek(T ) around the � point. (c) The normalized
magnetization as a function of temperature and (d) variation of the magnon energy gap at the � point with normalized magnetization in the
second-order HP approximation for MnN monolayer.
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FIG. 5. (a) The temperature dependence of the Ek at the � point and (b) M(T ) obtained from the second-order HP approximation for MnX
(X = P, As, and Sb) monolayers with in-plane magnetic anisotropy.

is dominated by small wave vectors close to the � point.
At low temperatures, the region where the magnon density
and interactions are weak, the magnetization is slowly de-
creasing. By inclusion of magnon-magnon interaction in the
second-order HP approximation, the energy gap is closing at
the � point [see Figs. 4(b) and 5(a)] and the magnetization
drops sharply to zero. The dramatic change in the behavior
of magnetization in the second-order HP is related to the
resonance between closing the magnon energy gap and the
reducing magnetization by the inclusion of magnon-magnon
interaction in the second-order HP approximation. For the
MnN with out-of-plane easy axis, the magnon energy gap is
closed at T = 480 K. The estimated Curie temperature in the
first-order HP with energy normalization with magnetization
[10] is T 1

C = 820 K. As a result according to Fig. 4(b), the
Curie temperature is well above the room temperature. Our re-
sults are consistent with the previous theoretical estimation of
the Curie temperature equal to 368 K for the hexagonal MnN
monolayer [67]. For the case of monolayers with an easy axis
inside the plane, the magnon energy gap is closed at a very low
temperature and the value of Curie temperature tends to zero
(T < 30 K). The Curie temperatures for in-plane easy-axis
monolayers are much lower compared to the first HP approx-
imation (445–585 K), which is due to the magnon energy
gap renormalization. The low Curie temperature is related to
the negligible � parameter and consistent with the Mermin-
Wagner-Hohenberg theorem. The � parameter makes one of
the in-plane axes (x or y) energetically favorable. When the
energy of magnons becomes larger than the � parameter,
the magnetic moments do not have a favorable in-plane axis;
instead, they are randomly oriented inside the plane, yielding
zero net magnetization at low temperatures. We examine the
normalized magnon energy at the � point as a function of nor-
malized magnetization for the MnN monolayer in Fig. 4(d).
The normalized magnon energy reduces linearly (the dashed
line) with magnetization at low temperatures. At higher tem-
peratures, the normalized magnon energy curve deviates from
the linear behavior, which is in contrast to the previous ap-
proach with simple renormalization of magnon energy [10].

IV. CONCLUSION

In summary, we have studied the electronic and magnetic
properties of 2D hexagonal manganese pnictogen monolay-
ers within the density functional theory and second-order
Holstein-Primakoff approximation of the anisotropic Heisen-
berg spin model. The hexagonal MnX monolayers are
dynamically and thermally stable with half-metallic electronic
structure. The ground state is the ferromagnetic arrangement
of Mn moments with an out-of-plane easy axis for MnN and
an in-plane easy axis for other monolayers. The effective
anisotropic Heisenberg Hamiltonian parameters are obtained
from the DFT total energy differences of Mn spin configu-
rations. The magnon energy renormalization is small in the
entire first Brillouin zone. However, the reduced magnon ex-
citation energy gap at the � point is crucially important for
the temperature dependence of magnetization of a 2D mag-
netic monolayer. By closing the magnon gap, the number of
excited magnetic states becomes infinite and magnetization
becomes zero. As a result, the Curie temperature is dramati-
cally reduced by the consideration of anharmonic effects (the
magnon-magnon interaction). Furthermore, the Curie temper-
ature drop in the structures (MnX , X = P, As, and Sb) having
in-plane easy axis is significantly larger than the MnN. This
difference is devoted to the trivial value of the � parameter,
which is responsible for the long-range ferromagnetic order
that keeps the magnetic moments along the favorable in-
plane axis. Consequently, it is shown that the magnon-magnon
coupling has a significant effect on the thermodynamics of
magnons and thus the Curie temperature of the structures that
renormalize the estimation of first-order HP approximation.
We believe that our results provide insight into understanding
the many-body effects on the physics of 2D ferromagnetism.
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APPENDIX A: CALCULATION OF ANISOTROPIC
HEISENBERG SPIN HAMILTONIAN

The parameters of the anisotropic Heisenberg spin Hamil-
tonian can be derived from the total energy difference between
different magnetic configurations. For the two Hamiltonians
for the in-plane and out-of-plane easy axis in the paper, the
parameters are derived from the following equations.

1. In-plane easy axis

The effective parameters for monolayers with in-plane easy
axis

J = 3EAFMz − 2EFMy − EFMx

24S2
,

A = 3EAFMx − 3EAFMz + EFMx − EFMz

4S2
,

δ = 3EAFMz − 3EAFMx − 3EFMz + EFMx + 2EFMy

24S2
,

� = EFMy − EFMx

8S2
. (A1)

Here the FM and AFM are referring to the ferromagnetic and
antiferromagnetic spin configurations, respectively. Also, the
indices (x, y, and z) are referring to the spin direction.

2. Out-of-plane easy axis

The effective parameters for monolayers with out-of-plane
easy axis

J = EAFMx − EFMx

8S2
,

A = 3EAFMx − 3EAFMz + EFMx − EFMz

4S2
,

δ = EAFMz − EAFMx − EFMz + EFMx

8S2
. (A2)

APPENDIX B: DERIVATION OF THE MAGNON
DISPERSION RELATION INCLUDING MAGNON

INTERACTIONS

1. In-plane easy-axis spin Hamiltonian

We consider H assuming the preferred spin direction along
the x axis, Eq. (1), represented as

H = H1 + H2 + H3 + H4,

H1 = −J

2

∑
〈i j〉

Si · S j, H2 = −�

2

∑
〈i j〉

(
Sx

i Sy
j + Sy

i Sx
j

)
,

H3 = − δ

2

∑
〈i j〉

Sz
i Sz

j, H4 = −A
∑

i

(
Sz

i

)2
. (B1)

Next, we consider each term of H separately. We consider
the isotropic pairwise nearest-neighbor interactions satisfying
J〈i j〉 = J , which results in Jk = J−k symmetry. Furthermore,
we have δ〈i j〉 = δ, �〈i j〉 = �, and Ai = A.

The H1 can be rewritten using the spin ladder operators as

H1 = −J

2

∑
〈i j〉

(
1

2
(S+

i S−
j + S−

i S+
j ) + Sx

i Sx
j

)
.

Regarding the second-order approximation of HP transfor-

mations, S−
i ≈ √

2S(ai − a†
i aiai

4S ) and S+
i ≈ √

2S(a†
i − a†

i a†
i ai

4S ),
the total Hamiltonian is H = H0 + HT ; H0 is a bilinear form
of the magnon operators, while the HT concerns the magnon-
magnon two-particle interactions. Therefore,

H0
1 = −J

2
S

∑
〈i j〉

(a†
j ai + a†

i a j − 2a†
i ai )

and

HT
1 = −J

2

∑
〈i j〉

(−1

4
(a†

i a†
j a ja j + a†

i a†
i aia j

+ a†
j a

†
i aiai + a†

j a
†
j a jai ) + (a†

i a†
j aia j )

)
.

We now transform the real-space creation and annihilation
operators to the reciprocal space with the help of the Fourier
transforms,

a†
i = 1√

N

∑
k

e−ik·Ri a†
k, ai = 1√

N

∑
k

eik·Ri ak.

Here N represents the number of sites. Considering
∑

〈i j〉 =∑
Ri

∑
�R , �R = Ri − R j and 1

N

∑
Ri

e−i(k−k′ )·Ri = δkk′ ,
one obtains H1 given by

H0
1 =

∑
k

(
SJ

∑
�R

(1 − cos k · �R)

)
a†

kak

and

HT
1 = − J

2N

∑
kk′k′′

∑
�R

a†
ka†

k′ak′′ak+k′−k′′ [ei(k−k′′ )·�R

− 1

2
(cos((k + k′ − k′′) · �R) + cos(k · �R))].

Generating a rotation through 45◦ about the z axis, in the
rotated frame, H2 takes the form

H2 = −�

2

∑
〈i j〉

(
Sx

i Sx
j − Sy

i Sy
j

) = H2(1) + H2(2),

H2(1) = −�

2

∑
〈i j〉

Sx
i Sx

j , H2(2) = �

2

∑
〈i j〉

Sy
i Sy

j . (B2)
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The second-order HP transformation yields

H0
2 (1) = �S

∑
〈i j〉

a†
i ai,

H0
2 (2) = −�S

4

∑
〈i j〉

(a†
i a†

j − 2a†
i a j + aia j ),

HT
2 (1) = −�

2

∑
〈i j〉

a†
i a†

j aia j,

HT
2 (2) = �

8

∑
〈i j〉

(a†
j a

†
i a†

i ai − a†
i a†

i aia j−a†
j a

†
i aiai + a†

i aiaia j ).

After the Fourier transformation, we obtain

H0
2 (1) = �SZ

∑
k

a†
kak,

H0
2 (2) = −�S

4

∑
k

∑
�R

eik·�R(a†
ka†

−k − 2a†
kak + aka−k ),

HT
2 (1) = − �

2N

∑
kk′k′′

∑
�R

(ei(k−k′′ )·�R )a†
ka†

k′ak′′ak+k′−k′′ ,

HT
2 (2) = �

8N

∑
kk′k′′

∑
�R

[(−ei(k+k′−k′′ )·�R − e−ik·�R )a†
ka†

k′ak′′ak+k′−k′′ + (e−ik·�R )a†
ka†

k′a
†
k′′ak+k′+k′′

+ (ei(k−k′−k′′ )·�R )a†
kak′ak′′ak−k′−k′′ ].

Here, Z is the number of nearest neighbors. The third term in the Hamiltonian, H3, leads in the same way to

H0
3 = −δS

4

∑
〈i j〉

(a†
i a†

j + 2a†
i a j + aia j ),

HT
3 = δ

8

∑
〈i j〉

(a†
j a

†
i a†

i ai + a†
i a†

i aia j + a†
j a

†
i aiai + a†

i aiaia j ).

The Fourier representation yields

H0
3 = −δS

4

∑
k

∑
�R

eik·�R(a†
ka†

−k + 2a†
kak + aka−k ),

HT
3 = δ

8N

∑
kk′k′′

∑
�R

[(ei(k+k′−k′′ )·�R + e−ik·�R )a†
ka†

k′ak′′ak+k′−k′′ + (e−ik·�R )a†
ka†

k′a
†
k′′ak+k′+k′′

+ (ei(k−k′−k′′ )·�R )a†
kak′ak′′ak−k′−k′′ ].

By using the second-order approximation of HP followed by the Fourier transformation for H4,

H0
4 =

∑
i

−AS

2
(a†

i a†
i + 2a†

i ai + aiai ),

HT
4 = A

4

∑
i

(a†
i a†

i a†
i ai + 2a†

i a†
i aiai + a†

i aiaiai ),

and

H0
4 =

∑
k

−AS

2
(a†

ka†
−k + 2a†

kak + aka−k ),

HT
4 = A

4N

∑
kk′k′′

(2a†
ka†

k′ak′′ak+k′−k′′ + a†
ka†

k′a
†
k′′ak+k′+k′′ + a†

kak′ak′′ak−k′−k′′ ).
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By combining all parts of Hamiltonian, the final interacting magnons Hamiltonian can be written as

Htotal = +
∑

k

a†
kak

((
J + � − A

Z

)
SZ + S

(
−J + �

2
− δ

2

)
f (k)

)
+

∑
k

a†
ka†

−k

(
− A

2
S − S

4
(� + δ) f (k)

)

+
∑

k

aka−k

(
− A

2
S − S

4
(� + δ) f (k)

)
+

∑
kk′k′′

[
a†

ka†
k′ak′′ak+k′−k′′

(
A

2N
+

∑
�R

[
− J + �

2N
f (k − k′′)

+ 2J − � + δ

8N
( f (k + k′ − k′′) + f (k))

])
+ a†

ka†
k′a

†
k′′ak+k′+k′′

(
A

4N
+

∑
�R

(
� + δ

8N
f (k)

))

+ a†
kak′ak′′ak−k′−k′′

(
A

4N
+

∑
�R

(
� + δ

8N
f (k − k′ − k′′)

))]
, (B3)

where for hexagonal lattice,

f (k) =
∑
�R

e−ik·�R

= 2

[
cos kxa + 2cos

(
1

2
kxa

)
cos

(√
3

2
kya

)]
.

Since no analytical solution is possible, a Hartree-Fock
decoupling is applied to the fourfold interactive Hamiltonian
[41,80],

a†
ka†

k′ak′′ak+k′−k′′ ∼= 〈a†
kak+k′−k′′ 〉a†

k′ak′′ + 〈a†
k′ak′′ 〉a†

kak+k′−k′′

+ 〈a†
kak′′ 〉a†

k′ak+k′−k′′ + 〈a†
k′ak+k′−k′′ 〉

× a†
kak′′ ,

a†
ka†

k′a
†
k′′ak+k′+k′′ ∼= 〈a†

kak+k′+k′′ 〉a†
k′a

†
k′′ + 〈a†

k′ak+k′+k′′ 〉a†
ka†

k′′

+ 〈a†
k′′ak+k′+k′′ 〉a†

ka†
k′

and

a†
kak′ak′′ak−k′−k′′ ∼= 〈a†

kak′ 〉ak′′ak−k′−k′′ + 〈a†
kak′′ 〉ak′ak−k′−k′′

+ 〈a†
kak−k′−k′′ 〉a†

k′ak′′ .

By considering 〈a†
kak′ 〉 = δk,k′nk, the interactive magnon

Hamiltonian can be written as

Htotal =
∑

k

βka†
kak +

∑
k

αka†
ka†

−k +
∑

k

αkaka−k, (B4)

while βk = h̄ω0
k + h̄ωT

k + �0 + �T ,

h̄ωk = h̄ω0
k + h̄ωT

k

=
∑
�R

S

(
2J − � + δ

2

)(
1 − cos(k · �R)

)

×
(

1− 1

NS

∑
k′

nk′

(
1 − 2(J + �)

2J − � + δ
cos(k′ · �R)

))
,

(B5)

� = �0 + �T

=
(

(3� − δ)
SZ

2
− AS

)
−

∑
k′

nk′

(
(3� − δ)Z − 4A

2N

+ 3� − δ

2N

∑
�R

cos(k′ · �R)

)
(B6)

and

αk = α0
k + αT

k

=
(

− A

2
S − S

4
(� + δ)

∑
�R

cos(k · �R)

)

+
( ∑

k′
nk′

[
3

A

4N
+ � + δ

8N

(
2

∑
�R

cos(k · �R)

+
∑
�R

cos(k′ · �R)

)])
. (B7)

We apply a unitary transformation to remove the nondiagonal
terms (αk 	= 0) and calculate the interactive magnon energy
[38],

Ek =
√

(βk )2 − 4(αk )2. (B8)

2. Out-of-plane easy-axis spin Hamiltonian

Regarding S± = Sx ± iSy, the anisotropic Heisenberg
Hamiltonian, Eq. (8), can be written as

H = − J

2

∑
〈i j〉

(
1

2
(S+

i S−
j + S−

i S+
j ) + Sz

i Sz
j

)

− δ

2

∑
〈i j〉

Sz
i Sz

j − A
∑

i

(
Sz

i

)2
. (B9)

Based on the second-order HP approximation denoting that

S+
i ≈ √

2S(ai − a†
i aiai

4S ) and S−
i ≈ √

2S(a†
i − a†

i a†
i ai

4S ), H0 and
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HT are given by

H0 = − JS

2

∑
〈i j〉

(a†
j ai + a†

i a j − 2a†
i ai )

+ [A(2S − 1) + SδZ]
∑

i

a†
i ai, (B10)

HT = −J

2

∑
〈i j〉

[
a†

i a†
j aia j − 1

4
(a†

j a
†
j a jai

+ a†
j a

†
i aiai + a†

i a†
j a ja j + a†

i a†
i aia j )

]

− δ

2

∑
〈i j〉

(a†
i a†

j aia j ) − A
∑

i

(a†
i a†

i aiai ). (B11)

Applying the Fourier transformation and performing calcula-
tions like the previous section of this Appendix,

Ek = h̄ω0
k + h̄ωT

k + �0 + �T , (B12)

where

h̄ωk = h̄ωT
k + h̄ω0

k = SJ
∑
�R

(1 − cos(k · �R))

×
[

1 − 1

NS

∑
k′

(
1 − (J + δ)

J
cos(k′ · �R)

)
nk′

]

(B13)

and

� = �0 + �T = [A(2S − 1) + SδZ]

− δ

N

∑
�R

∑
k′

(cos(k′ · �R))nk′

− (δ + 4A/Z )

N

∑
�R

∑
k′

nk′ . (B14)
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