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Magnetization dynamics in layered systems with coexisting bilinear and biquadratic
interlayer exchange coupling
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Important aspects of exchange-coupled magnetic layered structures are related to the noncollinear arrangement
of sublayer magnetizations which can arise from competition between bilinear (BL) and biquadratic (BQ)
interlayer exchange coupling (IEC). In this work, the influence of coexisting BL and BQ IEC of different
strengths on magnetization precession in layered systems is investigated both experimentally and theoretically.
Laser-induced magnetization precession has been studied in the Fe/Si(dSi) multilayers (MLS) as a function of
the amplitude (H ) and orientation angle (θH ) of external magnetic field using time-resolved magneto-optical
Kerr (TRMOKE) effect. Strongly changing characters of precession frequency dependencies ω(H, θH ) for Fe
sublayer thickness dFe = 3 nm and Si spacer-layer thicknesses (dSi) varying in the range of 0.9–2.4 nm have been
observed. Analytical formulas for acoustic and optic mode dispersion relations with coexisting BL and BQ IEC,
scaled by J1 and J2 parameters, respectively, for the in-plane effective magnetic anisotropy and arbitrary magnetic
field direction were derived, and very good agreement with the experimentally observed frequency dependencies
has been obtained. It is shown that BQ coexisting with BL IEC significantly influences on the magnitude and
form of dispersion relations. From analytical formula derived, it follows that zero-field optical mode frequency
tends to zero as |J1| approaches 2J2. The acoustic and optic mode-crossing effect has been observed and it is
found that values of crossing fields and frequency gaps strongly increase as θH angles decrease and depend on
relative BL and BQ IEC strengths. The BL IEC is of ferromagnetic type with J1 ≈ 1.6 mJ/m2 for the MLS with
dSi = 0.9 nm, and changes to antiferromagnetic one with J1 ≈ −0.9 mJ/m2 for the MLS with dSi = 1.4 nm,
while the J2 parameter of BQ IEC decreases from 1.8 to 1.0 mJ/m2. The coupling strengths decrease by one to
two orders of magnitude for the sample with dSi = 2.4 nm, but both mode frequencies are still observed and well
reproduced by the theory. It is shown that J1 and J2 parameters obtained in the TRMOKE experiment coincide
within the estimated error bars with the determined from independent measurements of magnetization processes
in the static magneto-optical Kerr effect and interpreted with the use of analytical formulas derived. Numerical
solutions of coupled Landau-Lifshitz-Gilbert (LLG) equations for acoustic and optic modes, with inclusion of
BL IEC, intrinsic Gilbert damping, and spin-pumping damping terms, and extended to include BQ IEC, were
performed and fitted to experimental data. It is shown that determined effective damping coefficients on H and
θH dependencies for acoustic and optic modes are very well simulated with the use of LLG equation solutions
with Gilbert damping, spin-pumping-damping–related effective spin-mixing conductance, and spin-diffusion
length parameters included. The dependencies of the parameters on dSi spacer-layer thickness are discussed and
compared with available data for other systems.
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I. INTRODUCTION

The layered structures in which the exchange interaction
between magnetic sublayers occurs through a nonmagnetic
one are intensively studied for both fundamental and appli-
cation reasons [1–3]. Many layered systems exhibit bilinear
interlayer exchange coupling (BL IEC) [4–10], in which mag-
netic sublayer magnetizations are parallel for ferromagnetic
and antiparallel for antiferromagnetic coupling, respectively.
The structures, exhibiting also biquadratic interlayer exchange
coupling (BQ IEC), in which magnetic sublayer magne-
tizations are orthogonally arranged, were less frequently
examined [11–13]. However, both BL and BQ IEC are equally
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important for applications in spintronics devices (see, e.g.,
Ref. [12] and references therein). The systems with non-
collinear magnetizations alignment in which the canting angle
between magnetization vectors of the sublayers differs from
both 0◦ and 180◦ are important for spin-transfer torque mag-
netic random access memory (STT MRAM) devices. The
noncollinear magnetization alignment with arbitrary canting
angle can be achieved without external magnetic field in the
case of simultaneous BL and BQ IEC occurrence of appropri-
ate coupling strength’s ratio. Materials with such properties
are particularly interesting for spintronic applications, and
recently a method for control of noncollinear IEC has been
proposed by Nunn et al. [12] by introducing the FexRu1−x

spacer alloy in a Co/Ru/Co trilayer.
Layered structures with interlayer exchange coupling

have also attracted much attention for the use in ultrafast
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spintronics devices because the magnetization can respond at
terahertz frequencies [14] and are becoming the basis of a
promising nanotechnology in the field of spintronics [15,16].
Magnetization dynamics in the structures is studied also for
fundamental reasons, and a rich variety of the effects was
observed using different experimental methods, ranging from
ferromagnetic resonance (FMR) and Brillouin light scatter-
ing (BLS) [1,4,11] to time-resolved magneto-optical Kerr
effect (TRMOKE) [5,7,10,17–19]. In particular, magnetiza-
tion precession can be directly observed in time domain
using TRMOKE technique, and precession damping can be
determined from the observed relaxation of the precession
amplitude.

In the literature, there are a number of theoretical and
experimental works concerning magnetization dynamics in
magnetically coupled layered structures, starting from classi-
cal papers by Layadi [20,21], Layadi and Artman [22], Zhang
et al. [4], Rezende et al. [11], and others. In the papers,
analytical formulas for magnetization precession frequency
(ω) vs magnetic field (H), i.e., dispersion relations for acous-
tic ωac(H ) and optic ωop(H ) modes, were derived for BL
IEC [4,20,22]. In Refs. [11,21] the dispersion relations in-
cluding both BL and BQ IEC were given for the magnetic
field oriented in the sample plane, when formulas simplify
considerably. The theory was successfully applied to explain
FMR experiments in Refs. [4,11,23]. Recently, Sud et al.
derived analytical formulas for magnetization precession at
arbitrary H-field orientation angle (θH ), taking into account
BL coupling, and applied them to explain FMR experiments
in synthetic antiferromagnets (SyAF) [24].

As opposed to FMR, TRMOKE experiments are per-
formed mostly at oblique magnetic field orientation, in
which case the magnetization precession can occur through
the change of effective magnetic anisotropy field induced
by femtosecond laser pulses [25]. In Ref. [8], dispersion
relations were derived in the case of BL IEC and ap-
plied to explain TRMOKE experiment for multiple θH

angles in ferromagnetically coupled Fe/Pt/FePt trilayers.
The BL IEC was also investigated in antiferromagnetically
coupled trilayer films CoFeB/Ru/CoFeB [19], and L10-
FePt/Ta(Pt)/[Co/Ni]5 structures with ferromagnetic cou-
pling [26]. Analytical formulas including both BL and BQ
IEC are given for arbitrary θH angle in Ref. [7], but
these formulas are limited to coplanar sublayer magne-
tizations with external magnetic field, as in the case of
structure with perpendicular effective magnetic anisotropy
[Ni/Co]4/Ru/[Co/Ni]3 [7]. However, to our knowledge, no
analytical formulas including both BL and BQ IEC have been
derived so far for the most complex case of in-plane effective
magnetic anisotropy and arbitrary magnetic field direction.

Layered structures which are known to have simultane-
ous BL and BQ IEC are Fe/Si multilayers (MLS), in which
both couplings can be widely changed by tuning the Si
spacer-layer thickness, and which were studied using different
methods [27–34]. Many interesting magnetic behaviors in
Fe/Si structures have been observed and were related to the
spontaneously formed iron silicide layers of different structure
and composition at the interfaces [33–35]. In several works,
the studies were performed using FMR and BLS as a function
of magnetic field oriented in the sample plane, where both

acoustic and optic frequency modes were observed and inter-
preted [30,32] in terms of theory of Ref. [11].

In this paper, we report comprehensive studies of mag-
netization precession in Fe/Si multilayers using TRMOKE
measurement technique. The motivation of this work was to
investigate how the magnetization precession and magnetic
damping relaxation processes in the structures, triggered by
femtosecond laser pulses, depend on the magnetic field mag-
nitude and orientation. In particular, the question was how the
strong biquadratic interlayer coupling, in addition to the bilin-
ear one of comparable magnitude, influences on the dispersion
relations of the acoustic and optic frequency modes.

The aim of this work is the systematic study of the
magnetization precession up to nanosecond timescale, as a
function of magnitude and direction of external magnetic
field, in [Fe/Si(dSi)]15 multilayers with different Si spacer-
layer thickness dSi. Two distinctly different frequency modes
were observed in magnetization precession ωac,op(H, θH ) de-
pendencies and interpreted in terms of acoustic and optic
branches. Strong influence of interlayer coupling strengths
and signs on magnetization precession frequencies and damp-
ing parameters has been found.

Analytical formulas for ωac,op(H, θH ) functions in symmet-
rical trilayer structure with coexisting bilinear and biquadratic
interlayer couplings were derived. The formulas reproduce
very well the experimental results. The values of BL and BQ
IEC, determined from TRMOKE experiment and indepen-
dently from static MOKE hysteresis loops, were compared.
Strong dependence of interlayer exchange coupling on Si
spacer-layer thickness has been found. The coupled Landau-
Lifshitz-Gilbert (LLG) equations including different damping
terms were numerically solved, and the fitting procedure
of the solutions to the experimental TRMOKE delay-time
dependencies was performed. The Gilbert damping and spin-
pumping damping parameters of magnetization precession
relaxation processes for different dSi were determined and
discussed.

The scope of the paper is organized as follows. In Sec. II,
the experimental conditions for TRMOKE measurements and
other experimental details are described. In Sec. III, theoreti-
cal description and derivation of static and dynamic relations
for layered structures with bilinear and biquadratic interlayer
coupling are presented. The results of measurements, data
analysis, and interpretation of the results in the frame of an-
alytical dispersion relations and numerical solutions of LLG
equations are presented in Sec. IV. Summary and conclusions
are included in Sec. V.

II. EXPERIMENTAL DETAILS

All-optical TRMOKE method was used to investigate the
laser-induced magnetization precession in Fe/Si(dSi) multi-
layers. The measurements were carried out as a function of
magnetic field magnitude up to 6.5 kOe for three different
H-field angles θH = 10◦, 25◦, and 50◦ with respect to sample
plane normal (Fig. 1). The femtosecond regenerative ampli-
fier system was used as the source of the laser pulse trains,
generated with repetition of 10 kHz at 800 nm wavelength
with the fluences fixed at 0.05 and 1.6 mJ/cm2 for the probe
and pump beam, respectively. The probe and pump beams
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FIG. 1. Schematic illustration of trilayer structure and coordinate
system used in the model (see text).

were incident on the sample at ∼25◦ and ∼5◦ angles with
respect to the z axis, respectively, in the light incidence
plane shown as shaded area in Fig. 1. The transient Kerr
rotation was synchronously detected using balanced optical
bridge detector in the scheme of the mechanical chopper
pump beam modulation. Other key aspects of measurement
technique and experimental setup used were described in de-
tails elsewhere [36,37]. Static hysteresis loops measurements
were done in polar and longitudinal MOKE geometry with
magnetic field magnitude up to 22 kOe using magneto-optical
magnetometer setup based on the light polarization modula-
tion technique [38–40]. All the measurements were performed
at ambient temperature of 297 K.

The samples were grown and characterized at the Institute
of Molecular Physics in Poznan, Poland. The Fe/Si multi-
layers were deposited in UHV chamber by DC magnetron
sputtering onto oxidized, (001)-oriented Si substrates. The
thickness of oxidized Si layer was about 100 nm. The first
Fe layer was deposited directly on the top of the oxidized
layer. Each sample was composed of 15 periods of (Fe/Si)
bilayers. The studied samples, referred hereafter as samples
S1, S2, and S3, have nominal thicknesses of Si sublayers
dSi = 0.9, 1.4, and 2.4 nm, respectively, and for Fe sublayers
dFe is fixed to 3 nm. The crystalline structure of the samples
and their multilayer periodicity were examined using the high-
and small-angle x-ray diffraction, respectively. The method
of preparation and samples characterization are described in
Refs. [41,42].

III. STATIC AND DYNAMIC RELATIONS FOR LAYERED
STRUCTURES WITH COEXISTING BILINEAR AND

BIQUADRATIC INTERLAYER COUPLING

For an ideal multilayer, being a repetition of successive
sequences of magnetic and nonmagnetic layers, all parameters
of the sublayers, except of magnetization directions in the
magnetic sublayers, are identical. It is then justified to assume
as a first approximation that a set of equations describing the
multilayered system can be reduced to the one for a sym-
metrical trilayer. In the following, we will consider static and

dynamic characteristics of the symmetrical trilayer, i.e., two
identical magnetic layers separated by a nonmagnetic spacer
layer and magnetically coupled as a result of BL and BQ IEC.

A. Perpendicular and in-plane hysteresis loops

To derive the solutions for the M(H ) hysteresis loops in
the case of mixed BL and BQ IEC, we will use the coordinate
system with z axis perpendicular and x axis parallel to the
sample plane, with the magnetic field of magnitude H oriented
in the x-z plane at angle of θH with respect to the z axis (see
Fig. 1). The free energy for the symmetrical trilayer having
the shape and uniaxial magnetic anisotropy can be expressed
in the spherical coordinate system in the form

E = �2
i=1

{
−HMs[cos(θH ) cos(θi )

+ sin(θH ) sin(θi) cos(ϕi )] + 1

2
Keff

u Ms sin2(θi)

}

− J1

d
[cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)]

+J2

d
[cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2)]2,

(1)

where d is the thickness of magnetic sublayers, and θi and
ϕi are polar and azimuthal angles of magnetization vectors
Mi of different orientations, but the same magnitude Ms. The
first two lines in Eq. (1) represent Zeeman and effective mag-
netic anisotropy energy. The Keff

u represents the uniaxial and
shape anisotropies and is related to the effective anisotropy
field H eff = 2Ku/Ms − 4πMs. The J1 and J2 are the BL and
BQ interlayer coupling parameters, respectively, which scale
the interlayer exchange-coupling energy and are related to
the exchange-coupling fields H (1)

ex = J1/(Msd ) and H (2)
ex =

J2/(Msd ). Note that H (1)
ex > 0 and H (1)

ex < 0 correspond to
ferromagnetic and antiferromagnetic arrangements, respec-
tively, and H (2)

ex > 0 is related to perpendicular alignment of
magnetizations. The exchange stiffness terms for magnetic
sublayers are not included in Eq. (1) because they are small
for sublayer thicknesses of a few nm as compared to other
terms [43]. In the following, the exchange stiffness terms will
be neglected in the first approximation and uniform sublayer
magnetizations will be assumed for the samples studied.

At equilibrium, the magnetization vectors arranged in non-
collinear configuration for the case of mixed BL and BQ
interlayer couplings take in symmetrical trilayer the angu-
lar positions at angles θ1 = θ2 = θ and ϕ1 = −ϕ2 = ϕ (see
Fig. 1). The dependence of the equilibrium angles θ and
ϕ on the magnitude H and orientation angle θH of mag-
netic field can be determined from numerical minimization
of Eq. (1), in general in the θ1, ϕ1, θ2, ϕ2 space, and for
symmetrical trilayer in the θ, ϕ space. For special cases of nor-
mal (θH = 0) and in-plane (θH = π/2) field directions these
angles can be determined analytically, and hence formulas
for the perpendicular mz and parallel-to-plane mx compo-
nents of equilibrium sublayer magnetizations a function of
the magnetic field magnitude can be derived in both cases.
By setting to zero the energy derivatives with respect to the
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coordinates θ, ϕ, a set of two coupled equations for necessary
conditions for existence of energy minima were obtained.
The equations were next solved with respect to θ and ϕ, and
analytical formulas were derived in the case of (a) in-plane
and (b) perpendicular-to-plane hysteresis loops. All the for-
mulas derived were additionally verified in the procedure of
global energy numerical minimization. In the following, for
the aim of this study, we will be focused on the case of coex-
isting BL and BQ IEC of magnitudes fulfilling the condition
|H (1)

ex /2H (2)
ex | � 1. We will also consider the most general case

when the magnetic field is not coplanar with the magnetization
vectors, as it is for the case of easy-plane magnetic anisotropy
(see Fig. 1).

For H = 0, the sublayer magnetizations remain in the
sample easy plane, hence θ = π/2, and derived zero-field
equilibrium angle ϕ0, the canting angle δ0, and the projection
of the magnetizations on the x axis m0

x are

ϕ0 = 0.5 arccos

(
H (1)

ex

2H (2)
ex

)
, (2a)

δ0 = 2ϕ0 = arccos

(
H (1)

ex

2H (2)
ex

)
, (2b)

m0
x = cos(ϕ0) =

√
H (1)

ex

4H (2)
ex

+ 1

2
. (2c)

For H > 0, the formulas describing the hysteresis loops de-
pend on the magnetic field orientation.

(a) For the in-plane hysteresis loop, the magnetic field
is parallel to the sample easy plane, thus, θH and θ an-
gles are equal to π/2. The equilibrium angle ϕ, and hence
also the canting angle δ = 2ϕ, can be calculated from
the equilibrium equation derived by equaling to zero the
derivative of Eq. (1) with respect to ϕ, as 8 H (2)

ex cos(ϕ)3 −
(2 H (1)

ex + 4 H (2)
ex ) cos(ϕ) − H = 0. The projection mx = cos ϕ

of the sublayer magnetizations on the x axis as a function of
H is then given explicitly by the formula

mx = cos(ϕ) = h + 2H (1)
ex + 4H (2)

ex

24H (2)
ex h

, (3)

where

h = 3

√√√√√ H

16H (2)
ex

+
√√√√ H2

256
(
H (2)

ex
)2 −

(
2H (1)

ex +4H (2)
ex

)3

13 824
(
H (2)

ex
)3 .

The normalized to unity in-plane hysteresis loop magnitude is
described by mx(H ) dependence which achieves remanence
mrem

x equal to m0
x [see Eq. (2c)]. With increasing H , the angles

ϕ and δ tend to zero, while mx = cos(ϕ) saturates to mx = 1
at saturation field H sat

‖ given by

H sat
‖ = 4H (2)

ex − 2H (1)
ex . (4)

(b) For the perpendicular-to-plane hysteresis loop the mag-
netic field is perpendicular to the sample plane θH = 0. The
magnetization angles θ and ϕ depend on H magnitude, and
the dependence can be determined analytically by solving
the set of equilibrium equations obtained by equaling to zero
the derivatives of Eq. (1) with respect to both θ and ϕ. The

normalized to unity magnitude of perpendicular-to-plane hys-
teresis loop is described by mz = cos(θ ) on H dependence,
given by the projection equal to mz of sublayer magnetizations
on the z axis. The mz(H ) function depends on whether the H
value is less or greater than the critical field H cr, given by

H cr = −H eff

√
H (1)

ex

4H (2)
ex

+ 1

2
= −H effm0

x . (5)

For H � H cr, ϕ increases from ϕ0 to π/2 and θ decreases
from π/2 to θ cr = ϕ0 with H . Within this H-field range,
the magnetization curve exhibits linear magnetic field depen-
dence

mz = cos(θ ) = − H

H eff
, (6)

and the magnetization’s canting angle remains equal to
δ0 = 2ϕ0. For H � H cr, ϕ = π/2 and θ decreases from
θ cr = ϕ0 to 0 with H . The mz component depends on H
nonlinearly, as follows from the solution of equilibrium equa-
tion: 8H (2)

ex cos(θ )3 − (H eff + 2 H (1)
ex + 4 H (2)

ex ) cos(θ ) − H =
0, and it is then given explicitly by the formula

mz = cos(θ ) = σ + H eff + 2 H (1)
ex + 4 H (2)

ex

24 H (2)
ex σ

, (7)

where

σ = 3

√√√√√ H

16H (2)
ex

+
√√√√ H2

256
(
H (2)

ex
)2 −

(
H eff+2H (1)

ex +4H (2)
ex

)3

13 824
(
H (2)

ex
)3 .

As it follows from Eqs. (5) and (6), mz takes the value of mcr
z =

m0
x at H = H cr. The perpendicular-to-plane hysteresis on H

dependence, given by mz = cos(θ ), achieves saturation value
mz = 1 for θ = 0 at saturation field H sat

⊥ :

H sat
⊥ = −H eff + 4H (2)

ex − 2H (1)
ex . (8)

Using the values of H sat
‖ , H sat

⊥ , mrem
x , and/or mcr

z determined
from the corresponding experimental hysteresis loops, one
can estimate the effective anisotropy H eff and interlayer cou-
pling fields H (1)

ex and H (2)
ex from the formulas

H eff = H sat
‖ − H sat

⊥ , (9a)

H (1)
ex = H sat

‖ (1 − 2m2)

4(m2 − 1)
, (9b)

H (2)
ex = H sat

‖
8(1 − m2)

, (9c)

where m = mrem
x = mcr

z = m0
x . It should be emphasized that on

the basis of the value of the parameter m alone, which can be
estimated from experimental hysteresis loops, it is possible
to determine the sign of BL IEC. Namely, from Eq. (9b)
it follows that there is a limit value ml = 1/

√
2 ≈ 0.707,

below which BL IEC is antiferromagnetic, and above it is
ferromagnetic.

It has been checked that the values of magnetization com-
ponents mx, mz and critical points on the hystereses, calculated
from the corresponding analytical formulas with the use of the
set of H (1)

ex , H (2)
ex , and H eff parameters determined in Sec. IV A,
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agree to within numerical precision with the ones calculated
from numerical minimization of Eq. (1).

B. Magnetization precession dispersion relations

To derive the solutions for the magnetization precession
dispersion relations in the case of coexisting BL and BQ IEC
we will use the approximation for the set of coupled Landau-
Lifshitz-Gilbert equations with damping terms neglected. This
approach is justified for the aim of comparison of the mode
frequencies with experiment since the damping terms in LLG
equations are usually negligibly small as compared to fre-
quency terms. One of the examples of good applicability
of the approximation was given for the case of BL IEC in
synthetic antiferromagnets in Ref. [24].

The set of coupled equations takes the form

dMi

dt
= −γ

[
Mi × Heff

i

]
, (10)

where Mi is the magnetization of ith sublayer (i = 1, 2),
and γ = gμB

h̄ , where g is the gyromagnetic splitting factor
(g = 2.0023 for free electron). The magnetization precessions
occur due to torques acting on Mi from the effective fields
Heff

i = −(1/Ms)∇iE , where E is the total energy for the
trilayer, which in spherical coordinates is given by Eq. (1).
Expressing E in Eq. (1) in the equivalent vectorial form, Heff

i

can be derived as given by the formula

Heff
1(2) = − 1

Ms

∂E

∂m1(2)
= H − H effz + H (1)

ex m2(1)

− H (2)
ex m2(1)(m1 · m2), (11)

where m1 and m2 are relative magnetization vectors of the
sublayers 1 and 2, and z is the unit vector along the z axis.

In the following, we derive the formulas for symmetrical
trilayer for arbitrary direction of external magnetic field in
the presence of simultaneous BL and BQ IEC using a general
approach given by Zhang et al. in Ref. [4]. For description of
the precession of magnetizations in the spherical coordinate
system, as defined in Sec. III A, one assumes small deviations
mθi and mϕi of the magnetizations Mi from its equilibrium
positions during the precession. One can obtain a general form
of equation of motion in a matrix form, expressed by second
derivatives of energy with respect to θi and ϕi, as in Ref. [4].
Differentiating the energy in Eq. (1), we obtain the following
equation of motion:⎛

⎜⎜⎜⎝
ω′ + a b d e

c ω′ − a f d
−d e ω′ − a b

f −d c ω′ + a

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

mθ1

mϕ1

mθ2

mϕ2

⎞
⎟⎟⎟⎠ = 0, (12)

where

a = H sin(ϕ) cot(θ ) sin(θH ) + H (1)
ex sin(2ϕ) cos(θ ) + 2H (2)

ex sin(2ϕ) cos(θ )[4 sin(ϕ)2 sin(θ )2 − 1],

b = H[cos(ϕ) sin(θH )/ sin(θ )] + H (1)
ex cos(2ϕ) − 2H (2)

ex [cos(2ϕ) cos(θ )2 + cos(4ϕ) sin(θ )2],

c = −H[cos(θ ) cos(θH ) + cos(ϕ) sin(θ ) sin(θH )] − H eff cos(2θ ) + H (1)
ex [2 sin(ϕ)2 sin(θ )2 − 1]

+ 2H (2)
ex {[2 sin(ϕ)2 sin(θ )2 − 1]2 − sin(ϕ)4 sin(2θ )2},

d = sin(2ϕ) cos(θ ){H (1)
ex + H (2)

ex [8 sin(ϕ)2 sin(θ )2 − 2]},
e = −H (1)

ex cos(2ϕ) + 2H (2)
ex [cos(2ϕ) cos(θ )2 + cos(4ϕ) sin(θ )2],

f = H (1)
ex [1 − 2 sin(ϕ)2 cos(θ )2] − H (2)

ex [4 sin(ϕ)4 sin(2θ )2 + 2 cos(2ϕ)],

and ω′ = i(ω/γ ).
Equation (12) can be solved by diagonalization of the matrix and obtaining the corresponding eigenvalues and eigenvectors.

Among four magnetization precession frequency solutions for ω, only two are positive. The one corresponds to precession mode
in which magnetization vectors precess in phase, and is known as acoustic mode with frequency ωac. In the second mode, known
as optic mode with frequency ωop, the magnetizations precess out of phase. The frequencies of the modes can be obtained in
analytical form by the calculation of matrix determinant in Eq. (12), from which the biquadratic equation with respect to (ω/γ )
can be derived (

ω

γ

)4

+ B

(
ω

γ

)2

+ C = 0, (13)

where

B = 2(a2 − d2 + bc + e f ), C = [(a + d )2 + (b − e)(c + f )][(a − d )2 + (b + e)(c − f )].

It has been checked that the values of the frequencies obtained from the numerical diagonalization of the matrix in Eq. (12) and
from the solutions of Eq. (13) are the same to within the numerical precision.

Analytical formulas for ωac and ωop solutions given by Eq. (13) greatly simplify for the case of θH = π/2. Setting in Eqs. (12)
and (13) θH = π/2 and θ = π/2, the formulas can be written in compact forms

ωac = γ

√
−Hmx

[
H eff − Hmx − 2H (1)

ex
(
m2

x − 1
) + 4H (2)

ex
(
m2

x − 1
)(

2m2
x − 1

)]
, (14a)

ωop = γ

√[
Hmx + 2H (1)

ex (2m2
x − 1) − 4H (2)

ex
(
2
(
2m2

x − 1
)2 − 1

)][
Hmx − H eff + 2H (1)

ex m2
x + 4H (2)

ex m2
x − 8H (2)

ex m4
x

]
, (14b)

where mx is given by Eq. (3).
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For H = 0, mx = m0
x depends, accordingly to Eq. (2c), on

relative values of H (1)
ex and H (2)

ex only, and Eqs. (14a) and (14b)
further simplify. The frequency of the acoustic mode is equal
to zero, and for the optic mode is given by the formula

ω0
op = γ

√
H eff

(
H (1)

ex
2 − 4H (2)

ex
2
)

H (2)
ex

. (15)

From the above formula it follows that for H = 0 the optic
mode frequency ω0

op increases with the amplitude of effective
anisotropy field H eff (note that for the case of shape anisotropy
only, H eff = −4πMs < 0). Since the value of ω0

op depends on
the combination of values of BL and BQ IEC parameters, H (1)

ex
and H (2)

ex , the optic mode frequency can even reach zero in
the case of |H (1)

ex | ≈ 2H (2)
ex , which will never happen if only

bilinear coupling is present in the system, and the biquadratic
one is absent.

C. Gilbert damping and spin-pumping damping
of magnetization precession

In Sec. III B, we derived analytical formulas for dispersion
relations, obtained as solutions of LLG equations without
damping in the case of symmetrical trilayer with mixed
BL and BQ IEC. To describe the magnetization precession
damping observed in FMR and TRMOKE experiments,

various spin-pumping damping terms in addition to Gilbert
damping in the case of BL IEC were proposed (see, e.g., [44]
and [10,24,45–49]).

In Ref. [50], a nonlocal spin-pumping damping term in the
case of BQ IEC and noncollinear magnetizations alignment
was proposed and successfully applied to describe the FMR
experiment in asymmetric Py/Ru/Pmd trilayers. However, we
found this approach less effective for the case of symmetrical
trilayer structure corresponding to the Fe/Si MLS studied.
Therefore, we adopted the approach of Chiba et al. [45]
for the case of noncollinear sublayer magnetizations, which
has been already successfully applied to describe magneti-
zation precession in TRMOKE experiments in symmetrical
SyAF structures with antiferromanetic IEC [10,49], where
noncollinear magnetization alignment arises due to external
magnetic filed. Moreover, the undertaken approach has addi-
tional advantage of accounting the influence of spin-diffusion
length parameter, which is an important quantity in the field
of spintronics, on spin-pumping damping, what turned out to
be important in the case of studied structures.

We modified the coupled LLG equations from Ref. [45]
by adding BQ IEC term to the precession part of the equa-
tions. The coupled macrospin LLG equations, expressed for
Kittel m = (m1 + m2)/2 and and Néel n = (m1 − m2)/2
vectors [45], with BQ IEC term added are taking the following
form:

∂t m = −γ m × H − γ H eff [(m · z)m + (n · z)n] × z + α0(m × ∂t m + n × ∂t n) + αm(m × ∂t m + n × ∂t n)

+ 2αmη

[
m · (n × ∂t n)m
1 − η(m2 − n2)

+ n · (m × ∂t m)n
1 + η(m2 − n2)

]
, (16a)

∂t n = −γ n × H − γ H eff [(m · z)n + (n · z)m] × z + α0(m × ∂t n + n × ∂t m) + αn(m × ∂t n + n × ∂t m)

−2αnη

[
m · (n × ∂t m)m
1 + η(m2 − n2)

+ n · (m × ∂t n)n
1 − η(m2 − n2)

]
+ 2γ

[ − H (1)
ex + H (2)

ex (m2 − n2)
]
n × m, (16b)

αm = αsp

1 + gr coth(dNM/2λ)
, (17a)

αn = αsp

1 + gr tanh(dNM/2λ)
, (17b)

η = gr

sinh(dNM/λ) + gr cosh(dNM/λ)
, (17c)

gr = 2ρλGr, (17d)

αsp = γ
1

MsdFM

(
h̄

2e

)2

2Gr, (17e)

where H = (H sin(θH ), 0, H cos(θH )), z = (0, 0, z), m =
|m|, n = |n|. In Eq. (16b), in addition to BL IEC which is
proportional to H (1)

ex field, we introduced the BQ IEC which
relates to H (2)

ex but also depends on values of m and n, as
can be derived using Eq. (11). It should be noted that both
BL and BQ IEC terms enter only to the second equation for
the optic mode, while the term with H eff enter both equa-
tions, for the acoustic and optic modes. Both equations are
mutually coupled due to various terms including both m
and n.

In Eqs. (16a) and (16b), α0 is intrinsic Gilbert damping
parameter and coefficients αm and αn depend on thickness
of nonmagnetic spacer layer dNM and spin-diffusion length
λ following Eqs. (17a) and (17b). The αsp is the overall
spin-pumping damping parameter, which depends inversely
on the ferromagnetic sublayer thickness dFM and its saturation
magnetization Ms. The αsp is proportional to the real part of
the spin-mixing conductance for the FM/NM interface Gr in
Eq. (17e), but does not depend on the resistivity of NM layer
ρ, which enter Eq. (17d) for the dimensionless parameter gr .
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FIG. 2. Normalized hysteresis loops in polar [ (a), (c), (e)] and
longitudinal [ (b), (d), (f)] magneto-optical Kerr effect in Fe/Si(dSi)
multilayers for sample S1 (dSi = 0.9 nm) [(a), (b)], S2 (dSi = 1.4 nm)
[(c), (d)], and S3 (dSi = 2.4 nm) [(e), (f)]. The experimental data are
marked by circles and theoretical ones by red solid lines. Character-
istic hysteresis points mcr, H sat

⊥ , H sat
‖ , and H cr (see text) are indicated

by dashed lines and arrows.

Note that the backflow efficiency of the spin current η tends
to unity, am to zero, and an to αsp for increasing values of λ in
Eqs. (17a)–(17c).

We solved the above LLG equations numerically with in-
clusion of all damping terms for the general case of coexisting
BL and BQ IEC and for arbitrary direction of magnetic field
(tuning the αsp, gr , and λ parameters) in the procedure of
fitting the LLG solutions to the experimental TRMOKE traces
in Sec. IV C.

IV. EXPERIMENTAL RESULTS: COMPARISON WITH
THEORY AND DISCUSSION

A. Static polar and longitudinal magneto-optical Kerr effect
hysteresis loops

The hysteresis loops measured in polar and longitudinal
MOKE geometry in the [Fe/Si(dSi)]15 multilayers are shown
in Fig. 2 together with the corresponding theoretical curves
obtained as a result of fitting procedure performed. The polar
hystereses shown in Figs. 2(a), 2(c), and 2(e) correspond to
magnetizations reversal from the in-plane to the magnetic field
direction, applied perpendicularly to the sample plane. For
all samples the reversal process occurs within two magnetic

field ranges. In the first range mz component exhibits linear
increase with H field up to H cr, and nonlinear one in the
second range from H cr up to H sat

⊥ . The longitudinal hystereses
shown in Figs. 2(b), 2(d), and 2(f) describe the magnetization
processes in which the sublayer magnetizations rotate within
the sample plane along the H-field direction. The magneti-
zation component mx increases from mcr = m0

x value at zero
field to saturation at H sat

‖ , with the accompanying decreasing
canting angle from its initial value δ0 to zero.

In order to roughly estimate the effective fields H (1)
ex and

H (2)
ex corresponding to BL and BQ IEC, it is sufficient to

use formulas given by Eqs. (9b) and (9c), with mcr and H sat
‖

only determined from longitudinal hysteresis loops. The sign
of BL IEC can be determined from magnetization curves in
Figs. 2(b), 2(d), and 2(f) using the values of mcr, which are
equal to ≈0.8, ≈0.25, and ≈0.65 for samples S1, S2, and
S3, respectively. Comparing these values with the ml ≈ 0.707
limit value, discussed in Sec. III A, it can been inferred that BL
IEC is ferromagnetic for sample S1, and antiferromagnetic for
samples S2 and S3, respectively. With the use of H sat

‖ values
determined for corresponding samples [see Figs. 2(b), 2(d),
and 2(f)], approximate H (1)

ex and H (2)
ex parameter values can

be then obtained. On the other hand, to obtain approximate
H eff parameter values, well-determined saturation fields H sat

⊥
in polar hysteresis loops are additionally required, as it fol-
lows from Eq. (9a). However, as it can be seen in Figs. 2(a)
and 2(c), the polar hystereses apparently do not achieve satu-
ration within the available magnetic field range. Therefore, to
obtain reliable values of all IEC parameters, the fitting proce-
dure has been applied taking into account also possible lack
of saturation. For this aim, it has been allowed that theoretical
curves can saturate at higher H sat

⊥ fields than experimentally
available. The theoretical dependencies were fitted, for each
sample, to the measured longitudinal and polar Kerr rotation
hysteresis loops simultaneously, using Eqs. (3) and (7) with
H (1)

ex , H (2)
ex , and H eff treated as fitting parameters. The best fit-

ted theoretical curves were then extrapolated to the magnetic
field of ≈35 kOe and normalized to unity together with the
corresponding experimental ones. The best fitted H (1)

ex , H (2)
ex ,

and H eff parameters were obtained in the fitting procedure,
performed independently for all quarters of the hysteresis
loops. The mean values of the parameters, together with error
bars estimated, are shown in Table I. The theoretical de-
pendencies exhibit excellent agreement with the experiment.
Characteristic hysteresis points, i.e., mcr, H sat

⊥ , H sat
‖ , and H cr,

calculated according to Eqs. (2c), (4), (8), and (5) using the
determined values of H (1)

ex , H (2)
ex , and H eff shown in Table I,

are indicated in Fig. 2 by dashed lines and arrows. As it is
seen from Fig. 2, all the point values are well reproduced
by the theory. For example, the critical field H cr, observed in
experimental curve for sample S1 in Fig. 2(a), coincides well
with the value 12.9 kOe predicted by the theory. For samples
S1 and S2, large values of H sat

⊥ saturation fields 29.5 and 31.4
kOe, respectively, are predicted, which exceed about twice
the effective anisotropy fields (see Table I). However, this is
not an inconsistency of the model since large values of H sat

⊥
result from large values of H (1)

ex and H (2)
ex parameters, which

contribute additively to H sat
⊥ according to Eq. (8). Similarly,

large values of H sat
‖ equal to 13.2 and 13.8 kOe, respectively,

for these samples are due to a dominant contribution of H (2)
ex to
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TABLE I. Bilinear and biquadratic interlayer exchange-coupling fields H (1)
ex and H (2)

ex with corresponding J1 and J2 parameters of coupling
strengths and the effective magnetic anisotropy field H eff in Fe/Si(dSi) multilayer samples, determined from MOKE hysteresis loops.

Sample dSi (nm) H (1)
ex (kOe) J1 (mJ/m2) H (2)

ex (kOe) J2 (mJ/m2) H eff (kOe)

S1 0.9 2.3 ± 0.4 0.9 ± 0.2 4.5 ± 0.2 1.8 ± 0.1 −16.3 ± 0.4
S2 1.4 −3.2 ± 0.1 −1.3 ± 0.1 1.8 ± 0.1 0.7 ± 0.1 −17.6 ± 0.9
S3 2.4 −0.010 ± 0.010 −0.005 ± 0.005 0.050 ± 0.010 0.020 ± 0.005 −16.3 ± 0.3

H sat
‖ , as it follows from Eq. (4). In contrast, small value of H sat

‖
of about 0.2 kOe for sample S3, seen in the inset in Fig. 2(f),
results from low values of H (1)

ex and H (2)
ex , which cause that H sat

⊥
is close to H eff for this sample.

The fitted effective magnetic anisotropy field H eff pa-
rameters change from −16.3 ± 0.4 to −17.6 ± 0.9 kOe
for the samples. These values are in good agreement
with the magnetization value 4πMs = 16.7 ± 0.7 kOe, ex-
tracted from the spontaneous Hall effect measurements for
Fe(3 nm)/Si(1.1 nm) multilayers, prepared by the same tech-
nique, in Ref. [51]. The coincidence of the H eff and 4πMs

values indicates that contribution to H eff related to uniaxial
anisotropy field 2Ku/Ms is within the error bars and can be
neglected. Therefore, in the following, for Fe sublayers the
value of saturation magnetization 4πMs ≈ 16.7 ± 0.7 kOe
will be assumed for the samples studied.

In Table I, the J1 and J2 parameters, which are quantities
characterizing coupling strengths independently of mag-
netic layer thickness, were calculated from the relation Ji =
H (i)

ex MsdFe (i = 1, 2), using dFe = 3 nm and saturation magne-
tization of Fe sublayers assumed above, are presented together
with their error bars. As it is seen from Table I, there is a
strong BQ of J2 = 1.8 mJ/m2, and coexisting weaker BL
IEC of J1 = 0.9 mJ/m2 in sample S1 with thinnest Si layer.
From the ratio of J1 and J2 values, the canting angle equal to
δ0 = 75 ± 5◦ is calculated from Eq. (2b), which value is in
line with the ferromagnetic type of BL IEC. With increasing
Si thickness in sample S2, the ferromagnetic BL IEC changes
to strong antiferromagnetic one, with J1 = −1.3 mJ/m2 and
J2 = 0.7 mJ/m2 as compared to sample S1. This change to
antiferromagnetic coupling is accompanied by increase of δ0

well above 90◦, to 155◦ ± 10◦. For sample S3, where dSi value
increases by ≈70% as compared to S2, both BL and BQ IEC
are very weak, with J1 and J2 being reduced by one to two
orders of magnitude. However, the antiferromagnetic charac-
ter of BL IEC, and nonzero BQ IEC remain still for sample
S3. The weak antiferromagnetic BL IEC is accompanied by
canting angle of value 95◦ ± 10◦, being only slightly greater
than 90◦, which is the exact δ0 value for BQ IEC alone.

B. Magnetization precession and dispersion relations

1. Transient Kerr rotation

The changes of the M(t ) vs delay time t between pump and
probe pulses are detected in reflection geometry as transient
Kerr rotation �θK(t ) in TRMOKE experiment. Because of
the presence of interlayer coupling determined from the mea-
sured static hysteresis loops, as was discussed in Sec. IV A,
two magnetization precession modes in all the samples are
expected. Therefore, it is convenient to express the measured
TRMOKE signals as a sum of the components given by the

formula

�θK(t ) = A1 exp

(
− t

τ1

)
sin(2π f1t + ϕ1)

+ A2 exp

(
− t

τ2

)
sin(2π f2t + ϕ2) + B(t ), (18)

where Ai, fi, ϕi, and τi are the amplitude, frequency, phase,
and relaxation time of the ith (i = 1, 2) magnetization preces-
sion component in the TRMOKE signal, respectively. The first
two terms in Eq. (18), denoted hereafter as �θosc

K (t ), represent
damped oscillatory functions describing decaying of mag-
netization precession, and B(t ) represents a slowly varying
nonoscillating background, related to sample demagnetization
and recovery processes.

For all measured �θK(t ) dependencies, the fitting pro-
cedure using Eq. (18) with B(t ) given by biexponential
backgrounds, was performed. The �θosc

K (t ) terms have been
determined by subtracting fitted B(t ) background terms from
the measured �θK(t ). The procedure was applied to all exper-
imental data, and the oscillatory �θosc

K (t ) dependencies have
been extracted and are shown in Figs. 3(a), 3(c), and 3(e)
for samples S1, S2, and S3, respectively. In the experimental
�θosc

K (t ) traces, two oscillatory components of different fre-
quencies are seen. The corresponding precession modes will
be considered further quantitatively as the acoustic and optic
modes characterized by the lower and higher frequencies,
denoted as ωac and ωop, respectively. The fitted theoretical
�θosc

K (t ) dependencies are in very good agreement with the
experimental ones, and both are plotted in Figs. 3(a), 3(c),
and 3(e) for increasing magnetic field H magnitudes up to 6.5
kOe, indicated on vertical axes, and orientation angles θH =
10◦, 25◦, and 50◦. As it is seen, the �θosc

K (t ) dependencies
significantly differ between the samples and strongly change
with H and θH .

For better visualization of the precession mode evolu-
tion, fast Fourier transforms (FFT) of the fitted �θosc

K (t )
dependencies were calculated, and the results are shown in
Figs. 3(b), 3(d), and 3(f) for samples S1, S2, and S3, respec-
tively. Occurrence of two precession modes, of frequencies
ωac and ωop determined by peak positions in FFT spectra
marked with vertical dashed lines in Figs. 3(b), 3(d), and 3(f),
can be observed. It is seen that ωac frequencies change in a
different way with H field and θH angle than ωop ones, and the
evolutions differ also between the samples. A similar diversity
also exists for the peak amplitudes of the modes. Since the
amplitudes of a part of the peaks are very small as compared
to others, and peaks are overlapped, these mode frequencies
are hardly determinable. Therefore, the FFT spectra were
taken only as a qualitative illustration of the mode evolution
in the samples studied. For the most reliable, quantitative
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FIG. 3. Transient Kerr rotation signals and their FFT transforms as a function of magnetic field magnitude H and orientation angle θH in
Fe/Si(dSi ) multilayers for sample S1 (dSi = 0.9 nm) [(a), (b)], S2 (dSi = 1.4 nm) [(c), (d)], and S3 (dSi = 2.4 nm) [(e), (f)]. In (a), (c), and
(f) are plotted experimental (circles) and fitted (solid lines) �θosc

K vs delay-time t dependencies, and in (b), (d), and (f) FFT transforms of the
fitted ones (see text). The curves are marked by magnetic field values and shifted in vertical scales for clarity. The dashed vertical lines in (b),
(d), and (f) indicate approximate peak positions of acoustic and optic precession modes in the FFT spectra.
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FIG. 4. Magnetization precession frequency dependencies on magnetic field H (symbols), best fitted to experimental TRMOKE signals
with the use of Eq. (18) in Fe/Si(dSi) multilayers for samples S1 [(a)–(c)], S2 [(d)–(f)], and S3 [(g)–(i)] for magnetic field angle θH equal to
10◦ [(a), (d), (f)], 25◦ [(b), (e), (h)], and 50◦ [(c), (f), (i)]. The theoretical dispersion curves, best fitted to the data using Eq. (13), are shown for
acoustic and optic modes with thick blue and red lines, respectively. For each case, the curves calculated for best fitted parameters except for
parameter J1 set to 0 are shown as thin dashed-dotted lines, and for J2 set to 0 are shown as thick dashed lines [see the legend in (g)]. Note that
vertical frequency axes are scaled according to relation f = ω/(2π ).

determination of the mode frequencies, the complete fitting
procedure has been performed and the results are described in
the next section.

2. Dispersion relations

As a result of the fitting procedure, applied to all the
�θosc

K (t ) delay-time traces with the use of Eq. (18), the ωac(H )
and ωop(H ) field dependencies were determined, and are
shown in Figs. 4(a)–4(i) by symbols for different θH angles.
As it can be seen in Figs. 4(a)–4(f), characteristic features of
experimental ωac(H ) and ωop(H ) dependencies for samples
S1 and S2 are as follows: (i) ωac(H ) monotonically increase vs
H for all θH angles within the range of available experimental
magnetic field, (ii) ωop(H ) changes within higher-frequency
values and deceases monotonically with H for sample S1,
while for S2 the ωop(H ) exhibits more complex character
dependent on θH angle, (iii) the separation between optic
and acoustic branches decreases as θH increases. For sample
S3, similar behavior as in S1 and S2 is observed already at
low H fields. However, for higher fields, a mode-crossing
effect occurs with the crossing field values H cross

θH
decreasing

from ≈1 kOe to ≈0.5 kOe as θH increases from 10◦ to 50◦.
The acoustic mode exhibits low-value dips, at fields Hdip

θH

roughly twice of H cross
θH

values, followed by further monotonic
frequency increase. Qualitatively similar behavior was also
observed for various layered structures with BL IEC only,
in FMR [4,24,52–55] and TRMOKE [5,7] experiments. It is
to be noted that for samples S1 and S2, the mode crossing
is clearly visible in experimental data only for θH = 50◦ at
H ≈6.5 kOe.

To explain all the observed ωac,op(H ) behavior’s diversity
on equal foots, the fitting procedure with the use of theoretical
dispersion relations, calculated from solutions of Eq. (13),
was performed. For a given sample, the fitting procedure was
applied within the entire H-field range for each θH angle,
10◦, 25◦, and 50◦, for both ωac(H ) and ωac(H ) dependencies
simultaneously. As a result, the sets of H (1)

ex , H (2)
ex , and H eff

parameters were obtained for each θH angle independently.
The dimensionless gyromagnetic g-factor values were fitted
simultaneously in each case. Since the parameter values fitted
for different θH angles appeared to have some spread, the
mean values with corresponding error bars have been calcu-
lated and are presented in Table II.
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TABLE II. Bilinear and biquadratic interlayer exchange-coupling fields H (1)
ex and H (2)

ex with corresponding J1 and J2 parameters of coupling
strengths and the effective magnetic anisotropy field H eff in Fe/Si(dSi) multilayer samples, determined from TRMOKE experiment. The g is
the dimensionless gyromagnetic splitting factor.

Sample dSi (nm) H (1)
ex (kOe) J1 (mJ/m2) H (2)

ex (kOe) J2 (mJ/m2) H eff (kOe) g

S1 0.9 4.0 ± 1.5 1.6 ± 0.6 4.5 ± 0.7 1.8 ± 0.3 −13.3 ± 3.3 2.16 ± 0.26
S2 1.4 −2.1 ± 1.6 −0.9 ± 0.7 2.4 ± 0.6 1.0 ± 0.3 −10.2 ± 1.9 2.08 ± 0.16
S3 2.4 −0.115 ± 0.095 −0.045 ± 0.040 0.080 ± 0.020 0.035 ± 0.010 −13.7 ± 1.5 2.14 ± 0.16

The coupling strengths Ji, calculated from corresponding
H (i)

ex parameters in a similar way as in Sec. IV A, together
with estimated error bars, are listed in Table II. In sample
S1, BL IEC is ferromagnetic with J1 = 1.6 mJ/m2, and in S2,
it is antiferromagnetic with J1 = −0.9 mJ/m2. Even though
BL IEC in sample S1 prefers parallel alignment, strong BQ
IEC with J2 =1.8 mJ/m2 enforces canting arrangement of
the Fe sublayer magnetization vectors. On the other hand,
the strong antiferromagnetic BL IEC in sample S2, preferring
antiparallel alignment, is influenced by a strong BQ IEC with
J2 =1.0 mJ/m2, leading also to noncollinear magnetization
arrangement. As a result, the zero-field canting angles δ0,
which depend on the determined values of H (1)

ex and H (2)
ex

parameters, accordingly to Eq. (2b), differ in both samples,
having values of ∼65 ± 5◦ and ∼120 ± 20◦ for samples S1
and S2, respectively.

In the case of sample S3, significant antiferromagnetic
BL IEC reduction, from one to two orders of magnitude, is
observed. As Si thickness is changing from dSi = 1.4 to dSi =
2.4 nm, the reduction of coupling strengths with the increase
of Si thickness is described by exponential decay relation
Ji ∼ exp(−dSi/λi ), with the decay lengths λi estimated in the
range of 0.2–0.4 nm. The decay lengths are of the same order
of magnitude as reported for different Fe/Si structures [32]
and explained within the framework of Slonczewski’s loose
spin model [56].

The results obtained so far allow to compare quantita-
tively the H (i)

ex and H eff parameter values determined from
dynamic TRMOKE experiment (shown in Table II) with the
ones obtained from measurements of static MOKE hysteresis
loops (shown in Table I). As it is seen, the parameter values
determined in both experiments agree to within error bars
estimated. The only exception is H eff parameter which values
are in average considerably smaller in Table II as compared to
Table I. The reasons for the differences are not fully identified
as yet. One of the possible reasons is that H eff can manifest
differently in MOKE and TRMOKE experiments. In par-
ticular, in dynamic TRMOKE experiment the magnetization
precession is triggered by laser pump pulses which energy can
increase the sample temperature. As a result, this may lead to
a reduction of H eff values, similarly as reported in Ref. [36].
For Fe/Si multilayers, with sublayer’s thicknesses similar as
this study, the Curie temperatures reported in the literature are
much lower than TC of pure Fe film [57]. This is related to
the fact that Fe readily reacts with Si, forming a rich variety
of silicides at the interfaces [32,34]. However, the study of
the TRMOKE effects as a function the laser pulse fluence, in
order to clarify this possibility, is beyond the scope of this
paper.

For analysis of the TRMOKE experimental data, an addi-
tional fitting parameter g factor has been determined. For the
samples studied, obtained g-factor values were estimated in
the range of 2.08–2.16 (see Table II). The mean values of g
factor have a tendency to be larger than for thin Fe film, for
which we have determined value of g ≈ 2.04.

The best fitted theoretical ωac,op(H ) dependencies are pre-
sented in Figs. 4(a)–4(i) with blue and red solid curves for
acoustic and optic mode, respectively. As it is seen, the theory
reproduces very well the experimental data for both modes
and all θH angles within error bars for entire H-field range
available in the experiment. The ωac,op(H ) dependencies, pre-
dicted by the theory in H-field range up to ∼27 kOe, resemble
the overall behavior of acoustic and optic modes with pres-
ence of BL IEC only, as reported in the literature [4,7,24,52–
55]. However, the BQ IEC occurrence significantly affects
the ωac,op(H ) functions. For example, this is the case of the
optical mode frequencies ω0

op extrapolated to zero field, which
can be either determined from fitting procedure, according to
Eq. (13), or from analytical expression given by Eq. (15), and
which both are in a good agreement with the experimental
ωop dependencies extrapolated to zero field. As can be seen
from Eq. (15), ω0

op depends on H (2)
ex even stronger than on

H (1)
ex parameter. The decrease of ωop(H ) as H tends to zero,

not reported in the literature but observed in sample S2 for
θH equal to 25◦ and 50◦ and for all θH angles in sample S3,
results from the same order of H (1)

ex and H (2)
ex values, i.e., when

a compensation between BL and BQ IEC occurs, as follows
directly from Eq. (15).

The most characteristic feature in the theoretical ωac,op(H )
functions is the mode-crossing effect occurring for all cases,
with corresponding frequency gaps (also termed in literature
as “anticrossing gaps”) between acoustic and optic branches at
higher H fields. In the vicinity of the crossing field, acoustic
and optic mode hybridization effect, i.e., the magnon-magnon
coupling, appears [24,52,58,59]. There is also monotonic
evolution of H cross

θH
towards higher field values, with simulta-

neous increase of the frequency gaps as θH angle decreases
from θH = 50◦ to 10◦ [see Figs. 4(a)–4(c) for sample S1,
Figs. 4(d)–4(f)] for S2, and Figs. 4(g)–4(i) for S3]. Similar θH -
angle-dependent behavior was also experimentally observed
and theoretically explained in synthetic antiferromagnets with
BL IEC only [24]. In the present case, it is seen that the
mode-crossing field and frequency gap behave differently for
coexisting BL and BQ IEC of similar strengths but oppo-
site signs, i.e., for ferromagnetic BL IEC in sample S1 [see
Figs. 4(a)–4(c)] and antiferromagnetic BL IEC in S2 [see
Figs. 4(d)–4(f)]. In the case of sample S3, similar trend of
H cross

θH
increase as θH decreases is seen, but with H cross

θH
values
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shifted towards much lower fields as compared to samples S1
and S2.

As the magnetic field increases, the zero-field canting an-
gles δ0 decrease and further collapse to zero at the field values
Hdip

θH
, which depend on θH angle, H eff, and IEC parameters

for a given sample. The Hdip
θH

values differ from the saturation
fields H sat

⊥ and H sat
‖ , which were determined in Sec. III A for

θH = 0◦ and 90◦. The Hdip
θH

fields decrease for larger θH angle
and approach H sat

‖ at θH → 90◦. Low BL and BQ IEC values
in sample S3 cause that dips observed in acoustic frequency
modes have a full correspondence in the theory within entire
measured field range. In particular, the theory adequately re-
produces the experimental frequency data within its error bars
for high H fields as well.

We performed additional test calculations to investigate the
influence of BL and BQ IEC separately on dispersion rela-
tions. For this purpose, calculations of theoretical ωac,op(H )
dependencies in a wide H-field range were performed with
best fitted parameters values assumed, except of either J1 or
J2 parameter fixed to zero. The obtained theoretical curves are
shown by thin dashed-dotted and dashed curves, respectively,
in Fig. 4. As can be seen, for all studied samples, zeroing of
the BL IEC, by setting J1 = 0, has little effect on acoustic
mode within experimentally available magnetic fields, al-
though considerable differences can be seen for higher H
fields. Simultaneously, the optic mode is significantly af-
fected, particularly for sample S1 [see Figs. 4(a)–4(c)]. For
higher H fields, the values of H cross

θH
and Hdip

θH
increase for

sample S1 with ferromagnetic BL, and decrease for samples
S2 and S3 with antiferromagnetic BL IEC, for each θH an-
gle in comparison to exact solution. Much more significant
deviations appear in the case of zeroing of the BQ IEC,
i.e., by setting J2 = 0, in both acoustic and optic branches.
Strong reduction of H cross

θH
and Hdip

θH
values, dependent on θH ,

is seen for sample S2 [see Figs. 4(d)–4(f)], while for S1 no
mode-crossing effect can be observed at all. This result can
be expected in advance in the case of ferromagnetic coupling
between the layers. In conclusion, BQ IEC, coexisting with
antiferromagnetic BL IEC, is equally important for reliable
description of the dispersion relations.

C. Damping of magnetization precession

1. Effective damping parameters

Along with dispersion relations discussed in Sec. IV B 2,
relaxation times τac and τop of corresponding acoustic and
optic modes, respectively, were simultaneously determined in
the fitting procedure of �θosc

K (t ) dependencies using Eq. (18).
These parameters were next used in determination of the
effective damping of each frequency mode, accordingly to
relation αeff

ac(op) = 1/(ωac(op)τac(op)).
The αeff

ac,op(H ) dependencies for different θH angles are
shown in Fig. 5. Strong changes of effective damping parame-
ters with θH angles, similarly as reported in Refs. [60,61], can
be noticed. For sample S1, αeff

ac at low H fields is several times
larger than αeff

op , which is caused by decreasing of ωac(H ) as
H approaches zero. The magnitude of αeff

ac (H ) dependencies
decreases, while αeff

op (H ) weakly changes as θH is increasing.

For all θH angles, αeff
ac decreases several times with H , while

about twofold increase of αeff
op is observed. Similar behavior

can be seen in sample S2 for αeff
ac . Different behavior, as com-

pared to samples S1 and S2, can be seen for sample S3. The
αeff

op decreases strongly with field, achieving smallest values at
higher fields among all samples. The αeff

ac (H ) dependencies
exhibit maxima at H-field values corresponding to ωeff

ac (H )
dips at Hdip

θH
fields, discussed in Sec. IV B 2 [see Figs. 4(g)–

4(i)]. The last behavior can be explained through inverse
proportionality relation of αeff

ac (H ) with respect to ωeff
ac (H ),

exhibiting minima at the dips. For magnetic fields exceeding
Hdip

θH
values, αeff

ac (H ) decreases, being several times larger than
αeff

op (H ).

2. Gilbert damping and spin-pumping-damping–related
model parameters

In order to study the behavior of intrinsic damping pa-
rameters, i.e., Gilbert damping α0 and spin-pumping damping
αsp parameters in the presence of interlayer exchange cou-
pling, numerical solving of coupled equations (16a) and (16b)
was carried out with simultaneous fitting to experimental
TRMOKE traces shown in Fig. 3. In addition to α0 and
αsp, the λ and gr were taken as a fitting parameters in the
damping model used. To avoid possible correlations between
model parameters, their values were kept constant over the
entire H-field range. This procedure was performed for each
azimuth and mean values of the parameters with their stan-
dard deviations were estimated for each sample. In the fitting
procedure, the H (1)

ex , H (2)
ex , and H eff parameters were allowed to

be changed within bounds specified by the parameter’s uncer-
tainties estimated in Table II. The best fitted values of α0, αsp,
and λ parameters together with error bars estimated are shown
in Table III. The estimated gr parameter values remain within
10 ± 3 range for all samples. From the obtained αsp parameter
values, the real parts of the spin-mixing conductance for the
FM/NM interface Gr parameter values for each sample were
determined using Eq. (17e) and are shown in Table III. In
this estimation, we used the value of magnetic Fe sublayer
thickness dFe = 3 nm and the values of magnetization Ms

determined from H eff values together with error bars listed in
Table II.

Analyzing the intrinsic damping parameters some general
observations can be noticed:

(i) The intrinsic Gilbert damping parameter α0 for sample
S3 has a value of the same order as reported for trilayer
structures consisting of magnetic sublayers of iron-containing
alloys. For example, in CoFeB/Ru/CoFeB trilayers α0 was
estimated from TRMOKE experiment to 0.011 in Ref. [49],
and in Co-Fe/Ru/Co-Fe trilayers to ≈0.01, approximated
from high H-field αeff values [62]. The values of damping
parameter α0 for samples S1 and S2 are noticeably larger
remaining in the range of 0.06–0.08 as compared to S3, and
it can be probably ascribed to higher magnetic inhomogeneity
of the Fe/Si interface region microstructure, which relative
volume decreases with nominal dSi thickness.

(ii) The spin-pumping damping parameter αsp has the
largest value of ≈0.088 for sample S1 which decreases to
≈0.067 for sample S2 as dSi increases, and αsp values remain
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FIG. 5. Comparison of experimental αeff
ac,op (blue and red symbols) and simulated with the use of LLG equations solutions effective damping

parameters αLLG
ac,op (magenta and green symbols) as a function of H and θH for acoustic and optic modes in Fe/Si(dSi) multilayers for sample

S1 [(a)–(c)], S2 [(d)–(f)], and S3 [(g)–(i)]. The experimental effective damping parameters were determined from the corresponding relaxation
times, best fitted to experimental TRMOKE signals with the use of Eq. (18). The simulated damping parameters were determined in a similar
way from the calculated LLG delay-time traces (see Sec. IV C 2).

approximately at the same level within the error bars for sam-
ple S3. The initial decreasing trend of αsp with spacer-layer
thickness was observed in Co-Fe/Ru/Co-Fe trilayers [62]. An
interesting question can arise at this point concerning possible
correlation occurrence between spin-pumping damping and
interlayer exchange-coupling parameters. Such a correlation
has been found in Ref. [62] between αsp and effective coupling

parameter defined as Jeff = J1 + 2J2 in Co-Fe/Ru/Co-Fe tri-
layers. A similar correlation occurs in the case of Fe/Si MLS
studied between αsp and Jeff parameter defined as |J1| + 2J2.

(iii) The spin-mixing conductance parameter Gr calcu-
lated accordingly to Eq. (17e) has values in the range from
4.2 × 1015 �−1 m−2 for sample S2 to 7.3 × 1015 �−1 m−2 for
sample S1 (see Table III). The obtained values are of the same

TABLE III. Parameters extracted from fitting of coupled LLG equation solutions to TRMOKE experimental data: intrinsic Gilbert damping
α0 and spin-pumping damping αsp, and related parameters of the model used: real part of effective spin-mixing conductance parameter Gr and
spin-diffusion length λ.

Sample α0 αsp Gr (1015 �−1 m−2) λ(nm)

S1 0.061 ± 0.008 0.088 ± 0.008 7.3 ± 0.6 4.4 ± 0.7
S2 0.083 ± 0.018 0.067 ± 0.020 4.2 ± 1.3 5.1 ± 1.4
S3 0.013 ± 0.006 0.080 ± 0.035 6.8 ± 2.9 9.8 ± 2.8
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order as reported for other systems. For example, the Gr =
5.44 × 1015 �−1 m−2 was reported for CoFeB/Ru/CoFeB
trilayers with strong antiferromagnetic BL coupling [49]. The
changes of Gr values with dSi can be related with differences
in interface structural quality, as was reported for various
layered structures [46].

(iv) The spin-diffusion length λ exhibits noticeable in-
creasing trend with spacer-layer thickness. For smallest dSi

for samples S1 and S2, the λ = 4.4 ± 0.7 nm and 5.1 ± 1.4
nm compare well with λ = 5 ± 1 nm reported for Fe3Si al-
loys [63,64]. For thickest dSi for sample S3, the spin-diffusion
length has a value increased to around 10 nm. Such an increase
of λ can be probably related to the change of spacer-layer
composition profile which was observed for similar sputter-
deposited Fe/Si MLS [51].

In Fig. 5 we show results of simulation performed, aimed at
comparison of experimental αeff

ac,op (blue and red symbols) and
simulated with the use of LLG equation solutions effective
damping parameters αLLG

ac,op (magenta and green symbols) as
a function of H and θH for acoustic and optic modes in
Fe/Si(dSi) multilayers. The simulated effective αeff

ac and αeff
op

parameters were determined from decompositions of theoret-
ical delay-time traces (being the result of the fitting procedure
of the LLG equations solutions to the experimental data) onto
acoustic and optical mode contributions, performed in the way
described in Sec. IV C 1.

As can be seen in Fig. 5, the simulated dependencies of ef-
fective damping parameters mostly coincide with experimen-
tal ones within error bars indicated. The overall good agree-
ment of experimental and simulated effective damping param-
eters confirms the internal consistency of the adopted damping
model and the calculation methodology used. However, sev-
eral points are worth to be noticed and discussed. First, some
discrepancies, mostly in low H fields, can be noted. Second,
certain part of effective parameters obtained from the model
can arise from contributions not included in LLG equations.
One of the well-known sources of such contributions are mag-
netic inhomogeneities and two-magnon scattering, and both of
them can have influence on the values of Gilbert damping as
well as on spin-pumping damping parameter.

The inhomogeneity contribution can be separated already
from effective αeff parameters in the case of single magnetic
layers, based on model analysis, as has been demonstrated in
several papers [65–68]. In the simplest approach, the intrinsic
part of αeff was determined from the value at high H field, or
from approximation to infinite field, where the contributions
from the magnetic inhomogeneities, as well as from two-
magnon scattering, tend to zero. However, this method does
not apply to samples S1 and S2, where αeff for optical mode
tends to increase within the available magnetic field range.

Extrinsic enhancement of the damping can result also from
two-magnon scattering processes, e.g., when the symmetry of
the system is modified by inhomogeneity of microstructure
such as film roughness and intermixing at interfaces [69–71],
which enhance the effective damping of the magnetization
precession. Increase of intermixing leads to the enhancement
of effective spin-mixing conductance [71,72], and modifi-
cations of the interface can have influence on all of the
mechanisms [73,74]. The contribution to the damping due to
two-magnon scattering depends on the thickness of magnetic

layer as well as type and quality of interface with nonmag-
netic layer, as has been determined for epitaxial Fe films with
different capping layers by quantitative separation of intrinsic
and extrinsic contributions in Refs. [75–77].

In Fe/Si multilayers two-magnon scattering can have influ-
ence on all parameters discussed so far. As already mentioned
in Sec. IV B 2, Fe readily reacts with Si, forming a rich
variety of silicides at the interfaces [32,34]. It was shown by
Zakeri et al. in Refs. [78,79] that two-magnon scattering has
significant effect on magnetic damping in Fe3Si alloys. Sim-
ilar influence of two-magnon scattering can be expected also
for other compositions of FexSi1−x alloys, such as FeSi and
FeSi2, which are present in spacer-layer composition profiles
in sputter-deposited Fe/Si MLS [51].

Investigation of influence of the inhomogeneity effects by
introducing additional magnetic sublayers in the LLG equa-
tions and modeling of gradients of magnetic parameters at
the interface volumes, or separation of two-magnon scattering
contributions to the damping parameters, is however beyond
the scope of this paper.

V. SUMMARY AND CONCLUSIONS

We performed comprehensive experimental and theoreti-
cal studies of the influence of coexisting bilinear (BL) and
biquadratic (BQ) interlayer exchange coupling on magnetiza-
tion precession in Fe(3 nm)/Si(dSi) multilayers with different
Si spacer-layer thicknesses dSi and coupling strengths and
signs. We studied laser-induced magnetization precession in
the multilayers as a function of the magnitude H and orien-
tation angle θH of external magnetic field using time-resolved
magneto-optical Kerr effect. Strongly changing character of
acoustic ωac(H, θH ) and optic ωop(H, θH ) precession mode
frequencies and effective damping parameter dependencies,
determined for different dSi thicknesses, varying in the range
of 0.9–2.4 nm, has been observed.

Analytical formulas for acoustic and optic mode dispersion
relations for the layered structures with coexisting bilinear
and biquadratic interlayer couplings, scaled by J1 and J2

parameters, respectively, were derived for the case of in-
plane effective magnetic anisotropy and arbitrary external
magnetic field direction. It has been shown that for both
modes, theoretical frequency dependencies reproduce very
well the experimentally determined ones. It is shown that not
only BL but also BQ IEC has significant influence on the
shape and magnitude of ωop,op(H, θH ) dispersion relations.
In particular, nonmonotonic low-field frequency dependence
of optical mode in the case of antiferromagnetic BL IEC is
theoretically explained by the coexisting BQ IEC of similar
strength. The acoustic and optic mode-crossing effect has
been observed and accurately reproduced, with the cross-
ing field and frequency gap values depending on coupling
strengths and increasing as θH decreases. Similar BL and
BQ IEC, of parameters values J1 ≈ 1.6 and J2 ≈ 1.8 mJ/m2

for spacer-layer thickness dSi = 0.9 nm were found, while
the BL IEC changes from ferromagnetic to antiferromagnetic
coupling with J1 ≈ −0.9 mJ/m2 for dSi = 1.4 nm. It is shown
that magnitudes of both coupling parameters decrease by one
to two orders for dSi = 2.4 nm, which has large influence
on the magnitude reduction, and form change of dispersion
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relations of both frequency modes. It is found that the J1 and
J2 parameters, determined in the dynamic TRMOKE and in
the static MOKE experiments, and interpreted with the use
of analytical formulas derived, coincide within the estimated
error bars.

The description of the experimentally observed damping
of magnetization precession was performed with the use of
coupled LLG equation solutions within the model containing
Gilbert damping and spin-pumping damping. In this model,
the derived terms related to BQ IEC and spin-diffusion length
in spin-pumping damping terms were taken into account. It
is shown that the observed effective damping parameter de-
pendencies on H and θH for acoustic and optic modes are
very well simulated with the use of LLG equation solutions.
The determined Gilbert damping, spin-pumping damping, and
spin-diffusion length parameters were discussed in terms of
possible extrinsic contributions from interface microstructure

inhomogeneities and two-magnon scattering. The Gilbert
damping and spin-pumping-damping–related effective spin-
mixing conductance of Fe/Si interfaces and spin-diffusion
length parameters are found to be comparable with avail-
able data for other trilayer systems. The obtained accordance
of simulated and experimental effective damping parameters
confirms the internal consistency of the damping model and
the calculation methodology used.
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