
PHYSICAL REVIEW B 107, 144308 (2023)
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We report on experimental studies that were performed with a microwave Dirac billiard (DB), that is, a flat
resonator containing metallic cylinders arranged on a triangular grid, whose shape has a threefold rotational
(C3) symmetry. Its band structure exhibits two Dirac points (DPs) that are separated by a nearly flat band. We
present a procedure that we employed to identify eigenfrequencies and to separate the eigenstates according
to their transformation properties under rotation by 2π

3 into the three C3 subspaces. This allows us to verify
previous numerical results of Zhang and Dietz [Phys. Rev. B 104, 064310 (2021)], thus confirming that the
properties of the eigenmodes coincide with those of artificial graphene around the lower DP, and they are well
described by a tight-binding model for a honeycomb-kagome lattice of corresponding shape. Above all, we
investigate the properties of the wave-function components in terms of the fluctuation properties of the measured
scattering matrix, which are numerically not accessible. They are compared to random-matrix theory predictions
for quantum-chaotic scattering systems exhibiting extended or localized states in the interaction region, that is,
the DB. Even in regions where the wave functions are localized, the spectral properties coincide with those of
typical quantum systems with chaotic classical counterparts.
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I. INTRODUCTION

Superconducting microwave Dirac billiards (DBs) have
been used for more than a decade to investigate fluctua-
tion properties in the energy spectra of artificial graphene
and fullerene structures [1–9]. The experiments presented in
this work were performed with the DB shown schematically
in Fig. 1, whose shape has a C3 symmetry. The frequency
was restricted to the range of the lowest transverse-magnetic
(TM) mode, where the electric-field strength is perpendicular
to the resonator plane and thus is governed by the scalar
Helmholtz equation with Dirichlet boundary conditions (BCs)
at the sidewalls of the cavity and cylinders. The Helmholtz
equation is mathematically identical to the Schrödinger equa-
tion of a quantum billiard (QB) of corresponding shape, into
which scatterers are inserted at the positions of the cylinders.
The crucial advantage of such resonators as compared to
honeycomb structures constructed from dielectric disks [10]
is that superconducting high-precision measurements can be
performed, which is indispensable for the determination of
complete sequences of resonance frequencies.

The band structure of propagating modes of the DB ex-
hibits two Dirac points (DPs), where the first and second
and the fourth and fifth band, respectively, touch each other
conically, and a nearly flat third band (FB) in between. This is
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reminiscent of a honeycomb-kagome billiard (HKB) whose
sites form a combination of a honeycomb and a kagome
sublattice [11–16]; see the uppermost inset of Fig. 1. Indeed,
below the FB the electric-field intensities are maximal at the
voids, which are located at the centers of three neighboring
metallic cylinders (gray disks), marked with red and turquoise
dots in Fig. 1, and they form a honeycomb structure. In the
frequency range of the FB, they are maximal at the centers
between adjacent cylinders, marked by black dots, that are at
the sites of a kagome lattice, and above the FB on all sites
of the HKB [15,16]. We demonstrated that below the FB the
properties of DBs are well captured by a tight-binding model
(TBM) for a graphene billiard (GB) [1,7,8], and generally by
one for a HKB [15,16]. Dirac points are a characteristic of
graphene that attracted a lot of attention [17–19] because in
the region of the conical valleys graphene features relativistic
phenomena [17–27], which triggered numerous realizations
[28] of artificial graphene [2,10,29–43]. In the vicinity of the
band edges (BEs), the spectral properties coincide with those
of a nonrelativistic QB of corresponding shape [1,4,8].

The classical dynamics of a billiard with the shape of
the DB shown in Fig. 1 is chaotic [16,44]. According to the
Bohigas-Giannoni-Schmit conjecture, the fluctuation proper-
ties in the energy spectra of nonrelativistic quantum systems
with a chaotic classical counterpart are universal [45–48] and
coincide with those of random matrices from the Gaussian
orthogonal ensemble (GOE) for time-reversal (T ) invari-
ant systems and the Gaussian unitary ensemble (GUE) if
T invariance is violated. Yet there also exist billiards with
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FIG. 1. Left panel: Schematic view of the Dirac billiard, which
comprises 1033 metallic cylinders (gray disks) arranged on a trian-
gular grid. In the uppermost inset, red and turquoise dots indicate
the positions of the voids. They are located on the interpenetrating
triangular sublattices of the honeycomb lattice, which is terminated
by zigzag (ZZ) and armchair (AC) edges, as indicated in the lower
insets. The centers between two neighboring cylinders, marked by
black dots, form a kagome structure. Right panel: Photograph of the
basin of the resonator. The metallic cylinders are milled out of a
circular brass plate with radius R = 570 mm and height 19.5 mm.
The red numbers denote the nine groups of, respectively, three an-
tennas. To achieve superconductivity, the basin and the lid, which is
a circular brass plate of radius R and height 6 mm with screw holes
at the positions of the cylinders and along the boundary, are cov-
ered with a lead coating, whose critical temperature is Tc = 7.2 K,
and then tightly screwed together through all holes. The resonator
was cooled down to 4–6 K in a cryogenic chamber constructed by
ULVAC Cryogenics in Kyoto, Japan. The inset to the right shows
a zoom into one of the cylinders of diameter 4 mm and height
3 mm. The upper part is designed with a cut edge shape, as indicated
by the yellow dashed lines, to achieve good electrical contact with
the lid [1].

certain shapes that do not comply with this conjecture. Exam-
ples are billiards whose shape has C3 symmetry [44,49,50], a
unidirectional classical dynamics [51–54], or nanoelectrome-
chanical systems consisting of a circular quantum dot on a
suspended nanoscopic dielectric plate [55,56]. Their spectral
properties may coincide with those of generic chaotic sys-
tems with violated time-reversal invariance even though it
is preserved. The boundary of the DB has a C3 symmetry.
We actually chose the same shape as in the experiments that
were performed 20 years ago with a superconducting mi-
crowave billiard in the range below the cutoff frequency f cut

of the first transverse-electric mode to investigate the spectral
properties of the corresponding quantum billiard [44,50]. In-
terest in this QB arose due to theoretical predictions [49,57–
59] that the spectral properties of part of the spectrum coincide
with those of random matrices from the GUE. The origin of
these discrepancies is outlined in Sec. II.

The objective of [16] and the present work was the nu-
merical and experimental study of the properties of DBs and
corresponding GBs and HKBs, whose boundary has a C3

symmetry, especially in the relativistic region around the DPs.
In the region of the conical valleys, which are located on,
respectively, three of the corners of the first Brillouin zone
[60], the two sets of valley eigenstates are well described
by Dirac Hamiltonians for massless spin-1/2 quasiparticles
[18,19]. Therefore, we also investigated in Ref. [16] properties
of relativistic neutrino billiards (NBs) of corresponding shape.

They were introduced in Ref. [61], and they are governed by
the Weyl equation [62] for a spin-1/2 particle. The associated
Dirac Hamiltonian is not invariant under time reversal, so
the spectral properties of NBs with the shape of a chaotic
billiard typically coincide with those of random matrices from
the GUE if the shape has no geometric symmetries. It has
been demonstrated in Refs. [63,64] that the spectral properties
of GBs and NBs of corresponding shape do not coincide
[1,8,24,28,65–71]. These discrepancies were attributed to in-
tervalley scattering at the boundary of GBs [67,70,71]. Similar
observations were made for HKBs [15,16].

In this work, we present experimental results for the DB
shown in Fig. 1. In Sec. II we briefly review the properties of
the billiard systems that were investigated in [16] and the re-
sults. Then, in Sec. III we provide information on the DB and
experiment. Properties of the eigenmodes [16] are analyzed in
Sec. IV and compared to those of the corresponding GB, QB,
and NB. We also analyzed fluctuation properties of the scat-
tering (S) matrix describing the measurement process [72].
Furthermore, we investigated strength distributions [73,74],
which give information on the product of wave-function com-
ponents at the positions of the antennas, and thus on their
intensity distribution, and we demonstrate that they provide
a tool to detect localization, i.e., scarred wave functions, as
outlined in Sec. V. Finally, in Sec. VI we discuss and evaluate
the results.

II. REVIEW OF THE THEORETICAL
AND NUMERICAL RESULTS

The domain � of the DB shown in Fig. 1 is defined
in the complex plane w(r, φ) = x(r, φ) + iy(r, φ) with φ ∈
[0, 2π ), r = [0, r0] by the parametrization

w(r, φ) = r[1 + 0.2 cos(3φ) − 0.2 sin(6φ)]eiφ. (1)

The boundary ∂� is given by w(r = r0, φ). The eigenfunc-
tions ψ (r, φ) of the QB with this shape and the electric-field
strength of the corresponding microwave billiard below f cut

[75–77] are governed by the Schrödinger equation with
Dirichlet BCs along ∂�. The solutions can be separated into
the three irreducible subspaces associated with the C3 symme-
try, which are defined by the transformation properties of the
eigenfunctions under rotation by 2lπ

3 , l = 0, 1, 2. The rotation
operator is given by

R̂ = ei 2π
3 L̂, (2)

with L̂ denoting the angular momentum operator. Applying
it to the eigenfunctions of the QB yields for the symmetry-
projected ones

R̂λψ (l )
m (r, φ) = ψ (l )

m

(
r, φ − 2π

3
λ

)
= ei 2lπ

3 λψ (l )
m (r, φ), (3)

where

[R̂, Ĥ ] = 0. (4)

For l = 0, the wave functions are real and rotationally invari-
ant, and thus invariant under the time-reversal operator T̂ = Ĉ,
with Ĉ denoting the complex conjugation operator [78]. In

144308-2



PROPERTIES OF EIGENMODES AND QUANTUM-CHAOTIC … PHYSICAL REVIEW B 107, 144308 (2023)

FIG. 2. Illustration of the procedure used to construct the GB and
HKB. They are obtained by rotating a wegde with the shape of a
fundamental domain, e.g., the red one, twice around its tip yielding
the purple and green ones.

contrast, for l = 1, 2 they are complex and

T̂ ψ (1,2)
m (r, φ) = ψ (2,1)

m (r, φ), (5)

implying that ψ (1)
m (r, φ) and ψ (2)

m (r, φ) are eigenfunctions
with the same eigenvalue k2

m. Thus, the eigenvalue spectrum
can be separated into nondegenerate eigenvalues (singlets)
and pairwise degenerate ones (doublets). If the corresponding
classical dynamics is chaotic and if the billiard boundary
has no additional symmetries, the spectral properties of the
singlets show GOE behavior, while those of the two doublet
partners exhibit GUE statistics [49].

Similarly, the eigenstates of GBs and HKBs with C3 sym-
metry can be classified according to their transformation
properties under rotation by 2π

3 . The matrix elements of the
associated TBM Hamiltonian are given by

ĤTBM
i j = t0δi j + t1δ̂(|ri − r j | − d0) + t2δ̂(|ri − r j | − d1),

where δ̂(x) equals unity for x = 0 and is zero otherwise, ri

denotes the position of site i, and d0 = aL/
√

3, d1 = 0 for
the honeycomb lattice, and d0 = aL/(2

√
3), d1 = aL/2 for

the honeycomb-kagome lattice. We constructed the GB and
HKB by rotating a wedge with inner angle 2π

3 about its tip as
illustrated in Fig. 2. The corresponding TBM Hamiltonian is
(3N × 3N)-dimensional, if each wedge comprises N sites and
is given by

ĤTBM =
⎛
⎝ Ĥ V̂ V̂ T

V̂ T Ĥ V̂
V̂ V̂ T Ĥ

⎞
⎠, (6)

where Ĥ denotes the N-dimensional TBM Hamiltonian of
the wedge-shaped lattice structure, which is the same for
each subdomain in Fig. 2. The N × N coupling matrix V̂
and its transpose V̂ T contain the hoppings between sites of
two adjacent subdomains along their common boundary. The
TBM Hamiltonian can be brought to block-diagonal form by
applying a unitary transformation,

Û †ĤTBÛ =
⎛
⎝ĤTB(0) 0N 0̂N

0̂N ĤTB(1) 0̂N

0̂N 0̂N ĤTB(2)

⎞
⎠, (7)

ĤTB(0) = Ĥ + V̂ + V̂ T ,

ĤTB(1) = Ĥ + ei 2π
3 V̂ + ei 4π

3 V̂ T ,

ĤTB(2) = Ĥ + ei 4π
3 V̂ + ei 2π

3 V̂ T ,

with

Û = 1√
3

⎛
⎜⎝

1N ei 4π
3 1N ei 4π

3 1N

1N 1N ei 2π
3 1N

1N ei 2π
3 1N 1N

⎞
⎟⎠, (8)

where 1N denotes the N-dimensional unit matrix. The Hamil-
tonians ĤTB(l ), l = 0, 1, 2, are associated with the three
irreducible C3 subspaces defined by the transformation prop-
erties Eq. (3) under rotation by 2π

3 .
In contrast, the spinor eigenfunctions of the corresponding

NB cannot be classified according to their transformation
properties under rotation by 2π

3 [16]. This is only possible
for each component separately. Neutrino billiards were intro-
duced in [61]. They are governed by the Weyl equation [62]
for a noninteracting spin-1/2 particle of mass m0, which is
referred to as a Dirac equation in [61] and, generally, in the
context of NBs. In the two-dimensional plane r = (x, y) it is
given by

ĤDψ = (cσ̂ · p̂ + m0c2σ̂z )ψ = Eψ, ψ =
(

ψ1

ψ2

)
, (9)

with p̂ = −ih̄∇ the momentum of the particle. Furthermore,
ĤD denotes the Dirac Hamiltonian, σ̂ = (σ̂x, σ̂y), σ̂x,y,z are the
Pauli matrices, and E = h̄ckE = h̄ck

√
1 + β2 is the energy of

the particle. Here k is the free-space wave vector, and β = m0c
h̄k

is the ratio of the rest-energy momentum and free-space mo-
mentum. In Ref. [61], only the ultrarelativistic, i.e., massless
case m0 = 0 was considered. The particle is confined to the
billiard domain � by imposing the boundary condition that
the normal component of the local current, which is given by
the expectation value of the current operator û = ∇pĤD =
cσ̂, u(r) = cψ†σ̂ψ, vanishes, yielding independently of the
mass [61,79]

ψ2(φ) = iμeiα(φ)ψ1(φ), (10)

where α(φ) is the angle of the outward-pointing normal vector
n(φ) at w(r0, φ) with respect to the x axis, and μ = ±1 deter-
mines the rotational direction of the current at the boundary.
We set it to unity in the calculations presented in Ref. [16].
The nonrelativistic limit is reached when the energy is close
to the rest energy, E � m0c2 [80], that is, for sufficiently large
β → ∞.

Like in the nonrelativistic limit Eq. (3), the eigenstates of
an NB with C3 symmetry can be grouped into three subspaces
defined by their transformation properties under a rotation by
2π
3 [49,57–59], yielding the symmetry-projected eigenstates

R̂
λ
ψ

(l )
1,2(r) = eiλ 2lπ

3 ψ
(l )
1,2(r), λ = 0, 1, 2. (11)

However, for a given eigen-wave-number km, the spinor
components of the corresponding eigenfunctions behave dif-
ferently under rotation by 2π

3 [16,81]. Namely, if the first
component belongs to the subspace l ,

R̂ψ
(l )
1,m(r) = eil 2π

3 ψ
(l )
1,m(r), (12)
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then the Dirac equation yields for the second one

R̂ψ2,m(r) = ei(l−1) 2π
3 ψ2,m(r), (13)

where l = −1 corresponds to l = 2. Similarly, employing
Eq. (12) in the BC Eq. (10) and the C3 symmetry of the
boundary, that is, eiα(φ−λ 2π

3 ) = e−iλ 2π
3 eiα(φ), gives [16,81]

R̂ψ2,m(φ) = ieiα(φ− 2π
3 )ψ (l )

1,m

(
φ − 2π

3

)
= ei(l−1) 2π

3 ψ2,m(φ),

implying that ψ2,m(φ) = ψ
(l−1)
2,m (φ) if ψ1,m(φ) = ψ

(l )
1,m(φ),

meaning that, if the first component belongs to the subspace
l , then the second one belongs to the subspace (l − 1). This
intermingling of symmetry properties has its origin in the
additional spin degree of freedom [16,81]. Nevertheless, the
spinor components can be classified according to the symme-
try class of, e.g., the first component, and, accordingly, their
eigenvalues can be assigned to symmetry-projected subspec-
tra. Contrary to nonrelativistic QBs, the spectral properties are
well described by the GUE for all subspaces if the NB has
the shape of a billiard with chaotic dynamics and no mirror
symmetries.

In [16] we computed the eigenvalues of the QBs and
NBs for each symmetry class separately by employing
boundary integral equations resulting from Green’s theorem
[61,79,82,83]. The eigenvalues of the GB and HKB were
obtained by diagonalizing each block of the TBM Hamil-
tonian Eq. (7) separately. Furthermore, we computed with
COMSOL MULTIPHYSICS the symmetry-projected resonance
frequencies and electric-field distributions of the DB. For
the DB, GB, HKB, and QB, the spectral properties of the
singlets exhibit GOE statistics, those of the doublets GUE
statistics [44,49,50,57–59,84–86], whereas those of the NB
follow GUE for all symmetry classes. If the spectrum of a
QB with C3 symmetry is not separated according to the three
subspaces, then its fluctuation properties are described by a
composite ensemble, named GOE+2GUE in the following,
whose matrices are block-diagonal with one GOE block and
two GUE blocks of the same dimension. For the correspond-
ing NB, the composite ensemble consists of three GUE blocks
and is denoted by 3GUE. In Ref. [16], we computed the
symmetry-projected eigenstates of massive NBs as described
above. For too small masses, the eigenvalues corresponding to
doublet partners are not degenerate, implying that we do only
find agreement of the spectral properties of the NB with those
of the DB, GB, and HKB around the DPs for sufficiently large
mass [79], even though these exhibit a selective excitation of
the two sets of valley states [87–91].

III. THE DIRAC BILLIARD

We performed experiments at superconducting conditions.
The construction of the DB is explained in the caption of
Fig. 1. The basic ideas are the same as in [1,8]. The cav-
ity consists of a top plate and a basin of 3 mm depth
corresponding to a cutoff frequency f cut = 50 GHz, which
contains 1033 metallic cylinders. We chose r0 = 30aL/

√
3 �

208 mm in Eq. (1) with aL = 12 mm denoting the lattice
constant. The cylinder radius equals aL/6. The sidewall passes

FIG. 3. Upper part: A measured transmission spectrum. The low-
est band of propagating modes starts at 13.89 GHz. Lower part: DOS
(red) and smoothed DOS (black). The positions of the lower and
upper Dirac point (DP1 and DP2) and the FB are indicated.

through voids, implying Dirichlet BCs at these sites for the
corresponding GB. The resonance frequencies were obtained
from reflection and transmission spectra. For their measure-
ment we used a Keysight N5227A Vector Network Analyzer
(VNA), which sends a rf signal into the resonator at antenna a
and couples it out at the same or another antenna b and records
the relative phases φba and the ratios of the microwave power,
Pout,b

Pin,a
= |Sba( f )|2, yielding the complex scattering matrix ele-

ment Sba = |Sba|eiφba [92–94]. Nine groups of antenna ports
consisting of three each, which were positioned such that the
C3 symmetry is preserved, were distributed over the whole
billiard area to minimize the possibility that a resonance is
missing. This happens when the electric field strength is van-
ishing at the position of an antenna. The antennas penetrated
through holes in the lid into the cavity by about 0.2 mm.
The upper part of Fig. 3 shows a measured transmission
spectrum. Propagating modes are observed above the BE at
f � 13.89 GHz.

The positions of the resonances yield the resonance fre-
quencies. Degeneracies of doublet partners generally are
slightly lifted due to experimental imperfection. Conse-
quently, finding them can be cumbersome or even impossible,
because corresponding resonances overlap. To identify them
and to classify them into singlets and doublets, we employed
a measurement method introduced in [50] and illustrated in
Fig. 4. When changing the relative phase between the two
ingoing signals, the position and shape of the singlets is ba-
sically not changed, whereas those of the doublets change
considerably, the reason being that they are (nearly) degen-
erate (see Fig. 5). Thus a superposition of the associated wave
functions (electric-field strength) is excited, whose phases
differ [16]. This feature has been used to identify all resonance
frequencies in the region of the lower BE and below the
DP using the measurements with no phase shifters and with
phase shifters. In total 153 measurements were performed
for the nine antenna groups, 36 with no power divider and
phase shifter, 9 with a power divider, and for 6 different
relative phases �φ with two types of phase shifters, namely
for frequencies f ∈ [13, 18] GHz with a PE8252 and for f ∈
[18, 26.5] GHz with a P1507D; see Table I. Thereby, we were
able to identify all resonance frequencies in the region of the
lower BE and below the DP1. Even though the quality factor
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FIG. 4. Billiards with C3 symmetry can be divided into three
fundamental domains that are mapped onto each other under rotation
by 2π

3 . A possible subdivision is indicated by the red dashed lines.
For the measurements with phase shifters, microwaves are fed into
the resonator at port P1 of the VNA and split into two signals of equal
power and phase by a power divider (GF-T2-20400 with amplitude
balance �0.4 dB and phase balance �5◦) before they are coupled
into the resonator via two antennas attached to two ports from one
of the nine groups. Their relative phase �φ is changed by a phase
shifter (PE8253 for DC-18.6 GHz and P1507D for 18–26.5 GHz).
The microwave power is received through the third antenna port
at port P2 of the VNA. This process is irreversible. The shortest
connected PO (green lines) has a length of l̃s = 11.336r0/3.

of the resonator was Q > 104, we could not find all resonance
frequencies in other regions.

In the lower part of Fig. 3 we show the density of states
(DOS) ρ( f ) and the smoothed DOS (black curve). We observe
two DPs, denoted by DP1 and DP2, van Hove singularities
(VHSs) framing them, and a FB. Their frequency values are
listed in Table II. Around the DP2, the DOS is distorted by an
adjacent band [16]. At the FB the resonance frequencies are
macroscopically degenerate in a perfect honeycomb-kagome
lattice, whereas in the DB degeneracies are slightly lifted due
to experimental imperfection and the spreading of the wave-
function components located on the sites of the lattice. We
indeed had to take into account couplings and wave-function
overlaps [95] for up to third-nearest neighbors in the GB
sublattice in the TBM for the HKB to get agreement with the
numerical and experimental DOS [1,15,16]. In the upper part
of Fig. 6, we compare the integrated spectral densities N ( f )
obtained from the experimental and computed resonance fre-
quencies. In total, 1912 resonance frequencies were identified
in that frequency range. The curves start to differ above the
lower VHS, which indicates that there not all resonance fre-
quencies were obtained. Note that at the VHSs, the resonance
frequencies are nearly degenerate [4]. Similarly, the spectral

TABLE I. Measurements were performed for four different se-
tups, for different frequency regions with or without power divider
and phase shifter and different antenna combinations, as detailed in
the table.

Frequency (GHz) Power Div. Phase Div. #��× antenna comb.

13–50 no no 1 × 36
13–40 yes no 1 × 9
18–26.5 yes yes(PE8252) 6 × 9
13–18.6 yes yes(P1507D) 6 × 9

FIG. 5. Transmission spectra measured with the setup shown in
Fig. 4 for relative phases �φ = 0◦ (red), �φ = 120◦ (black), and
�φ = 240◦ (blue). The vertical dashed lines are plotted as guidelines
to improve the visibility of the changes of the spectra with �φ. The
insets to the left and right display the �φ dependence in zooms into
frequency regions comprising one singlet (black arrow) and doublet
partners (red arrows).

densities ρ( f ), shown in the lower part of Fig. 6, agree well
except at the VHSs.

The frequency values of the two DPs, denoted by DP1 and
DP2, VHSs framing them, and the FB are listed in Table II.

IV. SPECTRAL FLUCTUATIONS

The spectral properties were analyzed below the FB in
three frequency ranges, namely around the BEs, the VHSs,
and in the Dirac region [1,8]. These regions are clearly dis-
tinguishable in the DOS shown in Fig. 6. We considered 189
levels for each symmetry class starting from the lower BE.
Due to the presence of edge states, which lead to the peak
observed in the DOS above the DP in Fig. 6 and yield nonuni-
versal contributions to the spectral properties [1], we only
considered levels below the DP1, where each subspectrum

TABLE II. Frequencies of the lower (−) and upper (+) van Hove
singularities (VHSs), around the Dirac points (DPs) (1) and (2), the
centers of the band gaps (BGs), and the flat band (FB) observed in
Fig. 3.

f −
VHS1 fDP1 f +

VHS1 BG/FB

17.20 GHz 19.05 GHz 21.12 GHz ∼28.72GHz
f −
VHS2 fDP2 f +

VHS2 BG
∼33.84 GHz ∼35.42 GHz ∼37.52 GHz ∼42.78 GHz
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FIG. 6. Top: Integrated spectral density obtained from the experi-
ment (red) and with COMSOL computed (turquoise) eigenfrequencies.
Bottom: Same as the left part for the DOS. The black line shows the
smoothed experimental DOS.

comprises 26 levels. To unfold the resonance frequencies fi

to average spacing unity, we ordered them by size and deter-
mined the number of eigenfrequencies N ( f ) below f . Then
we replaced fi by the smooth part of N ( f ), εi = N smooth( fi),
which we determined by fitting a second-order polynomial to
N ( fi ) [1,16]. We analyzed the spectral properties in terms of
the nearest-neighbor spacing distribution P(s), the integrated
nearest-neighbor spacing distribution I (s), the number vari-
ance �2(L) of N ( f + L) − N ( f ) in an interval of length L,
and the rigidity of a spectrum of length L, �3(L) [96,97]. In
Fig. 7 we show the spectral properties of the singlets (top) and
doublets (bottom) at the lower BE for the DB (red histograms
and dots) and GB (green histograms and squares), and for
the QB (violet histograms and stars). They follow the GOE
curves (black solid lines) for the singlets and the GUE curves
(dashed-dotted black lines) for the doublets in all cases. In
Fig. 8 are plotted the spectral properties of the singlets (top)
and doublets (bottom) at the DP1 for the DB (red histograms
and dots) and GB (green histograms and squares), and for
the NB for mass m0 = 0 (maroon histograms and triangles
up), m0 = 20 (turquoise histograms and triangles down), and
m0 = 100 (orange histograms and crosses). For the DB and
the GB, we find the same behavior as around the lower BE,
whereas for the NB with m0 = 0 the spectral properties agree
with GUE for the singlets and doublets, and they are between

FIG. 7. Nearest-neighbor spacing distribution P(s), cumulative
nearest-neighbor spacing distribution I (s), number variance �2(L),
and Dyson-Mehta statistics �3(L) for the singlets (top) and doublets
(bottom) at the lower BE for the DB (red histograms and dots) and
GB (green histograms and squares), and the QB (violet dashed-line
histograms and stars). The solid and dashed-dotted black lines show
the curves for GOE and GUE statistics, respectively.

GUE and GOE for the singlets for m0 = 20. For m0 = 100,
the spectral properties agree well with those of the corre-
sponding QB, that is, there the nonrelativistic limit is reached.
Deviations may be attributed to the small number of levels
and to the presence of short periodic orbits [16]. The shortest
connected one is shown in Fig. 4. We, in addition, considered
the distribution P(r) and the cumulative distribution I (r) of
the ratios [98,99] ri = εi+1−εi

εi−εi−1
, which are dimensionless so that

unfolding is not needed [8,15]. The results for all resonance
frequencies below the FB are shown in the left part of Fig. 9,
those of the singlets (red) and doublets (green) at the lower
BE in the right part. The former are compared to those of
random matrices from the GOE+2GUE. In all, the spectral
properties agree well with those obtained from the COMSOL

MULTIPHYSICS computations in [16] and with random-matrix
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FIG. 8. Nearest-neighbor spacing distribution P(s), cumulative
nearest-neighbor spacing distribution I (s), number variance �2(L),
and Dyson-Mehta statistics �3(L) for the singlets (top) and doublets
(bottom) at the DP for the DB (red histograms and dots) and GB
(green histograms and squares), and the NB for mass m0 = 0 (ma-
roon histogram and triangles up), m0 = 20 (turquoise histograms and
triangles down), and m0 = 100 (orange histograms and crosses). The
solid and dashed-dotted black lines show the curves for GOE and
GUE statistics, respectively.

theory (RMT) predictions for nonrelativistic QBs with C3

symmetry.

V. S-MATRIX FLUCTUATIONS

We also investigated the fluctuation properties of the S ma-
trix associated with the measurement process and compared
them to RMT predictions for quantum-chaotic scattering sys-
tems derived from the scattering matrix approach [100], which
was developed in the context of compound nuclear reactions
and extended to microwave resonators in [72],

Sba( f ) = δba − 2π i[Ŵ †( f 1 − Ĥ eff )−1Ŵ ]ba. (14)

FIG. 9. Ratio distributions (upper panel) and cumulative ratio
distributions (lower panels). (a), (c) All eigenfrequencies (red his-
togram and dots) below the FB. (b), (d) Singlets (green histogram
and squares) and doublets (red histogram and dots) around the lower
BE. The results are compared to those for GOE (solid black lines),
GUE (dashed-dotted black lines), and GOE+2GUE (turquoise).

Here, Ĥ eff = Ĥ − iπŴŴ †, with Ĥ modeling the universal
spectral properties of the DB. Since we did not separate the
resonance spectra by symmetry, we chose Ĥ random ma-
trices from the composite ensemble GOE+2GUE and from
the 3GUE for comparison. The matrix elements of Ŵ are
real, Gaussian-distributed with Waμ and Wbμ describing the
coupling of the antenna channels to the resonator modes. Fur-
thermore, we chose � equal fictitious channels to account for
the Ohmic losses in the walls of the resonator [93,94]. Direct
transmission between the antennas was negligible, so that
the frequency-averaged S-matrix was diagonal, implying that∑N

μ=1 WeμWe′μ = Nv2
e δee′ [101]. The parameters v2

e denote the
average strength of the coupling of the resonances to channels
e. For e = a, b they correspond to the average size of the
electric field at the position of the antennas a and b and they
yield the transmission coefficients Te = 1 − |〈See〉|2, which
are experimentally accessible [94]. Actually, ve and τabs =
�Tc are the input parameters of the RMT model Eq. (14)
where they are assumed to be frequency-independent. This is
fulfilled because we analyzed data in windows of size �1 GHz
[94]. We considered three parts of the DB, defined by the
location of the antennas a and b, namely an inner region
(groups 1,2) around the center of the billiard domain, a middle
region (groups 3,4,5,6), and an outer region (groups 7,8,9); see
Fig. 1. In Fig. 10, distributions of the rescaled transmission
amplitudes are shown around the lower (a) and upper (b) BE,
and around the lower (c) and upper (d) VHS. At the BEs the
distributions do not depend on the positions of the antennas
and are well described by the RMT model Eq. (14) both for the
GOE+2GUE (green) and the 3GUE (turquoise) case, which,
actually, are barely distinguishable. There the wave functions
are similar to those of the corresponding QB [16]. For the
lower VHS and for the FB, shown in Fig. 11, we only find
good agreement with the RMT results for the inner group.
Otherwise we do not find any agreement around the VHSs
and FB. Instead, these distributions are well described by
the S-matrix model Eq. (14) when using power-law banded
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FIG. 10. Distributions of the transmission amplitudes r =
|S12|/〈|S12|〉 (red histogram) in (a) the region around the lower band
edge f ∈ [15, 16] GHz for antennas 4, 5, and 6; (b) same as (a) for
the upper band edge f ∈ [23, 24] GHz; (c) around the lower VHS
f ∈ [17.3, 17.6] GHz for antennas 1 and 2; and (d) the same as
(c), but for the upper VHS f ∈ [21, 21.3] GHz. They are compared
to distributions obtained from the RMT model Eq. (14) with Ĥ
from the GOE+2GUE (green histograms) and 3GUE (turquoise
histograms). Best fit is found for T1 = 0.57, T2 = 0.55 and (a) τabs =
1.0, (b) τabs = 0.8, and for T1 = 0.67, T2 = 0.69 and τabs = 1.0 (c).
In (d) we use corresponding PLBMs with α = 0.3 and otherwise
the same values as in (c). The black solid lines exhibit the bivariate
Gaussian expected in the Ericson regime.

random matrices (PLBM) [102], obtained by multiplying the
off-diagonal elements Hi j of Ĥ by a factor |i − j|−α . This en-
semble interpolates between localized (α � 1) and extended
(α = 0) states. This is demonstrated in Fig. 10(d) and in
Figs. 11(a)–11(d). Thus these deviations may be attributed to
localization of the electric-field intensity in parts of the DB.

In Fig. 12 we show typical intensity distributions of the
electric field strength of the DB and of the wave functions
of the corresponding GB in Fig. 13. Examples are shown for
the region below the flat band for singlets (first column) and
corresponding doublets (second and third columns), from top
to bottom, around the lower BE (first row), around the lower
VHS (second row), around the DP (third row), around the
upper VHS (fourth row), and for the DB also in the region
of FB (fifth row). The wave functions of the doublet partners
are superpositions of the corresponding symmetry-projected
states with l = 1, 2, and thus their intensity distributions
exhibit different patterns. Around the BE, the intensity dis-
tributions are mostly spread over the whole billiard domain,
some are localized around shortest periodic orbits, e.g., the
connected one is shown in Fig. 4, whereas around the VHS we
observe, especially for the upper VHS, a strong localization
around periodic orbits in the bulges of the billiard. Accord-
ingly, we observe deviations from RMT predictions in the
corresponding S-matrix amplitude distributions for the middle
and outer antenna groups, whereas good agreement is found
when using power-law banded random matrices in Eq. (3).
Note that the amplitudes of the resonances depend on the
electric-field strength at the position of the measuring anten-

FIG. 11. (a)–(c) Distributions of the transmission amplitudes r =
|S12|/〈|S12|〉 (red histograms) measured in the FB f ∈ [28, 29] GHz
with all antennas (a); with antennas 1 and 2 (b); with antennas
3, 4, 5, and 6 (c); and with antennas 7, 8, and 9 (d). They are
compared to the RMT model Eq. (14) with the PLBMs (blue his-
tograms) generated from random matrices from the GOE+2GUE for
T1 = 0.67, T2 = 0.69, τabs = 1.0 and α = 1.0 (a), α = 0.1 (b), and
α = 0.7 in (c) and (d). The black solid lines exhibit the bivariate
Gaussian expected in the Ericson regime. (e) Strength distribution
in the Dirac region f ∈ [18.4, 19.1] (red triangles) obtained from
antenna groups 7, 8, and 9, and from the computed wave functions
of the GB in the same outer region (cyan line). They are compared to
the analytical results for GOE (green dashed line), 3GUE (black solid
line), GOE+2GUE (black dashed line), and to RMT simulations for
PLBMs with α � 0.7–0.8 for 3GUE (orange dashed-dotted line) and
GOE+2GUE (violet diamonds).

nas, and their distributions are obtained from averaging over
all symmetry classes.

At the DP the resonances are well isolated. Therefore, in
that region we can obtain information on the properties of
the wave-function components in terms of the strength distri-
bution [73]. Namely, for sufficiently isolated resonances, the
S-matrix has the form

Sab = δab − i

√
�μa�μb

f − fμ + i
2�μ

(15)

close to the μth resonance frequency fμ, with �μ denot-
ing the total width of the corresponding resonance [103].
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FIG. 12. Computed distributions of the electric-field intensity of
the DB of the singlets (first column) and doublets (second and third
columns) corresponding to state number n with resonance frequency
fn in the region below the flat band for, from top to bottom, the lower
BE, the lower VHS, the lower DP, and the upper VHS. The first row
shows, from left to right, examples for n = 94, fn = 14, 46 GHz,
n = 104, fn = 14.52 GHz, n = 105, fn = 14.53 GHz; the second
row for n = 716, fn = 17.224 GHz, n = 717, fn = 17.232 GHz, n =
718, fn = 17.235 GHz; the third row for n = 1007, fn = 19.03 GHz,
n = 1008, fn = 19.073 GHz, n = 1009, fn = 19.073 GHz; the
fourth row for n = 1252, fn = 21.066 GHz, n = 1253, fn =
21.072 GHz, n = 1254, fn = 21.072 GHz; and the fifth row for
n = 2560, fn = 28.7503 GHz, n = 2561, fn = 28.7506 GHz, n =
2562, fn = 28.7507 GHz.

The partial widths �μa and �μb are proportional to the
electric-field intensities at antennas a and b. They can-
not be determined individually, however the strengths z =
�μa�μb may be obtained with high precision by fitting this
expression to the resonances [73]. The strength distribu-
tion corresponds to the distribution of the products of the
squared moduli of two wave-function components in the
DB, or of two eigenvector components for the associated
RMT model [74,104]. For 3GUE it coincides with that of
GUE, PGUE(z) = 2K0(2

√
z). That of GOE+2GUE is given by

FIG. 13. Computed distributions of the wave-function inten-
sity of the singlets (first column) and doublets (second and third
columns) of the GB corresponding to state number n for, from
top to bottom, the lower BE, the lower VHS, the lower DP1, and
the upper VHS. The first row shows, from left to right, examples
for n = 94, 164, 165, the second row for n = 5897, 5918, 5919, the
third row for n = 7981, 7982, 7983, and the fourth row for n =
10011, 10013, 10014.

PGOE+2GUE(z) = 1
3 [PGOE(z) + 2PGUE(z)], where PGOE(z) =

K0(
√

z)/(π
√

z). Here, K0(z) denotes the modified Bessel
function of order zero. In Fig. 11(e) we compare these an-
alytical expressions to the distributions obtained for the DB
in the Dirac region (red triangles). However, like for the FB,
we find only agreement with the RMT distributions, when
using the corresponding PLBM α � 0.7–0.8, where that for
GOE+2GUE (violet diamonds) is better than that for 3GUE
(orange dashed-dotted lines).

VI. CONCLUSIONS

We performed experiments with a superconducting DB,
whose shape has a C3 symmetry. To identify the resonance
frequencies and to separate them into the three symmetry
classes, we successfully employed a procedure that was orig-
inally developed for hollow microwave billiards [50], thereby
demonstrating that it is applicable even to complex struc-
tures like the DB. We confirm results that were obtained in
Ref. [16] from numerical computations, namely, find good
agreement of the spectral properties with those of the QB, GB,
and HKB of corresponding shape, and with those of massive
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relativistic NBs only beyond a certain mass. We also inves-
tigated the properties of the wave functions below the DP1,
where the DOS is low, in terms of the strength distribution.
We find good agreement with the corresponding distributions
of random matrices from GOE+2GUE when using PLBMs,
corroborating that the wave functions are localized [3]. Yet,
the spectral properties of the associated resonance frequencies
agree well with those of typical quantum systems with a
C3 symmetry and a chaotic classical dynamics. Furthermore,
we investigated the fluctuation properties of the measured S
matrix in the regions around the BEs, the VHSs, and the FB,
which are not accessible numerically. In the nonrelativistic
regime, we find good agreement with those of the RMT model
Eq. (14) for GOE+2GUE, whereas for the other regions we
took account of the localization observed in parts of the DB by
using PLBMs. Around the VHSs, the ratio distributions agree

well with those of random matrices from the GOE+2GUE.
From these observations we may conclude that even in re-
gions where the wave functions are localized in parts of
the DB, the spectral properties comply with those of typical
quantum systems whose corresponding classical dynamics is
chaotic [8].
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