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Topological phonon analysis of the two-dimensional buckled honeycomb lattice:
An application to real materials
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By means of group theory, topological quantum chemistry, first-principles, and Monte Carlo calculations, we
analyze the topology of the 2D buckled honeycomb lattice phonon spectra. Taking the pure crystal structure
as an input, we show that eleven distinct phases are possible, five of which necessarily have nontrivial topology
according to topological quantum chemistry. Another four of them are also identified as topological using Wilson
loops in an analytical model that includes all the symmetry allowed force constants up to third-nearest neighbors,
making a total of nine topological phases. We then compute the ab initio phonon spectra for the two-dimensional
crystals of Si, Ge, P, As, and Sb in this structure and construct its phase diagram. Despite the large proportion of
topological phases found in the analytical model, all of the crystals lie in a trivial phase. By analyzing the force
constants space using Monte Carlo calculations, we elucidate why topological phonon phases are physically
difficult to realize in real materials with this crystal structure.
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I. INTRODUCTION

Topological materials are known for having exotic elec-
tronic properties such as symmetry protected surface states,
edge states or unconventional electromagnetic activity [1,2].
Following the first topological insulator realization [3] in
2007, the concept of symmetry protected topological (SPT)
orders [4–6] was extended to all sorts of symmetry settings
with the advent of topological crystalline insulators [7–17].
However, with the exception of the Fu-Kane parity criterion
[18] and a few other symmetry based diagnosis methods
[19–21], there was not a clear link between symmetry and
topology for general symmetry settings. As a result, the
calculation of most topological band invariants used in the
prediction and diagnosis of topological materials had to be
carried out numerically with computationally expensive ab
initio methods, and the rate of discovery of new materials was
consequently rather slow.

Recently, much more powerful links have been established
between the topology of the electronic spectrum and the
crystal symmetry thanks to the theory of symmetry indica-
tors of band topology [22,23], band combinatorics [24], and
topological quantum chemistry (TQC) [25]. These formalisms
have provided a reliable and systematic way to search for all
the topologically nontrivial phases compatible with a given
crystal structure. This has led to the discovery of thousands of
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materials with nontrivial electronic topology, showing that the
existence of topological electron bands, previously considered
a rarity, is rather frequent in nature. In particular, the sys-
tematic application of the methods of TQC have enormously
enlarged the number of known topological materials [26,27]
and led to new and more refined methods of classifying their
topology [28–31].

As phonons are behind many important properties of
solids, such as transport, optical, and thermal responses, and
superconductivity, finding materials with topological phonon
bands is likely to have a revolutionary impact on solid state
physics. The search for nontrivial phonon topology, which
has been based on more traditional methods [32–41], has
proceeded at a very slow pace, focusing on degeneracies
with topological charge, such as Weyl points, high degenerate
Weyls, and nodal lines and rings [42,43]. Recently, a gigantic
step has been taken and a phonon catalog has been launched
[44] applying TQC to 3D materials. In that work, they point
out the almost absence of fragile cumulative topology for
phonons. Inspired by these results, we deepen in the phonon
study by performing Monte Carlo calculations and analyzing
the force constants in the 2D buckled honeycomb lattice.

The TQC analysis relies on detecting an obstruction to a lo-
calized real space interpretation of isolated subsets of phonon
bands. Whenever this obstruction is present, the subset has
nontrivial topology. In some cases, this obstruction can be
diagnosed just from the irreducible representations (irreps)
describing how those bands transform at the high-symmetry
points (HSPs) in the Brillouin zone. In practice, this analysis
consists of three steps. First, one finds the irreps describing
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how phonons transform at the HSPs. Second, a compatibility
problem is solved, in which one tries to connect the bands
forming isolated subsets separated by gaps in ways that are
consistent with the system symmetries and the existence of
the acoustic zero frequency modes. Each of these band con-
figurations constitutes a phase. Finally, if the irreps of an
isolated subset cannot be obtained from the sum of elemen-
tary band representations (EBRs), the corresponding phase is
necessarily topological. Note that even if the irreps of all the
isolated subsets in a given phase can be obtained from the
sum of elementary band representations, the phase could still
be topological. Thus an extra step in order to fully diagnose
the topology involves the construction of an analytical model
that reproduces the different phases and the computation of
Wilson loop spectra for the different phases.

In this paper, we extend the work in Ref. [45], where TQC
methods were used to find and characterize four new topo-
logical phases for phonons on the planar honeycomb lattice,
to the analysis of the buckled honeycomb lattice (BHL). This
is an important system since the planar honeycomb lattice is
unstable for atoms larger than carbon and two-dimensional
materials based on Si, Ge, P, As, and Sb crystallize in the
buckled honeycomb lattice. As we will see, this introduces
additional complications due to couplings between in- and
off- plane modes, which decouple in the planar limit, and
gives rise to a whole array of phases not present on the pla-
nar honeycomb. Finally, we compute the density functional
perturbation theory (DFPT) [46] phonon spectra for several
monoatomic crystals with the buckled honeycomb structure
and place them in the phase diagram. We also present a Monte
Carlo analysis of the space of force constants that explains
why topological phonon phases are physically difficult to re-
alize in real materials even in the presence of applied strain.

This paper is organized as follows. A discussion on how
the TQC machinery is adapted to the study of phonon spectra
of the BHL is presented in Sec. II. An analytical model that
includes all the symmetry compatible couplings up to third-
nearest neighbors is constructed in Sec. III. The model is
used to compute Wilson loop spectra and fully classify the
topology of all the phases obtained in Sec. II. In Sec. IV,
we use QUANTUM ESPRESSO [47,48] to compute the phonon
spectra of real materials and locate them on the phase diagram.
Moreover, we show how the analytical model can be used to
study the phase diagram by means of a Monte Carlo method.
Finally, the summary and conclusions are presented in Sec. V.

II. TOPOLOGICAL QUANTUM CHEMISTRY
APPLICATION TO PHONONS OF THE BUCKLED

HONEYCOMB LATTICE

A. Band representations for electrons and phonons

In electronic systems, a band representation (BR) [49–51]
can be understood as a mathematical construction that links
the real space orbital description to the reciprocal space mo-
mentum picture. More concretely, given a crystal with a set
of orbitals closed under the action of the space group G of
the crystal, the transformation properties of the orbitals un-
der G define a band representation. One says that the band
representation is induced by the set of orbitals. Note that, in

order to be closed under the translations in G, the set must
contain infinitely many orbitals and band representations are
always infinite-dimensional, which is at the origin of some
counterintuitive properties.

Although orbitals are localized objects and band repre-
sentations are initially defined in real space, we can always
take Bloch-like combinations of orbitals with well defined
crystal momentum, which amounts to a simple change of
basis, and get a description in reciprocal space. In practice,
this means that each band representation induces a collection
of little group irreps at every point in the Brillouin zone
[25]. Although this collection of irreps can be considered as a
footprint of the band representation, it is important to bear in
mind that the band representation is not uniquely specified by
its footprint, as different (inequivalent) band representations,
and even representations that are not BRs, can give rise to
identical sets of irreps at all the points in the Brillouin zone
[52]. The reason is that the set of irreps at all the points in the
Brillouin zone does not exhaust all the information contained
in the band representation. This phenomenon has no analog
in the case of ordinary, finite-dimensional representations and
has important consequences for the irrep-based detection of
topological phases.

Elementary band representations (EBRs), as introduced
in the TQC [25] formalism, are induced from a set of or-
bitals that transform under an irreducible representation D of
the local site symmetry group Gq of a maximal symmetry
Wyckoff position q (with some exceptions [28,51,53]). Band
representations and EBRs are related by the fact that a band
representation is either an EBR or can be written as a sum
of EBRs. Whenever a subset of bands that is separated by a
gap from the rest of the bands does not transform as a band
representation, the subset does not have an atomic limit and
is topologically nontrivial. Therefore, if a subset of bands
cannot be written as a sum of EBRs, it cannot transform as
a band representation and must be topological. In practical
terms, if the irreps of an isolated subset of bands can not
be induced from any sum of EBRs, we can conclude that
the subset does not transform as a band representation and is
topologically nontrivial. This test is easily implemented and
yields a practical method to identify topological phases in
electronic systems. Note, however, that even when the irreps
of an isolated subset of bands can be obtained from the sum
of EBRs, this does not guaratee that the subset transforms as
a band representation and the phase could still be topological
[51]. We will return to this important point in the next section.

The concept of inducing a band representation can be eas-
ily extended to the phononic case [45,54]. Instead of having
orbitals or Wannier functions (WFs) as a basis, one has a set of
vectors describing the displacements located on every atom in
the crystal. These displacements (real space) transform under
the vector representation V (g) for symmetry elements g of
the site symmetry group Gq. As phonons are a combination
of local displacements, one can induce a band representation
describing how phonons (reciprocal space) transform under
the full space group symmetry operations from the vector rep-
resentation of one of the site symmetry groups of the occupied
Wyckoff positions (WPs).

When inducing the band representation from the displace-
ments centered on the atoms, we obtain all the phononic bands
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FIG. 1. Buckled honeycomb lattice with real an reciprocal space
lattice vectors. The structure is formed with two atoms per cell,
placed at the 2d maximal Wyckoff positions, each displaced along
the z axis in opposite directions. The little groups for the �, K ,
M points and T , T ′, � lines are D3d , D3, C2h and C2, C2, C1h,
respectively.

for the crystal. However, this should not be mistaken with
the possibility of inducing connected subsets of bands from
“Wannier like” functions for phonons, even when these WFs
are not centered on atomic positions. The matter of defining
a localized basis for vibrations was already discussed by W.
Kohn [55] and more recently in terms of the position oper-
ator in Ref. [56]. This possibility generalizes the concept of
EBRs to phonons in an equivalent way to the electronic case,
where EBRs are induced from WFs that transform under an
irreducible representation of the local site symmetry group Gq

of any maximal symmetry Wyckoff position.

B. Mechanical BR for the BHL structure

As shown in Fig. 1 the BHL is a 2D structure that can
be obtained by giving opposite vertical (perpendicular to the
sample plane) displacements to the two atoms in the primitive
cell of the planar honeycomb lattice. These displacements
break the mirror symmetry with respect to the plane of the
sample and are thus responsible for the couplings between
off- and in-plane phonons, which are forbidden for the planar
honeycomb. The layer group leaving the BHL invariant is
LG 72 (p3m1), which corresponds to the space group SG
164 (P3m1) with point group D3d (3m). The direct and re-
ciprocal lattice vectors satisfying ai · b j = 2πδi j are shown in
Fig. 1. In this basis, the high-symmetry points are located at
� = (0, 0), K = 1

3 (b1 − b2), and M = b1
2 , while the atoms are

located at the Wyckoff position 2d with site-symmetry group
C3v .

As mentioned above, the phononic BR for the crystal, also
known as the mechanical BR, is induced from the vector
representations of the atomic site symmetry groups

ρG =
⊕

q

VGq ↑ G, (1)

where q runs over all occupied Wyckoff positions. By
decomposing the vector representation into irreducible repre-
sentations D(i)

Gq
, the mechanical BR can be written as a sum of

EBRs

ρG =
⊕

q

VGq ↑ G =
⊕

q,i

D(i)
Gq

↑ G. (2)

In our case, the vector representation of C3v is reducible, V =
A1 + E , and according to Eq. (2) the mechanical BR is given
by

M = V |2d ↑ G = A1|2d ↑ G ⊕ E |2d ↑ G. (3)

In other words, the mechanical BR can be written as the sum
of the EBRs induced from A1 and E at the WP 2d . We can
avoid the actual computation of the mechanical BR by noting
that the little group irreps induced by any EBR at any point k
in the BZ are given by the BANDREP application at the Bilbao
Christallographic Server (BCS) [57–59]. For the rest of the
analysis, we only need the irrep contents at the high-symmetry
points in the BZ. Adding the irreps given by BANDREP for the
two EBRs in Eq. (3) yields

M(�) = �+
1 (1) + �−

2 (1) + �+
3 (2) + �−

3 (2),

M(K ) = 2K3(2) + K1(1) + K2(1),

M(M ) = 2M+
1 (1) + M−

1 (1) + M+
2 (1) + 2M−

2 (1), (4)

where the numbers in parenthesis give the dimensions of the
irreps and lead to band crossings when greater than one.
The irreps at the high-symmetry lines and the compatibility
relations are obtained by subduction from the high-symmetry
points and are also given by BANDREP [59].

In order to find all the different gapped phases compatible
with the symmetries, we just have to order the irreps at the
high-symmetry points in the BZ in such a way that they
lead to gaps in the phonon spectrum while respecting the
compatibility relations arising from the subduction rules to
the high-symmetry lines. Moreover, an additional constraint
that distinguishes phonon spectra from electron bands is the
existence of three acoustic bands, for which the dispersion
relation must satisfy limk→0 ω(k) = 0. The acoustic modes
at k = 0 represent global translations of the crystal and trans-
form under the vector representation. Thus, by decomposing
the vector representation V� of the little group of �, the
irreducible representations of the acoustic bands at � are
obtained. In this case, V� decomposes as V� = �−

2 + �−
3 and

we conclude that three eigenvalues associated with the irreps
�−

2 (1) and �−
3 (2) must vanish at k = 0. Table I gives all the

irrep orderings that respect the compatibility relations and
acoustic band constraints and result in gapped phases in the
phonon spectrum. It is important to note that we refer to these
phases as “gapped” because they contain isolated subsets of
phonon bands separated by gaps, notwithstanding the exis-
tence of gapless excitations in the form of acoustic modes.

C. Irrep-based topological analysis

The next step is to find the isolated subsets of connected
bands that can not transform as band representations. As every
band representation can be written as a sum of EBRs, if the
irreps of an isolated subset can not be induced from any
sum of EBRs then, according to TQC, the subset must have
nontrivial topology. The result of this analysis is presented in
Table II, where we see that phases 1, 3, 8, 10, and 11 must
have nontrivial topology. As mentioned before, some of the
remaining seven phases might still be topologically nontrivial,
but this cannot be diagnosed solely on the basis of their irrep
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TABLE I. Irreducible representations decomposition of the isolated subsets at the three high-symmetry points in the BZ for all gapped
phases. The subsets are ordered in terms of energy from lower to higher. The little groups for the �, K , M points and T , T ′, � lines are D3d ,
D3, C2h and C2, C2, C1h, respectively.

Phase Subset 1 Subset 2 Subset 3

1 �−
3 + �−

2 ; K2 + K3; M+
1 + M+

2 + M−
2 �+

1 ; K1; M+
1 �+

3 ; K3; M−
1 + M−

2

2 �−
3 + �−

2 ; K2 + K3; M−
1 + 2M−

2 �+
1 ; K1; M+

1 �+
3 ; K3; M+

1 + M+
2

3 �−
3 + �−

2 ; K2 + K3; M+
1 + M+

2 + M−
2 �+

3 ; K3; M−
1 + M−

2 �+
1 ; K1; M+

1

4 �−
3 + �−

2 ; K2 + K3; M−
1 + 2M−

2 �+
3 ; K3; M+

1 + M+
2 �+

1 ; K1; M+
1

Phase Subset 1 Subset 2
5 �−

3 + �−
2 ; K2 + K3; M−

1 + 2M−
2 �+

3 + �+
1 ; K3 + K1; 2M+

1 + M+
2

6 �−
3 + �−

2 ; K2 + K3; M+
1 + M+

2 + M−
2 �+

3 + �+
1 ; K3 + K1; M+

1 + M−
1 + M−

2

7 �−
3 + �−

2 + �+
3 ; K2 + 2K3; M+

1 + M−
1 + M+

2 + 2M−
2 �+

1 ; K1; M+
1

8 �−
3 + �−

2 + �+
1 ; K1 + K2 + K3; 2M+

1 + M+
2 + M−

2 �+
3 ; K3; M−

1 + M−
2

9 �−
3 + �−

2 + �+
1 ; K1 + K2 + K3; M+

1 + M−
1 + 2M−

2 �+
3 ; K3; M+

1 + M+
2

10 �−
3 + �−

2 + �+
1 ; 2K3; 2M+

1 + M+
2 + M−

2 �+
3 ; K1 + K2; M−

1 + M−
2

11 �−
3 + �−

2 + �+
1 ; 2K3; M+

1 + M−
1 + 2M−

2 �+
3 ; K1 + K2; M+

1 + M+
2

contents. In the next subsection we will compute Wilson loops
to diagnose their topology.

The presence of negative coefficients in Table II for phases
1, 3, 8, 10, and 11 is usually taken, at least for electronic
bands, as a signature of fragile topology [31,45]. When the
irreps of an isolated subset of bands can be obtained as a
difference of EBRs, as in phase 1 in Table II, the addition of
a trivial band that transforms under A+

1 |1a in that case would
“trivialize” the fragile topology. For electrons this band may
be found as core orbitals or high energy conduction bands,
but for phonons, the number of bands is fixed and the required
trivial band may not be available. This is another difference
between electronic and phononic systems.

III. DYNAMICAL MATRIX INCLUDING THIRD-NEAREST
NEIGHBOR COUPLINGS

In this section, we present a truncation of the dynamical
matrix for the BHL that includes, up to third-nearest neigh-
bors, all couplings compatible with the system symmetries.
We stop at third-nearest neighbors because that is enough to
reach all the phases in Tables I and II. The truncated dynam-
ical matrix provides an analytical model that is used below

to compute Wilson loops [60–62] for every disconnected sub-
set of bands, identifying thus all the topologically nontrivial
phases.

The harmonic potential energy of the crystal can be written
as

U h = 1

2

∑
RR′,i j

ui(R)�i j (R − R′)u j (R′), (5)

where R and R′ label two distinct unit cells, u is a displace-
ment vector, (i, j) are the atom indices and �i j is a 3×3
matrix of force constants which must be real by time reversal
symmetry. Note that the fact that U h is a quadratic form in the
atomic displacements implies

�i j (R) = �t
ji(−R), (6)

where t indicates matrix transposition. As shown in
Appendix B, after restricting ourselves to third-nearest neigh-
bors and applying all the symmetry constraints, we are left
with sixteen independent parameters:

(
︷ ︸︸ ︷
a0, e0,

︷ ︸︸ ︷
a1, b1, h1, e1,

︷ ︸︸ ︷
a2, b2, e2, g2, d2, h2,

︷ ︸︸ ︷
a3, b3, e3, h3),

TABLE II. Combinations of EBRs that reproduce the irrep content in Table I for each of the isolated subsets, with the Wyckoff positions
indicated as subscripts. Note that these combinations are in general nonunique, but have been presented as a sum whenever possible. Phases
diagnosed as topological by TQC are given in boldface.

Phase Subset 1 Subset 2 Subset 3

1 B− |3e A+
1 |1a A+ |3e −A+

1 |1a

2 A−
2 |1a +E− |1a A+

1 |1a E− |1a

3 B− |3e A+ |3e −A+
1 |1a A+

1 |1a

4 A−
2 |1a +E− |1a E+ |1a A+

1 |1a

5 A−
2 |1a +E− |1a A+

1 |1a +E+ |1a

6 B− |3e A+ |3e

7 A−
2 |1a +E+ |1a +E− |1a A+

1 |1a

8 A+
1 |1a +B− |3e A+ |3e −A+

1 |1a

9 A+
1 |1a +A−

2 |1a +E− |1a E+ |1a

10 A+
1 |1a +E+

1 |1a +E−
1 |1a +A1 |2d −A+ |3e A−

2 |1a −A1 |2d +A+ |3e

11 E− |1a +A1 |2d A+
1 |1a +A−

2 |1a +E+ |1a −A1 |2d

144307-4



TOPOLOGICAL PHONON ANALYSIS OF THE … PHYSICAL REVIEW B 107, 144307 (2023)

FIG. 2. Matrices of force constants consistent with the BHL symmetries up to third-nearest neighbors. As described in Appendix B, all the
matrices for neighbors on the same circle are related by symmetry operations to the one given in this figure.

where a subindex n indicates a coupling between nth-nearest
neighbors and the underlined parameters describe couplings
between on- and off-plane phonons that vanish for the planar
honeycomb lattice [45]. The corresponding matrices of cou-
pling constants are shown in Fig. 2. As we will see, not all the
parameters are independent due to the additional constraints
imposed by the existence of three acoustic bands.

The dynamical matrix is defined as a Fourier transform in
the usual way

Di j (k) =
∑

R

�i j (R)√
MiMj

e−ik·R, (7)

where k belongs to the first Brillouin zone and Mi is the
mass of atom i. After analytically diagonalizing the dynamical
matrix at the high-symmetry points as shown in Appendix C,
we take care of the existence of acoustic branches by imposing
w2(�−

3 ) = w2(�−
2 ) = 0, which will be satisfied as long as

a0 = −3(a1 + 2a2 + a3),

e0 = −3(e1 + 2e2 + e3). (8)

This leaves 14 independent parameters that can be tuned to
replicate any of the eleven gapped phases or fitted to experi-
mental or DFPT data for real materials:

(
︷ ︸︸ ︷
a1, b1, h1, e1,

︷ ︸︸ ︷
a2, b2, e2, g2, d2, h2,

︷ ︸︸ ︷
a3, b3, e3, h3). (9)

We close the discussion of the 6×6 dynamical matrix D(k)
for the BHL by noting that, in general, we can not expect to
diagonalize it analytically, as that requires the solution of a
sixth order polynomial equation. However, while this is true
for generic points in the BZ, it is actually possible to obtain
explicit expressions for all the frequencies and eigenmodes at
the three high-symmetry points in the BZ. This is a simple
consequence of Wigner’s theorem [63], which applied to the
dynamical matrix stablishes that changing to a basis of sym-
metry adapted modes reduces D(k) to a block-diagonal form.
Specifically, each irrep of dimension d and multiplicity m
gives rise to d identical m×m blocks in D(k). A look at Eq. (4)
shows that the largest multiplicity is two, which involves
solving at most a quadratic equation. The process of diago-
nalization using Wigner’s theorem requires the construction
of symmetry-adapted modes, which are given in Appendix C
together with the resulting analytic formulas for the frequen-
cies. As according to Table I the topology of phononic bands is
largely determined by the ordering of frequencies at the high-
symmetry points, having explicit formulas greatly simplifies
the study of the phase space.

A. Wilson loop windings

Another benefit of having an analytical model is that Wil-
son loops (WL) can be easily computed using a tigh binding
code such as PYTHTB [64]. The existence of windings in the
WL spectrum that cannot be eliminated by any perturbation
that respects the symmetries of the system and does not
close a gap guarantees that the subset of bands has nontrivial
topology. We will consider a b1-oriented Wilson loop [60,61]
defined by

W (k2) = P e− ∫ 2π

0 dk1Ai, j (k), (10)

where P means that the integral is path-ordered and Ai, j (k) =
〈ui(k)|∂k1 |u j (k)〉 is the non abelian Berry connection built
from the normal modes ui(k) of a subset of isolated bands.
The eigenvalues of this WL matrix are of the form ei2πx1(k2 ),
where x1(k2) are the positions of the hybrid Wannier functions
[65] along a1. As k2 moves along a clossed path (�-M-�),
these Wannier centers move along the a1 direction as shown
in Fig. 3.

According to the results in Table II, most of the subsets
of bands might transform as a band representation and there-
fore the corresponding phases could have trivial topology.
However, after realizing all the phases within the model, we
were able to compute the Wilson loop spectrum for all the
subsets as shown in Appendix D. The results imply that nine
out eleven gapped phases have subsets of bands with winding
in the WL spectrum and are thus topologically nontrivial, as
shown in Table III. Notice also that all the phases predicted to
be topological with TQC techniques in Table II have indeed
nonzero windings in the WL spectra.

FIG. 3. Wilson loop analysis for phase 8 in Tables I and II.
Phonon bands (left) and Wannier centers for the bottom (middle) and
top (right) subsets of bands. The WL spectrum of the bottom bands
shows trivial topology, while being nontrivial (winding) at the top
subset.
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TABLE III. Windings in the WL spectrum of the isolated subsets
of bands in the eleven phases. All phases with nonzero winding are
topological.

Phase 1 2 3 4 5 6 7 8 9 10 11

Subset 1 0 0 0 2 0 0 0 0 0 0 2
Subset 2 0 0 1 2 2 0 0 1 2 1 2
Subset 3 1 2 0 0 − − − − − − −

IV. MERGING THE AB INITIO AND ANALYTICAL
MODEL RESULTS

A. DFPT results

In this section, we relate our previously developed model to
the phonon spectra of real materials with the buckled honey-
comb lattice. To search for phononic topological phases we
use a procedure based on the following steps: (i) relax the
structure, (ii) compute the phonon spectrum with DFPT and
check whether it is gapped, and (iii) place the material on
the phase diagram by comparing the irreps of the computed
dispersion bands with the ones in Table I.

We searched for topological behavior in Si, Ge, P, As,
and Sb. The calculated phonon spectra and irreps as provided
by the QUANTUM ESPRESSO package [47,48] are displayed
in Fig. 4, and a comparison with Table I shows that all of
them are in phase 6, which is topologically trivial. However,
given that nine out of eleven possible phases are topolog-
ically nontrivial, a natural question is whether a transition
to a topological phase could be induced by some kind of
symmetry preserving method such as isotropic strain, doping
and photoexcitation. To test this possibility, we numerically
simulated stretching or compressing the lattice by up to a
7%, which is already a rather large deformation for experi-
mental setups [66], but found that the materials remained in
the topologically trivial phase 6. Indeed, as seen for example
in Fig. 5 for germanium, even such large deformations are
unable to close any of the gaps at the HSPs and cause a band
inversion, which would be necessary in order to change the

FIG. 5. Phonon dispersion bands for gGermanium BHL (or-
ange), with a 7% stretch (blue) and 7% compression (purple).

band topology. This is due to the fact that all the gaps at the
HSPs are a large fraction of the total span of the bands, so that
any band inversion would require large relative changes in the
frequencies, which are very hard to achieve experimentally. In
other words, all five materials are physically very far from any
topologically nontrivial phase.

B. Monte Carlo analysis

In order to understand why all the materials studied by
DFPT are so far from any topologically nontrivial phase,
we carried out a Monte Carlo study of the phase space
of the analytical model. This is possible because we have
analytic expressions for the frequencies at the HSPs as
functions of the force constants, as given explicitly in Ap-
pendix C. Thus, to any point in the phase space specified
by the values of the forteen independent coupling constants
(a1, b1, . . . , h3) in Eq. (9), we can associate another point
(w�+

3
,w�+

3
,wK3,1 ,wK3,2 , . . . ,wM−

2
) in the space of nonzero fre-

quencies at the HSPs. Note that we are discarding the acoustic

FIG. 4. DFPT phonon dispersion bands of P, Sb, As, Si, and Ge in the BHL. The irrep content of each subset of bands corresponds with
phase 6 in Table I for all cases, which is not topological according to the results in Table III.
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FIG. 6. DFPT dispersion phonons for the “blue phosphorus”
structure compared with the dispersion bands of a model with
r = 0.054.

phonon frequencies (w�−
3
,w�−

2
), as they must vanish at the �

point.
It is important to note that the map from the fourteen

independent parameters to the twelve nonzero frequencies at
the HSPs is not invertible. Thus there is no direct way to
find a model specified by a given set of frequencies. Instead,
we must do a Monte Carlo sampling of parameter space,
compute the associated frequencies and select the point that
most closely satisfies our requirements. This is precisely the
method we followed to find model realizations for the eleven
gapped phases in Table I, with the resulting phonon bands and
Wilson loops given in Appendix D. Comparing the computed
frequencies with the irreps in Table I would immediately
assign a phase to the model.

The method can also be used to find the model that best fits
a real material. First, we define the following distance in the
space of frequencies

r ≡ 1

12

12∑
i=1

∣∣w2
i − λ2

i

∣∣
wiλi

, (11)

where wi are the frequencies at the HSPs for the real mate-
rial, λi the frequencies for a model obtained by Monte Carlo
sampling, and i labels the twelve nonzero frequencies at the
HSPs. Therefore, this distance r measures the overall relative
difference between the frequencies of the real material and a
particular model. Once a model with sufficiently small r is
obtained by random sampling of parameter space, we can use
the gradient method to minimize the value of r and improve
the fit. For example, the best fit (r = 0.054) for phosphorous
is shown in Fig. 6.

Finally, a relation can be established between the existence
of topological phases and the need for sizable couplings be-
tween far apart neighbors. In any real material, the couplings
between different neighbors are bound to decrease as the
distance is increased, due to the localized nature of the atomic
wave functions. In the case of the planar honeycomb lattice,
where the boundaries between different phases can be given
analically, it was found that the existence of two out of four

TABLE IV. Percentage of randomly sampled points belonging
to each gapped phase. For each column the force constants are
constrained to decay faster than the indicated decay ratio, which
compares the mean absolute values of nonzero force constants for
onsite, first, and second neighbors. The mean value of third-nearest
neighbor constants is constrained to be smaller than that of second
neighbors.

Ratio 100:50:10 100:40:7 100:35:4

Phase 1 1.11% 1.361% 4.81%
Phase 2 0.06% 0.05% 0%
Phase 3 9.71% 11.9% 3.09%
Phase 4 0.15% 0.14% 0%
Phase 5 0.19% 0.17% 0%
Phase 6 30.03% 49.85% 89.05%
Phase 7 10.14% 5.88% 0.06%
Phase 8 1.89% 1.22% 2.71%
Phase 9 19.87% 15.06% 0.03%
Phase 10 1.47% 0.43% 0.73%
Phase 11 25.31% 13.89% 0.02%

possible topological phases required a relatively large third
nearest neighbor force constant [45].

By fitting our DFPT results to the analytical model, as
explained above, we find that in all cases the force constants
decay faster than according to a (100:35:4) ratio for onsite,
first and second neighbors respectively. We have explored
the model parameter space using different decay ratios as
thresholds (see Appendix E 2 for details) and computed the
percentage of space occupied by each phase. The results in
Table IV show that some of the predicted phases may be
almost impossible to realize for force constants restricted to
decay as in real materials, although this does not exclude the
possibility of metamaterial realizations. Moreover, it shows
that as we approach realistic decay ratios (third column), the
volume occupied by the trivial phase 6 increases. This is is
consistent with the fact that all the materials considered in this
paper happen to be in phase 6.

We close this analysis by noting that the phases that
are most suppressed for fast decay ratios (column three in
Table IV) are precisely the ones with higher WL windings in
Table III. This correlation admits a simple heuristic explana-
tion. The dynamical matrix Di j (k) is periodic in reciprocal
space and therefore admits a Fourier series representation,
with force constants between far away neighbors contribut-
ing to higher harmonics. On the other hand, WL windings
measure the extend to which the eigenvectors of the dynam-
ical matrix twist around as we move across de BZ, and this
twisting is obviously related to the harmonics in the in Di j (k).
Thus high WL windings are favored by strong force constants
between far away neighbors.

V. CONCLUSIONS

We have predicted all the possible topological phases
for phonons on the buckled honeycomb lattice. To this end
we have used TQC group theory techniques and discussed
how they may be applied to phonons. Eleven gapped phases
where found with nine of them being topological. This result,
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together with the ones for the planar honeycomb lattice [45],
suggests that a huge array of topological phases exist for
distinct structures. This has been confirmed in the recently
launched catalog of 3D materials with topological phonons
[44].

Finally, we have constructed the most general dynamical
matrix for the buckled honeycomb lattice including all cou-
plings compatible with the symmetries up to third-nearest
neighbors. The model has been used to fully characterize the
topology of the possible phases using Wilson loops and to
analyze the complete phase space under conditions resem-
bling real materials. We have studied the possibility of having
topological phononic phases in Si, Ge, P, As, and Sb in the
buckled honeycomb structure and explained why inducing
topological phases in these systems is difficult.
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APPENDIX A: METHODS

All density functional-perturbation theory (DFPT) [46]
calculations were done using the QUANTUM ESPRESSO package
[47,48]. We parametrize the exchange-correlation functional
assuming the Perdew-Burke-Ernzerhof [67] parametriza-
tion and model the electron-ion interaction with projector
augmented wave pseudopotentials [68,69] including four
electrons in the valence for Si and Ge, and three electrons
for P, As, and Sb. We use a kinetic energy cutoff of 60 Ry
for the plane-wave basis and 600 Ry for the charge density.
Brillouin zone integrals in the DFPT self-consistent loop were
calculated with a 20×20×1 grid and the occupancies have a
Methfessel-Paxton first-order spreading [70] of 0.02 Ry. Prior
to the phonon calculation, the structures were relaxed to the
Born-Oppenheimer minimum. Then we calculated the force
constants in a 12×12×1 grid and obtained the phonon spectra
by Fourier interpolation.

APPENDIX B: SYMMETRY CONSTRAINTS
ON THE ANALYTICAL MODEL

In this section, we compute the four matrices of force
constants in Fig. 2 and show how to use them to obtain the
matrices for symmetry-related neighbors. Then the Fourier
transform in Eq. (7) yields the most general dynamical matrix
D(k) compatible with all the symmetries and including up to

FIG. 7. Symmetry operations of the D3d group in real and recip-
rocal space. The threefold rotation axes C±

3 are perpendicular to the
plane of the crystal.

third-nearest neighbor couplings. A generic force constants
matrix is parametrized by nine real constants

�i j (R) =
⎛
⎝ a + b −c − d − f − g

−c + d a − b −h − i
− f + g −h + i e

⎞
⎠, (B1)

where the indices i and j take the values 1 or 2 for the two
atoms in the unit cell (see Fig. 1), and R is a lattice vector
connecting the origins of the cells to which the two atoms
belong.

Besides the constraint in Eq. (6), the force constants ma-
trices must satisfy additional relations due to the point group
symmetries of the crystal [71]

�i′ j′ (SR) = V (S)�i j (R)V (S)t , (B2)

where V (S) is the 3×3 matrix for the symmetry operation
S in the vector representation; i′, j′ are the indices for the
atoms in the transformed positions; and SR is the lattice
vector connecting the origins of the cells to which the atoms
in the transformed positions belong. Note that, in general,
SR 	= V (S)R.

It is important to note that, given that the space group for
the BHL is symmorphic, we can restrict ourselves to point
group operations. This would not be possible for a nonsym-
morphic group, where the point group is not a subgroup of the
space group.

1. On-site couplings

According to Eq. (B2) the matrix �11(0) must be invariant
under any operation belonging to the site symmetry group C3v

FIG. 8. Phase 1 with winding 1 in the green subset. a1 = −1;
e1 =−0.6; b1 =0.3; h1 =0.8; a2 =−0.06; b2 =0.02; e2 =−0.06;
g2 =0.06; d2 =0.04; h2 =0.04; a3 =−0.1; b3 =0.1; e3 =−0.1;
h3 = 0.1.
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FIG. 9. Phase 2 with Winding 2 in the green subset. a1 = −1;
e1 = −0.5; b1 = 0.2; h1 = 0.2; a2 = 0.06; b2 = 0.06; e2 = −0.3;
g2 = 0.2; d2 = 0.2; h2 = −0.3; a3 = −1.4; b3 = 0.3; e3 = −0.8;
h3 = 0.4.

of atom 1,

�11(0) = V (S)�11(0)V (S)t ∀ S ∈ C3v. (B3)

Applying this equation with S equal to C+
3 and σd1 (see Fig. 7

for notation), which together generate the group C3v , shows
that the on-site matrix must take the form

�11(0) =
⎛
⎝a0 0 0

0 a0 0
0 0 e0

⎞
⎠. (B4)

Noting that the spatial inversion I exchanges atoms 1 and 2
and using Eq. (B2) for S = I yields

�22(0) = V (I )�11(0)V (I )t = �11(0). (B5)

2. First-nearest neighbors

Here we consider the couplings between atoms 1 and 2 in
Fig. 1. We can obtain a first constraint on �11(0) by using
Eq. (B2) with S = σd1 , which leaves atoms 1 and 2 invariant

�12(0) = V (σd1 )�12(0)V (σd1 )t . (B6)

A second constraint is obtained by combining Eq. (B2) for
S = I with Eq. (6)

�12(0) = V (I )�21(0)V (I )t = �21(0) = �12(0)t , (B7)

and the two constraints together imply

�12(0) =
⎛
⎝a1 + b1 0 0

0 a1 − b1 −h1

0 −h1 e1

⎞
⎠. (B8)

FIG. 10. Phase 3 with winding 1 in the red subset. a1 = −1;
e1 = −2; b1 = 1.12; h1 = 0.4; a2 = −0.2; b2 = −0.48; e2 = 0;
g2 = 0; d2 = −0.4; h2 = −0.12; a3 = −0.4; b3 = 0; e3 = 0;
h3 = 0.04.

FIG. 11. Phase 4 with winding 2 in red and blue subsets.
a1 = −1; e1 = −1.6; b1 = 0.4; h1 = 1.6; a2 = −0.12; b2 = 0.2;
e2 = 0.2; g2 = −0.4; d2 = −0.2; h2 = −0.6; a3 = −1.6; b3 = 2;
e3 = −2.8; h3 = −0.4.

Finally, using Eqs. (6) and (B2) for S = C±
3 yields the remain-

ing nearest neighbor matrices in terms of Eq. (B8)

�12(a1) = V (C+
3 )�12(0)V (C+

3 )t ,

�12(a2) = V (C−
3 )�12(0)V (C−

3 )t ,

�21(0) = �12(0),

�21(−a1) = �t
12(a1),

�21(−a2) = �t
12(a2). (B9)

3. Second-nearest neighbors

Using Eq. (B2) with S = σd1 , that exchanges two second
neighbors, followed by Eq. (6), gives

σd1�11(a2 − a1)σ−1
d1

= �11(a1 − a2) = �t
11(a2 − a1),

(B10)

which directly leads to

�11(a2 − a1) =
⎛
⎝a2 + b2 −d2 −g2

d2 a2 − b2 −h2

g2 −h2 e2

⎞
⎠. (B11)

Then the remaing second nearest neighbor matrices can be
obtained using �22(a1 − a2) = �11(a2 − a1) and

�11(−a2) = �22(a2) = V (C+
3 )�11(a2 − a1)V (C+

3 )t ,

�11(a1) = �22(−a1) = V (C−
3 )�11(a2 − a1)V (C−

3 )t ,

�11(a1 − a2) = �22(a2 − a1) = �t
11(a2 − a1),

FIG. 12. Phase 5 with winding 2 in the red subset. a1 = −1;
e1 = −1; b1 = 0.2; h1 = 0.6; a2 = 0; b2 = 0.06; e2 = −0.36;
g2 = 0.4; d2 = 0.2; h2 = −0.3; a3 = −1.4; b3 =0.5; e3 = −1;
h3 = 0.5.
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FIG. 13. Phase 6 without any winding. a1 = −1; e1 = −0.6;
b1 = 0.4; h1 = 0.3; a2 = −0.2; b2 = 0.04; e2 = 0.04; g2 = 0.04;
d2 = 0.04; h2 = 0.04; a3 = 0; b3 = 0.04; e3 = −0.04; h3 = 0.04.

�11(a2) = �22(−a2) = �t
11(−a2),

�11(−a1) = �22(a1) = �t
11(a1). (B12)

4. Third-nearest neighbors

As seen in Fig. 2, the geometry of third-nearest neighbors
is closely related to the one for first neighbors, with σd1 and the
inversion I playing analogous roles here. Instead of Eqs. (B6)
and (B7), we have now

�12(a1 + a2) = V (σd1 )�12(a1 + a2)V (σd1 )t (B13)

and

�12(a1 + a2) = �21(−a1 − a2) = �t
12(a1 + a2), (B14)

and these two conditions imply

�12(a1 + a2) =
⎛
⎝a3 + b3 0 0

0 a3 − b3 −h3

0 −h3 e3

⎞
⎠. (B15)

The remaing third-nearest neighbor matrices are given by

�12(a2 − a1) = V (C+
3 )�12(a1 + a2)V (C+

3 )t ,

�12(a1 − a2) = V (C−
3 )�12(a1 + a2)V (C−

3 )t ,

�21(−a1 − a2) = �t
12(a1 + a2),

�21(a1 − a2) = �t
12(a2 − a1),

�21(a2 − a1) = �t
12(a1 − a2). (B16)

FIG. 14. Phase 7 without any winding. a1 = −1; e1 = −2; b1 =
1.12; h1 = 0.2; a2 = −0.4; b2 = −0.48; e2 = 0; g2 = −0.4; d2 =
−0.4; h2 = −0.12; a3 = −0.4; b3 = −0.4; e3 = 0; h3 = 0.08.

We finish by giving the matrices of the vector representa-
tion used in this Appendix

V (σd1)=
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠, V (C+

3 )=

⎛
⎜⎜⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠.

(B17)

Note also that V (C−
3 ) = V (C+

3 )t and V (I ) = −13.

APPENDIX C: SPECTRUM OF THE DYNAMICAL MATRIX
AT THE HIGH-SYMMETRY POINTS OF THE BZ

As reviewed in Sec. III, group theory can be used to
simplify the diagonalization of the dynamical matrix by ex-
pressing it in a basis of symmetry-adapted modes, where it
takes a block-diagonal form.

1. Symmetry adapted modes

The mechanical representation is induced from the vector
representation of C3v , which is the site-symmetry group for the
WP 2b. The vector representation is reducible, and according
to the BCS

V = A1(z) + E (x, y). (C1)

As a consequence, we may compute separately the off-plane
modes, induced from A1 and involving atomic displacements
OZ direction, and the n-plane modes, induced from E , in the
OXY plane of the sample. In other words, the mechanical band
representation can be split into two BRs, M = Mz ⊕ Mxy, with

Mz(�) = �+
1 (1) + �−

2 (1),

Mz(K ) = K3(2),

Mz(M ) = M+
1 (1) + M−

2 (1), (C2)

and

M(�) = �+
3 (2) + �−

3 (2),

M(K ) = K3(2) + K1(1) + K2(1),

M(M ) = M+
1 (1) + M−

1 (1) + M+
2 (1) + M−

2 (1). (C3)

This facilitates the computation of the symmetry-adapted
modes and clarifies their geometrical nature.

All the irreps at the � point have multiplicity one and
according to Wigner’s theorem the dynamical matrix is fully
diagonalized in a basis of symmetry-adapted modes, which
therefore are automatically normal modes. The odd-parity
(acoustic) modes are given by

εoff (�−
2 ) =

(
0, 0,

1√
2
, 0, 0,

1√
2

)
,

εin(�−
3 , 1) =

(
1

2
,− i

2
, 0,

1

2
,− i

2
, 0

)
,

εin(�−
3 , 2) =

(
1

2
,

i

2
, 0,

1

2
,

i

2
, 0

)
, (C4)
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FIG. 15. Phase 8 with winding 1 in the red subset. a1 = −1;
e1 =−0.9; b1 =−0.04; h1 =0.6; a2 =0.02; b2 =0.02; e2 =0.02;
g2 =0.02; d2 =0.02; h2 =0.02; a3 =0.02; b3 =0.02; e3 = 0.02;
h3 = 0.02.

while the optical modes are

εoff (�+
1 ) =

(
0, 0,

1√
2
, 0, 0,− 1√

2

)
,

εin(�+
3 , 1) =

(
1

2
,− i

2
, 0,−1

2
,

i

2
, 0

)
,

εin(�+
3 , 2) =

(
1

2
,

i

2
, 0,−1

2
,− i

2
, 0

)
. (C5)

The situation changes at the K point, where the irrep K3

has multiplicity two and the corresponding normal modes are
linear combinations of the symmetry-adapted modes, while
for K1 and K2 the modes are automatically normal. The off-
plane modes are given by

εoff (K3, 1) = (0, 0, 1, 0, 0, 0),

εoff (K3, 2) = (0, 0, 0, 0, 0, 1). (C6)

and the in-plane modes by

εin(K1) =
(

1

2
,

i

2
, 0,

1

2
,− i

2
, 0

)
,

εin(K2) =
(

1

2
,

i

2
, 0,−1

2
,

i

2
, 0

)
,

εin(K3, 1) =
(

0, 0, 0,
1

2
,

i

2
, 0

)
,

εin(K3, 2) =
(

1

2
,− i

2
, 0, 0, 0, 0

)
. (C7)

FIG. 16. Phase 9 with winding 2 in the red subset. a1 = −1;
e1 = −0.5; b1 = 0.2; h1 = 0.8; a2 = 0.06; b2 = 0.1; e2 = −0.3;
g2 = 0; d2 = −0.1; h2 = −0.3; a3 = −1; b3 = −0.3; e3 = −0.8;
h3 = 0.4.

FIG. 17. Phase 10 with winding 1 in the red subset. a1 = −1;
e1 =−0.8; b1 =−0.04; h1 =0.6; a2 =0.02; b2 =0.02; e2 =−0.02;
g2 =−0.02; d2 =−0.2; h2 =0.02; a3 =−0.02; b3 =−0.02;
e3 =−0.02; h3 =−0.1.

At the M point, only the modes for M−
1 and M+

2 are auto-
matically normal. The off-plane modes are given by

εoff (M+
1 ) =

(
0, 0,

1√
2
, 0, 0,

1√
2

)
,

εoff (M−
2 ) =

(
0, 0,

1√
2
, 0, 0,− 1√

2

)
, (C8)

while the off-plane modes are

εin(M+
1 ) =

( √
3

2
√

2
,

1

2
√

2
, 0,

√
3

2
√

2
,

1

2
√

2
, 0

)
,

εin(M−
2 ) =

( √
3

2
√

2
,

1

2
√

2
, 0,−

√
3

2
√

2
,− 1

2
√

2
, 0

)
,

εin(M−
1 ) =

(
1

2
√

2
,−

√
3

2
√

2
, 0,− 1

2
√

2
,

√
3

2
√

2
, 0

)
,

εin(M+
2 ) =

(
1

2
√

2
,−

√
3

2
√

2
, 0,

1

2
√

2
,−

√
3

2
√

2
, 0

)
. (C9)

2. Eigenvalues of the model dynamical matrix D(k)

Changing to the symmetry-adapted basis turns the dynam-
ical matrix into a block-diagonal form, where the dimension
of each block equals the multiplicity of the corresponding
irrep. Thus the change of basis yields the eigenvalues for all
the multiplicity one irreps, while to compute the frequencies
associated with a multiplicity two irrep one has to diagonalize
a 2×2 matrix. At the � point, the resulting frequencies depend

FIG. 18. Phase 11 with winding 2 in red and blue subsets.
a1 = −1; e1 = −0.5; b1 = 0.2; h1 = −0.2; a2 = 0.06; b2 = 0.1;
e2 = −0.3; g2 = 0; d2 = −0.6; h2 = −0.3; a3 = −1; b3 = 0;
e3 = −0.6; h3 = 0.04.
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FIG. 19. Nonzero force constants up to third-nearest neighbors
as defined in Fig. 2. Dividing the force constants by a0 is equiva-
lent to making a change of units to the squared frequencies and is
irrelevant for the topological analysis.

linearly on the coupling constants

w2(�−
3 ) = w2(�−

2 ) = 0,

w2(�+
3 ) = −6(a1 + a3),

w2(�+
1 ) = −6(e1 + e3). (C10)

This is no longer true at the K and M points, where comput-
ing the K3, M+

1 and M−
2 frequencies requires the solution of a

quadratic equation due to couplings between off- and in-plane
modes. The results are

w2(K1) = −3(a1 + 3a2 + a3 − b1 − b3 +
√

3d2),

w2(K2) = −3(a1 + 3a2 + a3 + b1 + b3 +
√

3d2),

w2(K3,±) = 1

2
{−3(a1 + 3a2 + a3 −

√
3d2

+ e1 + 3e2 + e3) ± [(−3(a1 + 3a2 + a3

−
√

3d2 − e1 − 3e2 − e3))2

+ 18(h1 + h3)2]
1
2 }, (C11)

and

w2(M−
1 ) = 2(−2a1 − 4a2 + b1 + 2b2),

w2(M+
2 ) = −2(a1 + 4a2 + 3a3 + b1 − 2b2),

w2(M+
1 ,±) = −a1 − 4a2 − 3a3 + b1 − 2b2 − e1 − 4e2

− 3e3 ± {(−a1 − 4a2 − 3a3 + b1 − 2b2

+ e1 + 4e2 + 3e3)2 + 4(−h1 + 2h2)2} 1
2 ,

w2(M−
2 ,±) = −2a1 − 4a2 − b1 − 2b2 − 2e1 − 4e2

± {(−2a1 − 4a2 − b1 − 2b2 + 2e1 + 4e2)2

+ 4(h1 + 2h2)2} 1
2 . (C12)

APPENDIX D: WILSON LOOPS FOR THE 11 PHASES

The eleven possible phases for the BHL in Table II
were realized within the analytical model by giving ap-
propriate values to the 14 independent coupling constants
(a1, b1, h1, e1, a2, b2, e2, g2, d2, h2, a3, b3, e3, h3) defined in
Appendix B. This enables obtaining a numerical result for the
phonon spectra at any point without the need for interpola-
tion. The resulting phonon bands were checked for stability
(absence of imaginary frequencies) and the existence of gaps
separating the isolated subsets over the whole Brillouin zone,
not just along the represented path �-K-M-�. The phonon
bands and Wilson loops are given in Figs. 8–18, while the
windings of the different subsets have been summarized in
Table III.

APPENDIX E: MAPPING DFPT TO THE ANALYTICAL
MODEL AND PHASE DIAGRAM

1. Mapping DFPT data to the model

Even at first glance the DFPT phonon bands in Fig. 4 show
strong similarities within the families of pentavalent (P,Sb,As)
and tetravalent (Si,Ge) materials. Moreover, one can double
check this assumption by comparing the force constants ex-
tracted by our DFPT calculations. As shown in Fig. 19, the
properly rescaled DFPT force constants defined in Fig. 2 tend
to cluster around two points in parameter space. In what fol-
lows, we will refer to the two groups as the P and Si families.

In order to map the DFPT data to the analytical model,
one should notice that we can describe a material with
the BHL symmetries by 14 independent force constants
(a1, b1, . . . , h3), as shown in Appendix B. Thus we can think
of these parameters as coordinates in a 14-dimensional space
where each point will correspond to a crystal with the BHL
structure within our model. By inspecting the phonon spectra
and irreps in Fig. 4 one can check that phases 1 and 3 are the
closest topological phases to phase 6 for the Si and P families
respectively.

2. Decay ratios of force constants

The decay ratios of force constants used in Sec. IV and
Table IV are defined by taking the mean absolute values of the
nonzero elements of the matrices of force constants in Fig. 2.
Concretely, if we define

m0 = 1
3 (2|a0| + |e0|),

m1 = 1
5 (|a1 + b1| + |a1 − b1| + |e1| + 2|h1|),

m2 = 1
9 (|a2 + b2| + |a2 − b2| + |e2| + 2|d2| + 2|g2| + 2|h2|),

m3 = 1
5 (|a3 + b3| + |a3 − b3| + |e3| + 2|h3|), (E1)

the decay ratios in Table IV are normalized by m0 and given
as (100:100 m1/m0:100 m2/m0).
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