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Scrambling in quantum cellular automata
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Scrambling is the delocalization of quantum information over a many-body system and underlies all quantum-
chaotic dynamics. We employ discrete quantum cellular automata as classically simulable toy models of
scrambling. We observe that these automata break ergodicity, i.e., they exhibit quantum scarring. We also
find that the time scale of scrambling rises with the local Hilbert-space dimension and obeys a specific
combinatorial pattern. We then show that scarring is mostly suppressed in a semiclassical limit, demonstrating
that semiclassical-chaotic systems are more ergodic.
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I. INTRODUCTION

Scrambling is the process of initially local information
spreading out over a many-body system and ultimately be-
coming delocalized over time [1–3]. It is the mechanism
through which a quantum-chaotic system can achieve ther-
malization, i.e., its relaxation to an ergodic state with no
memory of the initial local degrees of freedom [4–7]. Even if
the system does not thermalize and instead (perhaps weakly)
breaks ergodicity after long times, a phenomenon known as
quantum scarring [8,9], the information is still scrambled.

Scrambling underlies quantum-chaotic dynamics, so it has
been the subject of serious investigation over the past several
years in the study of quantum information, condensed mat-
ter theory, and quantum gravity [10,11]. More specifically,
scrambling has provided insights into properties of compu-
tational complexity [12–14], entanglement dynamics [15,16],
and transport [17–19] in quantum systems. As black holes
[1–3] and other spacetimes [20] can be thought of as fast
scramblers [21], scrambling is also of interest in quantum
gravity. Furthermore, there are protocols with which to mea-
sure scrambling through simulation and experiment [22–26].
So, by studying scrambling, we glean profound, testable in-
sight into the universal features of quantum dynamics.

Tunable toy models that highlight phenomena of interest
are a tried and true tool of theoretical physics. In this paper,
we propose that quantum cellular automata (QCAs) [27–29]
are a useful tool for studying scrambling (cf. Refs. [30–36]).
These are lattice systems equipped with local Hilbert spaces
on each site and a discrete time-evolution operation. This
operation can be phrased in the language of Heisenberg (time-
dependent) operators, and so it is straightforward to simulate
operator growth from some initial state. Thus we can apply the
general protocol for studying scrambling [22–24] to QCAs.
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To exemplify the utility of cellular automata, we elucidate
the scrambling behavior of a particular class: Clifford QCAs.
We find that they harbor scarring for particular initial condi-
tions. We also simulate the dependence of the scrambling time
on the Hilbert-space dimension N , with large N describing a
semiclassical regime. We ultimately find that the semiclassical
systems are more ergodic than low-N ones at late times.

II. QUANTIFYING SCRAMBLING

We quantify scrambling with the out-of-time-ordered cor-
relator (OTOC) [22–24],

F (x, t ) = 〈W (x, t )†V †W (x, t )V 〉. (1)

V is a local operator. W (x, t ) = U (−t )W (x)U (t ) is the time
evolution of a local operator W (x) inserted at position x. We
take [V,W (x)] = 0, so the OTOC measures the breakdown of
commutativity due to operator growth.

The OTOC is used to study features of chaos, such as
operator growth and the butterfly effect. To see why, we write
it in terms of the squared commutator

C(x, t ) = 〈[W (x, t ),V ]†[W (x, t ),V ]〉
= 2[1 − Re F (x, t )],

(2)

assuming unitary operators. We call the system “scrambled”
when this quantity is O(1). For local interactions, the growth
of C(x, t ) is said to take a universal form [23]:

C(x, t ) ∼ C exp

{
−λL

t p

( |x|
vB

− t

)1+p
}

. (3)

C, p, λL, vB (the butterfly velocity) are constants. In (3),
C(x, t ) is not O(1) until t ∼ |x|/vB. By depicting the squared
commutator on a space-time (t vs. x) plot, we observe a
butterfly cone of velocity vB beyond which we diagnose the
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FIG. 1. A schematic “space-time” plot depicting scrambling be-
tween initial operators V and W (x). For a given x, the squared
commutator eventually reaches O(1). Over all x, this defines a cone
(the shaded region) in which information is diagnosed as scrambled.
The minimum time t∗ of this cone is the scrambling time. The inverse
slope vB is the associated velocity.

system as scrambled (e.g., Fig. 1).1 The minimum time t∗ of
this cone is the scrambling time.

III. CLIFFORD QCAS

QCAs are lattice systems that undergo discrete time evo-
lution. Each is determined by two things: the local Hilbert
spaces on each lattice site and the unitary time-evolution op-
erator (or automorphism). In the Heisenberg picture, we may
write the latter as a set of reversible rules [28] for how local
operators on each site evolve.

We consider a particular class of model systems called
Clifford quantum cellular automata [37–40]. These QCAs
live on an infinite one-dimensional (1D) lattice in space and
obey translation invariance. The Hilbert space of each lattice
site arises from quantizing a toroidal phase space, so each
local Hilbert space is finite dimensional [41]. We denote this
dimension as N . Furthermore, the Planck constant scales as
1/N [39], and so N → ∞ is a semiclassical limit.

The operators acting on each local Hilbert space constitute
a generalized Clifford algebra generated by Q, P:

QN = PN = 1, PQ = ωQP. (4)

1 is the identity and ω = e2π i/N . We write the generators in
Sylvester’s N × N clock-and-shift representation:

Q =

⎛⎜⎜⎝
1 0 · · · 0
0 ω · · · 0
...

...
. . .

...

0 0 · · · ωN−1

⎞⎟⎟⎠, P =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎠. (5)

1(3) and its bound in the holographic limit p → 0 [54] are state
dependent, i.e., λL and vB care about V and W (x). There is a sim-
ilar, state-independent bound of this form with p = 0 called the
Lieb-Robinson bound on the microscopic norm (as opposed to the
average) of the squared commutator [55–58]. Reference [22] in-
terprets the butterfly cone as a low-energy effective Lieb-Robinson
cone.

These matrices and their products (excluding 1) are also
called generalized Pauli operators. Indeed, taking N = 2 re-
produces the usual Pauli matrices that generate su(2).

Next, while there are many rules one may implement (so
long as they are reversible and translation invariant along the
lattice), for specificity we will focus on

Qα → Qα−1 ⊗ QαPα ⊗ Qα+1,

Pα → (Qα )N−1, ∀α ∈ Z. (6)

The index α denotes the lattice position. We describe the
time evolution of any operator on the lattice by iteratively
implementing these (nearest-neighbor) rules.

The same machinery used for probing scrambling can be
used for Clifford QCAs. In fact, the squared commutator’s
form can be computed analytically if we have reflection sym-
metry about α = 0. If we take

V = · · · ⊗ 1−1 ⊗ �0 ⊗ 11 ⊗ · · · ,

Wα = · · · ⊗ 1α−1 ⊗ �̃α ⊗ 1α+1 ⊗ · · · , (7)

where �0 and �̃α are possibly distinct generalized Pauli matri-
ces, respectively, at sites 0 and α, then the squared commutator
has the form (cf. Appendix)

Cα (t ) = 〈[Wα (t ),V ]†[Wα (t ),V ]〉

= 4 sin2

[
π

N
ξ (α, t )

]
, (8)

where ξ (α, t ) is some integer function of space-time.
At first glance, this oscillatory behavior may appear trou-

bling for our claim that Clifford QCAs exhibit scrambling.
We do not get something of the form (3), but this is how we
argue for a butterfly cone. Not having (3) may prevent us from
diagnosing the system as scrambled.

Fortunately, there is a loophole; we simply need a cone
along whose boundary the squared commutator reaches O(1).
So long as we have such a cone, we do not need to care
about the late-time dynamics. Indeed, when we simulate the
evolution of the Clifford QCA with the rule (6), we will
certainly find that sinusoidal behavior (8) persist in the late-
time dynamics. Nonetheless, we will also consistently find the
requisite cones from scrambling.

IV. SCRAMBLING IN ACTION

There are N2 − 1 generalized Pauli matrices acting on the
Hilbert space of dimension N , so we have precisely (N2 − 1)2

squared commutators computed from local insertions. As an
example, we present the nine space-time heat plots for the
simplest case N = 2 in Fig. 2. From the analytic form of the
commutator (8), Cα (t ) is either 0 or 4, so loss of commutativ-
ity is akin to a bit flip.

In all of these plots, we observe a cone along which the
squared commutator reaches O(1). Thus, there is scrambling
according to our diagnostic. However, the dynamics within the
cone, particularly at late times, yield a fractal pattern because
of the sinusoidal behavior (8). Such behavior has also been
observed in previous studies of Clifford QCAs plotting other
quantities (cf. Refs. [37,38,42,43]), but our analysis highlights
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FIG. 2. All nine space-time “heat” plots of the squared commutators Cα (t ) = 〈[Wα (t ),V ]†[Wα (t ),V ]〉 with local initial insertions (7) in
the N = 2 Clifford QCA with rule (6). We restrict to lattice sites −100 � α � 100 and 100 time steps. Reading across columns, the initial
operators at the central (0) lattice site are [(a), (d), (g)] Q0, [(b), (e), (h)] P0, and [(c), (f), (i)] Q0P0. Reading across rows, the initial operators
at the α lattice site are (a)–(c) Qα , (d)–(f) Pα , and (g)–(i) QαPα . Cα (t ) = 4 at blue points and 0 at black points. Comparing all initializations,
the small-scale dynamics subtly differ, but the large-scale dynamics yield fractals of similar sharpness. More precisely, we find that all patterns
have approximately the same fractal dimension ∼ 1.83 (see Appendix for the calculation), consistent with the exact value of the “trace-time”
fractals log2

3+√
17

2 [36,42].

that these fractals arise from the chaotic dynamics after scram-
bling.

We claim this to be a violation of ergodicity, signaling
quantum scarring. To see why, first consider how we would
diagnose a system as thermalized at late times. Thermalization
of the system means a loss of memory of the initial insertions.
Such memory must instead be confined to subleading effects
in the late-time regime deep in the cone. So, if the late-time
dynamics are ergodic, then the squared commutator inside of
the cone must lose track of the separation between the initial
insertions. In other words, it must exhibit x independence.

That is not what we see in our Clifford QCA. Instead,
the sinusoidal behavior (8) persists at late times and in-
duces the fractal pattern seen in our space-time plots. So,
although the information is scrambled (i.e., delocalized)
within the cone, it is not thermalized (i.e., randomized) over
space. The fractals represent quantum scarring.

In this paper, our focus is on OTOCs of local initial oper-
ators (cf. Ref. [44]). However, the OTOC can generally probe
the loss of commutativity between initially commuting non-
local operators, as well. The initial operators themselves need
not be local. For instance, we may start with an initial operator
Wα which comprises generalized Pauli matrices localized to

multiple lattice sites. It would be interesting to simulate such
initializations to understand the dynamics of nonlocal states.

V. SEMICLASSICAL REGIME

Quantum chaos can be quite different from classical chaos.
For example, classically chaotic systems always thermalize at
late times, but quantum systems may scar. To reconcile the
classical and quantum regimes, we may consider a semiclas-
sical limit of a quantum chaotic system. In our Clifford QCAs,
we can implement such a limit by increasing N . Specifically,
we examine the influence of N on the evolution of the initial
local operator insertions �0 = Q0 and �̃α = Qα . The space-
time plots are presented in Fig. 3.

We first examine the scrambling time t∗. It can be read off
explicitly from the position of the emergent butterfly cone. By
scanning over a range of N � 2, we find that t∗ jumps by 1
at particular values of N (Table I). Up to a factor of 6, these
values of N equate to a subsequence of particular Whitney
numbers [45] (defined later):

W2t = 4F3

(
1 − t

2
,

1 − t

2
,− t

2
,− t

2
; 1,−t,−t ; 16

)
. (9)

144306-3



BRIAN KENT, SARAH RACZ, AND SANJIT SHASHI PHYSICAL REVIEW B 107, 144306 (2023)

FIG. 3. The space-time heat plots depicting the squared commu-
tators for initializations �0 = Q0, �̃α = Qα and (a) N = 2, (b) N =
4, (c) N = 10, and (d) N = 1000. We restrict to lattice sites −200 �
α � 200 and 200 time steps. Unlike in Fig. 2, we must use a gradient
to represent the values of Cα (t ) since we simulate N > 2. Larger N
yields a later cone and, thus, larger scrambling time. Furthermore, the
fractal pattern is strongest for N = 2 and is filled in for larger N . By
N = 1000, the squared commutator has lost its position dependence
deep inside of the cone, and so the late-time dynamics look more
ergodic.

This specific sequence originates from our initialization
(�0 = Q0, �̃α = Qα) and our rule (6). To see why, note that
we are simply finding the minimum time t∗ at which

Cα (t∗) � 1 ⇒ ξ (0, t∗) � N

6
, (10)

with fixed N [recall (8)]. For (6), we find ξ (0, t ) = W2t .
So, consider some N and the minimum t∗ for which (10)

is satisfied. By increasing N , we will eventually violate this
bound, and so we must go to the Whitney number for t∗ + 1
for the squared commutator to be � 1.

This sequence of Whitney numbers appears in combinato-
rial graph theory [46,47] as follows. Define a fence of order
n as a set of points {p1, ..., pn} imbued with partial ordering
p1 < p2 > p3 < p4 > · · · . An ideal (with respect to the par-
tial ordering) of order i is any size-i subset S with the property
that pk < p j for any p j ∈ S implies pk ∈ S. The Whitney
number fn,i is then the number of order-i ideals in the fence of
order n.2

2We can also define Whitney numbers for other partially ordered
sets, such as crowns, which are cycilic fences [46,47].

TABLE I. A table listing scrambling times t∗ for different ranges
of Hilbert-space dimensions N . As we increase N , t∗ jumps at par-
ticular values of N . This is because the values of ξ (0, t∗) appearing
in the analytic form (8) of the squared commutator C0(t ) constitute
a particular rule-dependent and monotonic integer sequence (9). For
each range of N , there is a minimum ξ (0, t∗) for which the squared
commutator is � 1.

N [2,6] [7,12] [13,30] [31,66] [67,156] [157,378] · · ·
t∗ 1 2 3 4 5 6 · · ·
ξ (0, t∗) 1 2 5 11 26 63 · · ·

FIG. 4. The space-time heat plot of the squared commutator
for �0 = Q5

0, �̃α = Q5
α with N = 10. Observe that this precisely

matches one of the N = 2 plots, specifically Fig. 2, top left, because
10 = 5 × 2, and so we have that Cα (t ) is 4 (blue) or 0 (black). This
pattern is a primal scar.

Our Whitney numbers (9) count the ideals of order t in
the fence of order 2t and form a monotonic integer sequence
indexed by t . This is only one possible sequence, however,
and different initializations or rules may yield others. It would
be interesting to see whether these sequences also have analo-
gous combinatorial-graph-theoretic interpretations. We leave
further exploration of this connection to future work.

We now briefly touch on the effect of increasing N on
scarring. It is expected that scars will be suppressed in the
semiclassical limit, since we should recover ergodicity in this
regime. This is precisely what we see in Fig. 3. As we in-
crease N , the squared commutator remains O(1) within more
of the cone. This makes analytic sense in (8); the period of
the oscillations goes as N , so it takes longer for the squared
commutator to fall back to 0.

There is one caveat to this lesson even in large-N systems.
By an argument of Schwinger [48], the generalized Clifford
algebra contains commuting Clifford subalgebras correspond-
ing to distinct prime factors of N . If N is composite, then these
are proper subalgebras. These allow for what we call primal
scars when examining the dynamics of particular operator
insertions for composite N .

For concreteness, suppose that N = κ p	 for p prime, κ

coprime to p, and some 	 � 1. Then, consider the subalgebra
generated by the set {Qκ , Pκ}. By (4),

(Qκ )p	 = (Pκ )p	 = 1, (11)

PκQκ = ωκ2
QκPκ = e2π iκ/p	

QκPκ . (12)

As κ is coprime to p (and thus p	), e2π iκ/p	

is a primitive p	th
root of unity. Thus, {Qκ , Pκ} generates a Clifford subalgebra
that acts on the Hilbert space of size p	.

We observe that this subalgebra is closed under our rule
(6). As such, the simulated dynamics from the initialization
�0 = Qκ

0 and �̃α = Qκ
α with N = κ p	 yields the exact same

pattern as the initialization �0 = Q0 and �̃α = Qα with N =
p	. See, for example, Fig, 4, in which we simulate �0 = Q5

0

and �̃α = Q5
α for N = 10 and obtain a pattern from the N = 2

case (Fig. 2, top left).
In general, each distinct prime factor p of N labels a family

of primal scars so long as the Clifford subalgebra associated
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with p is preserved under the rule of the QCA. (6) is one
example of such a rule, but there are others. However, the
existence of primal scars does not completely spoil ergodicity
in large-N systems. First, the space-time plots of the squared
commutator generated from �0 = Q0 and �̃α = Qα do not
maintain this type of scarring as we increase N . Second, we
can restrict ourselves purely to prime values of N . In this case,
there are no Clifford subalgebras even for large N , and so we
would not have primal scars in the first place.

VI. CONCLUSIONS

To summarize, quantum cellular automata are classically
simulable toy environments for quantum many-body physics.
In this paper, we elaborate on how nontrivial aspects of the
scrambling dynamics of many-body systems can be easily
studied by using QCAs. By focusing on operator growth in
Clifford QCAs both analytically and numerically, we access
concrete data quantifying scrambling, particularly butterfly
velocities and scrambling times. Notably, we observe the
formation of quantum scars, a feature of many-body chaos
unique to the quantum regime. This further validates QCAs
as a good arena for studying scarring [30–32].

We find a deep connection between the structure of our
Clifford QCA and combinatorial graph theory. Furthermore,
we are able to study how signals of quantum chaos change
in the semiclassical limit. By increasing the size of the local
Hilbert space (a large-N limit), we find that the fractal behav-
ior exhibited in the squared commutator is typically filled in,
leading the region within the butterfly cone to appear more
thermal. While there is still primal scarring in that the dynam-
ics of particular initializations for large composite values of
N produce sharper fractals, increasing N nonetheless always
yields successively more random patterns.

In this paper, we focus on one rudimentary probe of scram-
bling: the squared commutator, which is a cousin of the
out-of-time-ordered correlator. However, one may also ex-
amine more refined probes of post-scrambling-time behavior.
One candidate is Krylov complexity [49], which is defined in
terms of Heisenberg operator evolution and has been proposed
as a probe of quantum scarring [50]. Since the rule of a QCA
is typically straightforward in the Heisenberg picture, it is
natural also to study Krylov complexity in such systems.

A major focus of this work is studying semiclassical (large-
N) operator growth to bridge the quantum regime to classical
physics. This has also been the motivation underlying previ-
ous work [51,52]. While we only have asked what happens
with regards to scarring, it would be interesting to see if the
large-N limit of our Clifford QCAs explicitly reproduce the
features of classical information spreading.

There are a variety of ways to change the type of physics
being simulated. One can change the rule (even making them
random [53]), the local Hilbert space, or the structure of
the lattice (cf. Refs. [35,36]), thereby implementing alternate
types of many-body systems. We can include multiple species,
asymmetries, nonlocal interactions, or even various types of
boundary conditions (reflecting, periodic, etc.). Overall, the
world of quantum cellular automata is a vast toy box in which
to test a myriad of ideas about quantum many-body dynamics
and chaos.
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APPENDIX

1. Implementation of QCAs

To implement a QCA on a computer we must employ
a method that accommodates the infinitude of lattice sites
by using only common software architecture. We can do so
by representing particular operators as Laurent polynomi-
als whose coefficients are integers taken modulo N , as in
Refs. [37,38]. Specifically, we map the full operator algebra
to a two-dimensional vector space and multiplication in the
former to addition in the latter. Under this mapping, we repre-
sent generators at site α as

Qα −→
(

qα

0

)
, Pα −→

(
0
qα

)
, (A1)

where q is just an abstract variable. So, under this mapping we
write a generic operator as

∞⊗
α=−∞

Qiα
α P jα

α −→
∞∑

α=−∞

(
iαqα

jαqα

)
, (A2)

with iα, jα taken mod N . In this notation, a time-evolved
operator O(t ) is written

O(t ) = ωϕ(t )Mt O(0) (mod N ), (A3)

where O(0) is some vector of the form (A2) representing the
initial operator and M is a 2 × 2 matrix representing the rule.
The ωϕ factor is an overall phase coming from reordering the
factors as

⊗
α Qiα

α Piα
α after applying M.

Implementing a particular rule requires the associated ma-
trix. The rule (6) used in the main text maps to

M =
(

q−1 + 1 + q N − 1
1 0

)
. (A4)

2. Squared commutator in Clifford QCAs

We now derive (8). Clifford QCAs are invariant under
translations. We also assume invariance under reflections,
making the rule palindromic as in Refs. [37,38]. Then, we may
shift the initial operators (7) by −α and reflect them around 0
to write the squared commutator at α as

Cα (t ) = 〈[W0(t ),Vα]†[W0(t ),Vα]〉, (A5)

where Vα = · · · ⊗ 1α−1 ⊗ �α ⊗ 1α+1 ⊗ · · · . This is the ex-
pression computed in our simulation.

All generalized Pauli matrices may be written as products
of Q’s and P’s. Additionally, in terms of the Laurent polyno-
mial notation (A2), we write the entries of the t-fold product
of the rule matrix M in index notation as(

Mt
)

IJ
=

∞∑
α=−∞

ξIJ,α (t )qα, (A6)
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where the indices I, J run over Q and P and each ξIJ,α (t ) is an
integer mod N . Meanwhile, supposing �̃0 = QiP j , we write
W0 in index notation as

(W0)I = iδI,Q + jδI,P, (A7)

And so, up to an overall phase the time-evolved operator W0(t )
is

(
MtW0

)
I
=

∑
J

[∑
α

ξIJ,α (t )qα

]
(iδJ,Q + jδJ,P )

=
∑

α

[iξIQ,α (t ) + jξIP,α (t )]qα. (A8)

We are ready to compute [W0(t ),Vα]. Generalized Pauli ma-
trices supported on different lattice sites commute, so we only
need the factor of MtW0 at the α lattice site, defined as �̃α (t ).
From (A8), this is

�̃α (t ) = QiξQQ,α (t )+ jξQP,α (t )PiξPQ,α (t )+ jξPP,α (t )

≡ QA(t )PB(t ). (A9)

For brevity, we have redefined the exponents as integral func-
tions A(t ) and B(t ). Additionally, we write the factor �α of Vα

as QCPD. Note that A, B,C, D also have α dependence, which
we leave implicit for now. From the Clifford algebra (4), the
commutator is

[W0(t ),Vα] = ωϕ(t )[�̃α (t ), �α]

= ωϕ(t )[ωB(t )C − ωA(t )D]QA(t )+CPB(t )+D. (A10)

Recall that ω = e2π i/N , and so ω∗ = ω−1. Additionally, the
generalized Pauli matrices are unitary. So, we have

[W0(t ),Vα]†[W0(t ),Vα] = 4 sin2

[
π

N
ξ (α, t )

]
1, (A11)

where we have defined ξ (α, t ) = A(t )D − B(t )C (making α

explicit again) and exploited various trigonometric identities.
The overall phase ωϕ(t ) from (A3) cancels. The expectation
value of (A11) is (8).

We only assume a palindromic rule to derive the sinusoidal
expression. In the main text, we specify (A4) and find jumps
in the scrambling time at specific values of N corresponding
to a particular sequence of Whitney numbers (9). However,
such jumps are a generic feature of (8), with the corresponding
values of N related to the sequence (ξ (0, t ))t�0. It would be
interesting to explore analogous sequences from other palin-
dromic rules.

FIG. 5. The plot of log(
∑

f ) vs. log T for the Clifford QCA with
initialization �0 = Q0, �̃α = Qα and N = 2. This box-counting plot
can be used to obtain the fractal dimension of the space-time plot of
the squared commutator. The dimension is identified as the slope of
the line at large T , which we find to be ∼1.83.

3. Fractal dimension and box counting

The dimension of a fractal can be found through a method
called box counting. The general procedure is as follows.
Suppose that we have some shape of area V . We then define
a unit length ε and cover the shape with N boxes of area εD.
There exists some D for which

lim
ε→0

N εD = V . (A12)

Essentially, we want to find this D. To do so, note that in the
ε → 0 limit we may write

logN ∼ D log

(
1

ε

)
+ logV, (A13)

and so D is the slope of the logN vs. log(1/ε) line near ε = 0.
The logV term can be ignored.

In our QCAs, we implement an adaptation of box counting.
Define f (t ) as the number of lattice sites at t for which the
squared commutator is O(1). We simulate the QCA up to time
t = T . We associate

N =
T∑

t=0

f (t ), ε = 1

T
. (A14)

And so, by plotting log(
∑

f ) vs. log T , we can identify
the large-scale structure’s fractal dimension D as the large-T
slope. See, for example, Fig. 5, which shows the plot associ-
ated with Fig. 2 (top left). We also emphasize that this is not
the only way to compute the fractal dimension.
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