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Anomalous hydrodynamics with triangular point group in 2+1 dimensions
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We present a theory of hydrodynamics for a vector U(1) charge in 2+1 dimensions, whose rotational symmetry
is broken to the point group of an equilateral triangle. We show that it is possible for this U(1) to have a chiral
anomaly. The hydrodynamic consequence of this anomaly is the introduction of a ballistic contribution to the
dispersion relation for the hydrodynamic modes. We simulate classical Markov chains and find compelling
numerical evidence for the anomalous hydrodynamic universality class. Generalizations of our theory to other
symmetry groups are also discussed.
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I. INTRODUCTION

Recent years have seen renewed interest in understand-
ing hydrodynamics as an effective field theory. On the one
hand, this is inspired by explicit geometric constructions of
the Schwinger-Keldysh dissipative action that describes the
Navier-Stokes equations, and a thorough understanding of
how to incorporate subtle symmetries, such as time-reversal
via Kubo-Martin-Schwinger invariance [1–3]. On the other
hand, there are a variety of exotic fluids, arising in (or at
least inspired by) quantum matter. Anomalies lead to clear
signatures even within classical hydrodynamics [4–6], while
electron liquids may have reduced spatial symmetries, which
lead to unconventional transport coefficients [7–14]. Most re-
cently, kinetically constrained “fracton hydrodynamics” have
been intensely studied [15–29].

In a complementary thread of research, a series of papers
over the past few years [30–38] has posed a simple question:
What happens when a quantum field theory has an unusual
global symmetry? For example, suppose that there is a U(1)
symmetry on each plane of a three-dimensional cubic lattice.
The resulting subsystem symmetry can have peculiar con-
sequences including UV-IR mixing and other subtle lattice
dependencies in continuum quantum field theory. A particu-
larly important structure, which arises in these constructions
is the presence of charges and or current, which transform
in unusual irreducible representations of the spatial rotational
symmetry (usually a discrete group). For example, in the
model of planar subsystem symmetry in three dimensions, one
writes down a conserved current in a three-dimensional rep-
resentation (Jxy, Jyz, Jzx ) of the cubic point group, descending
from the spin-2 representation of SO(3).

This paper was first inspired by a simple question: What
is the landscape of hydrodynamic theories that are possible
when one considers a charge density ρa and a spatial charge
current Jα that transform in exotic representations of the point
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group G? In the case where G = SO(3) in d = 3 spatial di-
mensions, some of us have addressed this question in detail
in the recent paper [39]. Here, we provide a more abstract
and general treatment of the problem, with a particular focus
on discrete groups G where exotic structures can arise. As
part of our discussion, we will consider the possibility of
unconventional theories with broken time-reversal symmetry,
and discuss whether hydrodynamics might be unstable to
fluctuations (a la the flow of the Navier-Stokes equations in
d = 1 to the KPZ universality class [40]). We will review
the effective field theory framework we use to answer these
questions in Sec. II, and describe the resulting hydrodynamics
(usually diffusive) in Sec. III, paying particular attention to
the exotic conservation laws that can arise.

The most interesting such theory, which we have found,
and which forms the basis of the second part of this paper,
is a priori very simple: a theory in two spatial dimensions
with triangular (D3 to physicists; D6 to mathematicians) point
group, with a vector conserved charge and a generic current.
In this paper we will refer to D6 henceforth as the symmetry
group. One can think of this intuitively as keeping only the
momentum of the usual Navier-Stokes equations as a gen-
uinely conserved quantity. Within the isotropic Navier-Stokes
equations, one can easily see that the only dynamics, which
can result from such a truncation is the diffusive (viscous)
relaxation of the vector charge. With triangular symmetry,
there is a naive possibility of finding a ballistic contribution
to this viscous mode. Yet recent work has found that such a
ballistic contribution does not exist, either because it violated
the KMS-invariance of the geometric action (in the case where
the vector conserved charge is momentum) [9], or because it is
not compatible with kinetic theory of liquids with anisotropic
kinetic energy [8]. This raised the intriguing possibility that
there may truly be constraints on hydrodynamics, arising from
fundamental statistical mechanics, that are wholly invisible
within the canonical Landau paradigm.

In this paper, we begin to resolve this puzzle: The terms
described above are forbidden in a theory with a vector U(1)
conservation law the absence of a triangular chiral anomaly.
In conventional physical settings, such chiral anomalies can
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only arise in odd spatial dimensions d . This is not due to a
fundamental physics reason, but rather a group theoretic one:
the only tensor, which can be included in the anomalous terms
in the hydrodynamic equations is the spacetime Levi-Civita
tensor, contracted into the U(1) Maxwell tensor Fμν ; hence
d must be odd. In the triangular theory, it will turn out there
is a spatial third-rank tensor, which can play a similar role.
We discuss this anomaly in Sec. IV and in further detail in
the Appendix. In the case where our vector conserved charge
is instead momentum, this may suggest an unusual kind of
anisotropic gravitational anomaly [41].

One might think that this anomaly is a curious quantum
mechanical effect, but in fact, it can arise in a strictly classical
system! In Sec. V, we present extensive Markov chain simu-
lations of a time-reversal- and inversion-breaking theory on a
triangular lattice in two dimensions, with a vector conserved
charge. We find unambiguous signatures of the anomalous
hydrodynamics in this wholly classical setting. Our model can
ultimately be understood as an interesting generalization of
how a certain biased random walk can realize the usual chiral
anomaly in 1+1 dimensional theories.

II. REVIEW OF EFFECTIVE FIELD
THEORY FRAMEWORK

In this section we will review the effective field theory
framework proposed in [29]. The effective field theory de-
scribes “nonthermal” fluctuating systems with local, ergodic
dynamics. Here the phrase “nonthermal” refers to the fact
that there is no conserved energy and thus no temperature.
Nevertheless, we will posit the existence of a many-body
stationary probability distribution for the stochastic dynamics,
which will lead to emergent notions of thermodynamics.

Let ρ(x, t ) denote the density of a scalar conserved charge
in d spatial dimensions. We will write down an action involv-
ing both ρ and a conjugate “noise field” π , of the form1

S =
∫

dtdx [π∂tρ − H (π, ρ)]. (2.1)

Here H is a function to be determined, but we demand it to
have no π -independent terms (this is roughly related to the
desire that ρ undergoes a stochastic process with normalized
probability distribution),

H (0, ρ) = 0. (2.2)

The π equation of motion gives us ∂tρ = · · · , so the right-
hand side will encode the equations of motion for ρ.

Suppose that the many-body probability distribution is

Peq[ρ] = e−�[ρ]. (2.3)

Defining a conjugate chemical potential

μ(x) = δ�

δρ(x)
, (2.4)

it was shown in [29] that (in the weak noise or linear response
limit, either of which is sufficient for our purposes here), time

1In the formalism of [1], ρ would be related to the r-field ∂tφr , and
π the a-field φa, on the Schwinger-Keldysh contour.

reversal corresponds to the transformations t → −t and

π → −π+iμ, (2.5)

assuming (as we do here) that ρ is even under time reversal.
Moreover, in order to demand that charge is conserved,

0 = d

dt

∫
dx ρ, (2.6)

we demand that (the integral of) H is invariant under

π → π+c(t ) (2.7)

for arbitrary x-independent function of time c(t ). Spatial par-
ity is straightforward (x → −x) and does nothing interesting
to either ρ or π . Lastly, the assumption that statistical fluctua-
tions are bounded forces

Im(H ) � 0. (2.8)

With these constraints, in one spatial dimension (d = 1),
the leading-order terms H that we can write down is

H = A(ρ)∂xπ − iσ (ρ) ∂xπ ∂x(π − iμ)+ · · · . (2.9)

where A(μ) and σ (μ) are functions of μ with no derivatives.
Moreover, A(ρ) = 0 if the system has P (parity) and/or T
(time-reversal) symmetry. The σ term is compatible with both
P and T symmetry, and is the minimal action for hydrody-
namics for a single conserved charge. Note that (2.8) implies
σ � 0, which is positivity of the conductivity and diffusion
constant. Indeed, the noise-free equation of motion for ρ is
found by varying S with respect to π , and then setting π → 0,

χ∂tμ − ∂x(σ∂xμ) = 0. (2.10)

This is the form of a standard continuity equation where
the charge current obeys Fick’s Law of diffusion. Here χ =
∂ρ/∂μ is the charge susceptibility, and is a constant within
linear response.

In this theory, the relative scaling dimension between time
and space (dynamical critical exponent z) is given by z = 2.
Since the term π∂tρ has to be marginal, the scaling dimen-
sions of ρ and π satisfy [ρ]+[π ] = d . From (2.5) and μ ∼ ρ,
we get

[ρ] = [π ] = d

2
. (2.11)

.
If the system has PT symmetry (but not P or T separately),

and the system is defined on a spatial circle with periodic
boundary conditions, there is essentially no constraint on A.
After all∫

dx A(μ)∂xπ →
∫

dx A(μ)(−∂x )(−π+iμ)

=
∫

dx A(μ)∂xπ+i
∫

dx A(μ)∂xμ. (2.12)

The last term is a total derivative and vanishes with periodic
boundary conditions, meaning that the integral of H is indeed
invariant. If the A(ρ) term is nonzero, this term becomes the
leading dissipationless term and can lead to instability. Note
that although A can contribute a term to the equation of motion

χ∂tμ − ∂x(A∂xμ+σ∂xμ) = 0, (2.13)
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within linear response (where μ and ρ are proportional), we
do not consider this to modify the dynamical critical exponent:
It is more important to maintain z = 2 so that fluctuations
are not treated as irrelevant (it is better to instead imagine
“boosting” to a new reference frame and undoing the linear-
in-A term).

Now consider the leading nonlinear contribution from A(ρ)
to the current,

Jx = · · · +A2μ
2+ · · · . (2.14)

The scaling dimension of [μ]2 = d , which is smaller than
or equal to that for the dissipative term [∂xμ] = 1+ d

2 when
d � 2. In d = 1, the nonlinearity is relevant and drives an in-
stability of the hydrodynamic theory. This is the instability of
the Burgers equation, well established in one dimension: It is
well known that the endpoint of this instability is the Kardar-
Parisi-Zhang universality class [40], which has anomalous
exponent z = 3/2.

III. THEORIES WITH EXOTIC CONSERVED CHARGES

We now extend the discussion of the previous section to
more general theories where the conserved charge ρa trans-
forms in a nontrivial irreducible representation of a spatial
point group G associated to the rotational symmetry.

A. General framework

Suppose the microscopic dynamics are invariant under
space group G, and suppose there is a conserved charge ρa

and current Jα which transform in possibly nontrivial repre-
sentations of G. For simplicity, we take ρa to transform as an
irreducible representation Ra; if it were reducible, we could
equivalently consider each irrep to be a separately conserved
quantity. We allow Jα to be more general and transform in
a possibly reducible representation

⊕
i Rαi . A general (non-

multipolar) conservation law has the form

∂tρa+∂i�iaαJα = 0, (3.1)

where �iaα is a set of generalized Clebsch-Gordan coef-
ficients. The �iaα are nonzero when Ra appears in the
irrep decomposition of (

⊕
k Rαk ) ⊗ Vi (Vi denotes the d-

dimensional vector representation in which the derivative
lies). For G = SO(3) and ρi transforming as a vector, and
different choices of Jα , we recover known aspects of hydro-
dynamics with vector conserved currents, as was discussed at
some length in a recent paper [39].

Equation (3.1) leads to (possibly infinitely many) con-
served quantities. To find them, consider the quantity

Q[ fa] :=
∫

dd x faρa, (3.2)

where fa are arbitrary functions of space. This quantity being
conserved means its time derivative vanishes; imposing this
as a condition (and assuming periodic boundary conditions,
or that ρa vanishes at infinity) gives

0 = d

dt

∫
faρa = −

∫
�iaα fa∂iJα =

∫
Jα�iaα∂i fa. (3.3)

We therefore find that the quantity Q[ fa] are conserved when

�iaα∂i fa = 0. (3.4)

When ρa are the only conserved charges, and Jα lies in an
reducible representation as well, in general the lowest-order
term in the gradient expansion is

Jα =
∑
αk

−Dαk �ibαk ∂iρb, (3.5)

which leads to the generalized diffusion equation

∂tρa −
∑
αk

Dαk �iaαk � jbαk ∂i∂ jρb = 0. (3.6)

Note here that each representation Rαk would in general get
its own diffusion constant Dαk .

We can reformulate the above discussion in terms of the
hydrodynamic effective field theory of Sec. II. We generalize
slightly the construction of the previous section to allow the
density ρa and conjugate field πa to transform nontrivially
under the space group G. The action then takes the form

S =
∫

dtdx [πa∂tρa − H (πa, ρa)] (3.7)

where H (πa, ρa) obeys analogous constraints as in Sec. II. In
particular, the existence of a steady-state mandates∫

dx H (0, ρa) =
∫

dx H (iμa, ρa) = 0. (3.8)

To encode the conservation law (3.1), we require that πa

only appear in H (πa, ρa) via the combination �iaα∂iπa. This
implies that the Hamiltonian is invariant under the transfor-
mation πa → πa+ fa(x, t ), where fa(x, t ) satisfies (3.4). And
as before, well posedness of statistical fluctuations imposes
the condition (2.8). Given these constraints, the most general
Hamiltonian we can write is

H (πa, ρa) = −i
∑
αk

σαk (ρ)�iaαk ∂iπa� jbαk ∂ j (πb − iμb)+ · · ·

(3.9)

where σ (ρa) is a function of ρa with no derivatives. This
action leads to the equation of motion

∂tρa −
∑
αk

�iaαk ∂i(σαk (ρa)� jbαk ∂ jμb) = 0, (3.10)

which can be identified with the continuity equation (3.1) and
constitutive relation (3.5) at linear order after identifying

Dαk = σαk (ρ̄a)

χ
(3.11)

where ρ̄a is the average charge density and χ is the suscepti-
bility defined as χδab = ∂ρa

∂μb
.

One can also consider the possibility of dissipationless
terms in the constitutive relation (3.5). In particular, this can
happen when Ra appears in the irrep decomposition

⊕
i Rαi .

Then a term such as

Jα ⊃ vρaδαa (3.12)

is allowed on group theoretic grounds. Here the Kronecker
delta indicates an inclusion of the Ra subrepresentation into
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⊕
i Rαi . However, it is a priori unclear whether such a term

is thermodynamically consistent. This is where the effective
field theory formalism proves especially useful, as it provides
a systematic method of determining whether such terms are
permitted. This term in the constitutive relation corresponds
to a term

H ⊃ −αμa�iab∂iπb (3.13)

in the Hamiltonian. This manifestly satisfies invariance under
πa → πa+ fa(x, t ) as well as well posedness of statistical fluc-
tuations, but is not in general consistent with the existence of
a steady state as (3.8) is not obeyed. We note, however, that if
�iab is symmetric with respect to a and b, then it is possible
for the term (3.13) to be a total derivative upon substituting
πa = iμa. Explicitly,

−
∫

dx αμa�iab∂i(iμb) = −i
∫

dx αμa�iab∂iμb

= −i
∫

dx ∂i

(
1

2
α�iabμaμb

)
= 0,

(3.14)

so the term (3.13) satisfies the condition (3.8) if �iab is sym-
metric in its last two indices and α is constant. The velocity in
(3.12) is related to α and the susceptibility by v = α/χ .

B. Hydrodynamics with triangular symmetry

We now specialize to the hydrodynamics of a two-
dimensional system, which is invariant under the point group
an equilateral triangle D6. Let us first recall some useful
properties of D6. D6 has three irreducible representations:
the trivial representation 1, the sign representation 1′, and
the two-dimensional representation 2. The two-dimensional
representation is the vector representation, which is acted on
by D6 via 2×2 matrices viewed as a subgroup of O(2). What
is unique about this restriction is that the traceless symmetric
tensors [which form a two-dimensional “spin 2” irreducible
representation of O(2)] also transform as the vector represen-
tation 2 under D6. The multiplication table of irreps of D6 is
as follows:

1 1′ 2
1 1 1′ 2
1′ 1′ 1 2
2 2 2 1 ⊕ 1′ ⊕ 2

The independent invariant tensors of D6 are δi j and λi jk .
The first is inherited from the two-dimensional rotation group
O(2), while λi jk is intrinsic to D6. The components of λi jk are

(λ1)i j = −σ z
i j =

(−1 0
0 1

)
, (λ2)i j = σ x

i j =
(

0 1
1 0

)
.

(3.15)

One can check that λi jk is completely symmetric, and its trace
over any two indices is zero. Intuitively, λi jk can be seen
as converting between vector and traceless-symmetric tensor
interpretations of 2.

We will be interested in hydrodynamics where the charge
is a vector. In this case, the conservation law reads

∂tρi+∂ jJi j = 0. (3.16)

In general, Ji j can be decomposed into the trace, antisymmet-
ric, and traceless symmetric parts, which correspond to the 1,
1′, and 2 irreps of D6, respectively. For generic Ji j containing
all three irreps, the only conserved quantities are

∫
ρi.

We can use this as a starting point to build the hydrody-
namic effective field theory described in Sec. III A. The action
is

S =
∫

dtdxdy [πi∂tρi − H (πi, ρi )] (3.17)

and we take H (πi, ρi ) to be

H (πi, ρi ) = − iσ1(∂iπ j+∂ jπi − δi j (∂ · π ))

×(∂i(π j − iμ j )+∂ j (πi−iμi )−δi j∂ · (π − iμ))

− iσ2(∂ · π )(∂ · (π − iμ)) − iσ3(∂ jπi − ∂iπ j )

×(∂ j (πi − iμi ) − ∂i(π j − iμ j ))

− αμiλi jk∂ jπk . (3.18)

The first three terms in H (πi, ρi ) are the terms of (3.9) for
each irrep of the triangular point group. The last term is a
dissipationless contribution, which is possible because λi jk is
symmetric in all of its indices. After making the identifica-
tions D1 = 2σ1/χ , D2 = σ2/χ , D3 = 2σ3/χ , and v = α/χ ,
the Hamiltonian terms correspond to the constitutive relation

Ji j = vλi jkρk − D1 (∂iρ j+∂ jρi − δi j (∂ · ρ))︸ ︷︷ ︸
2

− D2 (∂ · ρ)δi j︸ ︷︷ ︸
1

−D3 (∂ jρi − ∂iρ j )︸ ︷︷ ︸
1′

. (3.19)

This leads to the equation of motion

∂tρi+vλi jk∂ jρk − (D1+D3)∂2ρi − (D2 − D3)∂i(∂ · ρ) = 0.

(3.20)

From the effective action we can show that the two-point
correlation functions Ci j (x, t ) = 〈ρi(x, t )ρ j (0, 0)〉 are the
Green’s functions for the equations of motion (3.20). Let us
consider a simplified situation where D2 and D3 are equal so
the last term of (3.20) vanishes, and let D = D1+D3. We solve
for Ci j in Fourier space, where (3.20) takes the form

(−iωδil − ivkkλikl+Dk2δil )Cl j = 0. (3.21)

This can be interpreted as an eigenvalue equation for the
matrix −vkkλkil − iDk2δil with eigenvalue ω. The eigenvalues
are ω = −iDk2 ± vk with corresponding eigenvectors

u+ =
(

sin θ
2

cos θ
2

)
, u− =

(
− cos θ

2

sin θ
2

)
(3.22)

where θ is the angle between 
k and the x axis. The full solution
to (3.21) in k space is

Ci j (
k, t ) = c+
j u+

i e−iω+(k)t+c−
j u−

i e−iω−(k)t . (3.23)
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The initial condition in k space is Ci j (
k, t = 0) = δi j , which sets c+
j = u+

j , c−
j = u−

j . Therefore we have

Ci j (
k, t ) = e−Dk2t

(
cos vkt − i cos θ sin vkt i sin θ sin vkt

i sin θ sin vkt cos vkt+i cos θ sin vkt

)
. (3.24)

We will use this Green’s function to diagnose the presence
of T-broken hydrodynamics in our numerical simulations in
Sec. V.

Lastly, let us remark on the hydrodynamic stability of this
theory. Assuming locality, the leading-order expression for �

(defined in Sec. III A) is

� = F (ρiρi, λi jkρiρ jρk ). (3.25)

Hence, the leading-order terms in μi are

μi = b1ρi+b2λi jkρ jρk+b3ρiρ jρ j+ · · · . (3.26)

where b1,2,3 denote ρ-independent constants. The power
counting for [π ] and [ρi] follows along the same lines as
(2.11). If b2 �= 0 (note that then b3 �= 0 is required for sta-
bility purposes), then there are marginal nonlinearities in this
theory. While we do not know the ultimate impact of these
nonlinearities on the nature of the hydrodynamic fixed point,
it is likely that they are not so important in practice: Even
in the two-dimensional Navier-Stokes equations where such a
nonlinearity is marginally relevant, its effects are rather weak
in practice (e.g., one uses two-dimensional hydrodynamics
routinely to model experiments!).

C. Holomorphic conserved charges

It is interesting to examine the special case where the
current Ji j = λi jkJk is restricted to live in the vector represen-
tation. In this case, the conservation law reads

∂tρi+λi jk∂ jJk = 0. (3.27)

Applying (3.4), the conserved quantities Q[ f ] satisfy

λi jk∂ j fk = 0. (3.28)

Expanded out using (3.15), the fi obey

−∂x fx+∂y fy = 0

∂x fy+∂y fx = 0 (3.29)

which are the Cauchy-Riemann equations for fi. It follows
that any holomorphic function f (z) yields a corresponding
conserved quantity. We can identify an infinite generating
set of conserved quantities as coming from fn(z) = zn and
f̃n = izn for n a nonnegative integer. We will refer to these
conserved quantities as holomorphic moments.

While the existence of an infinite family of conserved
quantities may at first seem fine tuned, these can in fact
emerge naturally as “quasiconserved” quantities in the sense
of [27]. Suppose the microscopic dynamics enforced the con-
servation of D = ∫


r · 
ρ and L = ∫

r×
ρ. These correspond

to the holomorphic functions f (z) = z and f (z) = iz, respec-
tively. In order for D and L to be conserved, the continuity
equation must take the form of (3.27) within linearized hy-
drodynamics at leading order in the derivative expansion;
as a result, the holomorphic moments emerge as an infinite

tower of conserved quantities. However, this is only true at
leading order in linearized hydrodynamics; higher-order terms
in the hydrodynamic expansion (as well as nonlinear terms)
may cause the moments to decay. As such, they decay sub-
diffusively, in contrast to what would be expected from the
form of the continuity equation. Hence the higher holomor-
phic moments would be “quasiconserved” since they decay
parametrically slowly. The physics is similar to the situation
discussed in [27] where the existence of only finitely many
harmonic functions in two dimensions can also lead to an
infinite family of such quasiconserved quantities in fracton
hydrodynamics.

D. Other dihedral groups

The picture outlined above generalizes straightforwardly
to the case of odd dihedral groups: see e.g., [7]. In general,
for dihedral groups D2n with n odd, the two-dimensional
spin-k irreps of O(2) for k = 1, 2, . . . , n−1

2 descend to two-
dimensional irreps of D2n. The two one-dimensional irreps of
O(2) similarly descend to D2n. We denote the spin-k irreps
as 2k , and one-dimensional irreps as 1 and 1′. The ordinary
vector representation is 21, and spin-k representations can be
identified with completely traceless-symmetric tensors with k
indices. The group contains a completely traceless-symmetric
n-index invariant tensor λI , with I = i1 . . . in a multi-index
tensor. The construction of this invariant tensor parallels that
of λi jk in (5.5) and (5.6). The role of this invariant tensor is
to identify the spin-k and spin-|k − Nn| representations of
SO(2) in D2n. The multiplication table for the tensor product
of irreps descends from that of O(2) up to the identification
provided by λI [7].

For concreteness we can take n = 5 as an example. For a
charge ρi j , which is traceless-symmetric transforming in the
22 representation of D10, the general conservation law takes
the form

∂tρi j+∂kJi jk = 0. (3.30)

The presence of the invariant tensor allows for a term

Ji jk = vλi jklmρlm+ · · · (3.31)

in the constitutive relation. Because λi jklm is completely sym-
metric, this term is allowed effective field theory formalism
of Sec. III A. More generally, for such a term to appear for a
spin-k charge, we must have

Ji1...ik+1 = vλi1...ik+1 j1... jk ρ j1... jk . (3.32)

We see that the λI has n = 2k+1 indices, so this term is
only possible for odd dihedral groups D2n where the charge
transforms in the 2 n−1

2
irrep.

Something which differs between this theory and the
D6-invariant theory discussed previously is that we cannot
generalize (3.25): There is no way to contract three copies of
ρlm with λi jklm and δi j . Therefore, there is no ρ2 term in μ;
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we conclude that there are no marginal nonlinear operators
that can be added to the hydrodynamic action. Hence the
hydrodynamic theory identified above is a strictly stable fixed
point for the n = 5, 7, . . . theories.

IV. ANOMALIES

In this section, we will now explain that the drift term
(v) captured in (3.19) is in fact the consequence of a chiral
anomaly. Our discussion here will be somewhat brief, as we
only wish to explain the effect from the perspective of clas-
sical physics and hydrodynamics. A discussion of a quantum
mechanical theory with this anomaly, which closely mirrors
the recent paper [35], is contained in the Appendix.

A. Warm-up: biased random walk

As a warm-up example, we first review the hydrodynamics
of a biased diffusion process in one dimension, which arises
when we only have PT symmetry. It is known in isotropic
fluids how a hydrodynamic effective theory can capture a
U(1) chiral anomaly [6], using a more sophisticated geometric
construction than what was described in Sec. II. But one can
also understand this anomalous fluid dynamics, already at the
ideal hydrodynamic level, by a simple Hamiltonian system for
density ρ(x) with a modified Poisson bracket,

{ρ(x), ρ(y)} = ∂xδ(x − y). (4.1)

The Poisson bracket satisfies anticommutativity since

{ρ(y), ρ(x)} = ∂yδ(y − x) = −∂xδ(y − x)

= −∂xδ(x − y) = −{ρ(x), ρ(y)}. (4.2)

Now consider the Hamiltonian

H =
∫

dx
1

2
vρ(x)2. (4.3)

The Hamilton equations of motions are

ρ̇(x) = {ρ(x),H} = v∂xρ(x), (4.4)

which is precisely the hydrodynamic equation of motion
for the biased random walk at the nondissipative level. The
Poisson bracket (4.1), when quantized, appears in the commu-
tation relations of the chiral boson [42], which has an anomaly
associated to its U(1) symmetry [43].

Here and in the next subsection, the Hamiltonian and Pois-
son brackets can be read off from the hydrodynamic effective
field theory. H is identified with �, and the nondissipative
term determines the Poisson bracket. Further details on the
relation between Hamiltonian dynamics and hydrodynamic
effective field theories will be discussed in an upcoming work
by one of the authors [44].

B. Triangle fluid

The discussion for the time-reversal-breaking fluid with
triangular point group proceeds similarly. Like the biased
random walk, the hydrodynamics of this theory is anomalous.
We can see this anomaly arise at the classical level via Hamil-
tonian dynamics: a quantization of this theory is found in the
Appendix.

Here we have two conserved quantities ρx and ρy. The
Poisson brackets for these fields are

{ρi(x), ρ j (y)} = 1

a
λi jk∂kδ

2(x − y) (4.5)

where λi jk is the invariant D6 tensor described earlier. Owing
to the symmetry of λi jk , the Poisson bracket is antisymmetric
in the same way as in the biased random walk case. A new
feature in this case is the existence of a length scale a, which
is needed on dimensional grounds. The Hamiltonian is

H =
∫

d2x
1

2
av

(
ρ2

x +ρ2
y

)
. (4.6)

Note that the length scale a appears explicitly in the Hamilto-
nian as well. The Hamiltonian equations of motion are

ρ̇i = vλi jk∂ jρk, (4.7)

which reproduce the equations of motion (3.20) at the nondis-
sipative level. The structural similarities with the biased
random walk in the previous section suggest that the physics
is controlled by an anomaly similar to the that of the chiral
boson in one dimension. Indeed, in the Appendix we propose
and analyze a field theory exhibiting such an anomaly.

An unusual feature of the theory is that there is a length
scale a, which appears explicitly, both in (4.5) and (4.6). At the
classical level, we cannot say much more, as any dependence
on this length scale ultimately disappears at the level of the
equations of motion. In quantum mechanics, analysis of the
anomaly reveals that a−1 is quantized in units of L−1, where L
is the system size. This would lead to an unusual kind UV-IR
mixing, where the IR data enters into the UV commutator and
Hamiltonian. However, when interpreting an anomaly inflow
problem whereby the 2+1-dimensional anomaly is canceled
by a 3+1-dimensional bulk action, the natural bulk action to
write down suggests that a−1 is a lattice spacing. We leave a
more detailed analysis of interpreting a to future work.

V. MARKOV CHAINS

We now simulate hydrodynamics in systems with trian-
gular symmetry using classical Markov chains, and observe
compelling evidence for the anomalous hydrodynamics pre-
dicted above.

A. Some useful facts

Before describing the Markov chain, we briefly review a
few useful textbook facts about the triangular lattice. The
lattice is built out of adjacent points connected by the unit
vectors

e1 = (1, 0), e2 =
(

−1

2
,

√
3

2

)
, e3 =

(
−1

2
,−

√
3

2

)
.

(5.1)

This orientation is depicted in Fig. 1, and is quite useful due
to the identity

e1+e2+e3 = 0. (5.2)

In our Markov chain, we will place a charge on each edge e
of the lattice. The x, y components of this vector charge are
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FIG. 1. The triangular lattice we used in our simulation. The directions and colors of the arrows represent the positive directions and
different species of the charges. The blocks with different colors represent different kinds of gates and the charges on which they are acted.
Note that although in this figure, gate B and gate C are acted on only one species of charges, they actually also act on all species of charges in
a way that preserve the triangular symmetry.

given by (
qe

x, qe
y

) = qeei, (5.3)

where ei is the orientation of that particular edge using the
conventions of the figure. Our Markov chains will only con-
serve the two quantities

Qx,y =
∑

edges e

qe
x,y. (5.4)

There are two natural ways to find the tensor λi jk , which
are natural to find using the isomorphism between the groups
D6 and S3. One finds that

λi jk = 2

3

∑
σ∈S3

ei,σ (1)e j,σ (2)ek,σ (3), (5.5)

as well as

λi jk = 4

3

3∑
a=1

ei,ae j,aek,a. (5.6)

These identities will give us useful clues as to where the
anomalous hydrodynamics will arise in our simulations.

B. Details of the Markov chains

We take a triangular lattice with periodic boundary con-
ditions, and place a vector charge on each edge of the
lattice, as shown in Fig. 1. The allowed values of charges
are q = 0,±1, . . . ,±4 (the precise value 4 here is not too
important for what follows).

The update rules of the Markov chain are best described
pictorially, as shown in Fig. 1. We shortly provide more de-
tails. First, we note the big picture: In each time interval,
we randomly act with one of three different kinds of “gates”
(which replace charge configurations on nearby edges with
other configurations, in a way that respects the conservation
laws), labeled A/B/C. The number of gates applied during
each time interval is extensive: on an L×L lattice we apply
L2 gates per time step, drawn uniformly at random from the
possibilities described above.

Gate A acts on a triangular plaquette of either orientation
up or down. Let (q1, q2, q3) denote the values of charges on
each of the three edges of the lattice. Then gate A will, with
uniform probability, replace this configuration with another
one of the form (q1+c, q2+c, q3+c), subject to the constraint
that |qi+c| � 4. This conserves both the x and y components
of charge, as is seen straightforwardly using (5.2).

Gate B acts on three adjacent edges of the same orientation,
and randomly replaces the charge configuration (q1, q2, q3)
on these three edges with a different one, subject to the con-
straints that charges are at most ±4, and that q1+q2+q3 is
unchanged.

Gate C acts on two adjacent edges of the same orientation,
and further oriented along the direction of the edge ei. The
update rule here is that whenever the absolute value of charge
to the left (as defined by the edge at the tail of the orientation
vector ei) is larger than the charge at the right, the two charges
are swapped with probability 1

8 (qleft − qright ).
Let us first prove that this Markov chain has the desired

spacetime symmetry group. It is obviously invariant under
120◦ rotation. Parity symmetry is a bit more subtle: The de-
sired parity transformation turns out to be (x, y) → (x,−y),
which (assuming the origin is a lattice point) effectively flips
e2 and e3 – again, the update rules are clearly invariant, as is
importantly λi jk .

In contrast, the transformation (x, y) → (−x, y) sends
e1 → −e1, e2 → −e3, e3 → −e2—this is not a symmetry of
the theory. The reason is that if e flips orientation, Gate C
also “reverses” and causes large charges to move left, rather
than right. (In contrast, Gates A and B are unchanged, and
the change in coordinates of any gates are not important
since the update rules are discrete-translation invariant.) We
conclude based on this observation that without Gate C, this
Markov chain is invariant under the full hexagonal symmetry
group D12 and is time-reversal invariant, while when Gate C
is included, the chain has manifest D6 invariance but is only
invariant under the combined IT-symmetry of inversion and
time-reversal. These are precisely the desired properties.

Next, we prove that the stationary distribution (up to con-
servation laws) of this Markov chain is uniform: namely, all
microstates are equally likely to be found. This is a very useful
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property since we can easily sample from this distribution by
simply initializing the chain in a uniformly random config-
uration: we can then safely evaluate correlation functions of
the form 〈ρi(x, t )ρ j (0, 0)〉 by simply running the chain for
time t and (after averaging over realizations, and space-time
translations) looking at the average product of charges on two
sites. The proof proceeds by showing that for any microstate
of the system, we are just as likely to transition into that state
as to transition out of it. This reversibility holds even when
we fix the location of Gate A or B, so clearly the chain as a
whole is also time-reversal symmetric under Gates A and B.
Moreover, Gates A and B cannot admit a nonuniform (within
fixed charge sector) stationary distribution: For each of these
gates, the transition matrix (restricted to the sites the gate
acts on) has a single non-null vector, which is uniform. Since
using sufficiently many gates we can connect all microstates
in the same charge sector to each other, we deduce that the
unique many-body stationary distribution for Gates A and B
is uniform.

Since Gate C breaks time-reversal symmetry, we need to
consider the full microstate to prove that the transition rates
in and out are equal. Following [29], consider building a
cycle (closed loop) on the lattice by starting with any edge e,
and then appending the edge of the same orientation directly
next to it (oriented along the appropriate ei). Since the lattice
is finite this process must terminate: call the resulting cycle
� = (e1, e2, . . .). Trivially, we have the following telescoping
sum identity: ∑

i

(qei − qei+1 ) = 0, (5.7)

where (if the cycle has length N) we identify e1 = eN+1.
Observe that Gate C will flip charges with probability propor-
tional to qei − qei+1 only when that difference is positive, with
a rate proportional to that difference. So the total transition
rate out of this microstate (coming from Gate C acting along
this cycle) is proportional to the sum of positive terms only in
(5.7),

Pout = 1

8N

∑
i

(qei − qei+1 )�(qei − qei+1 ), (5.8)

with � the step function. The prefactor arises from the fact
that we are equally likely to act with Gate C anywhere along
the cycle, and this calculation assumes that no other gates
will act anywhere. The transition rate into this microstate,
on the other hand, arises from places where qei+1 > qei , since
whenever this happens, we could (in the previous time step)
have been in a state where those charges were flipped. The
total transition rate into our microstate is then

Pin = 1

8N

∑
i

|qei − qei+1 |�(qei+1 − qei ). (5.9)

We clearly see that Pin = Pout, which ensures that the uniform
distribution is stationary [29,45].

C. Numerical results

We now show the numerical results of large-scale simu-
lations of these Markov chains. The probabilities of acting
gate A, B, C are 1/9, 2/9, and 2/3 respectively. We first

look for evidence of the sound wave predicted in (3.20). The
propagating wave can be directly seen from the correlation
function Ci j (x, y, t ) = 〈ρi(x, y, t )ρ j (0, 0, 0)〉. In Fig. 2, we
plot Ci jea,iea, j with the basis vectors ea defined in (5.1). For
Ci jei,1e j,1, there is a propagating wave moving in the negative
x direction; hence, the other two values of a return waves
propagating at relative 120◦ angles.

In Figs. 3(a) and 3(b), we show that the quantitative struc-
ture of the correlation functions in this propagating wave is
consistent with our prediction in (3.24). To extract the dis-
sipative exponent in the presence of a propagating wave is
a bit more subtle. Following [29], we calculate a discretized
version of

g(t ) ≡
∑

i j

∫
d2x |Ci j (
x, t )|2 ∼ t−2/z. (5.10)

Here z is the dynamical critical exponent of the theory. For our
system, z = 2 at the hydrodynamic fixed point within linear
response theory, and we did not see noteworthy deviations
from that prediction. Indeed, we find z ≈ 2 in the numerical
results shown in Fig. 3(c).

VI. DISCUSSION

In this paper, we have introduced the anomalous hydro-
dynamics of a theory with vector conserved charge and D6

symmetry in 2+1 dimensions. Classical Markov chain simu-
lations have demonstrated that this anomalous hydrodynamics
indeed arises in an entirely classical setting, much like the
biased random walk. The effective field theory approach we
described allows one to generalize these findings to other
point groups, dimensions, and irreducible representations for
conserved densities.

The anomaly of this theory with triangular point group
appears to be somewhat unusual. In conventional field theory,
anomalies could not have existed in even spatial dimensions,
simply as a consequence of rotational symmetry. Even at the
classical level, the only “anomalous” terms one could write
down involve Levi-Civita tensors, and there is no way to
suitably contract indices in 2+1 dimensions. For the vector
conserved charge, this issue has been avoided due to the
occurrence of third-rank invariant tensor λi jk . By dimensional
analysis, we found an intrinsic length scale arises when an-
alyzing the anomaly, the consequences of which we expect
to be invisible at the classical level due to its cancellation in
the equations of motion. Quantum mechanically, this could
arise from a UV length scale typical of foliated quantum field
theories [46]. Curiously, despite being related to a foliated
field theory, the quantum mechanical theory analyzed in the
Appendix does not exhibit fractonic behavior along the lines
of [46], instead hosting holomorphic conserved charges as
described in Sec. III C. The somewhat unexpected connection
between this theory and foliated quantum field theory raises
the question of what other (nonfractonic) phenomena could be
captured within the latter framework. Alternatively, the length
scale could be tied to the size of the system, which would lead
to a more subtle manifestation of the UV-IR mixing that arises
in theories with exotic symmetry [30–38]. Understanding the
length scale a is also interesting, because anomaly coefficients
(in this case proportional to a−1) are RG invariant, which is in
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FIG. 2. The propagating wave implied by the anomalous coefficient in hydrodynamics is captured in numerical simulations of
Ci j (x, y, t ) e(a)

i e(a)
j . From top to bottom, each row depicts this correlator for a = 1, a = 2, a = 3 respectively. The columns of this figure rep-

resent different times: from left to right, t = 0, t = 120, t = 240. The origin (0,0) is always marked with an X in the plots for nonzero t as a
guide to the eye. Simulations here were done with 50×50 unit cells in the lattice.

tension with the naive hydrodynamic scaling dimensions of
operators in our classical field theory. We hope that further
analysis on this, and other, anomalous theories in 2+1 dimen-
sions, clarifies the situation in the coming years.
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APPENDIX: LAGRANGIAN FREE FIELD
THEORY WITH TRIANGULAR ANOMALY

AND 3+1D ANOMALY INFLOW

In this Appendix, we describe a noninteracting field theory,
which exhibits the triangular chiral anomaly described in the
main text.

1. Warm-up: chiral boson

We begin, as before, with a brief review of the chiral
boson with anomalous U(1), following Appendix A of [35].
Consider a 1+1d system described by the real-time action

S = N

4π

∫
dxdt [∂tφ∂xφ − v(∂xφ)2]. (A1)
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FIG. 3. [(a), (b)] Confirmation of the triangular hydrodynamic theory by studying the particular structure of the correla-
tion function Ci j (k, t ), with kx = k cos θ and ky = k sin θ . For given |k| and t0, the θ dependence of Ci j is given in (3.24)
ImCxx (
k, t0) = ImCxx (θ, |k|, t0 ) ∝ cos(θ ), ImCxy(θ, |k|, t0 ) ∝ sin(θ ). The black lines are the theoretical predictions, while the blue dots come
from numerical simulations, which were done with 50×50 unit cells in the lattice, at time t0 = 4, |k| = 8π/L ≈ 0.16π . (c) Algebraic decay in
g(t ). The dashed line ∼ t−1.01, which is close to the linear response exponent 2/z = 1. Simulations were done with 100×100 unit cells in the
lattice.

Here φ is a compact scalar, so φ ∼ φ+2π . One can straight-
forwardly derive the equations of motion as

∂t (∂xφ)+∂x(∂tφ − 2v∂xφ) = 0, (A2)

which reduces to

∂tρ − v∂xρ = 0 (A3)

after making the identification ρ ∼ ∂xφ. We see that this ac-
tion reproduces the physics of the biased random walk, at
least within linear response. The nontrivial Poisson bracket
(in the classical limit) is encoded via the mixed first term in
the action.

Let us now examine the symmetries of the action, which
will allow us to justify identifying ρ, a conserved charge, with
∂xφ. The first symmetry we can consider is the shift symmetry
of φ �→ φ+α. The Noether current for this symmetry can be
found via the usual procedure of allowing α(x) to be space-
time dependent. The corresponding change of the action is

δS = N

4π

∫
dxdt ∂tα∂xφ+∂tφ∂xα − 2v∂xα∂xφ

= N

4π

∫
dxdt 2∂tα∂xφ − 2v∂xα∂xφ

=
∫

dxdt jt∂tα+ jx∂xα (A4)

so we can identify the current as

ρ = N

2π
∂xφ, J = −v

N

2π
∂xφ. (A5)

The conservation equation reproduces the equation of mo-
tion. We can couple the current to a background gauge field
by adding to the action a term − ∫

ρAt+JAx, and include a∫
(At − vAx )Ax term for convenience. The full action is

S[A] = N

4π

∫
dxdt [∂tφ∂xφ − v(∂xφ)2

− 2∂xφAt+2v∂xφAx+(At − vAx )Ax]. (A6)

This action is not invariant under the gauge transformation
φ �→ φ+α, A �→ A+dα. The action changes by

δS[A; α] = N

4π

∫
dxdt α(∂xAt − ∂t Ax ). (A7)

This lack of gauge invariance signals an anomaly. The
anomaly can be canceled by a bulk Chern-Simons theory
(which describes an integer quantum Hall state). Explicitly,
this can be shown as follows. Consider the Chern-Simons
action

Sbulk[A] = N

4π

∫
dxdydt εαβγ Aα∂βAγ (A8)

defined on on the region y � 0. Under a gauge transformation
Ai → Ai+∂iα, the action changes by

δSbulk[A; α] = N

4π

∫
dxdydt εαβγ ∂αα∂βAγ

= N

4π

∫
dxdydt ∂α (εαβγ α∂βAγ )

= N

4π

∫
dxdt εyβγ α∂βAγ

= N

4π

∫
dxdt α(∂t Ax − ∂xAt ) = −δS[A; α].

(A9)

So the bulk Chern-Simons theory (A8) together with the
boundary (A6) is gauge invariant. Hence, the bulk Chern-
Simons theory cancels the anomaly of the boundary via
anomaly inflow.

2. Triangular model

We now consider a 2+1-dimensional system given by real-
time action

S = N

4πa

∫
dxdydt ∂tφiλi jk∂ jφk − v(λi jk∂ jφk )2 (A10)

where φi is a two-component compact boson transforming
as a vector under the triangle point group, and a is a length
scale, which is (as of now) undetermined. There is again a
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shift symmetry φi → φi+αi for which we can compute the
Noether current by allowing αi(x) to be spacetime dependent.
The corresponding change of the action is

δS = N

4πa

∫
dxdydt ∂tαi∂tαiλi jk∂ jφk

+∂tφiλi jk∂ jαk − 2vλi jk∂ jφkλilm∂lαm

= N

4πa

∫
dxdydt 2∂tαiλi jk∂ jφk − 2v∂ jαi(λ jimλmlk∂lφk )

=
∫

dxdydt ρi∂tαi+Ji j∂ jαi (A11)

so we can identify the conserved charge and current as

ρi = N

2πa
λi jk∂ jφk, Ji j = −v

N

2πa
λi jmλmlk∂lφk . (A12)

The continuity equation

∂tρi+∂ jJi j = 0 (A13)

is the equation of motion. Note that

Ji j = −vλi jmρm, (A14)

so this action reproduces the (ideal hydrodynamic) physics of
the triangle fluid described in the main text.

Let us now clarify the issues surrounding compactness of
φi, the normalization of the action (A10), and quantization of
the charges ρi. For consistency with the triangular point group
symmetry, we take space to be the torus R2/{�1,�2} where
�1 = (L, 0) and �2 = (L/2, L

√
3/2). This torus carries a

natural action of the triangular point group. Similarly, since
φi transforms as a vector, we identify

(φx, φy) ∼ (φx+2π, φy) ∼ (φx+π, φy+π
√

3). (A15)

Having established the target space torus, we can now con-
sider winding configurations of φi. There are four integer
parameters, which characterize the possible windings up to
homotopy; representative winding configurations are given by(

φx

φy

)
= 2π

L

(
n1+ n3

2 − 2n1−4n2+n3−2n4

2
√

3
n3

√
3

2 − n3
2 +n4

)(
x
y

)
(A16)

with n1, n2, n3, n4 ∈ Z. Applying (A12), the total charges are

Qx =
∫

ρx = (−n1 − n3+n4)N
L
√

3

2a

Qy =
∫

ρy = −n1+2n2+n3+n4√
3

N
L
√

3

2a
. (A17)

We take

L
√

3

2a
∈ Z, (A18)

for reasons which will become clear when we discuss anomaly
inflow. Interestingly, for a a microscopic length scale, the min-
imal winding configurations have charge, which scale with
system size. However, the requirement for the theory to be
well posed is not as strong, and would allow for a ∼ L. We see
that the normalization of (A10) ensures that Q · ea are integer
valued.

As before, we can couple the theory to a background
gauge field for the symmetry. We add to the action a term
− ∫

ρiAti+Ji jAi j and include a
∫

λilm(Ati − vλi jkA jk )Alm term
for convenience. The action is

S[A] = N

4πa

∫
dxdydt [∂tφiλi jk∂ jφk − v(λi jk∂ jφk )2

− 2λi jk∂ jφkAti+2vλi jmλmlk∂lφkAi j

+λilm(Ati − vλi jkA jk )Alm]. (A19)

Under a gauge transformation φi �→ φi+αi, Ati �→ ∂tαi,
Ai j �→ ∂ jαi, the action changes as

δS[A; α] = N

4πa

∫
dxdydt αi(λi jk∂ jAtk − λi jk∂t A jk ).

(A20)

Like before, (A20) signals an anomaly. To motivate the
bulk theory, which cancels this anomaly, let us turn to the
Markov chain picture of the anomalous triangle fluid. Recall
that the Markov chain consists of three species of charges (one
for each type of edge on the triangular lattice) and three types
of gates: Gate A, which couples the three species of charges;
Gate B, which implements a random walk for each species of
charge and leads to diffusion; and Gate C, which introduces a
bias to the random walk. The key point is that, ignoring for the
moment Gate A, the Markov chain resembles three separate
infinite stacks of biased random walks, arranged to form a
triangular lattice. Making use of the analogy between the
biased random walk and the chiral boson, we can conjecture
that a bulk formed from a triangular stacking of quantum Hall
states (described by Chern-Simons theory) should cancel the
anomaly.

We now make the previous statements precise. The proce-
dure for defining theories with a “stack” (foliation) structure
was laid out in [46]. Consider first a toy example of a stack
of Chern-Simons theories stacked such that the normal vector
points along the y direction, while the chiral edge modes prop-
agate along the x direction. Following [46], the appropriate
field theory is

S ∼
∫

A ∧ dA ∧ dy

a
(A21)

where dy is the coordinate one-form in the y direction and a
is a length scale, which represents the spacing between the
stacks. For now, we leave the normalization undetermined; it
will later be fixed by the anomaly matching condition. Now,
consider three such stacks of Chern-Simons theories, stacked
such that the chiral edge modes in the xy plane boundary
propagate along the ea directions. We therefore have

Sbulk ∼
3∑

a=1

∫
Aa ∧ dAa ∧ fa

δ

dxδ

a

∼
3∑

a=1

∫
dxdydzdt

1

a
εαβγ δAa

α∂βAa
γ fa

δ (A22)

where fa
A = εBAea

B are vectors orthogonal to the triangular lat-
tice vectors ea. The three Aa gauge fields are not independent;
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we make the identification

Aa
α =

∑
A=x,y

AαAea
A (A23)

so that
3∑

a=1

Aa = 0. (A24)

In the above and what follows, we use capital letters A, B, . . .

to denote indices, which only take values in x, y, lowercase
letters i, j, k, . . . to denote all spatial indices, and Greek letters
α, β, . . . to denote spacetime indices. Now we can make use
of the identity (5.6) to rewrite the action as

Sbulk = N

4πa

∫
dxdydzdt εαβγ DλABCAαA∂βAγ BεCD, (A25)

where we have fixed the normalization of Sbulk to ensure that
the bulk cancels the anomaly of the boundary. To see that this
is the case, consider the bulk action defined on a region z � 0.
Upon a gauge transformation AαA → AαA+∂ααA, the action
changes by

δSbulk = N

4πa

∫
dxdydzdt εαβγ DεCDλABC∂ααA∂βAγ B

= N

4πa

∫
dxdydzdt ∂α (εαβγ DεCDλABCαA∂βAγ B)

= N

4πa

∫
dxdydt εzβγ DεCDλABCαA∂βAγ B. (A26)

In the εzβγ D, only β or γ can be t ; expanding out these
possibilities gives

δSbulk = N

4πa

∫
dxdydt εEDεCDλABCαA∂t AEB

− εEDεCDλABCαA∂E AtB

= N

4πa

∫
dxdydt αAλABC (∂t ACB − ∂CAtB), (A27)

which is the same anomaly that occurred in the triangle
fluid.

Finally, let us return to the issue of charge quantization. In
arguing for quantization of charge in (A17), we claimed that
L
√

3
2a is integer valued. Here we see that an interpretation of

this quantity is simply the number of layers of Chern-Simons
theories, which comprise the stack in (A22), which must be
an integer. Interestingly, this would imply that the minimal
winding configurations (A16) carry charges, which scale with
the system size. Such configurations have energy scaling as
1
a , similar to the field theories discussed in [31,32]. However,
in (A10) a simply plays the role of a length scale required
by dimensional analysis rather than a lattice regularizer, and
so no a → 0 limit is needed. Indeed, there seems to be no
formal obstruction to taking a ∼ L so long as L

√
3

2a is integer
valued. This would lead to a rather unusual kind of UV-IR
mixing, where the UV action contains an anomalously small
1/L prefactor.
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