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Bound states and controllable currents on topological insulator surfaces
with extended magnetic defects
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We show that a magnetic line defect on the surface of a topological insulator generically supports two distinct
branches of spin-polarized and current-carrying one-dimensional bound states. We identify the components of
magnetic scattering that lead to the bound states. The velocity, and hence spin texture, of each of those branches
can be independently tuned by a magnetic field rotated in the plane of the surface. We compute the local net
and spin-resolved density of states as well as spin accumulation and charge currents. The net spin polarization
and current due to both bound and scattering states vary stepwise as a function of the electrostatic and magnetic
components of the scattering potential, and can be tuned by an applied field. We discuss stability of the bound
states with respect to impurity scattering.
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I. INTRODUCTION

Spin-momentum locking of the surface states in three-
dimensional (3D) topological insulators (TIs) protects them
from backscattering except when the perturbing potential
breaks time-reversal symmetry [1–3]. Common belief is that
for nonmagnetic scattering the salient features of these states,
such as the Dirac spectrum, remain intact. However, reso-
nance (nearly localized) states which appear in the vicinity of
individual impurities [4–8] have been observed in experiments
[9–11]. At finite impurity density, for randomly distributed
scattering centers, the entire low-energy part of Dirac disper-
sion of the surface topological states may be modified due to
hybridization with the impurity resonances [12,13]. Impurity
signatures appear not only in the total density of states, but
also in the spin textures arising from the spin-momentum
locking [4].

Multiple scattering on impurity clusters may almost lift
the topological protection [14], generating gaplike features for
quasiregularly arranged impurity centers. These observations
raise the question of whether spatially extended defects [11]
can be used to control spin textures, or spin and charge cur-
rents at topological surfaces. In this paper we show how this
can be achieved in a minimal model of extended defects.

The simplest such defect is a line [15–19], realized
experimentally near surface steps [20,21]. Both localized
[one-dimensional (1D) states propagating along the line] and
scattering states have been studied for electrostatic potential
on a line or strip [15,17,22,23], while scattering states were
also investigated for a magnetic strip [24]. We consider the
combined effect of electrostatic and magnetic scattering on
a line defect, and compute the resultant spin textures and
charge currents, sketched in Fig. 1. If magnetic scattering is
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due to the adsorbed atoms with classical magnetic moments
we show that the in-plane magnetic field, that orients those
moments, controls magnetization and net charge current. The
current varies stepwise with the field direction, with the values
determined by the chemical potential position in the Dirac
cone. These results are parametrically stable with respect to
random pointlike impurity scattering. Our results open the
possibility of using line defects at surfaces of 3D topological
insulators to create current and magnetization channels.

II. MODEL

We model the surface states by a Dirac Hamiltonian in spin
space [1,2], and include a line defect with both magnetic and
nonmagnetic scattering,

H = v(σ × k̂)z + U01δ(x) +
∑

i=x,y,z

Uiσiδ(x). (1)

Here U0 is the electrostatic potential, Ui’s describe magnetic
scattering, σi are the Pauli matrices in spin space [25], and k̂ is
the momentum operator. The established agreement between
the results from a 3D-based description of the surface states
[5,7,8,23] and the effective surface models [4,6,22] justifies
this choice of the Hamiltonian. Since Eq. (1) is written in the
long-wavelength approximation near the � point for typical
tetradymite topological insulators [1–3], the δ-function ap-
proximation is valid for the potentials that decay on the scale
l0 ∼ v/EG, where EG is the bulk energy gap. The first term
above yields helical linearly dispersing states in the absence of
scattering. We assume ferromagnetic alignment of the spins at
the defect line [26,27], but allow for rotation of the moments
by an external in-plane field, thus changing the values of Ui’s.

It is instructive first to perform a symmetry analysis of
Eq. (1). The momentum along the defect, ky, is a good quan-
tum number, and can be used to classify the eigenstates. In
Eq. (1) the first term is both particle-hole and time-reversal
symmetric. U0 breaks the particle-hole symmetry, while Ui
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FIG. 1. Topological insulator with a line defect at the surface
supports localized (shaded red) states in addition to scattering elec-
trons. Both in-plane and out-of-plane spin accumulation and charge
currents parallel to the defect line result from magnetic scattering,
and their magnitudes can be controlled via an external magnetic field.

breaks time-reversal symmetry of the Hamiltonian. The latter
allows spin accumulation and charge currents, but those are
further constrained by symmetry. When only magnetic scat-
tering due to Ux is present, the mirror symmetry about the
x axis is broken while the mirror symmetry about the y axis
is intact. Thus, we expect the spin components sy and sz to
change sign across the defect, while sx remains continuous.
On the other hand, when only magnetic scattering due to Uy is
present, the mirror symmetry about the y axis is broken while
mirror symmetry about the x axis is intact. This, combined
with translational symmetry along y, implies that sy will be
constant along the y axis, while sx and sz must vanish. Later
we will see that sy also vanishes for this case.

III. BOUNDARY CONDITIONS

The Hamiltonian has to be supplemented by the boundary
conditions at the defect line. For the linear in momentum
Dirac systems, the wave function is discontinuous across the
boundary [28,29]. The boundary conditions for scalar po-
tentials and step discontinuity were investigated in graphene
[30–32] and topological insulators [16,19,33]. Similar bound-
ary conditions arise at an edge between two surfaces on
different planes as elucidated in Ref. [18].

Direct integration of the eigenvalue equation Hψ = Eψ

[30–32] gives ψ (x) = e
∫ x

x0
Ô dx

ψ (x0), where

vÔ = −iσy[E − (U01 + U · σ )δ(x) − vσxky]. (2)

Evaluating the integral across the defect line we find

ψ (0+) = e
(U0 iσy+Uxσz+iUy1−Uzσx )

v ψ (0−) ≡ Mψ (0−), (3)

where matrix M encodes the boundary condition. In Eq. (3),
Uy appears as pure phase, and does not affect the observ-
ables, hence we set Uy = 0. In contrast, U0 rotates the spinor,
while Ux and Uz also change the magnitude of the spinor
components. This boundary condition enforces continuity of
the x component of the current, and hence satisfies particle
conservation [27,33–35]. Note that, while the general form of
the matrix M could be inferred from the current conservation
(in analogy with how it was derived for potential impurities
in Ref. [35]), Eq. (3) gives the connection between the spe-
cific components of that matrix and corresponding scattering
potentials. This is important for our subsequent analysis of
the influence of the magnetic field (see Sec. VIII). Below we
set Uz = 0 since (a) dipolar interactions favor in-plane spin
orientation; (b) out-of-plane magnetic field opens a gap in the

surface states spectrum removing low-energy extended states;
(c) we verified the absence of bound states near the defect
lines for Uz �= 0.

IV. BOUND STATES

For Ux,U0 �= 0 the Hamiltonian in Eq. (1), subject to the
boundary conditions above, supports one-dimensional states
bound to the defect of the form

ψ±(x > 0, ky) =
(

sin α±
2

± cos α±
2

)√
λ±
b

e−λ±xeikyy (4)

and

ψ±(x < 0, ky) =
(

cos α±
2

± sin α±
2

)√
λ±
b

eλ±xeikyy, (5)

where b is normalization length along y and λ± > 0 is the
inverse localization length. Imposing the boundary condition
(see Appendix A for details) gives

tan
α±
2

= η cosh η + (Ux/v) sinh η

η ∓ (U0/v) sinh η
, (6)

with η =
√

U 2
x − U 2

0 /v. In the same notation the dispersion
E± = ±vky sin α± ≡ v±ky, with the effective velocity

v±
v

= −
(

Ux ∓ U0 cosh η

U0 ∓ Ux cosh η

)
(7)

and the inverse localization length

λ± = ky cos α± = ±ky
η sinh η

(U0/v) ∓ (Ux/v) cosh η
. (8)

For |U0| > |Ux|, the same equations hold if one takes η →
|η|, and replaces hyperbolic functions by their trigonometric
counterparts. Note that the localization length diverges (λ± →
0) at long wavelengths (ky → 0).

The condition λ± > 0, combined with Eq. (8), means that
the range of existence (ky > 0 or ky < 0) for each branch is
determined by the sign of cos α±, and hence depends on Ux

and U0. In each case, the sign of v± determines whether the
branch is above or below the Dirac point. Several representa-
tive cases are shown in Fig. 2, and other arrangements of the
bound-state branches can be inferred from those, as discussed
in the caption. Since |v±| � v the bound states are always
“outside” the Dirac cone.

From the above, the dimensionless parameter characteriz-
ing the strength of the scattering is Ui/v. Below we explore
the entire range of the values for the scattering potentials,
however, it is helpful to get a qualitative feel for the mag-
nitudes involved. In Ref. [11] for Bi2Te3 the experimental
data for the scalar potential at the surface step were fit with
the local line potential of V0 = 3.8 eV. Assuming V0 has the
range comparable to the in-plane lattice constant, a ∼ 4.38 Å,
we estimate U0 � V0a ≈ 16.6 eV Å. The Dirac velocity in
Bi2Te3 is v ≈ 4 eV Å, yielding U0/v ≈ 4.1. The same authors
analyzed individual impurity resonances in Bi2Te3 for compa-
rable values of the scalar and magnetic potentials [11], and we
take that as an indication that a wide range of parameter values
can be accessed experimentally. Of course, only comparison
with detailed ab initio calculations can verify this in full, but
such calculations are beyond the scope of our discussion here.
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FIG. 2. Energy spectrum of the bounds states (purple and green
lines) for different values of U0 and Ux . We set v = 1, and denoted
the Dirac cone with a dashed line. The velocities v±, Eq. (7), have
different dependence on U0 and Ux [see (a)–(d) and (e)–(f)], and
hence can be separately tuned. In addition to the six cases shown,
there are six additional cases for a different set of values of the
potentials which yield bound states with the energies of the opposite
sign, to those above, at each ky, which we refer to as cases (a′)–(e′)
in Fig. 5.

When Ux = 0 we recover the results of Refs. [15,22], and
find two symmetric branches above or below the Dirac point,
with |v±| = v cos(U0/v) [22,36]. Magnetic scattering breaks
the symmetry between ky and −ky, selectively controlling
the sign of v± and allowed signs of ky for each branch [see
Figs. 2(a)–2(f)]. To the best of our knowledge, this behavior
has not been recognized previously.

When
√

U 2
0 − U 2

x /v = πn, both branches merge with the
Dirac cone and the bound state disappears.1 For any U0 there
exists at least one value of Ux where v+ = 0 or v− = 0,2

generalizing the condition U0 = (n + 1/2)π [36] for Ux = 0.
The inverse localization length is λ± � ky

√
1 − (v±/v)2,

and hence the states away from the Dirac point with a smaller
velocity are better localized. For the bound states described
by the spinors in Eqs. (4) and (5), the expectation value of the
spin component sy = 0, while sx ∝ λ±v±. The z component
changes sign across the defect line, i.e., has opposite signs
for x > 0 and x < 0, as expected from our symmetry analysis
above, and we find the magnitude sz ∝ λ2

±/ky. Thus, flatter
dispersion results in stronger out-of-plane polarization. For
Ux = 0, the branches are symmetric, and hence only for the
time-reversal broken states such as in Figs. 2(a)–2(f) and the
corresponding complementary cases discussed in the caption
we observe a net polarization.

1This condition can be shown to emerge naturally if one treats the δ-
function potential as a limiting case of a defect strip with finite width
and considers interference of the reflected and transmitted waves at
each boundary [41,42].

2In this case interactions become important [36], and we leave this
to a future discussion.

FIG. 3. Scattering processes discussed in Sec. V.

V. SCATTERING STATES

In addition to creating the bound states the defect also
scatters the states in the Dirac continuum. The corresponding
processes are shown in Fig. 3. The energy E (k) = vk and
the momentum along the defect ky are conserved. Thus, the
quasiparticle coming towards the defect at an angle θ with the
positive x axis, with the momentum ki = k(cos θ, sin θ ), has
a reflected component with kR = (−k cos θ, k sin θ ), in addi-
tion to the transmitted component with the same momentum
ki. We label the corresponding wave functions by the subscript
1 below. It combines with the quasiparticle coming towards
the defect from the opposite side, x > 0, at an angle θ with
the negative x axis, where the incoming momentum is k′

i =
kR, with the wave functions labeled by superscript 2. Below
we determine the transmission and reflection coefficients for
these processes.

To do this we take into account that the wave functions
of the helical quasiparticles have the spinor form (i, heiϕ )T ,
where h = sgn(E ) is the helicity, and ϕ is the angle between
the direction of its momentum and the positive x axis. For
the incoming quasiparticles with momentum ki combining the
incident and reflected parts the of the wave function in the
region x < 0 gives

ψh
1 (x < 0, k, θ ) ≡ ψ1,i + Rψ1,R

= �

(
i

heiθ

)
eikyyeikxx

+ �Rh
1

(
i

−he−iθ

)
eikyye−ikxx, (9)

while in the region x > 0,

ψh
1 (x > 0, k, θ ) = T ψ1,T = �T h

1

(
i

heiθ

)
eikyyeikxx, (10)

where � = (2A)−1/2 is the normalization factor with A be-
ing the total surface area. We defined here k = (kx, ky) =
(k cos θ, k sin θ ) dropping the index i.

Note that even before computing the reflection and trans-
mission coefficients it is clear why the potential Uyσy does
not affect the physics beyond an overall phase, as is seen from
Eq. (3). For the nonvanishing reflection coefficient, there must
exist a nonvanishing matrix element of the scattering potential
between the incoming and the reflected states. However, it is
easy to verify that 〈ψi|σy|ψR〉 = 0 for all incoming angles θ .
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Consequently, this potential is reflectionless and does not lead
to new phenomena.

Utilizing the boundary condition in Eq. (3) for scattering
states, we find the reflection and the transmission coefficients

Rh
1 = − eiθ sinh η(hU0 sin θ + Ux )/v

η cos θ cosh η + i sinh η(hU0 + Ux sin θ )/v
(11)

and

T h
1 = η cos θ

η cos θ cosh η + i sinh η(hU0 + Ux sin θ )/v
. (12)

In the complementary process, for quasiparticles coming in
from x > 0 (see Fig. 3),

ψh
2 (x < 0, k, θ ) = T ψ2,T = �T h

2

(
i

heiθ

)
eik′

yyeik′
xx (13)

and

ψh
2 (x > 0, k, θ ) =≡ ψ2,i + Rψ2,R

= �

[(
i

heiθ

)
eik′

xx + Rh
2

(
i

−he−iθ

)
e−ik′

xx

]
eik′

yy. (14)

Once again, imposing the boundary conditions, Eq. (3), we
obtain the reflection and transmission coefficients

Rh
2 = − eiθ sinh η(hU0 sin θ + Ux )/v

−η cos θ cosh η + i sinh η(hU0 + Ux sin θ )/v
(15)

and

T h
2 = − η cos θ

−η cos θ cosh η + i sinh η(hU0 + Ux sin θ )/v
.

(16)
Inspection of Eqs. (11) and (12) and Eqs. (15) and (16)
reveals several important observations. First, in the absence
of magnetic scattering, Ux = 0, quasiparticles exhibit Klein
tunneling at normal incidence angles, i.e., |Rh

1,2|2 = 0, as is
expected for massless Dirac particles. When Ux �= 0, there is
a nonzero reflection probability at normal incidence.

Second, since U0 appears only in combination with the
helicity h = sgn(E ), the reflection and transmission coeffi-
cients are invariant under simultaneous transformation E →
−E and U0 → −U0. This shows that quasiparticles above and
below the Dirac point effectively feel opposite electrostatic
potentials.

For all values of U0 and Ux, the reflection probabilities
|Rh

1|2 = |Rh
2|2 for each θ . Thus, we expect no current along

the x axis. To determine whether a current flows along the
defect, we compare the reflection coefficients for the electrons
incident at angles θ and −θ . These are not equal to each other
whenever Ux �= 0. In a generic case both the magnitude and
the phase of the reflection coefficients differ for these two
angles. In the special situation of purely magnetic scattering
(U0 = 0,Ux �= 0) the reflection probability is the same for θ

and −θ , but the phases of the coefficients R differ. Therefore,
in all generality, in the presence of magnetic scattering, we
expect that the time-reversal symmetry breaking is accompa-
nied by charge currents along the defect line. In a strongly
spin-momentum-locked system such as the one we consider
here, this also results in spin accumulation. We discuss those
in Secs. VI and VII below.

VI. LOCAL DENSITY OF STATES AND
FRIEDEL OSCILLATIONS

Local density of states (LDOS) and its spin-resolved com-
ponents are accessible, at least in principle, using scanning
tunneling spectroscopies. We therefore compute their main
features below. We start with the contribution of the bound
states at a given energy ε. For each of the bound-state
branches, labeled by ±, the ith spin component of LDOS is
given by

ρb±
i (ε, x) = b

2π

∫ ∞

−∞
dkyδ(ε − v±ky) 〈ψ±|σi|ψ±〉 , (17)

where the wave functions are given in Sec. IV, and b is the
system length used for normalizing the wave functions. The
corresponding “charge” LDOS, ρb(ε, x), is obtained replacing
the Pauli matrix σi by the identity matrix, and the total LDOS
due to the bound states is the sum of the two contributions
ρb

i (ε, x) = ρb+
i (ε, x) + ρb−

i (ε, x).
Upon momentum integration ky = ε/v±, and therefore we

defined the energy-dependent inverse decay length λ
(ε)
± =

(ε/v±) cos α± in analogy with Eq. (8). If λ
(ε)
± < 0, no bound

state exists at energy ε and hence there is no corresponding
contribution to LDOS. While if λ

(ε)
± > 0, elementary integra-

tion yields

ρb±(ε, x) = 1

2π

λ
(ε)
±

|v±|e−2λ
(ε)
± |x|, (18a)

ρb±
x (ε, x) = 1

2π

λ
(ε)
±
v

e−2λ
(ε)
± |x|sgn(v±), (18b)

ρb±
z (ε, x) = − 1

2π

(λ(ε)
± )2

ε
e−2λ

(ε)
± |x|sgn(xv±). (18c)

Note that the spin-component normal to the plane changes
sign across the x = 0 line as expected from the symmetry
arguments. The sign of the spin-projected LDOS depends on
the dispersion of the bound states, v±. In cases when two
bound-state branches exist at a given energy, their respective
contributions may add (v−v+ > 0) or subtract (v−v+ < 0),
and we give examples for both situations in Fig. 4.

Scattering of the continuum states on the line defect pro-
duces Friedel oscillations in the LDOS. These oscillations are
a consequence of the interference between the incoming and
reflected waves in Fig. 3 on the same side of the defect, and
therefore are controlled by the reflection coefficients Rh

1,2, as
shown in Appendix B. We evaluate them from the general
expression

ρs
j (ε, x) = A

(2π )2

∑
i=1,2

∫ π/2

−π/2
dθ

×
∫ ∞

0
dk k 〈σ j〉i δ(ε − E (k)), (19)

where i = 1, 2 correspond to quasiparticles incident from
x → −∞ and x → ∞, respectively (see Fig. 3). At large
distances, kε |x| � 1, the integral can be evaluated analytically
and has a familiar form

�ρs(ε, x)

ρ0
= F [U0,Ux]

cos(2kε |x| + φ)

(kε |x|)3/2
, (20)
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FIG. 4. Spin-resolved LDOS ρx and ρz for ε = 0.02. (a), (c) Sin-
gle bound-state branches are for U0 = −2 and Ux = 1.4 (we set v =
1 as before). (b), (d) Two branches with opposite spin polarization are
for U0 = −1 and Ux = 0.3. We show the contribution of the bound
states ρb

i and the total LDOS ρi, including the scattering contribution.
Insets show the bound-state dispersion for the corresponding cases.

where we defined the deviation of the LDOS from the uniform
value for an unperturbed Dirac cone, �ρs(ε, x) = ρs(ε, x) −
ρ0, with ρ0 = kε/2πv, and we introduced for convenience the
momentum kε = |ε|/v. Note that the 3

2 power law for the total
LDOS is different from the 1

2 power characteristic of a two-
dimensional electron gas, and agrees with Refs. [15,17,37,38].
The corresponding spin-resolved LDOS,

ρs
x,z(ε, x)

ρ0
= Fx,z[U0,Ux]

cos(2kε |x| + φx,z )

(kε |x|)1/2
, (21)

vanishes unless Ux �= 0. Functions F, Fx, Fz and the phases
φ, φx, φz are given in Eqs. (B4), (C10) and (C15). Their
general form is not crucial for our analysis.

Note that the spin-resolved LDOS decays slower than the
net LDOS. Recall that the Friedel oscillations arise from
the interference between incident and reflected waves, and the
asymptotic form at kε |x| � 1 is dominated by near backscat-
tering. Spin-momentum locking in TIs ensures that as θ →
0, the overlap 〈ψR|ψi〉 → 0, reducing the interference ef-
fects and leading to a faster decay of ρs. At the same time
〈ψR|σx,z|ψi〉 does not vanish in the same limit, “protecting”
the 1

2 power law for ρs
x,z.

In the limit Ux � U0 and Ux � 1, |Rh
1,2| → 1 the integrals

can be evaluated exactly at arbitrary values of x to give

ρs(ε, x) = − |ε|
2πv2

J1(2kεx)

2kεx
, (22a)

ρs
x (ε, x) = sgn(Ux )

2π

ε

v2
J1(2kε |x|), (22b)

ρs
z (ε, x) = sgn(xUx )

2π

kε

v

(
J1(2kεx)

2kεx
− J2(2kεx)

)
, (22c)

where J1 and J2 are Bessel functions of first kind.
Since λ±/kε ∼ 1 for most values of U0 and Ux, at distances

larger than 1/kε the Friedel oscillations determine the LDOS.

Close to the line we evaluate the LDOS numerically, and find
that the bound states often, but not always, dominate with
the details depending on the specific values of U0 and Ux

(see Appendix D). This holds at all energies since λ± scales
linearly with ε.

Characteristic behavior of LDOS is shown in Fig. 4. As
discussed above, near the defect line the bound-state LDOS
depends on whether we have one or two branches at a given
energy, and we show the corresponding cases from Fig. 2 as
insets for reference. If only a single branch exists [Fig. 2(b)],
LDOS shows a clear exponential decay superimposed on
Friedel oscillations [Fig. 4(a)]. If there are two branches,
the LDOS values for the spin component sx ∝ v± add (sub-
tract) when v+v− > 0 (v+v− < 0), with examples in Fig. 2(d)
[Fig. 2(a)]. For v+v− < 0, since λ+ �= λ−, the more local-
ized state dominates near x = 0 and its counterpart yields
the opposite spin orientation at intermediate distances [see
Fig. 4(b)]. The situation for ρz is similar, but must incorporate
the sign change at x = 0 [see Figs. 4(c) and 4(d)]. At least in
principle these contributions to LDOS can be observed using
spin-polarized STM.

VII. SPIN ACCUMULATION AND CHARGE CURRENTS

These LDOS features lead to spatially varying spin accu-
mulation. The spin density (per unit area) at T = 0 is given by

Sx,z(x) =
∫ μ

−�

[
ρs

x,z(ε, x) + ρb
x,z(ε, x)

]
dε ≡ Ss

x,z + Sb
x,z,

(23)
where μ is the chemical potential and � is the high-energy
cutoff that we take to coincide with the top of the valence
band, � = EG/2. Complete details of the calculation are given
in Appendix E, and here we only emphasize the important fea-
tures of the results. The net contribution of the scattering states
arises from the difference between the spin accumulation due
to states below and above the Dirac point,

Ss
x,z = Ss,μ

x,z − Ss,−�
x,z , (24)

where each of the terms has the form familiar from the Friedel
oscillations (β = μ,−�)

Ss,β
x,z =

(
β

v

)2

Kβ
x,z[U0,Ux]

cos(2|βx|/v + φ̃x,z )

(|βx|/v)3/2
, (25)

with Kβ
x,z and φ̃x,z given in Appendix E. Note that the long-

range decay of each contribution goes as Ss,β
x,z ∝ |x|−3/2l−1/2

β ,
where lβ = 1/kβ = v/|β| is the characteristic length scale for
the high-energy cutoff and the chemical potential, respec-
tively.

Similarly, the cutoff in the integration of the spin accu-
mulation due to the bound states β depends on whether the
corresponding branch is below (β = −�) or above (β = μ)
the Dirac point. Naively, it would seem that the contribution
of the bound states is much more localized. However, since
the localization length diverges as ε → 0, namely λ

(ε)
± ∝ ε/v,

the low-energy bound states provide a long-range tail to the
accumulated spin density. Integration in Eq. (23) with the
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densities from Eq. (18) gives

Sb
x,z ∼ (β/v±)2

|λ(β )
± x|2 , (26)

where λ
(β )
± is evaluated at β = μ,−� depending on whether

the branch is above or below the Dirac point (see Appendix E
for full expressions). For a generic case when the bound state
is not close to merging with the scattering continuum, v± �
v, λ

(β )
± ∼ β/v, the contribution of the bound states simply

decays as |x|−2. While it is notable that the decay of the spin
accumulation due to the bound states is nonexponential, in the
regime of the validity of Eq. (25) (|x|/lβ � 1), the scattering
states still dominate as Ss

x,z/Sb
x,z ∼ (|x|/lβ )1/2, albeit not as

strongly as one would naively expect. The out-of-plane spin
density Sz creates a magnetic field, and may be detected in
magnetometry measurements such as SQuID. The in-plane
magnetization may potentially be detected optically, from the
magneto-optical measurements.

Since the current operator for Dirac systems is proportional
to the spin, e.g., jy = eδH/δky = evσx, spin accumulation
leads to net charge currents. Note Jx ∼ 〈σy〉 = 0 while the
current Jy(x) flows along sgn(Ux )̂x × ẑ, parallel to the defect,
and has a spatial profile similar to that of Sx(x) above.

The net current at T = 0 is obtained by summing over the
occupied states,

Jy = ev
∫ μ

−�

dε

∫ ∞

−∞
dx ρx(ε, x). (27)

Using Eq. (18b), and performing the spatial integration results
in energy-independent integrand sgn(v±)/2πv for the energy
integral. Thus, for μ > 0, the bound-state currents are inde-
pendent of the values of the velocity, and are sgn(v±)eμ/2π

and sgn(v±)e�/2π for branches above and below the
Dirac point, respectively. For μ < 0, each branch below
the Dirac point contributes sgn(v±)e(μ + �)/2π . Therefore,
the bound-state contribution to Jy changes stepwise with the
magnetic potential Ux as the branches evolve according to
Fig. 2.

The contribution of the scattering states is small for |Ux| <

|U0| since the scattering anisotropy in R [Eq. (11)] is weak,
and the currents due to electrons incoming at the angles θ and
−θ nearly compensate. In the opposite limit |Ux| � |U0| the
reflection coefficient |R| → 1 irrespective of θ . Performing
spatial integration over ρs

x [Eq. (18b)] and summing over filled
states, we find that the limiting value of the current due to
the scattering state is also insensitive to the magnitude of the
magnetic scattering potential, namely,

Js
y,0 = sgn(Ux )

e(|μ| − �)

2π
. (28)

This saturated (|Ux|-independent) value is evident already
at moderate values of Ux in Fig. 5, where we evaluated all
currents numerically, and found that the total current also
varies nearly stepwise with Ux. One of the values of the Ux

where the current changes nearly discontinuously, marked by
vertical dashed lines, corresponds to |Ux| = |U0| (2 in our

case). Here η =
√

U 2
x − U 2

0 /v changes from real to imaginary
and therefore the amplitude of the Friedel oscillations, as
well as spin accumulation, change abruptly (see Appendix E).

FIG. 5. Charge current along the defect showing stepwise de-
pendence on Ux . We take μ = 0.1, v = 1, � = 0.5. (a) U0 = 2;
(b) U0 = −2. (a) Inset: Sketch of the Dirac cone and bulk bands with
� and μ identified. We note the combinations of � and μ that enter
the net current (see text) and refer to the corresponding dispersion in
Fig. 2.

The other discontinuity in the current due to the scattering
states occurs when sign of bound-state velocity of one of
the branches changes. For |Ux| < |U0| we find this to happen
numerically at U �

x /v ≈ ±0.66 for values in Fig. 5. Setting
v± = 0 in Eq. (7) with |Ux| < |U0|, this corresponds to Ux ∓
U0 cos(

√
U 2

0 − U 2
x /v) = 0. Expansion to the second order in

Ux/U0 yields a close approximate solution, for the critical
value of the scattering potential when the dispersion of the
bound states becomes flat:

U �
x

v
≈ ±[−1 + √

1 − (U0/v) sin(2U0/v)]

sin(U0/v)
≈ 0.64. (29)

Thus, both the current due to the scattering states and that
due to the bound states vary discontinuously with the value
of the magnetic scattering potential Ux, and hence the total
current varies stepwise with Ux. In the next section we discuss
how this current can be controlled. It is important to note,
however, that these currents are dissipationless, and therefore
are difficult to detect in transport measurements. Instead, they
can be identified by the magnetic fields they generate or via
optical measurements.

VIII. CONTROL OF SPIN ACCUMULATION
AND CHARGE CURRENTS

One of our main findings is that magnetic scattering from
the spins aligned with the defect line (Uy) and those normal
to it in the plane (Ux) has very different consequences for
the observable spin textures and currents. This opens an av-
enue for on-demand control of the bound-state dispersion and
scattering properties of extended states. If the magnetic scat-
tering is due to the classical spins (S) on the defect, the
direction of the magnetic moments in the plane determines
the ratio Ux/Uy ∝ Sx/Sy. In the absence of in-plane magnetic
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anisotropy a magnetic field B applied along the surface con-
trols the direction of spins along the defect line Bx/By ≈
Sx/Sy. Assuming that the potential scattering is insensitive
to the applied field, and recalling that Uy is irrelevant for
physical observables, we are led to conclude that rotating the
field with respect to the line defect effectively changes the
ratio Ux/U0. This, in turn, controls the spin accumulation and
charge currents.

Now we show that such a field does not alter the electronic
properties or the boundary conditions that we used to reach
our conclusions. Orbital coupling shifts the momentum of an
electron, k → k − eA. For the field along the surface, choos-
ing the vector potential along the z axis, A = (0, 0, Bxy −
Byx), leaves kx and ky unchanged. For the same in-plane
field we must also account for the Zeeman term − gμB

h̄ σ · B,
where μB is the Bohr magneton, and g is the gyromagnetic
factor. Zeeman contribution results in shift in both k̂y and
k̂x [1,2], k̂x → k̂x + gμB

2 By and k̂y → k̂y − gμB

2 Bx. This feature
is a consequence of the linearity of the Hamiltonian in the
momentum k [see Eq. (1)]. The shift in k̂x appears as an
overall phase, so can also be gauged away by making the
choice A = ( gμB

2e By, 0, Bxy − Byx). In turn, the shift of the
momentum k̂y simply relocates the entire spectrum, including
the Dirac point, to a finite momentum. Crucially, because of
the same linearity of the Hamiltonian in k, this shift does
not affect the current operator. Since the spin structure of the
states is also insensitive to the location of the Dirac point in the
momentum space, none of the physical observables depend on
the in-plane magnetic field.

Also note that boundary condition remains unchanged
since the integral across the defect that was performed to
arrive to Eq. (3) depends only on the terms that are singular
at the defect, which orbital coupling and Zeeman term are
not. We therefore conclude that, if an applied magnetic field
is rotated in the surface plane, it tunes the value of Ux and,
consequently, the ratio Ux/U0. The maximal ratio is achieved
for the field normal to the defect line, while the field along
the defect line removes the observable effects of magnetic
component of the scattering. Hence, the discreteness of the
currents as a function of Ux, shown in Fig. 5, directly translates
into discrete jumps as a function of the field direction.

IX. DISORDER BROADENING

Since extended and bound states coexist at different ky for
the same energy E , randomly located point impurities mix
the two. We estimate the broadening of the bound states in
the Born approximation. To the second order in the scattering
potential,

� = 2π
∑

�k
| 〈ψs|V̂ |ψb〉 |2δ(ε − E (k)), (30)

where |ψb〉 and |ψs〉 are the bound-state and scattering-state
wave functions, respectively, and V̂ is the impurity potential,
which we take to be a superposition of randomly distributed
pointlike scatterers of strength V0. We find (see Appendix F
for details)

� = nimpV 2
0 |ε|

v2
F (v±/v). (31)

Here nimp is the impurity concentration. The result is intu-
itively clear as the broadening is proportional to density of
extended states available for scattering, ρ0 = |ε|/2πv2, and
the usual Born factor nimpV 2

0 . The spin-momentum locking
and other details of the states are captured solely by the
appearance of a monotonic but bounded function F (v±/v) �
π , which depends on the mismatch between v± and v [see
Eq. (F5)]. This result means that the bound states are para-
metrically well defined at sufficiently clean surfaces, under
the condition nimpV 2

0 /v2 � 1.

X. DISCUSSION AND CONCLUSIONS

We showed that linear defects with magnetic component
of scattering at surfaces of topological insulators support
spin-polarized bound states, whose signatures are accessible
by local scanning probes. Spin structure of the bound states
combines with the asymmetric scattering of the extended
quasiparticles, due to breaking of time-reversal symmetry,
and results in macroscopic spin accumulation and the flow
of nondissipative charge currents along the defect. Our most
important conclusions are that the magnetic moments of the
scattering centers along and normal to the defect line play
very different roles, and therefore varying the angle between
an external magnetic field applied along the surface and the
defect line effectively controls the strength of magnetic scat-
tering. Since the charge currents vary stepwise as a function
of the strength of magnetic scattering, the same stepwise de-
pendence will appear as a function of the field direction in the
plane.

Above we used a continuum long-wavelength Hamilto-
nian. In lattice models the bound states merge with either
valence or conduction band [23] at momenta comparable to
the size of the Brillouin zone. The resulting nonlinearity of the
dispersion will modify the values of the net magnetic moment
and the current, and wash out the sharp transitions between
the plateaus in Fig. 5, but our main conclusions remain un-
affected. Similarly, weak hexagonal modulation of the Dirac
cone changes the quantitative details but not the qualitative
behavior found here.

It is important to note that the currents we find are a feature
of the ground state, and therefore dissipationless (flow in the
absence of external bias). Consequently, they cannot be easily
measured using standard transport techniques and geometries.
Instead, these currents will be most easily accessible and
detectable via the magnetic fields they produce. In this con-
text, our work motivates studies of patterned networks of line
defects, where the desired spatial distribution of these currents
and the associated fields can be created. In this context our
work is a part of a bigger effort of defect engineering of
surface and interface properties.
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APPENDIX A: WAVE FUNCTION OF THE BOUND STATES

We look for eigenstates of the Hamiltonian (1) of the main
text, of the form

ψ (x, ky) =
(

C
D

)
eikyye−λ|x|

√
λ

b
, (A1)

where b is normalization length along y, and λ > 0 for so-
lutions to be normalizable along x. By substituting it in the
Hamiltonian we find

v

(
0 ky − λ sgn(x)

ky + λ sgn(x) 0

)(
C
D

)
= E

(
C
D

)
. (A2)

The eigenvalue for the above equation is E = ±v
√

k2
y − λ2.

For real eigenvalues E , λ < |ky|. We therefore introduce
parameters α± such that energy eigenvalue E± = ±vky sin α±
and λ± = ky cos α±. Then solving for the eigenfunctions we
obtain the wave functions in Eqs. (4) and (5). Imposing the
boundary condition [Eq. (3) of the main text] we obtain the
energy eigenvalues

E = −vky

(
Ux ∓ U0 cosh η

U0 ∓ Ux cosh η

)
, (A3)

and Eqs. (6) and (8) follow.

APPENDIX B: LOCAL DENSITY OF STATES:
SCATTERING STATES

Scattering-state LDOS is given by Eq. (19) with σi replaced
by identity matrix

ρs(ε, x) = A|ε|
(2π )2v2

∑
i=1,2

∫ π/2

π/2
dθ |ψh

i (kε, θ )|2, (B1)

where A is the area of the surface, and appears for normaliza-
tion. kε = |ε|/v and we have suppressed spatial dependence
of wave function for brevity. Sum over 1 and 2 corresponds to
particle coming in from left and right, respectively. Since the
two are not coherent, we sum the corresponding amplitudes.
For x < 0,∫ π/2

−π/2
dθ

[∣∣ψh
1 (kε, θ )

∣∣2 + ∣∣ψh
2 (kε, θ )

∣∣2]
= 1

A

[
2π + 2 Re

(∫ π/2

−π/2
dθ Rh

1e−2ikεx cos θ ie−iθ sin θ

)]
.

(B2)

It is worth emphasizing that it is the reflection coefficient R
that determines the interference between the incoming and the
outgoing states that leads to Friedel oscillations. In the limit
kε |x| � 1, the dominant contribution comes only from near
the stationary points within the integration interval. However,
Rh

1ie−iθ sin θ vanishes at θ = 0. Instead we use a general-
ized version of stationary phase approximation [43] and the
leading-order contribution is computed to be

�ρs(ε, r)

ρ0
= F [U0,Ux]

cos(2kε |x| + φ)

(kε |x|)3/2
, (B3)

where �ρs(ε, x) = ρs(ε, x) − ρ0, ρ0 = kε/2πv,

F [U0,Ux] =
√

C2
1 + S2

1

2
√

π
, φ = −3π

4
− tan−1

(
S1

C1

)
,

(B4)

C1 = −η2 sinh2 η
(
U 2

x cosh2 η + U 2
0

)(
η2 cosh2 η + U 2

0 sinh2 η
)2 , (B5)

and

S1 = −sgn(ε)
U0η sinh η cosh η

(
η2 − U 2

x sinh2 η
)(

η2 cosh2 η + U 2
0 sinh2 η

)2 . (B6)

APPENDIX C: SPIN-RESOLVED LOCAL
DENSITY OF STATES

1. Continuity of ρx and discontinuity of ρz

Note that despite the rotation and spinor magnitude change
at the defect [see Eq. (3)], ρx is continuous across the de-
fect and ρz flips direction at the defect. To demonstrate this,
we explicitly calculate 〈ψ±(x = 0−, ky)|σx,z|ψ±(x = 0−, ky)〉
and 〈ψ±(x = 0−, ky)|M†σx,zM|ψ±(x = 0−, ky)〉 for U =
U0δ(x) case. Setting Ux = 0, the wave function

|ψ±(x = 0−, ky)〉 =
√

1 ∓ sin U0

2

(
1

± cosU0
1∓sin U0

)√
λ

(ε)
±
b

eikyy.

(C1)
Then,

〈ψ±(x = 0−, ky)|σx|ψ±(x = 0−, ky)〉 = ± cosU0λ
(ε)
± /b

(C2)

and

〈ψ±(x = 0−, ky )|σz|ψ±(x = 0−, ky)〉 = ∓ sin U0λ
(ε)
± /b.

(C3)
Now we find

M |ψ±(x = 0−, ky)〉 =
(

cosU0 sin U0

− sin U0 cosU0

)(
1

± cosU0
1∓sin U0

)

×
√

λ
(ε)
±
b

eikyy

√
1 ∓ sin U0

2
(C4)

=
( cosU0

1∓sin U0±1

)√
λ

(ε)
±
b

eikyy

√
1 ∓ sin U0

2
.

(C5)

Explicit evaluation of the expectation values shows that

〈ψ±(x = 0−, ky)|M†σxM|ψ±(x = 0−, ky)〉
= ± cosU0λ

(ε)
± /b (C6)

and

〈ψ±(x = 0−, ky)|M†σzM|ψ±(x = 0−, ky)〉
= ± sin U0λ

(ε)
± /b. (C7)

Thus, we see that 〈σx〉 has remained the same across the
defect while 〈σz〉 has flipped sign. This is a consequence of
mirror symmetry about the y axis of the Hamiltonian which
the bound eigenstates have inherited.
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2. Scattering-states LDOS

Spin-resolved LDOS is defined in general in Eq. (19) of
the main text, and here we focus separately on the x and z
components.

a. Spin-resolved LDOS, ρs
x(ε, x)

We first consider ρs
x , which is given by

ρs
x (ε, x < 0)

= 2

(2π )2

|ε|
v2

∫ π/2

−π/2
Re

(
Rh

1hie−iθ e−2ikεx cos θ
)
dθ. (C8)

Recall that ρs
x is symmetric about x = 0 due to mirror sym-

metry about the y axis. In the limit kε |x| � 1, the dominant
contribution is from angles near θ = 0. Using stationary phase
approximation [43],

ρs
x (ε, r)

ρ0
= Fx[U0,Ux]

cos(2kε |x| + φx )

(kε |x|)1/2
, (C9)

where

Fx[U0,Ux] = sgn(ε)

√
C2

2 + S2
2√

π
, φx = −π

4
− tan−1

(
S2

C2

)
,

(C10)

C2 = −sgn(ε)
UxU0 sinh2 η

η2 cosh2 η + U 2
0 sinh2 η

, (C11)

and

S2 = Uxη sinh η cosh η

η2 cosh2 η + U 2
0 sinh2 η

. (C12)

b. Spin-resolved LDOS, ρs
z (ε, x)

The z components of the spin LDOS x < 0 are given by

ρs
z (ε, x < 0)

= 1

(2π )2

|ε|
v2

∫ π/2

−π/2
2 Re

(
cos θRh

i e−iθ e−2iεx cos θ/v
)
dθ.

(C13)

Recall that ρs
z is antisymmetric about x = 0 due to mirror

symmetry about the y axis. In the limit kε |x| � 1 the decay
law for ρs

z is similar to ρs
x ,

ρs
z (ε, r)

ρ0
= Fz[U0,Ux]

cos(2kε |x| + φz )

(kε |x|)1/2
, (C14)

where

Fz[U0,Ux] =
sgn(x)

√
C2

3 + S2
3√

π
,

φx = −π

4
− tan−1

(
S3

C3

)
, (C15)

C3 = − Uxη sinh η cosh η

η2 cosh2 η + U 2
0 sinh2 η

, (C16)

and

S3 = −sgn(ε)
UxU0 sinh2 η

η2 cosh2 η + U 2
0 sinh2 η

. (C17)

FIG. 6. Ratio of LDOS due to scattering and bound states at
x = 0 and at ε = 0.02 when potentials U0 and Ux are varied. White
space indicates absence of any bound states above Dirac point. v = 1
and EG = 1.

In the main text, we stated that the Friedel oscillations in spin-
resolved LDOS decay slower that LDOS. Equations (C9) and
(C14) explicitly show this behavior.

APPENDIX D: COMPARISON OF BOUND
AND SCATTERING STATES

In Fig. 6, we show the ratio of contribution to LDOS from
scattering and bound states at x = 0. When bound states exist,
their contribution is comparable, or even dominant, over most
of the parameter space. As an illustration, in Fig. 7(a), we
have chosen potentials such that bound-state LDOS contribu-
tion dominates, while in Fig. 7(b) we have chosen them to
show comparable bound- and scattering-state contributions to
LDOS.

APPENDIX E: CHARGE CURRENT AND SPIN
ACCUMULATION DENSITY

In this Appendix we compute the current density and spin
accumulation for both bound and scattering states. In the limit
|Ux|/v � |U0|/v � 1 we obtain some exact results.

FIG. 7. Local density of states at ε = 0.02 when potentials are
set to (a) U0/v = −1.0, Ux/v = −0.5 and (b) U0/v = 3.0, Ux/v =
1.0, and �ρs = ρs − ρ0 where ρ0 = |ε|/2πv2. The red rectangle and
triangle indicate where in parameter space of Fig. 6 U0 and Ux are
located. v = 1 and EG = 1.
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1. Bound states

a. Spin accumulation Sb
x and current density J b

y

As discussed in the main text, the in-plane spin accumula-
tion and the current density have the same operator structure
for the massless Dirac systems such as the one we consider.
Considering the bound-state contribution, for the component
of the spin (current) normal to (parallel to) the defect line we
find

Sb±
x (x) = J b±

y (x)

ev
=

∫ μ

−�

s±
x (x, ε)g±(ε)dε

or
∫ μ

−�

ρb±
x (ε, x)dε, (E1)

where g(ε) = 1
2π |v±| is the density of states for the bound-state

branches. Evaluating the energy integral, using Eq. (18b), we
obtained

Sbu±
x (x) = J bu±

y (x)

ev
= 1

2π

∫ μ

0

λ
(ε)
±
v

e−2λ
(ε)
± |x|sgn(v±)dε.

(E2)

Performing the integration we determine

Sbu±
x (x) = J bu±

y (x)

ev

= 1

2πv
sgn(v±)μ

(
1 − (1 + 2λ

(μ)
± |x|)e−2λ

(μ)
± |x|

4λ
(μ)
± |x|2

)
,

(E3)

where λ
(μ)
± = μ

v±
cos α±. One can similarly perform the inte-

gral from −� to 0 and obtain

Sbl±
x (x) = J bl±

y (x)

ev

= �

2πv
sgn(v±)

(
1 − (1 + 2λ

(−�)
± |x|)e−2λ

(−�)
± |x|

4λ
(−�)
± |x|2

)
.

(E4)

These give us the bound-state contribution to in-plane spin ac-
cumulation and current density along y, Sb±

x (x) = Sbu±
x (x) +

Sbl±
x (x) and J b±

y (x) = J bu±
y (x) + J bl±

y (x), respectively.
We now compute the net bound-state current by per-

forming the spatial integral as well, i.e., Jb
y = ev

∫ μ

−�
dε∫ ∞

−∞ dx ρb
x (ε, x),

Jb±
y

ev
= 1

2πv

∫ μ

−�

sgn(v±)�(λε
±)dε. (E5)

The total bound-state current is Jb
y = Jb+

y + Jb−
y . When μ >

0, the branches above Dirac point contribute sgn(v±)eμ/2π

and the branches below Dirac point contribute sgn(v±)e�/2π

to the net current. When μ < 0, each branch below Dirac
point contributes sgn(v±)e(μ + �)/2π .

b. Spin accumulation Sb
z

The out-of-plane spin accumulation is given by

Sb±
z (x) =

∫ μ

−�

s±
z (x, ε)g±(ε)dε or

∫ μ

−�

ρb±
z (ε, x)dε, (E6)

where, once again, g(ε) = 1
2π |v±| is the density of states for the

bound-state branches. Evaluating the energy integral, using
Eq. (18c), we obtained

Sbu±
z (x) =

∫ μ

0
− 1

2π

(λ(ε)
± )2

ε
e−2λ

(ε)
± |x|sgn(xv±)dε. (E7)

Performing the integral, we find

Sbu±
z (x)=− μ

2π
sgn(x)

cos α±
|v±|

(
1 − (1 + 2λ

(μ)
± |x|)e−2λ

(μ)
± |x|

4λ
(μ)
± |x|2

)
.

(E8)

Similarly performing the energy integral from −� to 0, we
obtain

Sbl±
z (x)

= − �

2π
sgn(x)

cos α±
|v±|

(
1 − (1 + 2λ

(−�)
± |x|)e−2λ

(−�)
± |x|

4λ
(−�)
± |x|2

)
.

(E9)

These give us the bound-state contribution to out-of-plane
spin accumulation Sb±

z (x) = Sbu±
z (x) + Sbl±

z (x).

2. Scattering states

a. Spin accumulation Ss
x and current density J s

y

Current density and in-plane spin accumulation are given
by

Ss
x (x) = J s

y (x)

ev
=

∫ μ

−�

ρs
x (ε, x)dε

=
∫ μ

0
ρs

x (ε, x)dε −
∫ −�

0
ρs

x (ε, x)dε

= Ss,μ
x,z − Ss,−�

x,z . (E10)

In the limit μ|x|/v � 1, the dominant contribution is from
angles near θ = 0, thus using stationary phase approximation
[39,40,43] we obtain

Ss,μ
x (x) =

∫ μ

0
ρs

x (ε, x)dε

=
(

μ

v

)2

Kμ
x [U0,Ux]

cos(2|μx|/v + φ̃x )

(|μx|/v)3/2
, (E11)

where

Kμ
x [U0,Ux] = sgn(μ)

√
π

(2π )2

√
C2

4 + S2
4, (E12)

φ̃x = −π

4
− tan−1

(
S4

C4

)
, (E13)

C4 = −sgn(μ)
ηUx sinh η cosh η

η2 cosh2 η + U0
2 sinh2 η

, (E14)

and

S4 = − U0Ux sinh2 η

η2 cosh2 η + U0
2 sinh2 η

. (E15)

Thus, the oscillations have a period πv/|μ| ∼ π/kF , and
oscillation amplitude decays as ∼√|μ|/v/|x|3/2. The second
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integral in Eq. (E10) is obtained by substituting μ → −�

above. The Freidel oscillations contribution, thus obtained,
oscillate with a period πv/|�| while amplitude of oscillations
decays as ∼√|�|/v/|x|3/2. For |�| � |μ|, the total contribu-
tion oscillates with period πv/|�|. For |x| � v/|μ| the ratio
of the two contributions ∼√|�/μ|.

In the limit Ux � U0 and Ux � 1, we obtain the current
contribution from scattering states by performing spatial inte-
gration and integration over energy on ρs

x in Eq. (22b). This
gives

Js
y

ev
=

∫ μ

−�

dε

∫ ∞

−∞
dx ρs

x (ε, x) = sgn(Ux )
(|μ| − �)

2πv
. (E16)

b. Spin accumulation Ss
z

Out-of-plane spin accumulation is given by

Ss
z (x) =

∫ μ

−�

ρs
z (ε, x)dε

=
∫ μ

0
ρs

x (ε, x)dε −
∫ −�

0
ρs

x (ε, x)dε. (E17)

Again, as above, in the limit μ|x|/v � 1, the dominant con-
tribution is from angles near θ = 0, and we use the stationary
phase approximation [43] to obtain

Ss,μ
z (x) =

(μ

v

)2
Kμ

z [U0,Ux]
cos(2|μx|/v + φ̃z )

(|μx|/v)3/2
, (E18)

where

Kμ
z [U0,Ux] = sgn(x)

(2π )2

√
π

√
C2

5 + S2
5, (E19)

φ̃z = −π

4
− tan−1

(
S5

C5

)
, (E20)

C5 = sgn(μ)
U0Ux sinh2 η

η2 cosh2 η + U0
2 sinh2 η

, (E21)

FIG. 8. Spinor overlap F (γ ) for (a) electrostatic potential and
(b) magnetic potential at the defect when ratio γ = v+/v is varied
from flat state (v+ = 0) to close to Dirac velocity v+ ≈ v.

and

S5 = − ηUx sinh η cosh η

η2 cosh2 η + U0
2 sinh2 η

. (E22)

Again, the second integral in Eq. (E17) is obtained by substi-
tuting μ → −� above. The oscillations in Ss,β

z (x) have the
same periods and amplitude decay as oscillations in Ss,β

x (x).

APPENDIX F: SCATTERING FROM IMPURITIES

In this Appendix, we calculate the broadening of bound-
state dispersion when electrons scatter into dispersive states
using Eq. (30). We first calculate

∑
�k | 〈ψs|V̂ |ψb〉 |2δ(ε −

E (k)) for a single impurity located at �R0 = (x0, y0) and then
average over the impurity position to get the result for random
distribution of pointlike impurities. The potential due to the
impurity is given by V0δ(�r − �R0). Without loss of generality,
we can assume that x0 > 0. The scattering-state wave func-
tion of an electron coming in from x → ∞, |ψh

2 (x > 0)〉 =
|ψh

2,i〉 + |ψh
2,R〉, is known from Eq. (14). Similarly, a par-

ticle coming in from x → −∞ will have wave function
|ψh

1 (x > 0)〉 = |ψh
1,T 〉 We evaluate | 〈ψs|V̂ |ψb〉 |2 for E > 0

but suppress index h = +1 below for brevity:

∣∣ 〈ψ i
2

∣∣V0δ(�r − �R0)|ψb〉 + 〈
ψR

2

∣∣V0δ(�r − �R0)|ψb〉
∣∣2 + ∣∣ 〈ψT

1

∣∣V0δ(�r − �R0)|ψb〉
∣∣2

=
(

lim
a,b→∞

V 2
0

4Ab

)
λ+e−2λ+x0

{
2(χ2

+ + χ2
− + 2χ+χ− sin θ ) + 2 Re

[
R∗

2e−2ikxx0 (χ2
− − χ2

+e−2iθ + 2iχ+χ−e−iθ )

]}
, (F1)

where χ± =
√

1 ± λ+/k′
y = √

1 ± cos α+ and R2 is given by h = +1 expression in Eq. (15). Now we average the above result

to get the broadening for a uniform distribution of impurities:

| 〈ψs|V |ψb〉 |2 = 2

ab

∫ a/2

0
dx0

∫ b/2

−b/2
dy0

∣∣ 〈ψ i
2

∣∣V0δ(�r − �R0)|ψb〉 + 〈
ψR

2

∣∣V0δ(�r − �R0)|ψb〉
∣∣2 + ∣∣ 〈ψT

1

∣∣V0δ(�r − �R0)|ψb〉
∣∣2

. (F2)

Broadening of bound-state dispersion is given by

� =
(

lim
a,b→∞

V 2
0

A

)
ε

2πv2

∫ π/2

−π/2
dθ

1

2

{
(χ2

+ + χ2
− + 2χ+χ− sin θ ) + Re

[
R∗

2
λ+

λ+ + ikx
(χ2

− − χ2
+e−2iθ + 2iχ+χ−e−iθ )

]}
.

(F3)

The expression has the form

� = nimpV
2

0 ρ0(ε)F (γ ), (F4)
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where nimp is the impurity concentration, ρ0(ε) = ε
2πv2 , and F (γ ) the spinor overlap given by

F (γ ) =
∫ π/2

−π/2
dθ

1

2

{
(χ2

+ + χ2
− + 2χ+χ− sin θ ) + Re

[
R∗

2
λ+

λ+ + ikx
(χ2

− − χ2
+e−2iθ+2iχ+χ−e−iθ )

]}
. (F5)

In Figs. 8(a) and 8(b), we plot the F (γ ) in presence of only electrostatic and magnetic scattering, respectively. Note that
0 � F (γ ) � π , and hence this function simply gives a prefactor to the characteristic broadening described in the main text.

[1] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[2] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[3] M. Z. Hasan and J. E. Moore, Annu. Rev. Condens. Matter

Phys. 2, 55 (2011).
[4] R. R. Biswas and A. V. Balatsky, Phys. Rev. B 81, 233405

(2010).
[5] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 86,

115433 (2012).
[6] A. M. Black-Schaffer and A. V. Balatsky, Phys. Rev. B 85,

121103(R) (2012).
[7] V. A. Sablikov and A. A. Sukhanov, Phys. Rev. B 91, 075412

(2015).
[8] M. Shiranzaei, F. Parhizgar, J. Fransson, and H. Cheraghchi,

Phys. Rev. B 95, 235429 (2017).
[9] Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Analytis,

J.-H. Chu, I. R. Fisher, and A. Kapitulnik, Phys. Rev. Lett. 108,
206402 (2012).

[10] M. L. Teague, H. Chu, F.-X. Xiu, L. He, K.-L. Wang, and N.-C.
Yeh, Solid State Commun. 152, 747 (2012).

[11] Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik,
R. R. Biswas, and L. A. Wray, Nat. Commun. 8, 14081 (2017).

[12] L. Miao, Y. Xu, W. Zhang, D. Older, S. A. Breitweiser, E.
Kotta, H. He, T. Suzuki, J. D. Denlinger, R. R. Biswas, J. G.
Checkelsky, W. Wu, and L. A. Wray, npj Quantum Mater. 3, 29
(2018).

[13] O. J. Clark, F. Freyse, L. V. Yashina, O. Rader, and J. Sánchez-
Barriga, npj Quantum Mater. 7, 1 (2022).

[14] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Phys.
Rev. B 90, 241409(R) (2014).

[15] R. R. Biswas and A. V. Balatsky, Phys. Rev. B 83, 075439
(2011).

[16] D. Sen and O. Deb, Phys. Rev. B 85, 245402 (2012).
[17] Q. Liu, X.-L. Qi, and S.C. Zhang, Phys. Rev. B 85, 125314

(2012).
[18] L. Brey and H. A. Fertig, Phys. Rev. B 89, 085305 (2014).
[19] Y. F. Zhou, A. M. Guo, and Q. F. Sun, Phys. Rev. B 94, 085307

(2016).
[20] Z. Alpichshev, J. G. Analytis, J.-H. Chu, I. R. Fisher, and A.

Kapitulnik, Phys. Rev. B 84, 041104(R) (2011).
[21] N. Fedotov and S. Zaitsev-Zotov, Phys. Status Solidi RRL 13,

1800617 (2019).

[22] T. Yokoyama, A. V. Balatsky, and N. Nagaosa, Phys. Rev. Lett.
104, 246806 (2010).

[23] Y. Xu, G. Jiang, J. Chiu, L. Miao, E. Kotta, Y. Zhang, R. R.
Biswas, and L. A. Wray, New J. Phys. 20, 073014 (2018).

[24] S. Mondal, D. Sen, K. Sengupta, and R. Shankar, Phys. Rev.
Lett. 104, 046403 (2010).

[25] C.-X. Liu, X.-L. Qi, H.J. Zhang, X. Dai, Z. Fang, and S.-C.
Zhang, Phys. Rev. B 82, 045122 (2010).

[26] Q. Liu, C. X. Liu, C. Xu, X. L. Qi, and S. C. Zhang, Phys. Rev.
Lett. 102, 156603 (2009).

[27] D. K. Efimkin and V. Galitski, Phys. Rev. B 89, 115431
(2014).

[28] B. H. J. McKellar and G. J. Stephenson, Phys. Rev. C 35, 2262
(1987).

[29] B. H. J. McKellar and G. J. Stephenson, Phys. Rev. A 36, 2566
(1987).

[30] E. McCann and V. I. Fal’ko, J. Phys.: Condens. Matter 16, 2371
(2004).

[31] A. R. Akhmerov and C. W. J. Beenakker, Phys. Rev. B 77,
085423 (2008).

[32] D. Basko, Phys. Rev. B 79, 205428 (2009).
[33] V. V. Enaldiev, I. V. Zagorodnev, and V. A. Volkov, JETP Lett.

101, 89 (2015).
[34] M. M. Asmar, D. E. Sheehy, and I. Vekhter, Phys. Rev. B 95,

241115(R) (2017).
[35] D. J. Alspaugh, M. M. Asmar, D. E. Sheehy, and I. Vekhter,

Phys. Rev. B 105, 054502 (2022).
[36] K. Akkaravarawong, O. Shtanko, and L. Levitov,

arXiv:1512.04185; O. Shtanko and L. Levitov, Proc. Natl.
Acad. Sci. USA 115, 5908 (2018).

[37] M. F. Crommie, C. P. Lutz, and D. M. Eigler, Nature (London)
363, 524 (1993).

[38] J. An and C. S. Ting, Phys. Rev. B 86, 165313 (2012).
[39] J. Villain, M. Lavagna, and P. Bruno, C. R. Phys. 17, 276 (2016).
[40] J. Callaway, Quantum Theory of the Solid State, Quantum The-

ory of the Solid State Volume 1 (Academic, New York, 1976).
[41] E. Thareja, I. Vekhter, and M. M. Asmar, Phys. Rev. B 102,

125308 (2020).
[42] E. Thareja and I. Vekhter (unpublished).
[43] R. Bhattacharya and I. Basu, Comput. Phys. Commun. 16, 167

(1979).

144205-12

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1146/annurev-conmatphys-062910-140432
https://doi.org/10.1103/PhysRevB.81.233405
https://doi.org/10.1103/PhysRevB.86.115433
https://doi.org/10.1103/PhysRevB.85.121103
https://doi.org/10.1103/PhysRevB.91.075412
https://doi.org/10.1103/PhysRevB.95.235429
https://doi.org/10.1103/PhysRevLett.108.206402
https://doi.org/10.1016/j.ssc.2012.01.041
https://doi.org/10.1038/ncomms14081
https://doi.org/10.1038/s41535-018-0101-8
https://doi.org/10.1038/s41535-022-00443-9
https://doi.org/10.1103/PhysRevB.90.241409
https://doi.org/10.1103/PhysRevB.83.075439
https://doi.org/10.1103/PhysRevB.85.245402
https://doi.org/10.1103/PhysRevB.85.125314
https://doi.org/10.1103/PhysRevB.89.085305
https://doi.org/10.1103/PhysRevB.94.085307
https://doi.org/10.1103/PhysRevB.84.041104
https://doi.org/10.1002/pssr.201800617
https://doi.org/10.1103/PhysRevLett.104.246806
https://doi.org/10.1088/1367-2630/aacef6
https://doi.org/10.1103/PhysRevLett.104.046403
https://doi.org/10.1103/PhysRevB.82.045122
https://doi.org/10.1103/PhysRevLett.102.156603
https://doi.org/10.1103/PhysRevB.89.115431
https://doi.org/10.1103/PhysRevC.35.2262
https://doi.org/10.1103/PhysRevA.36.2566
https://doi.org/10.1088/0953-8984/16/13/016
https://doi.org/10.1103/PhysRevB.77.085423
https://doi.org/10.1103/PhysRevB.79.205428
https://doi.org/10.1134/S0021364015020071
https://doi.org/10.1103/PhysRevB.95.241115
https://doi.org/10.1103/PhysRevB.105.054502
http://arxiv.org/abs/arXiv:1512.04185
https://doi.org/10.1073/pnas.1722663115
https://doi.org/10.1038/363524a0
https://doi.org/10.1103/PhysRevB.86.165313
https://doi.org/10.1016/j.crhy.2015.12.010
https://doi.org/10.1103/PhysRevB.102.125308
https://doi.org/10.1016/0010-4655(79)90085-7

